

DIN A4: 7.02145.33.00 US size: 7.02145.73.00

KROHNE

Handbook

IFC 110 F V2.0 IFC 110 F-EEx V2.0

Signal converters for electromagnetic flowmeters

Applicable to Software Versions

- Display & control unit No. 3.19937.02.00
- A/D converter
 No. 8.13393.02.00
- Outputs/inputs (I/O) No. 3.16230.01.00

Pages 6-7

Pages 8-15

Pages 16-24

Pages 25-27

Variable ar	ea flowmeters	
Vortex flow	meters	
Flow contro	ollers	
Electroma	gnetic flowmeters	
Ultrasonic	flowmeters	
Mass flown	neters	
Level meas	suring instruments	
Communic	ations technology	
Engineering	g systems & solutions	
Switches, o	counters, displays and recorders	
Heat meter	ing	
Pressure a	nd temperature	
-		

How to use these Instructions

Flowmeters are delivered ready for operation.

The flow sensor must be installed in the pipeline as described in the instructions for installation inside the packing of the flow sensor.

- Connection of power supply (Sect. 1.1-1.2)
- Electrical connection between IFC 110 F and primary head (Sect. 1.3)
- Electrical connection of outputs and inputs (Sect. 2)
- Factory settings (Sect. 2.7) and start-up (Sect. 3)

Power the flowmeter. THAT'S ALL. The system is operative.

Operator control of the IFC 110 F signal converter is described in Sect. 4 and 5.

Contents

1	Electrical connection: power supply	6
1.1	Location and important installation notes PLEASE NOTE !	6
1.2	Power supply - connection	7
1.3	Electrical connection of flow sensors	8
1.3.1	General remarks on signal lines A and B and field current line C	8
1.3.2	Stripping (preparation) of signal cables	9
1.3.3	Grounding of flow sensor	
134	Cable lengths (max, distance between signal converter and flow sensor)	11
1.3.5	Connection diagrams for power supply and flow sensors	
1.3.6	EEx-Connection diagrams for power supply and flow sensors	
	· · · · · · · · · · · · · · · · · · ·	
2	Electrical connection: outputs and inputs	16
21	Important information for outputs and inputs PLEASE NOTE !	16
22	Current output I	
2.3	Pulse outputs P and A1	18
231	Pulse output P for electronic totalizers (EC)	18
232	Pulse output A1 for electromechanical totalizers (EMC)	19
2.0.2	Status outputs A1 / A2 / D1 / D2	20
25	Control inputs C1 and C2	20
2.6	Connection diagrams of outputs and inputs	21
27	Standard factory settings	25
2.1		
3	Start-up	26
	One we firm of the science because the	
4	Operating of the signal converter	
4.1	Creating concept	
4.2	Operating and control elements	29
4.3	Key functions	
4.4		
4.5	Error messages in measuring mode	
4.0	Resetting the totalizer and deleting error messages, RESET/QUIT menu	
4.7	Examples of signal converter settings	
5	Description of functions	40
51	Full-scale range Query	40 40
52	Time constant	40 40
53	Low-flow cutoff SML	
54	Disnlay	
55	Internal electronic totalizer	42
5.6	Internal power supply (E+/E-) for connected loads	43
57	Current output I	43
5.8	Pulse outputs P and A1	44
5.9	Status outputs A1 / A2 and D1 / D2	46
5 10	Control inputs C1 and C2	47
5 11		48
5.12	Entry code	48
5 13	Flow sensor	49
5.14	User-defined units	50
5 15	F/R mode_forward/reverse flow measurement	51
5.16	Output characteristics	
5 17	Applications	52
5.18	Hardware settings	
5.19	Limit switches	53
5.20	Range change	

6	Special Applications, Functional Checks, Service and Order Numbers	55
6.1	Use in hazardous areas	
6.1.1	General	
6.1.2	Main safety features	
6.1.3	Installation and electrical connection	
6.2 6.3	Changing the load capacity of the output A1 for polarized DC operation	
0.3 6.4	Interfaces	
641	RS 232 adapter incl. IMoCom software (ontional)	
642	HART [®] - interface	
643	KROHNE RS 485 Interface (Option)	60
6.5	Pulsating flow	61
6.6	Unstable display and outputs	
6.7	Quickly changing flows	
6.8	Changeover of current output, active / passive mode	
6.9	Empty pipe detection EPD	65
6.10	Stable signal outputs with empty measuring tube	
7	Functional checks	68
7.1	Checking the zero with IFC 110 F signal converter, Fct. 3.03	
7.2	Checking the measuring range Q, Fct. 2.01	
7.3	Hardware information and error status, Fct. 2.02	
7.4	Hardware test, Fct. 2.03	
7.5	Faults and symptoms during start-up and flow measurement	
7.6	Checking the flow sensor	
1.1	Checking the signal converter using a GS 8 A simulator (optional)	
8	Service	80
81	Replacing the power supply fuse	80
8.2	Retrofitting of magnetic sensors MP (optional)	
8.3	Replacing the complete electronic unit of the IFC 110 F signal converter	
8.4	Replacing single printed circuit boards (PCBs)	83
8.5	Replacing the flow sensor	83
8.6	IFC 110 F replacements for old KROHNE signal converters	83
8.7	Illustration printed circuit boards (PCBs)	84
_		
9	Order numbers	
10	Technical data	88
10 1	Signal converter	88
10.1	Fror limits	90
10.3	Dimensions and weights IEC 110 E / IEC 110 E-EEx and ZD / ZD-EEx	
10.4	Flow table	
11	Measuring principle	
12	Block diagram	
13	Approvals	
13.1	EC-type examination certificate English translation	
13.2	EC-type examination certificate German original	
14	Index	100
lf you	need to return flowmeters for testing or repair to KROHNE	103

Signal converter versions

The operating data are factory-set to your ordered specifications.

IFC 110 F / D (Standard)	Standard version, with local display and control elements
IFC 110 F / D / MP (Option)	Same as display version, additional with magnetic sensors (MP)
IFC 110 F / D / MP / EEx (Option)	Same as display version (D + MP), for operation with flow sensors installed in hazardous areas
IFC 110 F / RS 485	Same as standard version, but additionally with different interfaces

Items included with supply

- Signal converter in the version as ordered, see above.
- Signal cable in the version and length as ordered (standard: signal cable A, length 10 m / 30 ft)
- **Condensed installation and operating manual** in the ordered language for installation, electrical connection, start-up and operator control of the signal converter.
- Service Manual in english language.

Please note!

In the **Installation and Operating Manual** there are hints with Sect. Numbers which you can find in the **Handbook / Service Manual** only!

System description

Electromagnetic flowmeters are precision instruments designed for linear flow measurement of liquid products

The process liquids must be electrically conductive:, $\ge 5 \ \mu$ S/cm (for cold demineralized water $\ge 20 \ \mu$ S/cm).

The full-scale range $Q_{100\%}$ can be set as a function of the meter size: flow velocity of 0.3 - 12 m/s or 1 - 40 ft/s (s. Section 10.4.).

Product liability and warranty

The electromagnetic flowmeters are designed solely for measuring the volumetric flowrate of electrically conductive, liquid process products.

These flowmeters are available for use in hazardous areas. Special regulations apply in this case, which are given in the special EEx directions.

Responsibility as to suitability and intended use of these electromagnetic flowmeters rests solelywith the operator.

Improper installation and operation of the flowmeters (systems) may lead to loss of warranty.

In addition, the "General conditions of sale" forming the basis of the purchase contract are applicable.

If flowmeters need to be returned to KROHNE, please note the information given on the last-butone page of these Instructions. KROHNE regrets that it cannot repair or check your flowmeter(s) unless accompanied by the completed form sheet.

CE / EMC / Standards / Approvals

The here described Electromagnetic flowmeters meet the NAMUR Directive NE21, the protection requirements of **Directive 89/336/EEC** in conjunction with **EN 61326-1** (1997) and **A1** (1998), as well as **Directives 73/23/EEC** and **93/68/EEC** in conjunction with **EN 61010-1**, and bear the **CE marking**.

Software history

Display & control unit		Amplifie	er (ADC)	Inputs and outputs (I/O)		
Software	Status	Software Status		Software	Status	
3.19937.02.00	current	8.13393.02.00	current	3.16230.01.00	current	

IMPORTANT!

