KROHNE

System Technology

Communication Instructions for IFC 010

HART^{*} Communications Protocol

IFC010 Electromagnetic Flowmeter Transmitter-Specific Command Specification

Revision #1

INITIAL RELEASE: May, 29, 1997

CURRENT RELEASE: May, 29, 1997

CONTENTS

CONTENTS	2
1. REFERENCED DOCUMENTS	5
2. EXPANDED DEVICE TYPE CODE	5
3. IFC010 CONFORMANCE AND COMMAND CLASS SUMMARY	5
4. ADDITIONAL RESPONSE CODE INFORMATION	6
4.1 Transmitter-Specific Command Error	6
4.2 Update Failure	7
4.3 Field Device Malfunction	7
4.4 Configuration Changed	7
4.5 Primary Variable Analog Output Fixed	7
4.6 Non-Primary Variable Out Of Limits	7
4.7 Primary Variable Out Of Limits	7
5. GENERAL TRANSMITTER INFORMATION	7
5.1 Inputs/Outputs And Dynamic/Transmitter Variables	7
5.2 Damping Implementation	8
5.3 Nonvolatile Memory Data Storage	8
5.4 Multidrop Mode	8
5.5 Burst Mode	8
6. ADDITIONAL UNIVERSAL COMMAND SPECIFICATIONS	8
6.1 Command #0 Read Unique Identifier	8
6.2 Command #14 Read Primary Variable Sensor Information	8
6.3 Command #15 Read Primary Variable Output Information	8
7. ADDITIONAL COMMON-PRACTICE COMMAND SPECIFICATIONS	9
7.1 Command #33 Read Transmitter Variables	9
7.2 Command #34 Write Primary Variable Damping Value	9
7.3 Command #35 Write Primary Variable Range Values	9

7.4 Command #40 Enter/Exit Fixed Primary Variable Current Mode	9
7.5 Command #43 Set Primary Variable Zero	9
7.6 Command #44 Write Primary Variable Units	9
7.7 Command #45 Trim Primary Variable Current Dac Zero	10
7.8 Command #46 Trim Primary Variable Current Dac Gain	10
7.9 Command #48 Read Additional Transmitter Status	10
7.10 Command #50 Read Dynamic Variables Assignments	11
7.11 Command #51 Write Dynamic Variables Assignments	11
7.12 Command #53 Write Transmitter Variable Units	12
7.13 Command #62 Read Analog Outputs	12
7.14 Command #66 Enter/Exit Fixed Analog Output Mode	12
7.15 Command #67 Trim Analog Output Zero	12
7.16 Command #68 Trim Analog Output Gain	12
8. TRANSMITTER-SPECIFIC COMMANDS	13
8.1 Command #128 Read Hardware Information	13
8.2 Command #129 Read Device Implementation Code	13
8.3 Command #130 Read Meter Diameter	14
8.4 Command #131 Write Meter Diameter	14
8.5 Command #134 Read Low Flow Cutoff Control And Values	15
8.6 Command #135 Write Low Flow Cutoff Control And Values	15
8.7 Command #136 Stop/Resume Totalizers	16
8.8 Command #137 Reset Totalizers	17
8.9 Command #138 Read Analog Output Function	17
8.10 Command #139 Write Analog Output Function	18
8.11 Command #142 Read Pulse Output Parameters	18
8.12 Command #143 Write Pulse Output Parameters	19
8.13 Command #144 Read Indication Function And Tripping Point	20
8.14 Command #145 Write Indication Function And Tripping Point	21
8.15 Command #146 Read Primary Constant And Flow Direction	21
8.16 Command #147 Write Primary Constant And Flow Direction	22

8.17 Command #148 Read Language And User-Defined Unit	22
8.18 Command #149 Write Language And User-Defined Unit	23
8.19 Command #150 Enable/Disable Password Protection	25
8.20 Command #151 Control Zero Calibration	26
8.21 Command #152 Quit Errors	26
8.22 Command #154 Read RS485 Communication Parameters	27
8.23 Command #155 Write RS485 Communication Parameters	27
9. TRANSMITTER-SPECIFIC TABLES	28
9.1 Primary Variable Unit Codes	28
9.2 Totalizer Unit Codes	28
9.3 Meter Size Table	29
9.4 Factors For Volume	29
9.5 Factors For Time	29

1. Referenced Documents

HART Physical Layer Specification - Revision 7.0	D8900097
HART Data Link Layer Specification - Revision 7.0	D8900098
HART Command Summary Information - Revision 7.0	D9000048
HART Universal Command Specification - Revision 5.1	D8900038
HART Common-Practice Command Specification - Revision 7.0	D9000050
HART Common Tables - Revision 5.0	D9000051

2. Expanded Device Type Code

Manufacturer Identification Code	= 69	(0x45)
Manufacturer¥s Device Type Code	= 246	(0xF6)

The merger of these two 8-bit codes forms the 16-bit Expanded Device Type Code.

Expanded Device Type Code = 17910

3. IFC010 Conformance And Command Class Summary

Command Number	Description
CONFORMANC	E CLASS #1
	- UNIVERSAL
0	Read Unique Identifier
1	Read Primary Variable
CONFORMANC	E CLASS #1A
	- UNIVERSAL
0	Read Unique Identifier
2	Read Primary Variable Current and Percent of Range
CONFORMANC	E CLASS #2
	- UNIVERSAL
11	Read Unique Identifier Associated with Tag
12	Read Message
13	Read Tag, Descriptor, Date
14	Read Primary Variable Sensor Information
15	Read Primary Variable Output Information
16	Read Final Assembly Number
CONFORMANC	E CLASS #3
	- UNIVERSAL
3	Read Dynamic Variables and P.V. Current
	- COMMON-PRACTICE
33	Read Transmitter Variables
48	Read Additional Transmitter Status
50	Read Dynamic Variable Assignments
60	Read Analog Output and Percent of Range
62	Read Analog Outputs
	- TRANSMITTER-SPECIFIC
128	Read Hardware Information
129	Read Device Implementation Code
130	Read Meter Diameter

- Read Low Flow Cutoff Control and ValuesRead Analog Output Function
- 142 Read Pulse Output Parameters
- 144 Read Indication Function and Tripping Point
- 146 Read Primary Constant and Flow Direction
- 148Read Language and User-Defined Unit
- 154 Read RS485 Communication Parameters