In respect of EEx versions, pay regard to all directions marked with the E symbol, and also the information given in Sect. 6.1 and 13.

Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

1 Electrical connection: power supply

- 1.1 Location and important installation notes PLEASE NOTE !
- Electrical connection in accordance with VDE 0100 "Regulations for the erection of power installations with nominal voltages up to 1000 V" or equivalent national regulations.
- Do not cross or loop cables inside the terminal compartment.
- Use **separate wiring** (PG screwed cable entries) for power supply, field current lines, signal lines, outputs and inputs.
- **Hazardous areas** are subject to special regulations, see Section 6.1 and special installation instructions for hazardous-duty versions.
- Do not expose signal converter and switchgear cabinets with built-in converters to direct **sunlight.** Install a sunshade if necessary.
- Signal converters installed in switchgear cabinets require adequate cooling (e.g. by fans or heat exchangers).
- Do not expose signal converters to intense vibration.
- Keep the distance between the flow sensor and signal converter as small as possible, for empty pipe detection (EPD) ≤ 20 m / ≤ 66 ft. Observe maximum lengths of signal and field current lines (see Section 1.3.4).
- Use **KROHNE signal line A** (type DS, standard) **or signal line B** (type BTS, bootstrap, optional), standard length 10 m (33 ft).
- Generally use bootstrap signal lines B (type BTS) for PROFIFLUX 5000 F and VARIFLUX 6000 F flow sensors sized at DN 2.5-15 and 1/10"-1/2" and for contaminated liquids which tend to form electrically insulating deposits.
- Always calibrate flow sensor and signal converter together. During installation particular care
 should therefore be given to identical settings of flow sensor constant GK (see instrument
 nameplate of flow sensor). In case GK constants are not identical, the signal converter must
 be adjusted to the flow sensor GK (see Sections 4 and 8.5).
- Dimensions of signal converter see Section 10.3.

IMPORTANT!

For EEx versions, also pay regard to all directions included in Sect. 6.1 and 13. Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

1.2 Power supply - connection

PLEASE NOTE !

- Type of enclosure IP 65 to IEC 529 / EN 60529 equivalent to NEMA 4/4X.
- <u>Dimensioning</u>: the flowmeter housing protecting the electronic equipment against dust and moisture must always be kept closed. The selected clearances and creeping distances comply with VDE 0110 and/or IEC 664 regulations for contamination grade 2. Supply circuits and output circuits are designed to meet standards of overvoltage classes III and II, respectively.
- <u>Fuse protection, disconnecting device:</u> fuse protection for the feeding power circuit, and also a disconnecting device (switch, circuit breaker) for isolating the signal converters must be provided (see also Sect. 1.3.5 and 1.3.6).

100-230 V AC (tolerance range 85-255 V AC)

- Observe information on the instrument nameplate, power supply voltage and frequency.
- The **protective conductor PE** of the power supply **must be connected** to the separate U-clamp terminal inside the terminal compartment of the signal converter.
- CAUTION: do not remove the internal connection (line) inside the terminal compartment of the signal converter (yellow/green wire) between the U-clamp terminal and terminal 10 protective conductor (protection class I instrument).
- Connection diagrams I IV for the power supply and for the electrical connection between flow sensor and signal converter, see Sections 1.3.5 (Standard) and 1.3.6 (EEx).

24 V AC / DC (tolerance ranges: AC 20.4 - 26.4 V / DC 18 - 31.2 V)

- Observe information on the instrument nameplate, power supply voltage and frequency.
- For technical reasons concerning the measuring process, a functional grounding conductor FE has to be connected to the separate U-clamp terminal inside the terminal compartment of the signal converter.
- A facility providing a reliable electrical separation (PELV) has to be provided for connections to functional extra-low voltages (24 V AC / DC) - (VDE 0100 / VDE 0106 and/or IEC 364 / IEC 536 or equivalent national regulations).
- **Connection diagrams I IV** for the power supply and for the electrical connection between flow sensor and signal converter, see Sections 1.3.5 (Standard) and 1.3.6 (EEx).

IMPORTANT!

For EEx versions, also pay regard to all directions included in Sect. 6.1 and 13. Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

Warning: Instrument must be properly grounded to avoid personnel shock hazard.

1.3 Electrical connection of flow sensors

1.3.1 General remarks on signal lines A and B and field current line C

Proper operation of the equipment is ensured when KROHNE signal lines A and B are used with foil screen and magnetic shield.

- Signal lines must be firmly installed.
- Shields are connected via stranded drain wires.
- Underwater or underground routing is possible.
- Insulating material flame-retardant to IEC 332.1 / VDE 0742.
- Low-halogen, unplasticized signal lines which remain flexible at low temperatures.

Signal line A (type DS) with double shielding

1 Stranded drain wire, 1st shield, 1.5 mm² or AWG 14

- 2 Insulation
- 3 Stranded wire 0.5 mm² or AWG 20 (3.1 red/3.2 white)
- 4 Special foil, 1st shield
- 5 Insulation
- 6 Mu-metal foil, 2nd shield
- 7 Stranded drain wire, 2nd shield, 0.5 mm² or AWG 20
- 8 Outer sheath

Signal line B (type BTS) with triple shielding (bootstrap line)

The bootstrap technology always controls the individual shields (3) of the signal converter exactly to the voltage which is supplied to the signal conductors (5). As this prevents voltage differences between the individual shields (3) and signal conductors (5), no current flows via the line capacitances between 3 and 5. The line capacitance seems to become "zero".

This allows greater cable lengths in case the electric conductivity of the liquid to be measured is low.

- 1 Dummy glider wire
- 2 Insulation (2.1 red/2.2 white)
- 3 Special foil, 1st shield (3.1/3.2)
- 4 Insulation (4.1/4.2)
- 5 Stranded wire 0.5 mm² or AWG 20 (5.1 red/5.2 white)
- 6 Stranded drain wire, 1st shield, 0.5 mm² or AWG 20 (6.1/6.2)
- 7 Special foil, 2nd shield
- 8 Stranded drain wire, 2nd shield, 1.5 mm² or AWG 14
- 9 Insulation
- 10 Mu-metal foil, 3rd shield
- 11 Stranded drain wire, 3rd shield, 0.5 mm² or AWG 20
- 12 Outer sheath

Field current line C1

Line 2 x 0.75 mm² (18 AWG) Cu or 2 x (4 x) 1.5 mm² (14 AWG) Cu (Cu = copper cross section) The cross section depends on the required cable length.

For max. permissible cable lengths please refer to Section 1.3.4

IMPORTANT!

For EEx versions, also pay regard to all directions included in Sect. 6.1 and 13. Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

1.3.2 Stripping (preparation) of signal cables

Please note: The numbers in the drawings designate the stranded drain wires of signalling cables A and B, see sectional drawings in Sect. 1.3.1.

Flow sensor

Length	flow sensor			
	mm	inch		
а	90	3.60		
b	8	0.30		
С	25	1.00		
d	8	0.30		
е	70	2.80		

Length	Converter		
	mm	inch	
а	50	2.00	
b	8	0.40	
d	8	0.40	
е	20	0.80	

Converter

Signal cable A (type DS), double shielding for flow sensor

Signal cable B (type BTS), with triple shielding (bootstrap) for flow sensor

Signal cable A (type DS), double shielding for IFC 110 F Converter

Signal cable B (type BTS), with triple shielding (bootstrap) for IFC 110 F Converter

Customer-supplied materials				
W	Insulation tubing (PVC), Ø 2.0-2.5 mm (Ø 1")			
Х	Heat-shrinkable tubing or cable sleeve			
Υ	Wire end sleeve to DIN 41 228: E 1.5-8			
Z	Wire end sleeve to DIN 41 228: E 0.5-8			

KROHNE 05/2003

1.3.3 Grounding of flow sensor

- The flow sensor must be correctly connected to ground.
- The grounding cable may not transfer interference voltages.
- Do not use the grounding cable to connect more than one device to ground.
- In hazardous areas the grounding line is also used for potential equalizing purposes. Special grounding instructions are contained in the installation instructions for hazardous-duty instruments (only supplied together with such instruments).
- The flow sensor is connected to ground by means of a functional grounding conductor FE.
- Special grounding instructions for the connection of several flow sensors are contained in the separate **installation instructions of the flow sensors.**
- These instructions also contain detailed descriptions on how to use grounding rings and how to install flow sensors in metal or plastic pipes or in pipes which are coated on the inside.