CONFORMANCE CLASS #4

- COMMON-PRACTICE

- 34 Write Primary Variable Damping Value
- 35 Write Primary Variable Range Values
- 36 Set Primary Variable Upper Range Value
- 38Reset Configuration Changed Flag
- 40 Enter/Exit Fixed Primary Variable Current Mode
- 42 Perform Master Reset
- 66 Enter/Exit Fixed Analog Output Mode - TRANSMITTER-SPECIFIC
- 136 Stop/Resume Totalizers
- 137 Reset Totalizers
- 150 Enable/Disable Password Protection
- 152 Ouit Errors

CONFORMANCE CLASS #5

-UNIVERSAL

6	Write Polling Address
17	Write Message
18	Write Tag, Descriptor, Date
19	Write Final Assembly Number
	- COMMON-PRACTICE
43	Set Primary Variable Zero
44	Write Primary Variable Units
45	Trim Primary Variable Current DAC Zero
46	Trim Primary Variable Current DAC Gain
51	Write Dynamic Variable Assignments
53	Write Transmitter Variable Units
59	Write Number of Response Preambles
67	Trim Analog Output Zero
68	Trim Analog Output Gain
	- TRANSMITTER-SPECIFIC
131	Write Meter Diameter
135	Write Low Flow Cutoff Control and Values
139	Write Analog Output Function
143	Write Pulse Output Parameters
145	Write Indication Function and Tripping Point
147	Write Primary Constant and Flow Direction
149	Write Language and User-Defined Unit
151	Control Zero Calibration
155	Write RS485 Communication Parameters

4. Additional Response Code Information

FIRST BYTE

4.1 Transmitter-Specific Command Error

Response code value 6 for IFC010 is not implemented. The IFC010 will respond and execute all commands at any time.

4.2 Update Failure

This response code (8) is returned if an EEPROM-burning process, activated via bus request, failed on any stage.

SECOND BYTE

4.3 Field Device Malfunction

Bit #7

This bit is set if any module of the standard instrument configuration: *ADC*, *I/O Standard* and *Display/Counter 1* - reports iFatal Errorî. Refer also to Command #48, Read Additional Transmitter Status.

4.4 Configuration Changed

Bit #6

This flag is set whenever any configuration parameter is changed either via bus request or by direct instrument control via keypad. Note, that the instrument can run simultaneously two external protocols: via HART-bus and RS485-bus.

4.5 Primary Variable Analog Output Fixed

Bit #3

This flag is set under following conditions: when the function of current output is switched iOffi or when fixed current mode is entered (Commands #40, #66).

4.6 Non-Primary Variable Out Of Limits

Bit #1

This flag is not implemented. The only non-primary variable having limits, namely *RawFlow* (refer to section 5.1), is limited as Primary Variable (*SmoothedFlow*) but is not damped. Therefore near the boundaries *RawFlow* might provide a random iOut-of-Limitsî process.

4.7 Primary Variable Out Of Limits

Bit #0

This flag is set whenever the Primary Variable exceeds the Sensor Limits returned with Command #14, Read Primary Variable Sensor Information.

5. General Transmitter Information

5.1 Inputs/Outputs And Dynamic/Transmitter Variables

The IFC010 instrument has a fixed set of outputs: one current output, one frequency/pulse output and one binary status/indication output.

The IFC010 transmitter handles four measurement-related variables, hence Transmitter Variablesí set is composed from variables with indices:

0 - RawFlow

- 1 SmoothedFlow (via damping)
- 2 PositiveTotalizer
- 3 NegativeTotalizer.

SmoothedFlow is always mapped onto the current output, thus providing a fixed setting for Primary Variable. The frequency/pulse output can deal with two possible assignments: *RawFlow* or *SmoothedFlow*. Therefore only values 0 and 1 are allowed as Secondary Variable code. Tertiary and Fourth Variables are mapped onto logical slots (no more outputs) and can therefore accept any allowed value (0..3).

5.2 Damping Implementation

The IFC010 transmitter implements damping on both the digital Primary Variable and its Analog Output. The Analog Output is calculated from the digital Primary Variable.

The rest Dynamic Variables have either the same Damping Value as Primary Variable, or no damping. It depends on the Secondary Variable Code (refer to Command #51, Write Dynamic Variable Assignments).

5.3 Nonvolatile Memory Data Storage

The Flags Byte of Command #0 will have Bit #1 (Command #39, EEPROM Control) set to 0, indicating that all data sent to the transmitter will be saved automatically in the device EEPROM upon receipt of the Write- or Command-type command, that require data storage. Command #39, EEPROM Control, is not implemented.

5.4 Multidrop Mode

This revision of the IFC010 supports Multidrop Mode.

5.5 Burst Mode

This revision of the IFC010 does not support Burst Mode.

6. Additional Universal Command Specifications

This section contains information pertaining to those commands that require clarification.

6.1 Command #0 Read Unique Identifier

Device Identification Number (Data bytes #9..#11 of response packet) is preserved in the instrument as a 4-bytes number. Hence only three (low significant) bytes of this number are ivisibleî to HART-requester.

6.2 Command #14 Read Primary Variable Sensor Information

Sensor serial number is not stored within device and therefore is responded as Ñnot applicable to deviceì (zero value). Sensor parameters depend on the meter diameter and should be reread if the latter is changed.

6.3 Command #15 Read Primary Variable Output Information

Upper Range Value depends on the meter diameter. When the latter is changed, Upper Range Value will be automatically corrected if needed. In the last case bus master will be prompted about compulsory changes in correlated parameters via Warning-type Response Codes (refer to Command #131, Write Meter Diameter).

Write Protect Code variable (Data byte #15 of response packet) depends on the setting made for device variable Entry Code, Menu 3.4.

7. Additional Common-Practice Command Specifications

The IFC010 implements a subset of the Common-Practice Commands. This section contains information pertaining to those commands that require clarification.

7.1 Command #33 Read Transmitter Variables

Multiple transactions are supported: bus master can request from 1 to 4 Transmitter Variables (with codes 0..3) in arbitrary set.