Warning: Instrument must be properly grounded to avoid personnel shock hazard.

IMPORTANT!

For EEx versions, also pay regard to all directions included in Sect. 6.1 and 13. Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

1.3.4 Cable lengths (max. distance between signal converter and flow sensor)

Abbreviations and explanations

The abbreviations used in the following tables, diagrams and connection diagrams stand for:

- A Signal line A (type DS) with double shielding, max. length see diagram
- B Signal line B (type BTS) with triple shielding, max. length see diagram
- **C** Field current line, minimum cross section (A_F) and max. length see table
- D High-temperature silicone line, 3x1.5 mm² (14 AWG) Cu, with single shield, max. length 5 m (16 ft)
- E High-temperature silicone line, 2 x 1.5 mm² (14 AWG) Cu, max. length 5 m (16 ft)
- AF Cross section of field current line C in Cu, see table
- L Cable length in m or ft
- K Electrical conductivity of the process liquid
- **ZD** Intermediate connection box required in connection with lines D and E for flow sensors ALTOFLUX 4000 F, PROFIFLUX 5000 F and VARIFLUX 6000 F for process temperatures exceeding 150°C (302°F).

Recommended length of signal line

for magnetic field frequencies $\leq 1/6$ x power frequency

Flow	Meter	Meter size			Signal		
sensor	DN mm		Inch			line	
VARIFLUX 6000 F	2.5	-	15	¹ / ₁₀	-	$^{1}/_{2}$	B1
	25	-	80	1	-	3	A1 / B3
PROFIFLUX 5000 F	2.5	-		¹ / ₁₀	-		B1
	4	-	15	¹ / ₆	-	$^{1}/_{2}$	B2
	25	-	100	1	-	4	A1 / B3
ALTOFLUX 4000 F	10	-	150	³ / ₈	-	6	A1 / B3
	200	-	1200	8	-	48	A2 / B4
ALTOFLUX 2000 F	150	-	250	6	-	10	A2 / B4
ECOFLUX 1000 F	10	-	150	³ / ₈	-	6	A1 / B3
M900	10	-	300	³ / ₈	-	12	A2 / B4

Please note!

For application with empty pipe detection (EPD) max. length < 20 m / 66 ft.

Max. length and minimum cross section of field current line

Length L		Cross section AF	(Cu), minimum
0 to 150 m	5 to 500 ft	2 x 0.75 mm ² Cu	2 x 18 AWG
150 to 300 m	500 to 1000 ft	2 x 1.50 mm ² Cu	2 x 14 AWG
300 to 600 m	1000 to 1900 ft	4 x 1.50 mm ² Cu	4 x 14 AWG

1.3.5 Connection diagrams for power supply and flow sensors

Important remarks for circuit diagrams PLEASE NOTE !

- The figures in brackets indicate the stranded drain wires of the shields (see cross-sectional drawings of signal lines in Section 1.3.1).
- Electrical connection to VDE 0100 "Regulations for the erection of power installations with nominal voltages up to 1000 V"
- Power supply 24 V AC / DC: protective extra-low voltages (PELV) acc. to VDE 0100/ VDE 0106 and/or IEC 364/IEC 365, or corresponding national regulations.
- Systems to be used in hazardous areas are subject to special regulations applying to electrical connections (see Section 1.3.6) for hazardous-duty instruments.
- **PE** = protective conductor **FE** = functional ground conductor

IMPORTANT!

Electrical connection of EEx flow sensors and EEx signal converters to be carried out as described in Sect. 1.3.6.

★ Do not remove the internal connection (cable) inside the terminal compartment of the signal converter (yellow/green wire) between the U-clamp terminal and terminal 10 (protective conductor for protection class I instruments).

1.3.6 EEx-Connection diagrams for power supply and flow sensors

PLEASE NOTE!

- The figures in brackets indicate the stranded drain wires for the shields (see cross-sectional drawing of signal cable in Section 1.3.1).
- The connections for the **intrinsically safe electrode circuit including the shield terminals** are safety-separated up to a peak value of 375 V from the terminals for thepower supply, for the inputs/outputs and for the field circuit. They are galvanically isolated from the housing (PE/PA).
- For connection of the **intrinsically safe electrode circuit including shield terminals** to the primary head, please refer to Item 12 in EN 60079-14. The non-intrinsically safe field circuit to be connected to the primary head in keeping with the requirements of Item 9 in EN 60079-14.
- The **non-intrinsically safe input and output circuits** may only be routed into the hazardous area in compliance with appropriate measures as specified in EN 60079-14.

• Supply power (terminals 11,12)

In conformity with current regulations for electrical installations, an isolating facility is required to be provided for the signal converter. The housing of the IFC 110 F – EEx signal converter must be incorporated in the equipotential bonding system (via external PA connection).

Note!	A PE safety conductor is not connected if a functional extra-low voltage with safety
	separation (PELV) is used. Grounding is then carried out by way of the equipotential
	bonding conductor.

• Electrode circuit (terminals 1, 20, 2, 3, 30 and shield terminal S)

In conformity with the requirements for separation of intrinsically safe circuits, Category ib to EN 50 020, the cable for the intrinsically safe electrode circuit must, up to the terminals, be separated from all non-intrinsically safe circuits.

Terminals 20 and 30 are optionally provided for connecting cables with single shielding. The terminal for the outer shield (S) is capacitance grounded in the signal converter. The outer overall shield to be connected by the shortest possible wire to the shield terminal. Shields to be carefully insulated from ground and from each other.

• Field circuit FSV (terminals 7, 8)

The field circuit is all-pole protected on the FSV circuit board with an **internal fusible link 160mA / 250V.**

• Input/output circuits

The connection is made to functional extra-low voltage circuits with safety separation (PELV). The I/O functions and technical data are described in the Standard Installation and Operating Instructions.

IMPORTANT!

For EEx versions, also pay regard to all directions included in Sect. 6.1 and 13. Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

★ Do not remove the internal connection (cable) inside the terminal compartment of the signal converter (yellow/green wire) between the U-clamp terminal and terminal 10 (protective conductor for protection class I instruments).

2 Electrical connection: outputs and inputs

IMPORTANT!

For EEx versions, also pay regard to all directions included in Sect. 6.1 and 13. Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

2.1 Important information for outputs and inputs PLEASE NOTE !

• The signal converter has the following outputs and inputs:

Output and	Symbol	Terminals	Remarks
input group			
Power output	1	ls/l	active / passive selectable
Current output	Р	P/P	for electronic totalizers
Pulse output	A1* (P2)	A1* / A⊥	for electromechanical totalizers
Status outputs	A1* and A2	A1* / A⊥ / A2	A⊥ common centre grounding contact
Status outputs	D1 and D2	D1 / D⊥ / D2	D⊥ common centre grounding contact
Control inputs	C1 and C2	C1 / C⊥ / C2	C⊥ common centre grounding contact
Internal power supply	E	E+ / E-	for active mode of outputs and inputs

- * Output A1 can be used as a 2nd pulse output P2 for electromechanical totalizers or as a 4th status output, see Section 4.4, Fct. 3.07 HARDWARE.
- The output and input groups are electrically isolated from each other and from all other input and output circuits.
- Please note: A⊥ common centre grounding contact for outputs A1 and A2
 D⊥ common centre grounding contact for outputs D1 and D2
 C⊥ common centre grounding contact for control inputs C1 and C2
- Active mode: the signal converter supplies the power for the operation (selection) of receiver instruments, observe max. operating data (terminals E+ and E-).
- **Passive mode:** the operation (selection) of receiver instruments requires an external power supply (**U**_{ext}), observe max. operating data.
- Connection diagrams of outputs and inputs are shown in Section 2.6.
- For operating data of outputs and inputs please refer to Sections 2.6 and 10.1.

2.2 Current output I

- The current output is electrically isolated from all other circuits.
- Setting data and functions can note down in the Table in Sect. 3. Please also refer to Section 2.7 "Standard factory settings".
- All operating data and functions are adjustable (see Sections 4.4 and 5.6, Fct. 1.05).
- Max. load : active operation 15-500 Ω passive operation \leq 800 Ω
- Selfcheck: interrupting the mA loop, and

 short-circuit of mA loop via test function, see Fct. 2.03
 or when power supply is switched on in Fct. 3.07

 Error message on display (see Fct. 1.04, Section 5.4) and/or
 status output (see Fct. 1.07-1.10, Section 5.8).
- Current value for error identification is adjustable, see Fct. 1.05 and Section 5.6.
- **Range change-over**, automatically or externally by control input, see Sections 4.4 and 5.19, Fct. 1.07-1.10 and 1.11-12.

Setting range from 5-80% of $Q_{100\%}$ (corresponding low to high range ratio from 1:20 to 1:1.25).

Change-over from high to low range at approx. 85% of low range and vice versa at approx. 98% of low range.

The active range is signalled via one of the four status outputs.

- Forward/reverse flow measurement (F/R mode) is possible (see Section 5.15).
- Connection diagrams see Section 2.6.

2.3 Pulse outputs P and A1

- 2.3.1 Pulse output P for electronic totalizers (EC)
- Pulse output P is electrically isolated from all other circuits.
- Setting data and functions can note down in the Table in Sect. 3. Please also refer to Section 2.7 "Standard factory settings".
- All operating data and functions are adjustable, see Sections 4.4 and 5.7, Fct. 1.05.
- Active mode: uses the internal power supply, terminals E+/E-Passive mode: requires external power supply, $U_{ext} \le 32V$ DC/24V AC, $I \le 30$ mA
- Max. adjustable frequency 10 kHz
- Scaling <u>in pulses per unit time</u> (e.g. 1000 pulses/s at Q_{100%} flow) or <u>in pulses per unit volume</u> (e.g. 100 pulses/m³ or US Gal).
- Pulse width symmetric, pulse duty factor 1:1, independent of output frequency, automatic, with optimum pulse width, pulse duty factor approx. 1:1 at Q_{100%}, or <u>pulse width range from 0.01 to 1 s</u> adjustable as required for correspondingly lower output frequency.
- Forward/reverse flow measurement (F/R mode) is possible, see Section 5.15.
- Connection diagrams see Section 2.6
- Schematic wiring diagram for pulse output P for electronic totalizers EC Similar to a relay contact, this pulse output switches direct and alternating voltages.

2.3.2 Pulse output A1 for electromechanical totalizers (EMC)

PLEASE NOTE:

The output terminal A1 can be used as status output A1 or as a 2nd pulse output A1 for electromechanical totalizers.

Setting is as described in Fct. 3.07 HARDWARE, see Sections 4.4 and 5.18.

- Pulse output A1 is electrically connected to status output A2 (common centre grounding contact A⊥) but electrically isolated from all other circuits.
- Setting data and functions can note down in the Table in Sect. 3. Please also refer to Section 2.7 "Standard factory settings".
- All operating data and functions are adjustable, see Sections 4.4 and 5.7, Fct. 1.07.
- Active mode: uses the internal power supply, terminals E+/E-
- Passive mode: requires external power supply, $U_{ext} \le 32V DC/24V AC$, $I \le 100mA$ (I $\le 200mA$ for polarized DC operation, see Section 6.3)
- Max. adjustable frequency 50 kHz
- Scaling <u>in pulses per unit of time</u> (e.g. 10 pulses/s at Q_{100%} flow) or <u>in pulses per unit of volume</u> (e.g. 10 pulses/m³ or US Gal).
- Pulse width
 <u>symmetric</u>, pulse duty factor 1:1, independent of output frequency, <u>automatic</u>, with optimum pulse width, pulse duty factor approx. 1:1 at Q_{100%}, or <u>pulse width range from 0.01 to 1 s</u> adjustable as required for correspondingly lower output frequency.
- Forward/reverse flow measurement (F/R mode) is possible, see Section 5.15.
- Connection diagrams see Section 2.6
- Schematic wiring diagram for pulse output A1 for electromechanical totalizers EMC. This pulse output has a MOSFET switch as output which switches direct and alternating voltages similar to a relay contact.

2.4 Status outputs A1 / A2 / D1 / D2

PLEASE NOTE:

The **output terminal A1 can be used as status output A1 or as a 2nd pulse output A1** for electromechanical totalizers.

Setting is as described in Fct. 3.07 HARDWARE, see Sections 4.4 and 5.18.

- Status outputs A1/A2 and D1/D2 with the common centre grounding contacts A⊥ and B⊥ are electrically isolated from each other and from all other circuits.
- Setting data and functions can note down in the Table in Sect. 3. Please also refer to Section 2.7 "Standard factory settings".
- All operating data and functions are adjustable, see Sections 4.4 and 5.8, Fct. 1.07-1.10.
- Active mode: uses the internal power supply, terminals E+/E-Passive mode: requires external power supply, U_{ext} ≤ 32V DC/24V AC, I ≤ 100mA (I ≤ 200mA for A1 in case of polarized DC operation, see Section 6.3)
- The following operating conditions can be signalled using the status outputs:
 - flow direction (F/R mode)
 - limits
 - error messages
 - active range in case of range change-over
 - inverse operation of A1 and A2 or D1 and D2,

i.e. used as change-over switch with common centre grounding contact $A \perp$ or $D \perp$.

- Connection diagrams see Section 2.6
- Schematic wiring diagram for status outputs A1/A2 and D1/D2. This status outputs have MOSFET switches as outputs which switch direct and alternating voltages similar to relay contacts.

2.5 Control inputs C1 and C2

- Control inputs C1 and C2 are electrically connected (common centre grounding contact C⊥) but electrically isolated from all other circuits.
- Setting data and functions can note down in the Table in Sect. 3. Please also refer to Section 2.7 "Standard factory settings".
- All operating data and functions are adjustable, see Sections 4.4 and 5.9, Fct. 1.11-1.12.
- Active mode: uses the internal power supply, terminals E+/E-Passive mode: requires external power supply, $U_{ext} \le 32V$ DC/24V AC, I ≤ 10 mA
- The following operating conditions can be initiated using the control inputs:
 - external range change
 - holding of output values
 - zeroing the outputs
 - resetting the internal totalizer
 - resetting (deleting) the error messages
- Connection diagrams see Section 2.6

2.6 Connection diagrams of outputs and inputs

I

For EEx versions, also pay regard to all directions included in Sect. 6.1 and 13. Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

 P, A1*
 Pulse output

 A1*, A2, D1, D2
 Status outputs

 C1, C2
 Control inputs

 Totalizer
 -electromechanical (EMC)

 - electronic (EC)

Current output (included HART[®])

Please note ! Unwired contacts or terminals may not have any conductive connection with other electrically conducting parts.

Interface operation with HART[®] or RS 485 (Option) see Sect. 6.4.

selectable as status output A1 or pulse output A1

milliampmeter

0-20 mA or 4-20 mA and other

Ą

Key, N/O contact

External voltage source (U $_{ext}$), DC or AC voltage, connection polarity arbitrary

DC voltage,

external power source (Uext), note connection polarity

Active mode: the IFC 110 F supplies the power required for operating (driving) the receiver instruments. Observe the max. operating data (terminals **E+** and **E-**).

Passive mode: an external power supply source (Uext) is required for operating (driving) the receiver instruments.

Groups A / C / D / E / I / P are electrically isolated from each other and from all other input and output circuits.