7.2 Command #34 Write Primary Variable Damping Value

The IFC010 will accept any IEEE value in the range 0.2 to 99.9 seconds for the damping value.

7.3 Command #35 Write Primary Variable Range Values

Upper Range Value is rejected if it exceeds the Upper Sensor Limit or is below the Lower Sensor Limit (both Limits are available via Command #14). Rejection reason in these two cases is reported via predefined response codes, namely by code 11, Upper Range Value too High, or by code 12, Upper Range Value too Low. However, it might happen that a correct Upper Range Value for a given sensor causes the necessity to update the *PulseValue* variable of the instrument that plays the role of Upper Range Value for Secondary Variable and is based on the value of Primary Variable Upper Range. To handle correctly this situation, the predefined set of response codes for Command #35 was augmented by the two multi-definable warnings:

- 112, Pulse Value Exceeded Max and Was Corrected
- 113, Pulse Value Surpassed Min and Was Corrected

For additional information refer to Transmitter-Specific Commands #142/#143, Read/Write Pulsetype, Pulsewidth and Pulse Value.

Lower Range Value is always assumed to be zero for IFC010. Therefore this parameter in request packet is ignored. Transmitter returns zero value in response telegram without prompting master via special response code.

7.4 Command #40 Enter/Exit Fixed Primary Variable Current Mode

The instrument will accept any IEEE value in the range 3.5 to 25.0 mA as a desirable fixed current level. As required, zero value exits fixed current mode.

7.5 Command #43 Set Primary Variable Zero

An instant value of applied process (snapshot zero) is used to process this command. An alternative approach to calibration, when it is treated as a process, is realized via Transmitter-Specific Command #151, Control Zero Calibration.

7.6 Command #44 Write Primary Variable Units

The units selected for the Primary Variable (always *SmoothedFlow*) will also be the units for *RawFlow*. The latter variable depending on the settings made via Command #51, Write Dynamic Variable Assignments, can be mapped onto any Non-Primary Dynamic Variable, as described in section 5.1. Refer also to commentaries given for Command #51.

The Primary Variable Unit Codes accepted by this transmitter, are listed in Table 9.1.

NOTE: The transmitter software supports an expanded unitsí set for volumetrical flow, as compared with the software of the instrumentís display module. Therefore HART flowrate units are stored in the device EEPROM as *Full Scale Units* (Menus 1.1, 3.2.2) to avoid blank device screen when the latter displays flowrate measurements. Hence in the case of manual device control, the user will be initially presented with a blank screen for the *Full Scale Value* (in the Menus mentioned) if the HART master has set any expanded (for display module) unit. However, it mustnít bother - the actual value of *Full Scale* can be scrolled in all device internal units by the usage of *Up-key* on device keypad.

7.7 Command #45 Trim Primary Variable Current Dac Zero

The lower calibration point for the instrument is 4.0 mA. If this command is not preceded by command #40 with corresponding data field, the request will be rejected with Not In Proper Current Mode response code (9).

7.8 Command #46 Trim Primary Variable Current Dac Gain

The upper calibration point for the instrument is 20.0 mA. If this command is not preceded by command #40 with corresponding data field, the request will be rejected with Not In Proper Current Mode response code (9).

7.9 Command #48 Read Additional Transmitter Status

Reads 5 bytes of status data from the transmitter. In designations used Bit #0 corresponds to LSBit, Bit #7 - to MSBit.

Data byte #0 - ADC module errors

- Bit #7 ADC fatal error
- Bit #6 Undefined
- Bit #5 Undefined
- Bit #4 Undefined
- Bit #3 Undefined
- Bit #2 Undefined
- Bit #1 Undefined
- Bit #0 Error in IMoCom configuration

Data byte #1 - Status of the blocks of global EEPROM

- Bit #7 Checksum error in the Device block
- Bit #6 Checksum error in the Communication block
- Bit #5 Checksum error in the Display block
- Bit #4 Checksum error in the Counter block
- Bit #3 Checksum error in the Control/Indicate block
- Bit #2 Checksum error in the Pulse/Frequency block
- Bit #1 Checksum error in the Current block
- Bit #0 Checksum error in the General block

Data byte #2 - Display module errors

- Bit #7 Display fatal error
- Bit #6 Undefined
- Bit #5 Undefined
- Bit #4 Undefined
- Bit #3 Undefined
- Bit #2 Undefined
- Bit #1 Undefined

Bit #0 Power fail detected

Data byte #3 - I/O module errors

- Bit #7 Undefined
 - Bit #6 Undefined
 - Bit #5 Undefined
 - Bit #4 Undefined
 - Bit #3 Fatal error of Pulse Output
 - Bit #2 Undefined
 - Bit #1 Undefined
 - Bit #0 Undefined

Data byte #4 - I/O module errors

- Bit #7 Undefined
- Bit #6 Undefined
- Bit #5 Undefined
- Bit #4 Undefined
- Bit #3 Undefined
- Bit #2 Undefined
- Bit #1 Fatal error of Status Output
- Bit #0 Undefined

7.10 Command #50 Read Dynamic Variables Assignments

The possible mappings of Transmitter Variables into array of Dynamic Variables are already discussed in section 5.1, Inputs/Outputs and Dynamic/Transmitter Variables. On startup Dynamic Variables are configured as follows:

Primary Variable Code	= 1, <i>SmoothedFlow</i> ; permanent setting.
Secondary Variable Code	= 0, <i>RawFlow</i> , or 1, <i>SmoothedFlow</i> , depending on the value of device variable
	TimeConstantControl (Menu 1.2), correspondingly Only I or All; variable setting.
Tertiary Variable Code	= 2, <i>PositiveTotalizer</i> ; variable setting.
Fourth Variable Code	= 3, <i>NegativeTotalizer</i> ; variable setting.

NOTE: Settings for Tertiary and Fourth Variables correspond to logical slots (not analog outputs) and therefore are stored in RAM. Hence any external changes in TV, QV code values will be actual until the first power-on or device-initiated reset.

7.11 Command #51 Write Dynamic Variables Assignments

Multiple transactions are supported. The sequence of request data bytes for every transaction is listed below.

TRANSACTION #0				
DATA BYTES	#0	#1	#2	#3
	PV	SV	TV	QV
	VAR	VAR	VAR	VAR
	CODE	CODE	CODE	CODE
TRANSACTION #1				
DATA BYTES	#0	#1	#2	
	PV	SV	TV	
	VAR	VAR	VAR	
	CODE	CODE	CODE	
TRANSACTION #2				
DATA BYTES	#0	#1		
	PV	SV		
	VAR	VAR		
	CODE	CODE		

TRANSACTION #3	
DATA BYTES	#0
	PV
	VAR
	CODE

Changing of Dynamic Variable assignments must obey some restrictions (refer to sections 5.1, 7.10): Primary Variable Code must be illî, Secondary Variable Code must be either illî or illî,

Tertiary and Fourth Variables will accept any defined Transmitter Variable Code (from 10î to 13î). In the case of any error request packet will be rejected with response code 2, Invalid Selection.

7.12 Command #53 Write Transmitter Variable Units

If Transmitter Variable Code equals to 10î or 11î, flowrate units are changed (refer to Command #44). If Transmitter Variable Code corresponds to any totalizer (refer to section 5.1), the requested unit will affect all of them. The list of valid for this transmitter totalizersí unit codes is placed into Table 9.2.

7.13 Command #62 Read Analog Outputs

Two transactions are supported: bus master can request from 1 to 2 Analog Outputs (with codes 11î for current output and 12î - for pulse output) in arbitrary set. For pulse output the output value is responded in manufacturer specific units: 1249î, ipulses per secondî.

7.14 Command #66 Enter/Exit Fixed Analog Output Mode

If this command is used to deal with current output, then Analog Output Number Code must be set to 11î and Analog Output Units - to 139î, mA. For details pertaining to Output Level refer to Command #40.

When Analog Output Units are set to i57i (%) and any allowed Analog Output Number Code is selected, then a joint test of both outputs is carried out (Menu 2.1, Test Q). It's **very important** that unlike Command #40, under this test the outputs behave as required by their functions, i.e. exactly as they will do in normal operating mode under the same circumstances. Say, if *FlowDirection* (Menu 3.2.6; Command #146, Read Primary Constant and Flow Direction) is set to i- Dirî (logical positive direction) and the function of current output is set to *1 Dir* (Menu 1.5.1; Command #138, Read Analog Output Function), then for

 $flow = \pm PV Upper Range Value$

the output will be set to 20 mA value for ì+î measurements and to 4 mA $\,$ - for inegativeî.

The Output Level defines a test value, in % of Primary Variable Upper Range Value, IEEE 754. Any value is accepted within the range -110%..+110%. If test value is out of this range, it is set to appropriate boundary; then responded value will reflect this.

As required, a request with NaN test level exits test mode. NOTE: While exiting test mode, the Analog Output Units must be specified.

7.15 Command #67 Trim Analog Output Zero

Command can be used for calibration of the current output (Analog Output Number Code = 1). Refer to section 7.7.

7.16 Command #68 Trim Analog Output Gain

Command can be used for calibration of the current output (Analog Output Number Code = 1). Refer to section 7.8.

8. Transmitter-Specific Commands

8.1 Command #128 Read Hardware Information

Reads the identification code of every installed module/board.

REQUEST DATA BYTES

MODULE NUMBER CODE

RESPONSE DATA BYTES

	#0 MODULE NUMBER CODE	#1 MODULE INST CODE	#2 MODULE ID CODE BYTE #0	 #11 MODULE ID CODE BYTE #9
Data Byte #0	Module number code: 1 - Standard I/O module 2 - Enhanced I/O module 3 - Display/Counter module 1 4 - Display/Counter module 2 5 - Communication module 7 - ADC module			
Data Byte #1	Module presence code: 0x00 - Module is installed 0xff - Module is not installed			
Data Byte #2-#11	Moduleís identification data, ASCII. Data presentation is exactly the same as is used by the instrument display for the same goal: identification code for each module is transferred in a			

NOTE: Module identification data is requested by HART software only on initialization stage (after power-on or hardware-driven reset).

form ìX.XXXXX.XXî where ìXì corresponds to a decimal digit. An obtained value is

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1	Undefined
2	Invalid Selection
3-4	Undefined
5	Too Few Data Bytes Received
6-127	Undefined

8.2 Command #129 Read Device Implementation Code

meaningful only for installed modules.

Reads the implementation version of the instrument.

REQUEST DATA BYTES

NONE

RESPONSE DATA BYTES #0

DEVICE IMPLEM CODE

Data Byte #0	Device implementation code:
	0 - Ecoflux
	1 - Aquaflux
	15 - Special

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-127	Undefined

8.3 Command #130 Read Meter Diameter

Returns the meter size of the converter (Menu 3.2.1).

REQUEST DATA BYTES

NONE

RESPONSE DATA BYTES

#0 METER SIZE TABLE INDEX

Data Byte #0 Diameter index of the meter size table 9.3.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-127	Undefined

8.4 Command #131 Write Meter Diameter

Changes of the converter meter size **will force** the updating of sensor characteristics (returned by Command #14) and therefore might cause the automatic correction of the Primary Variable Upper Range Value (Menus 1.1, 3.2.2) and *PulseValue* (Menu 1.6.4). Master is prompted about corrections carried out via warning responses and **must** reread the updated data. For additional information refer to Command #35.

REQUEST DATA BYTES

#0
METER
SIZE
TABLE
INDEX

RESPONSE DATA BYTES

#0 METER SIZE TABLE INDEX

Data Byte #0

Diameter index of the meter size table 9.3.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-2	Undefined
3	Passed Parameter too Large
4	Passed Parameter too Small
5	Too Few Data Bytes Received
6	Undefined
7	In Write Protect Mode
8	Update Failure
9-113	Undefined
114	Range Exceeded Max and Was Corrected
115	Range Surpassed Min and Was Corrected
116	Both Range and Pulse Value Corrected
117-127	Undefined

8.5 Command #134 Read Low Flow Cutoff Control And Values

Reads low flow cutoff parameters (Menu 1.3).