Please note:common reference potential $A \perp$ for A1 and A2 $C \perp$ for C1 and C2 $D \perp$ for D1 and D2

9 Pulse output P_{passive} for electronic totalizers (EC)

for frequencies \leq **1 kHz**

U _{ext}	\leq	\leq 32 V DC / \leq 24 V AC
	\leq	≤ 30 mA
R	=	1 - 10 kΩ

 $\mathbf{P}_{\mathbf{R}} \geq \frac{\mathbf{U}_{\mathbf{ext}}}{\mathbf{R}}$

for frequences > 1 kHz

	~ 30 mA	~ 18 mA
R	560 Ω	1 kΩ
PR	0.5 W	0.35 W
	16 V	18 V

* Shielded cables

must be used to prevent radio interference at pulse output frequencies > 100 Hz

2.7 Standard factory settings

- All operating data are set at the factory in accordance with the specifications contained in the order.
- If no specifications are made in the order, instruments will be delivered with the standard parameters and functions indicated in the table below.
- To facilitate the start-up of the instrument, current and pulse outputs are set to handle
 measurements in "two flow directions" so that the current flow rates and volumes are displayed
 and/or counted independent of the direction of flow. The figures displayed may have a
 preceding sign.
- Such factory setting of current and pulse outputs may lead to measuring errors, particularly when volumes are metered and totalized.
- If e.g. pumps are switched off and "backflows" occur which are not within the low-flow cutoff (SMU) range, or if separate displays and counts are required for both flow directions.
- To avoid faulty measurements, it may therefore be necessary to change the setting of the following functions:
 - SMU low-flow cutoffFct. 1.03, Section 5.3- displayFct. 1.04, Section 5.5- current output IFct. 1.05, Section 5.6- pulse output PFct. 1.06, Section 5.7
- For special applications, such as pulsating flows, see Sections 6.5 to 6.10

Standard factory settings

Fct. No.	Function	Setting	1 [Fct. No.	Function	Setting
1.01	Full-scale range	See instr. nameplate	11	1.08	Status output A2	ON
		of flow sensor		1.09	Status output D1	All error
1.02	Time constant	3 Sec. for display,		1.10	Status output D2	Indication F/R
		pulse, current and		1.11	Control input C1	Totalizer reset
		status ouputs		1.12	Control input C2	OFF
1.03	Low-flow cutoff	ON: 1%	11	3.01	Language	German
		OFF: 2%		3.02	Flow sensor	
1.04	Display				meter size	See instr. nameplate
	flow rate	m³/h			direction of flow	+ direction,
	totalizer	m³				see arrow on
1.05	Current output	I _{active}	11			flow sensor
	function	2 directions		3.04	Entry code	NO
	range	4-20 mA		3.05	User unit	Liter/h
	error detection	22 mA		3.06	Application	
1.06	Pulse output P				flow	steady
	function	2 directions			empty pipe	NO
	pulse value	1000 pulses/Sec.			ADC gain	automatic
	pulse width	symmetric			special filter	OFF
1.07	Pulse output 2, A1		11	3.07	Hardware	
	function	2 directions			terminal A1	pulse output A1
	pulse value	1 pulse/s			selfcheck	NO
	pulse width	50 ms	"			

3 Start-up

- Before connecting to power, check that the instrument is correctly installed as described in Sections 1 and 2.
- The flowmeter, flow sensor and signal converter are delivered ready for operation. All
 operating data are set at the factory in accordance with your specifications.
 Please also refer to Section 2.7 "Standard factory settings".
- Switch on the power supply. The flowmeter immediately begins to measure the flow.
- When the power supply is switched on, the display successively shows **START UP** and **READY**. Then the current flow rate and/or the current totalizer count are displayed. Displays are either steady or cyclic depending on the setting described for Fct. 1.04.
- **2 light-emitting diodes (LED)** in the "diagnostics" field on the front panel of the signal converter indicate the status of measurement.

LED displays	Status of measurement		
Green "normal" LED	Everything O.K.		
is flashing			
Green "normal" LED	Momentary overload of outputs and/or A/D converter.		
and red "error" LED	Detailed error messages by setting Fct. 1.04 DISPLAY,		
are flashing alternately	subfunction "MESSAGES" to "YES", see Sections 4.4 and 5.5.		
Red "error" LED is	Fatal Error, see Sections 7.3 and 7.4		
flashing			

IMPORTANT!

For EEx versions, also pay regard to all directions included in Sect. 6.1 and 13. Only the EEx flow sensor may be installed in the hazardous area. The EEx certified signal converter must be installed outside the hazardous area!

Setting data:	Here you can note down the settings of	the signal converter !
		·

Fct. No.	Function	Settings
1.01	Full-scale range	
1.02	Time constant	
1.03	Low-flow cut-off	ON: OFF:
1.04	Display	Flow
		Totalizer
		Messages
		Trend
1.05	Current output I	Function
		Reverse range
		Range I
		Error
1.06	Pulse output P	Function
		Pulswidth
		Pulse value
1.07	Pulse output A1 or	
	Status output A1	
	(for setting see below, Fct. 3.07,	
	terminal A1)	
1.08	Status output A2	
1.09	Status output A3	
1.10	Status output A4	
1.11	Control input C1	
1.12	Control input C2	
3.01	Language	
3.02	Flow sensor	Meter size
		GK value
		Field frequency
		Power frequency
		Flow direction
3.04	Entry code required ?	□ no □ yes
		$\rightarrow \rightarrow \rightarrow$, , , , ,))))
3.05	User-defined unit	
3.06	Application	Flow is
		pulsating
		Empty Pipe 🛛 no
		Detection (EPD) Uses
3.07	Hardware-settings	Terminal A1 is
		or 🗆 Status output
3.08	Measuring point	
3.09	Communication	
		Auuress:
		Baud rate:

4.2 Operating and control elements

The instrument can be operated by means of

- ... the 15 keys ④ and ⑤ accessible after removal of the glass cover,
- ... the 3 magnetic sensors (8) and the bar magnet without opening the housing (optional).
- ① Display, <u>1st line</u> Displaying numerical data
- ② Display, <u>2nd line</u> Displaying units and texts
- ③ Display, <u>3rd line</u> 6 arrows to mark the current display

flow rate		current flow rate
totalizer	+	totalizer
	-	totalizer
	Σ	sum totalizer (+ and -)
control in	1/2	control input 1 or 2 active

- ④ 5 keys for operating the signal converter $\leftarrow \rightarrow \downarrow \uparrow \downarrow$
- 5 10 keys for direct numerical setting of function values (not function numbers)
- 6 Compass field showing that a key is pressed
- ⑦ magnet active LED green/red, magnetic sensors active
 - green = built-in magnetic sensors (optional), see (8) red = operation of one of the 3 magnetic sensors
- (8) 3 magnetic sensors (optional), operated by bar magnet without opening the housing, function of the sensors as described for the three keys $\rightarrow \downarrow \uparrow$, see ④.

9	diagnostics	2 LEDs signalling the status of measurement		
	normal	green LED = correct measurement, everything O.K.		
	error	<u>red LED</u> = error, parameter or hardware error		
10	IMoCom	IMoCom bus, multipoint connector for connecting external supplementary equipment, see Section 6.4, slide window to the left		

4.3 Key functions

In the following, the cursor or flashing part of the display is shown against a grey background.

To start operator control

PLEASE NOTE: if "YES" is selected in Fct. 3.04 ENTRY CODE, "CodE 1 _____" appears in the display after pressing the \rightarrow key.

Enter the password for the entry code which is a sequence of 9 keys: $\rightarrow \rightarrow \rightarrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow$ (each keystroke confirmed by " * ").

To terminate operator control

Press key → any number of times until one of the following menus Fct. 1.0 OPERATION, Fct. 2.0 TEST or Fct. 3.0 INSTALL is displayed.

<u>Store new parameters:</u> acknowledge by pressing key J. Measuring mode is continued with new parameters.

New parameters not to be stored:

Keyboard with 10 keys

The keyboard with the 10 keys (0-9) is used for setting all flashing numbers (cursor).

Exception: the digits of the function numbers, such as **Fct. 1.03**, can only be changed with keys \uparrow or \downarrow .

To change numbers

	increase number	
397.35	┝───►	397.45
m 3 / h	┥ ───↓	m 3 / h

decrease number

To shift cursor (flashing position)

return to text setting

To change to subfunction

Subfunctions have no "Fct. No." and are identified by a " \rightarrow "

To revert to function display

4.4 Table of settable functions

Abbreviations used:

Sect. 4.4

A1, A2	Status outputs	P (P2)	Pulse output (2nd pulse output A1)
	(A1 can also be 2nd pulse output A1)	Pmax	$= F_{max}/Q_{100\%}$
C1, C2	Control inputs	P _{min}	= F _{min} /Q _{100%}
D1, D2	Status outputs	Q	Current flow rate
DN	Meter size, nominal size	Q 100%	100% flow rate = full-scale range
F _{max}	= $\frac{1}{2}$ x pulse width (s) for \leq 50 Hz		π
	≤ 10 kHz if "AUTO" or "SYM." are selected in	Q _{max}	= $\frac{\pi}{4}$ /4 DN ² x v _{max} (= max. full-scale range
	subfunction "PULSWIDTH"		Q _{100%} at v _{max} = 12 m/s or 40 ft/s)
F _{min}	= 10 pulses/h		π
FM	Conversion factor volume for any unit,	Q _{min}	= $\frac{1}{4}/4$ DN ² x v _{min} (= min. full-scale range
	see Fct. 3.05 "FACT. VOL."		Q _{100%} at v _{min} = 0.3 m/s or 1 ft/s)
Fτ	Conversion factor time for any unit,	SMU	Low-flow cutoff for I and P
	see Fct. 3.05 "FACT. TIME"	v	Flow velocity
GK	Flow sensor constant	V _{max}	Maximum flow velocity (12 m/s or 40 ft/s) at Q100%
1	Current output	V _{min}	Minimum flow velocity (0.3 m/s or 1 ft/s) at Q _{100%}
0%	Current at 0% flow rate	F/R	Forward/reverse flow in F/R measuring mode
1 _{100%}	Current at 100% flow rate		