REQUEST DATA BYTES

NONE

RESPONSE DATA BYTI	ES			
	#0	#1	#2	
	CUTOFF	CUTOFF	CUTOFF	
	CONTROL	ON	OFF	
		VALUE	VALUE	
Data Byte #0	Cutoff control va	riable:		
2	0 - cutoff option is switched Off			
1 - cutoff option is switched On				
Data Byte #1	Cutoff On Value, in $1/10\%$ of the Primary Variable Upper Range Value (say, 5% will result in a value of 50 on a bus). When cutoff is switched Off (Data Byte #0 = 0), the instrument still uses the cutoff option, and the defaulted On Value is returned (that is not stored in EEPROM!). The latter might be either 0.1% or 1% depending on the <i>PulseType</i> value (refer to the instrument Operating Instructions.			
Data Byte #2	Cutoff Off Value, in $1/10\%$ of the Primary Variable Upper Range Value. When cutoff is switched Off (Data Byte #0 = 0), the instrument still uses the cutoff option, and the defaulted Off Value is returned (that is not stored in EEPROM!). The latter might be either 0.2% or 2% depending on the <i>PulseType</i> value (refer to the instrument Operating Instructions.			
COMMAND SDECIEIC I		ES		

COMMAND-SPECIFIC RESPONSE CODES

0No Command-Specific Errors1-127Undefined

8.6 Command #135 Write Low Flow Cutoff Control And Values

Writes low flow cutoff parameters.

S		
#0	#1	#2
CUTOFF	CUTOFF	CUTOFF
CONTROL	ON	OFF
	VALUE	VALUE
	S #0 CUTOFF CONTROL	S #0 #1 CUTOFF CUTOFF CONTROL ON VALUE

RESPONSE DATA BYT	ES			
	#0	#1	#2	
	CUTOFF	CUTOFF	CUTOFF	
	CONTROL	ON	OFF	
		VALUE	VALUE	
Data Byte #0	Cutoff control variable:			
	0 - to switch cutoff option Off,			
	Any other value - to switch cutoff option On.			
	When the cutoff option is switched from On to Off, the rest data in request packet is ignored and therefore On/Off Values will not be altered in transmitter EEPROM.			
Data Byte #1	Cutoff On Value, in 1/10% of the Primary Variable Upper Range Value (say, 5% will result in a value of 50 on a bus). This byte is meaningful only if Data Byte $\#0 \neq 0$. Value must belong to interval 10190 (119%).			
Data Byte #2	Cutoff Off Valu meaningful only	ue, in 1/10% of a if Data Byte #0 ≠	the Primary Variable Upper Range Value. This byte is 0. Value must belong to interval 20200 (220%).	

Refer also to comments for the previous command.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-4	Undefined
5	Too Few Data Bytes Received
6	Undefined
7	In Write Protect Mode
8	Update Failure
9	Off Value too High
10	Off Value too Low
11	On Value too High
12	On Value too Low
13	On Value not Lower than Off Value
14-127	Undefined

8.7 Command #136 Stop/Resume Totalizers

Depending on the value of control variable all totalizers are either frozen (regardless of measurement process) or resumed. After resumption frozen values are being initial ones for every totalizer. When totalizers are stopped, Commands #3, #33 will return for Transmitter Variables 2..3 corresponding constant (frozen) values.

REQUEST DATA BYTES

#0 TOTS CONTROL

RESPONSE DATA BYTES

#0 TOTS CONTROL

Data Byte #0 Totalizersí control variable: 0 - Stop totalizers, Any other value - Resume totalizers.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-4	Undefined
5	Too Few Data Bytes Received
6	Undefined
7	In Write Protect Mode
8	Update Failure
9-127	Undefined

8.8 Command #137 Reset Totalizers

Clears (sets to zero) both totalizers.

REQUEST DATA BYTES NONE

RESPONSE DATA BYTES

NONE

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-6	Undefined
7	In Write Protect Mode
8	Update Failure
9-15	Undefined
16	Access Restricted
17-127	Undefined

8.9 Command #138 Read Analog Output Function

Reads the function of current/pulse output.

REQUEST DATA BYTES

#0 ANALOG OUTPUT NUMBER CODE

RESPONSE DATA BYTES

#0	#1
ANALOG	ANALOG
OUTPUT	OUTPUT
NUMBER	FUNCTION
CODE	CODE

Data Byte #0 Analog Output Number Code, equals 11î for current output and 12î - for p ulse output

Data Byte #1 Analog Output Function Code:

0 - Off,

- 1 1 Dir, output traces flowrate measurements only in one direction,
- 3 2 Dir, output traces flowrate measurements in both directions.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1	Undefined
2	Invalid Selection

3-4	Undefined
5	Too Few Data Bytes Received
6-127	Undefined

8.10 Command #139 Write Analog Output Function

Writes the function of current/pulse output.

REQUEST DATA BYT	ES	
-	#0	#1
	ANALOG	ANALOG
	OUTPUT	OUTPUT
	NUMBER	FUNCTION
	CODE	CODE
RESPONSE DATA BY	TES	
	#0	#1
	ANALOG	ANALOG
	OUTPUT	OUTPUT
	NUMBER	FUNCTION
	CODE	CODE
Data Byte #0	Analog Output Number Code, equals 11î for current output and 12î - for pulse output	
Data Byte #1	Analog Output	Function Code, valid settings:
	0 - Off,	
	1 - 1 Dir, outpu	at traces flowrate measurements only in one (forward) direction,
	3 - 2 Dir, outpu	at traces flowrate measurements in both directions.

NOTE: In the case of incorrect function the request will be rejected with a response code 3, Passed Parameter too Large.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1	Undefined
2	Invalid Selection
3	Passed Parameter too Large
4	Undefined
5	Too Few Data Bytes Received
6	Undefined
7	In Write Protect Mode
8	Update Failure
9-127	Undefined

8.11 Command #142 Read Pulse Output Parameters

Reads adjustment parameters of the pulse output: PulseType, PulseWidth, PulseValue.

REQUEST DATA BYTES

NONE

RESPONSE DATA	BYTES			
	#0	#1	#2	 #5
	PULSE	PULSE	PULSE	PULSE
	TYPE	WIDTH	VAL	VAL
			MSB	LSB

Data Byte #0

Pulse type, defines how pulses are generated at the output:

	 2 - 100 Hz 3 - 1000 Hz 8 - iPulse/Volumeî 9 - iPulse/Timeî. For iPulse/Volumeî setting one and the same number of pulses (established by <i>PulseValue</i>) correspond to a given volume unit. In the iPulse/Timeî case <i>PulseValue</i> represents frequency that will be observed at the output if the measured flowrate equals to the the Primary Variable Upper Range Value. In both these cases maximal possible frequency depends on <i>PulseWidth</i> value.
Data Byte #1	Pulse width, meaningful only for ìPulse/Volumeî or ìPulse/Timeî settings of <i>PulseType</i> : 5 - 50 msec 10 - 100 msec 20 - 200 msec 50 - 500 msec.
Data Byte #2-#5	Pulse value per volume or time unit, depending on <i>PulseType</i> value, IEEE 754. Meaningful only for iPulse/Volumeî or iPulse/Timeî settings of <i>PulseType</i> . The related unit is based on Primary Variable Unit. Say, the latter is igal/minî. Then if <i>PulseType</i> = 0, <i>PulseValue</i> is responded in ipulses per gallonî. For iPulse/Timeî setting <i>PulseValue</i> is replied in ipulses per minuteî unit.

NOTE: When *PulseType* is set to 100 Hz or 1000 Hz, the rest data fields in the response packet represent data that is not currently used by the instrument.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-127	Undefined

8.12 Command #143 Write Pulse Output Parameters

Writes adjustment parameters of the pulse output: PulseType, PulseWidth, PulseValue.

REQUEST DATA BY	TES					
	#0	#1	#2		#5	
	PULSE	PULSE	PULSE		PULSE	
	TYPE	WIDTH	VAL		VAL	
			MSB		LSB	
RESPONSE DATA BY	YTES					
	#0	#1	#2		#5	
	PULSE	PULSE	PULSE		PULSE	
	TYPE	WIDTH	VAL		VAL	
			MSB		LSB	
Data Byte #0	Pulse type, defines how pulses are generated at the output: 2 - 100 Hz					
	3 - 1000 Hz					
	$\delta = \operatorname{Iruise}/\operatorname{Voiumen}$					
	9 - 1Pulse/11	meı.				
Data Byte #1	Pulse width, meaningful only for iPulse/Volumei or iPulse/Timei settings of <i>PulseType</i> : 5 - 50 msec					
	10 - 100 msec					
	20 - 200 msec					
	50 - 500 mse	c.				

Data Byte #2-#5Pulse value per volume or time unit, depending on *PulseType* value, IEEE 754. Meaningful
only for iPulse/Volumeî or iPulse/Timeî settings of *PulseType*. The related unit is based on
Primary Variable Unit.

For more details refer to the previous section, 8.11.

CAUTION: *PulseWidth* should be changed only if the *PulseType* value is requested either as iPulse/Volumeî or as iPulse/Timeî!

NOTE: The requested *PulseWidth* value will be set to the nearest possible value within allowed set {5, 10, 20, 50}. If necessary, *PulseValue* will be set to the nearest possible value for a given *PulseWidth*. Master will be prompted about *PulseValue* corrections via warning-type response codes.

COMMAND-SPECIFIC RESPONSE CODES

No Command-Specific Errors
Undefined
Invalid Selection (of <i>PulseType</i>)
Undefined
Too Few Data Bytes Received
Undefined
In Write Protect Mode
Update Failure
Undefined
Pulse Value Exceeded Max and Was Corrected
Pulse Value Surpassed Min and Was Corrected
Undefined

8.13 Command #144 Read Indication Function And Tripping Point

Reads the function of the status indication output and tripping point.

REQUEST DATA BYTES

NONE

RESPONSE DATA B	YTES			
	#0	#1	#2	
	STATUS	TRIPPING	TRIPPING	
	INDICATION	POINT	POINT	
	FUNCTION	MSB	LSB	
	CODE			
Data Byte #0	The function of the status binary output:			
	0 - All Errors,			
	1 - Fatal Error,			
	2 - Off,			
	3 - On,			
	4 - Forward/Reverse Indication,			
	5 - Tripping Poi	nt.		
Data Byte #1-#2	Tripping point, (say, 5% will re instrument only	unsigned intege sult in a value o when Data Byte	, in 1/100% of the Primary Varia 500 on a bus). The responded valu to is set to iTripping Pointî.	ble Upper Range Value is actually used by the

COMMAND-SPECIFIC RESPONSE CODES

0No Command-Specific Errors1-127Undefined

Write Indication Function And Tripping Point 8.14 Command #145

Changes the function of the status indication output and tripping point value.

REQUEST DATA BY	TES		
	#0 STATUS INDICATION FUNCTION CODE	#1 TRIPPING POINT MSB	#2 TRIPPING POINT LSB
DESDONISE DATA D	VTEC		
RESPONSE DATA B	#0 STATUS INDICATION FUNCTION CODE	#1 TRIPPING POINT MSB	#2 TRIPPING POINT LSB
Data Byte #0	The function of 0 - All Errors, 1 - Fatal Error, 2 - Off, 3 - On, 4 - Forward/Rev 5 - Tripping Poi	the status binary erse Indication, nt.	output:
Data Byte #1-#2	Tripping point, The requested <i>StatusIndication</i> transmitter and r Valid settings: 2	unsigned integer value will <i>FunctionCode</i> e eplied back with 00 11500 (2%	r, in 1/100% of the Primary Variable Upper Range Value be stored in EEPROM (if correct) only when quals to iTripping Pointî. Otherwise this field is ignored by out any handling. 115%).

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1	Undefined
2	Invalid Selection (of <i>StatusIndicationFunctionCode</i>)
3	Passed Parameter too Large (TrippingPoint)
4	Passed Parameter too Small (<i>TrippingPoint</i>)
5	Too Few Data Bytes Received
6	Undefined
7	In Write Protect Mode
8	Update Failure
9-127	Undefined

8.15 Command #146 **Read Primary Constant And Flow Direction**

Reads the primary head constant GKL and the direction of flow related to the arrow on the primary head.

REQUEST DATA BYTES

NONE

RESPONSE DATA BY	TES				
	#0	#1	#2	#3	#4
	FLOW	PRIMARY			PRIMARY
	DIRECTION	HEAD			HEAD
		VALUE			VALUE
		MSB			LSB

Data Byte #0	0 - ì+ Dirî (corresponds to the arrow direction on primary head) 1 - ì- Dirî
Data Byte #1-#4	Primary head constant GKL, IEEE 754.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-127	Undefined

8.16 Command #147 Write Primary Constant And Flow Direction

Writes the primary head constant GKL and flow direction.