Fct.	Text	Description and setting				
1.0	OPERATION	Operating menu				
	FULL SCALE	Full-scale range for flow rate Q _{100%}				
		Selection of unit				
		m³/h • Liter/Sec • US.Gal/min				
		 user unit, factory setting "Liter/h" or "US MGal/day" (see Fct. 3.05) 				
		Press \rightarrow key to change to numerical setting				
		Setting ranges				
		The range depends on the nominal width (DN) and the				
		flow velocity (v): $Q_{min} = \frac{\pi}{4} DN^2 \times v_{min}$ $Q_{max} = \frac{\pi}{4} DN^2 \times v_{max}$				
		Nominal width/meter size v _{min} = 0.3 m/s (1 ft/s) v _{max} = 12 m/s (40 ft/s)				
		• DN 2.5–1200 / ¹ / ₁₀ "–48": 0.0053 – 48 860 m³/h				
		0.0237 – 218 560 US.Gal/min				
		• DN 1300–3000 / 52"–120" 1435 – 305 360 m³/h				
		(see Section 8.6) 6415 – 1 366 000 US.Gal/min				
		Press ↓ key to return to Fct. 1.01 FULL SCALE				
	\rightarrow VALUE P	Pulse value for pulse output P (Fct. 1.06 "VALUE P") and/or				
	and/or	tor the 2nd pulse output A1 (Fct. 1.07 "VALUE P2") has been changed.				
	\rightarrow VALUE P2	with the old pulse values the output frequency (F) would have				
		been exceeded or would not have been reached.				
1.02	TIMECONST	$\mathbf{P}_{\min} = \mathbf{F}_{\min} / \mathbf{Q}_{100\%} \mathbf{P}_{\max} = \mathbf{F}_{\max} / \mathbf{Q}_{100\%} \mathbf{Check new values}$				
1.02	TIMECONST.	Selection: • All (applies to display and all outputs)				
		ONLY I (only display current and status outputs)				
		Press key to change to numerical setting				
		Range: \bullet 0.2 – 99.9 Sec				
		Press , key to return to Fct. 1.02 TIMECONST.				
1.03	L.F. CUTOFF	Low-flow cutoff (L.F. CUTOFF)				
		• OFF (fixed tripping points: ON = 0.1% / OFF = 0.2%)				
		PERCENT (variable tripping points) ON OFF				
		1 – 19% 2 – 20%				
		Press \rightarrow key to change to numerical setting.				
		Note: the cutoff "OFF" value must be greater than the cutoff "ON" value.				
I		Press → key to return to Fct. 1.03 L.F. CUTOFF.				

Fct.	Text	Description and setting		
1.04	DISPLAY	Display functions		
-	→ DISP.FLOW	Selection of flow display		
		NO DISP. User unit. factory setting "Liter/h" or "US MGal/day" (s. Sect. 3.05)		
		• m³/h • PERCENT		
		Liter/Sec BARGRAPH (value and bar graph display in %)		
		• US.Gal/min		
		Press ↓ key to change to subfunction "DISP. TOTAL."		
	\rightarrow DISP.TOTAL.	Selection of totalizer display		
		NO DISP. (totalizer is ON but no display)		
		OFF (totalizer is OFF)		
		• + TOTAL. • - TOTAL. • +/- TOTAL. • SUM (Σ)		
		ALL (display single counts or all)		
		Press 斗 key to change to setting of display unit.		
		● m³ ● Liter ● US.Gal		
		 User unit, factory setting "Liter" (s. Sect. 3.05) 		
		Press \rightarrow key to transfer to format setting.		
		Format setting		
		Auto (exponent notation)		
		• #.#######		
		• ## . ######		
		• ###. ###### • #######. #		
		• #### • ######		
		Press ↓ key to change to subfunction "DISP. MSG."		
	\rightarrow DISP.MSG.	Additional messages desired during measuring mode?		
		NO YES (cyclic change with display of measured values)		
		Press ↓ key to return to Fct. 1.04 DISPLAY.		
1.05	CURRENT I	Current output I		
	ightarrow FUNCT. I	Selecting the current output I function		
		OFF (switched off)		
		• + DIR. • - DIR. (measurement in one flow direction only)		
		• 2 DIR. (forward/reverse flow, F/R mode)		
		Press , key to change to subfunction "RANGE I"; if "2 DIR." is selected		
		press this key to change to subfunction 'REV. RANGE'.		
	\rightarrow REV.RANGE	Setting the full-scale range for reverse flow of $Q_{100\%}$		
		(only displayed when "2 DIR." is selected)		
		• 100 PCT. (same as forward flow $Q_{100\%}$, see Sect. 1.01)		
		 FERCENT <u>setting range</u>: 005 - 150 % of Q_{100%} (different value for reverse flow) 		
		Press very to change to numerical setting		
		Press \rightarrow key to change to subfunction "PANCE I"		
		Selecting the measuring range		
		• $0 - 20 \text{ mA}$ • $4 - 20 \text{ mA}$ (fixed ranges)		
		• mA (user-defined range) l_{00} - l_{4000}		
		(Value low < large) 0 - 16 mA 4 - 20 mA		
		Press \rightarrow key to change to numerical setting!		
		Press \rightarrow key to change to subfunction "I ERROR"		
		Selecting the error value		
		• 22 mA • 0.0 to l_{ev} mA (variable when $l_{ev} > 1$ mA see above)		
		Press \rightarrow key to change to numerical setting		
		Press key to return to Ect. 1.05 "CURRENT OUTPUT I"		
1.06	PULSP			
1.00		Description of function of pulse output P on the next page		
1.07	STATUS A1	Status output A1 A1 = terminal		
	or	Connected as status or pulse output (P2)		
	PULS2 A1	2nd pulse output A1 5 s. Fct. 3.07 HARDWARE. "Terminal A1"		
		Description of function of status output A1 or 2nd pulse output A1		
		on the next page.		

Fct.	Text	Description and setting
1.08	STATUS A2	Status outputs A2, D1 and D2
1.09	STATUS D1	Description of function of status outputs A2, D1 and D2
1.10	STATUS D2	on the next page but one.
1.11	CONTROL C1	Countrol inputs C1 and C2
1.12	CONTROL C2	Subscription of function of control inputs on the next page but one.
1.06	PULS P	Pulse output P for electronic totalizers up to 10,000 pulses/s
1.07	PULS2 A1	2nd pulse output A1 for electromechanical totalizers up to max. 50 Hz.
		Connection of terminal A1 as a 2nd pulse output A1 or as status output A1,
		see Fct. 3.07 HARDWARE, "Terminal A1".
	\rightarrow FUNCT. P	Selecting the function for pulse outputs P and P2
Ē	ightarrow FUNCT. P2	• OFF
		 + DIR. - DIR. (measuring in one flow direction only)
pe		 2 DIR. (forward/reverse flow, F/R mode)
nre		Press ↓ key to change to subfunction "SELECT P or P2".
nfig	ightarrow SELECT P	Selecting the type of pulse
e.	ightarrow SELECT P2	 PULSE/VOL. (pulses per unit volume, flow rate)
e od		 PULSE/TIME (pulses per unit time for 100% flow rate)
d al		Press ↓ key to change to subfunction "PULSWIDTH".
anc	\rightarrow PULSWIDTH	Selecting the pulse width
sett	\rightarrow PULSWIDTH	 0.01 - 1.00 s (only for F_{max} < 50 pulses/s)
eni		 AUTO (automatic = 50% of cycle duration of 100% output frequency)
ara		• SYM (symmetric = pulse duty factor approx. 1:1 across the entire range)
cal e s		Press ↓ key to change to subfunction "VALUE P or P2".
the	\rightarrow VALUE P	Setting the pulse value per unit volume (only displayed when
vith	\rightarrow VALUE P2	"PULSE/VOL." is selected in "SELECT P or P2" above).
0 ^ 0 ^		xxxx PulS/m ³ xxxx PulS/Liter • xxxx PulS/US.Gal
ha nc		 xxxx PulS/user unit. factory setting "Liter" or "US MGal" (s. Fct. 3.05)
07 da		Setting range "xxxx" depends on pulse width and full-scale range:
<u>-</u> . <u>0</u>		$P_{min} = F_{min} / Q_{100\%}, P_{max} = F_{max} / Q_{100\%}$
ac		Press → kev to return to Fct. 1.06 PULS P or Fct. 1.07 PULS2 A1.
9	\rightarrow VALUE P	Setting the pulse value per unit time (only displayed when
1.0	\rightarrow VALUE P2	"PULSE/TIME" is selected in "SELECT P or P2" above).
ti		xxxx PulSe/Sec (=Hz) • xxxx PulSe/min • xxxx PulSe/h
щ		• xxxx PulSe/user unit, factory setting "h" (s. Fct. 3.05)
		Setting range "xxxx" depends on pulse width (see above).
		Press key to return to Ect 1.06 PLILS P or Ect 1.07 PLILS2 A1
		$r_1 c_0 c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1$