REQUEST DATA BYT	ES				
	#0 FLOW DIRECTION	#1 PRIMARY HEAD VALUE MSB	#2	#3	#4 PRIMARY HEAD VALUE LSB
RESPONSE DATA BY	TES				
	#0 FLOW DIRECTION	#1 PRIMARY HEAD VALUE MSB	#2	#3	#4 PRIMARY HEAD VALUE LSB
Data Byte #0	0 - ì+ Dirî (corre 1 - ì- Dirî	esponds to the ar	row direction	n on primary head)	
Data Byte #1-#4	Primary head control head nameplate	onstant GKL, IE).	EE 754. Val	lid settings: 1.0000	9.9999 (refer to primary
COMMAND-SPECIFIC	RESPONSE COI	DES			
0	No Command-Specific Errors				
1	Undefined				
2	Invalid Selection (of <i>FlowDirection</i>)				
3	Passed Parameter too Large (PrimaryHeadValue)				
4	Passed Parameter too Small (PrimaryHeadValue)				
5	Too Few Data Bytes Received				

- 6 Undefined
- 7 In Write Protect Mode
- 8 Update Failure
- 9-127 Undefined

8.17 Command #148 Read Language And User-Defined Unit

Reads data defining user-created unit, and language that is used for text presentation on the local screen of the instrument.

REQUEST DATA BYTES

NONE

RESPONSE DATA BYTES

#0	#1	 #5
DISPLAY	VOLUME	VOLUME

	LANG CODE	UNIT TEXT BYTE #0		UNIT TEXT BYTE #4
	#6 TIME UNIT TEXT BYTE #0	#7	#8 TIME UNIT TEXT BYTE #2	
	#9 VOLUME UNIT FACTOR MSB	#10	#11	#12 VOLUME UNIT FACTOR MSB
	#13 TIME UNIT FACTOR MSB	#14	#15	#16 TIME UNIT FACTOR LSB
Data Byte #0	Language: 0 - Gr.Britain/U 1 - German 2 - French 3 - Purchased	SA		
Data Byte #1-#5	ASCII-text, spec	cifying volume uni	it. Say, for US bar	rels liquid it can be ìUSBalî.
Data Byte #6-#8	ASCII-text, specifying time unit. Say, for minutes it can be iminî.			
Data Byte #9-#12	Scaling factor for volume unit, relative to cubic meters, IEEE 754. Say, for US barrels liquid it will be 8.36364.			
Data Byte #13-#16	Scaling factor for time unit, relative to seconds, IEEE 754. Say, for minutes it will be 60.			
COMMAND-SPECIFIC	RESPONSE COL	DES		

0	No Command-Specific Errors
1-127	Undefined

8.18 Command #149 Write Language And User-Defined Unit

Writes data defining user-created unit, and language that is used for text presentation on the local screen of the instrument.

REQUEST DATA BYTES

#0 DISPLAY LANG CODE	#1 VOLUME UNIT TEXT BYTE #0		#5 VOLUME UNIT TEXT BYTE #4
#6 TIME UNIT TEXT BYTE #0	#7	#8 TIME UNIT TEXT BYTE #2	

	#9 VOLUME UNIT FACTOR MSB	#10	#11	#12 VOLUME UNIT FACTOR MSB
	#13 TIME UNIT FACTOR MSB	#14	#15	#16 TIME UNIT FACTOR LSB
RESPONSE DATA BYT	ES			
	#0 DISPLAY LANG CODE	#1 VOLUME UNIT TEXT BYTE #0		#5 VOLUME UNIT TEXT BYTE #4
	#6 TIME UNIT TEXT BYTE #0	#7	#8 TIME UNIT TEXT BYTE #2	
	#9 VOLUME UNIT FACTOR MSB	#10	#11	#12 VOLUME UNIT FACTOR MSB
	#13 TIME UNIT FACTOR MSB	#14	#15	#16 TIME UNIT FACTOR LSB
Data Byte #0	Language: 0 - Gr.Britain/US 1 - German 2 - French 3 - Purchased	SA		
Data Byte #1-#5	ASCII-text, spec	ifying volume uni	t.	
Data Byte #6-#8	ASCII-text, spec	ifying time unit.		
Data Byte #9-#12	Scaling factor for volume unit, relative to cubic meters, IEEE 754. Refer to Table 9.4, Factors for Volume.			
Data Byte #13-#16	Scaling factor fo Time.	or time unit, relati	ve to seconds, IE	EE 754. Refer to Table 9.5, Factors for

NOTE: For ASCII-strings the following characters are allowed (i.e. will be interpreted by display module): A..Z, a..z, 0..9 and underscore symbol $\hat{1}_{1}$. Each text-field should be completely filled with acceptable symbols: say, for ihoursi time unit ihr_î-specifier should be used instead of ihrî.

CAUTION: Scaling factors are not checked by transmitter and **must not** be zeroes!

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1	Undefined
2	Invalid Selection (of <i>Language</i>)
3-4	Undefined
5	Too Few Data Bytes Received
6	Undefined
7	In Write Protect Mode
8	Update Failure
9-127	Undefined

8.19 Command #150 Enable/Disable Password Protection

Installs/uninstalls write protection. Two transaction are implemented: Transaction #1 disables write protection, in this case a correct password must be ishownî to transmitter. If protection is disabled and device is open for write operations, any of two transactions can be used to enable factory-set password. Then the contents of *Password* field for Transaction #1 is ignored.

TRANSACTION #0

REQUEST DATA BYTES

#0 WRITE PROT CODE

RESPONSE DATA BYTES

#0 WRITE PROT CODE

TRANSACTION #1

REOUEST DATA F	BYTES				
	#0 WRITE PROT CODE	#1 PROT CODE MSB	#2	#3	#4 PROT CODE LSB
RESPONSE DATA	BYTES				
	#0				
	WRITE				
	PROT				
	CODE				
Data Byte #0	Write Protec 0 - Not Write 1 - Write Pro	Write Protect Code, available via Command #15, Read Primary Variable Output Information: 0 - Not Write Protected 1 - Write Protected			
Data Byte #1-#4	HART- encr follows: the ìUpî-key - b	ypted password ìRightî-key of de y ì2î. For examp	of the instrument evice keypad is le, some arbitra	nt, unsigned long coded by digit i0 ry key combinatio	. The encoding scheme is as î, iEnterî-key - by ilî and on iRight-Right-Up-Up-Up-

Right-Enter-Up-Upî will result in 2220122 (leading zeroes are defaulted for password operations anywhere).

NOTE: Any nonzero value of Write Protect Code will be interpreted by transmitter as a request to enable protection.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-4	Undefined
5	Too Few Data Bytes Received
6-7	Undefined
8	Update Failure
9-14	Undefined
15	Wrong Password
16-127	Undefined

8.20 Command #151 Control Zero Calibration

Unlike Command #43, Set Primary Variable Zero, where an instant measurement is used to correct zero point, this command performs calibration exactly as if this process was activated via device keypad (Menu 3.3): 255 subsequent measurements are averaged before zero correction is done. The process lasts 3.5-5.5 sec (best and worse cases).

REQUEST DATA BYTES

#0 CAL CONTROL VAR

RESPONSE DATA BYTES

#0	#1
CAL	CAL
CONTROL	STATUS
VAR	

Data Byte #0	Calibration control variable:
--------------	-------------------------------

- 0 Exit calibration
- 1 Start calibration
- 2 Store calibration value
- 3 Get calibration status

Data Byte #2 Calibration status corresponds to the number of iterations carried out. After 255 measurements are icollectedi, calibration as a process is finished, and calculated zero is preserved in RAM until Command #151 will be received with *StartCalibration* or *StoreCalValue* value of control variable.

NOTE: After calibration is activated, any subsequent *StartCalibration* request is ignored; for such requests zero is responded as *CalibrationStatus*. Until *StartCalibration* request is not concluded by either *ExitCalibration* or *StoreCalValue*, it will not be possible to start another calibration.

COMMAND-SPECIFIC RESPONSE CODES

No Command-Specific Errors
Undefined
Invalid Selection (Of Control Variable)
Undefined
Too Few Data Bytes Received
Undefined
In Write Protect Mode
Update Failure
No Zero Value (Iterationsí Number < 255)
Undefined

8.21 Command #152 Quit Errors

Delete/acknowledge error messages. Those errors will be deleted that became inactual, i.e. which reasons disappeared.

REQUEST DATA BYTES

NONE

RESPONSE DATA BYTES

NONE

COMMAND-SPECIFIC RESPONSE CODES

nd-Specific Errors
lure

8.22 Command #154 Read RS485 Communication Parameters

Reads the parameters of a serial communication that can run simultaneously with HART via RS485 interface.

REQUEST DATA BYTES

NONE

RESPONSE DATA BYTES

	#0	#1	
	RS485	RS485	
	CONTROL	DEVICE	
	BYTE	ADDRESS	
Data Byte #0	Bit-mapped control variable:		
	Bit #7Bit #4	- RS485 baudrate:	
	0000 - ì1200î		
	0001 - ì2400î		
	0010 - ì4800î		
	0011 - ì9600î		
	0100 - ì19200i		
	Bit #3Bit #0	- RS485 mode:	
	0000 - ìOffî		
	0100 - ìKROH	NE Protocolî	
Data Byte #1	The device bus	s address in RS485-based network.	

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-127	Undefined

8.23 Command #155 Write RS485 Communication Parameters

Writes the parameters of a serial communication held via RS485 interface.

REQUEST	DATA	BYTES
---------	------	-------

#1
RS485
DEVICE
ADDRESS

RESPONSE DATA BYTI	ES	
	#0	#1
	RS485	RS485
	CONTROL	DEVICE
	BYTE	ADDRESS
Data Byte #0	Bit-mapped contr	ol variable:
	Bit #7Bit #4 - R	S485 baudrate:
	0000 - ì1200î	
	0001 - ì2400î	
	0010 - ì4800î	
	0011 - ì9600î	
	0100 - ì19200î	
	Bit #3Bit #0 - R	S485 mode:
	0000 - ìOffî	
	0100 - ìKROHNI	E Protocolî
Data Byte #1	The device bus a	ddress in RS485-based network, valid settings: 0249.

COMMAND-SPECIFIC RESPONSE CODES

0	No Command-Specific Errors
1-4	Undefined
5	Too Few Data Bytes Received
6-127	Undefined

9. Transmitter-Specific Tables

Refer to the Common Tables Document for all references in this section to iSubset of Tableî.

9.1 Primary Variable Unit Codes

Subset of Table II, Unit Codes

24	liters/sec
17	liters/min
138	liters/hour
28	cubic meters/sec
131	cubic meters/min
19	cubic meters/hour
22	gallons/sec
16	gallons/min
136	gallons/hour
248	user defined

9.2 Totalizer Unit Codes

Subset of Table II, Unit Codes

40	gallons
41	liters
43	cubic meters

user defined

9.3 Meter Size Table

Index	Diameter	
	mm	inch
0	10	3/8
1	15	1/2
2	20	3/4
3	25	1
4	32	1 1/4
5	40	1 1/2
6	50	2
7	65	2 1/2
8	80	3
9	100	4
10	125	5
11	150	6
12	200	8
13	250	10
14	300	12
15	400	16
16	500	20
17	600	24
18	700	28
19	800	32
20	900	36
21	1000	40

NOTE: For Ecoflux implementation only the first 12 Table entries are possible (10 - 150 mm), while for Aquaflux any Table entry is allowable.

9.4 Factors For Volume

Unit	Factor
Cubic meters	1.0
Hectoliters	10.0
Deciliters	10 000.0
Centiliters	100 000.0
Milliliters	1 000 000.0
US gallons	264.172
Millions US gallons	0.000 264 172
Imperial gallons	219.969
Mega imperial gallons	0.000 219 969
Cubic feet	35.3146
Cubic inches	61 024.0
US barrels liquid	8.363 64
US barrels ounces	33 813.5

9.5 Factors For Time

Unit	Factor
Seconds	1
Minutes	60
Hours	3 600
Day	86 400

Year (=365 days)

31 536 000