Fct.	Text	Description and setting
1.07	STATUS A1	Status output A1 (terminal A1 connected as status output A1 or
		as a 2nd pulse output A1, see Fct. 3.07 HARDWARE, "terminal A1")
1.08	STATUS A2	Status output A2
1.09	STATUS D1	Status output D1
1.10	STATUS D2	Status output D2
		OFF ON ALL FROR FATAL FROR
		 INVERS D1 (inverse mode of D1 and D2)
	Φ	 INVERS A1 (inverse mode of A1 and A2 possible only if A1
		is operated as status output see Ect 3.07 HARDWARE "terminal A1")
	ailt the	• SIGN I P or P2 dynamic behaviour
	av of etti	(F/R mode) of outputs see Fct. 1.02
	gui e so ier	• OVERFL, I, P or P2
		(overloading the outputs) P or P2 = ALL
	o lo sa sa outino	EMPTY PIPE ("tube empty" signal only with built-in option)
	are the set s o	• TRIP. POINT
	ih t ih t s r are are	Press \rightarrow key to change to character.
	ttor ttor	Selection: • + DIR. • - DIR. • 2 DIR.
	tp ce	Press , key to change to numerical setting.
	oth oth oth	Setting range: 000 - 150 PERCENT
).1. J. de le .	• AUTO. RNG. Setting range: 05-80 PERCENT (= lower to upper range ratio
	statio cc.	1:20 to 1:1.25, value must be higher than that of Fct. 1.03 L.F. CUTOFF)
	Ц а Е о Ф	Press ↓ key to change to numerical setting.
		Press ↓ key to return to Fct. 1.06, 1.07, 1.08 or 1.09.
Ect	Text	Description and setting
1 11	CONTROL C1	Control input C1 and C2
1.12	CONTROL C2	OFF • FXT RNG (external range change)
		Setting range: 05-80 PERCENT (= lower to upper range ratio 1:20 to 1:1.25
	<i>'</i>	value must be higher than that of Fct. 1.03 L.F. CUTOFF)
		Press $ \downarrow $ key to change to numerical setting.
		OUTP. HOLD (hold output values)
		OUTP. ZERO (set outputs to "min. values")
		TOTAL.RESET (reset the totalizer)
		ERROR.RESET (delete error messages)
		Press ↓ key to return to Fct. 1.11 or 1.12 CONTROL C1 or C2
Fct.	Text	Description and setting
2.0	TEST	Test menu
	TEST Q	Test measuring range Q
		Precautionary query
		• SURE NO Press ↓ key to return to Fct. 2.01 "TEST Q".
		 SURE YES Press ↓ key, then use ↑ key to
		<i>select value:</i> -110 / -100 / -50 / -10 / 0 / +10 / +50 / +100 / +110 PCT.
		of set full-scale range Q _{100%} .
		Displayed value is available at outputs I and P.
		Press J key to return to Fct. 2.01 "TEST Q".
2.02	HARDW. INFO	Hardware information and error status
		Before consulting factory, please note down all 6 codes.
	\rightarrow MODUL ADC	
		Press → key to transfer to "MODUL IO".
	\rightarrow MODUL IO	
		Press J key to transfer to "MODUL DISP.".
	\rightarrow MODUL DISP.	$X \cdot X \times X \times X \times X$ Press \downarrow key to return to
	LIADDW TEAT	YYYYYYYYY Fct. 2.02 "HARDW. INFO".
2.03	HARDW. TEST	Hardware test (Precautionary query)
		Press J key to return to Fct. 2.03 "HARDW. TEST".
		- SURE TES Press J key to start test, duration approx. 60 s
		It errors are found, the first one is displayed. Press \downarrow key to
		alsplay next error. List of errors see Section 4.5.
1		\downarrow Press \downarrow keV to return to Ect 2 (13 "HARDW/ \downarrow EST"

Fct.	Text	Description and setting			
3.0	INSTALL.	Installation menu			
3.01	LANGUAGE	Select language for display texts			
		GB / USA (English) S (Swedish)			
		D (German) other languages on request			
		• F (French)			
		Press ↓ key to return to Fct. 3.01 "LANGUAGE".			
3.02	FLOWMETER	Set data for flow sensor			
	\rightarrow DIAMETER	Select size from meter size table			
		 DN 2.5 - 1200 mm equivalent to 1/10 - 48 inch DN 4000 - 2000 mm equivalent to 50 - 400 inch (and 0 act 0 0) 			
		• DN 1300 - 3000 mm equivalent to 52 - 120 inch (see Sect. 8.6)			
		Select with key.			
		Field scale range for flow Q			
	\rightarrow FULL SCALE	Full-Scale range for now $Q_{100\%}$			
		Press key to change to subfunction "GK VALUE"			
		Pulse value for pulse output P (Fct 1 06 "VALUE P") and/or			
	\rightarrow VALUE P and/or	for the 2nd pulse output A1 (Ect. 1.07 "VALUE P2") has been changed			
		With the "old" pulse values the output frequency (F) would have been exceeded			
	/ //	or would not have been reached.			
		$P_{min} = F_{min} / Q_{100\%}$ $P_{max} = F_{max} / Q_{100\%}$ Check new value.			
	ightarrow GK VALUE	Set primary constant GK			
		See instrument nameplate of flow sensor.			
		Range: • 1.0000 - 15.000			
		Press ↓ key to change to subfunction "FIELD. FREQ.".			
	\rightarrow FIELD FREQ.	Magnetic field frequency			
		Values: <u>1/2, 1/6, 1/18</u> and <u>1/36</u> of power frequency, see instr. nameplate.			
		Press ↓ key to change to subfunction "FLOW DIR.";			
		on DC instruments change to subfunction "LINE FREQ.".			
	\rightarrow LINE FREQ.	Power frequency customary in the country where the instrument is used			
		Please note: this function is limited to instruments with DC supply unit (24 V DC)			
		Values: 50 Hz and 60 Hz			
		Press key change to subfunction "ELOW DIR "			
	\rightarrow FLOW DIR.	Define flow direction (in F/R mode: forward flow).			
	/	Set according to direction of arrow on flow sensor:			
		• + DIR. • – DIR. Select using ↑ key.			
		Press ↓ key to return to Fct. 3.02 "FLOWMETER".			
3.03	ZERO SET	Zero calibration			
		Note: carry out only at "0" flow and with completely filled measuring tube!			
		Precautionary query			
		• CALIB. NO Press → key to return to Fct. 3.3 "ZERO SET".			
		CALIB. YES Press J key to start calibration. Duration entropy 15.00 c (depending on magnetic field)			
		frequency) current flow rate displayed in the selected unit			
		(s Ect 1.04 "DISP FLOW")			
		A "WARNING" sign appears when flow rate ">0":			
		acknowledge by pressing ↓ key.			
		STORE NO (do not store new zero value)			
		STORE YES (store new zero value)			
		Press ↓ key to return to Fct. 3.03 "ZERO SET".			
3.04	ENTRY CODE	Entry code required to enter setting mode?			
		• NO (= entry with \rightarrow only)			
		• YES (= entry with \rightarrow and Code 1: $\rightarrow \rightarrow \rightarrow \rightarrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow \uparrow$)			
		Press → to return to Fct. 3.04 "ENTRY CODE".			
Fct	Text	Description and setting			
------	---------------------------	---	--	--	--
3 05	USER UNIT	Set any required unit for flowrate and counting			
0.00		Set text for required flowrate unit (max, 5 characters)			
		Factory setting = Liter or US MGal			
		Characters which can be assigned to each place:			
		• A-Z, a-z, 0-9, or " – " (= blank character).			
		Press → key to transfer to subfunction "FACT. VOL."			
	\rightarrow FACT. VOL.	Set conversion factor (F _M) for volume			
	-	Factory setting "1.00000 E+3" for "Liter" or "2.64172E-4" for "US MGal"			
		(exponent notation, here 10 ³ or 2.64172 x 10 ⁻⁴)			
		<u>Factor F_M</u> = volume per 1m ³ .			
		Setting range			
		 1.00000 E-9 to 9.99999 E+9 (= 10⁻⁹ to 10⁻⁹) 			
		Press ↓ key to transfer to subfunction "TEXT TIME".			
	\rightarrow TEXT TIME	Set text for any time (max. 3 characters)			
		Factory setting = "h" (hours)			
		Characters which can be assigned to each space:			
		• A-Z, a-Z, U-9, or $-$ (= blank character).			
		Press J key to transfer to subjunction FACT. TIME			
		Set conversion factor (F_T) for time Eactory setting "3 60000 E+3" for "b" (expensent notation, here 3.3 x 103)			
		Set factor F_{τ} in seconds			
		Setting range			
		• 1.00000 E-9 to 9.999999 E+9 (= 10 ⁻⁹ to 10 ⁺⁹)			
		Press → kev to return to Fct. 3.05 "USER UNIT".			
3.06	APPLICAT.	Set modulation range of A/D converter			
	ightarrow FLOW	 STEADY (150% of Q_{100%}) PULSATING (1000% of Q_{100%}) 			
		Press ↓ key to change to subfunction "EMPTY PIPE".			
	EMPTY PIPE	Empty pipe detection EPD (see Sect. 6.9)			
		NO (Press → key to change to subfunction "ADC Gain")			
		• YES (Press → key to change to "VAL. FULL")			
		VAL. FULL (Press → key, precautinory query)			
		• CALIB. NO (Press → key to change to "VAL. EMPTY")			
		• CALIB. YES (Press → key, calibration will start with flashing display "WAIT",			
		duration approx. 20 seconds)			
		STOPE NO (Proop Kov to change to "VAL EMPTY")			
		 STORE NO (Press - key to change to "VAL EMPTY") STORE VES (Press - key to change to "VAL EMPTY") 			
		• VAL EMPTY (Press key precautinory quent)			
		CALIB NO (Press + key to change to "VAL EMPTY")			
		• CALIB YES (Press key calibration will start with flashing display "WAIT"			
		duration approx 20 seconds)			
		Make sure that measuring tube is completely empty!			
		 STORE NO (Press → key to change to subfunction 			
		" ADC GAIN")			
		STORE YES (Press , key to change to subfunction "ADC GAIN")			
		Please Note: The values of the measured impedances must be in range 0 - 150			
		The difference of the value VAL. EMPTY must be			
		10 greater than the value of VAL. FULL!			
	ightarrow ADC GAIN	Set gain of A/D converter			
		AUTO ● 10 ● 30 ● 100 Select with key ↑ or ↓			
		Press ↓ key to change to subfunction "SPEC. FILT.".			
	\rightarrow SPEC. FILT.	Activate special filter for noise/interference suppression?			
		PLEASE NOTE information and examples given in Sect. 6.6.			
		 NO (Press → key to change to Fct. 3.06 "APPLICAT.") XES (Dress → key to change to subfunction "HMAT VAL ") 			
1	1	$ \bullet = 1 = 0$ (Press $\rightarrow =$ key to change to subfunction "LIMIT VAL.").			

Fct.	Text	Description and setting		
	\rightarrow LIMIT VAL.	Set limit value for noise/interference suppression		
		(appears only when "YES" is selected under "SPEC. FILT.", see above)		
		Setting range: 01-90 PERCENT of full-scale range Q _{100%}		
		see Fct. 3.02, subfunction "FULL SCALE"		
		Press ↓ key to change to subfunction "LIMIT CNT.".		
	\rightarrow LIMIT CNT.	Totalizer active when exceeding limit value (see "LIMIT VAL." above)		
		(appears only when "YES" is selected under "SPEC. FILT.")		
		Setting range: 001-250		
		Press ↓ key to return to Fct. 3.06 "APPLICAT.".		
3.07	HARDWARE	Determine HARDWARE functions		
	\rightarrow TERM.A1	Terminal A1		
		PULSOUTP. STATUSOUTP.		
		Select with key \uparrow .		
		Press key ↓ to transfer to subfunction "SELFCHECK".		
	\rightarrow SELFCHECK	Carry out self check? See Section 5.18.		
		YES NO (testing different parameters)		
		Press key ↓ to transfer to subfunction "FIELD CURRENT".		
	\rightarrow FIELDCUR.	Determine field current		
		INTERNAL		
		• EXTERNAL (only with power driver, see Sect. 8.6)		
		Press ↓ key to return to Fct. 3.07 "HARDWARE".		

4.5 Error messages in measuring mode

The following list contains all errors which may occur during flow measurment. Errors are displayed when "YES" is selected in Fct. 1.04 DISPLAY, subfunction "DISP. MSG.".

Error message	Description of error	Elimination of error
LINE INT.	Power failure Note:	Cancel error in RESET/QUIT. menu
	no counting during power failure	Reset totalizer if necessary.
OVERFLOW I	Current output overranged.	Check instrument parameters and
or	(flow rate > measuring range)	correct if necessary. After elimination of
OVERFL. 12		the cause, the error message is
		cancelled automatically.
		See Sections 6.4 and 6.7.
OVERFLOW P	Pulse output P	Check instrument parameters and
or	or	correct if necessary. After elimination of
OVERFL. P2	Pulse output range P2 exceeded	the cause, the error message is
	(flow rate > modulation range)	cancelled automatically.
		See Sections 6.4 and 6.7.
I SHORT or *	Current output I or I2 externally	Check mA loop and increase load using
12 SHORT	shorted or load < 15 Ω	additional resistor if necessary.
I OPEN or *	mA loop interrupted by current	Check mA loop and reduce load to
I2 OPEN	output I or I2 or load > 500 Ω	500 Ω if necessary.
TOTALIZER	Overflow of internal totalizer	Delete error message in RESET/QUIT
		menu, see Sect. 4.6
ADC	Analog/digital converter range	Set Fct. 3.06, subfunction ADC GAIN
	exceeded	to "10". See Sections 6.4 and 6.7.
		If error message does not disappear,
		consult factory.
ADC-PARAM.	Check sum error	Replace ADC printed circuit board
ADC-HARDW.	Hardware error A/D converter	Replace ADC printed circuit board
ADC GAIN	Hardware error A/D converter	Replace ADC printed circuit board
FC-HARDW.	Hardware error on field current PCB	Replace field current PCB
FATAL.ERROR	Fatal error, measurement interrupted	Replace electronic unit or consult factory.
EP PARAM.	Parameters of "Empty Pipe" are wrong	Error shut off automatically EPD function.
		Please check calibration values!
		Value Empty Pipe – Value Full pipe ≥ 10
		Values must be in range of 0 – 150.

* only for active operation

4.6 Resetting the totalizer and deleting error messages, RESET/QUIT menu

Кеу		Display	Description
		/	Measuring mode
Ļ	CodE 2		Key-in entry code 2 for RESET/QUIT menu:
<u>↑</u> .			I → Manu for arror asknowladgement
\rightarrow		ERROR QUIT.	
\rightarrow		QUIT. NO	Do not delete error messages,
			press ↓ twice to return to measuring mode.
1		QUIT. YES	Delete error messages
4		ERROR QUIT.	Error messages deleted.
4		/	Return to measuring mode

Reset totalizer in RESET/QUIT menu

Key		Display	Description
		/	Measuring mode
	CodE 2		Key-in entry code 2 for RESET/QUIT menu:
			$\uparrow \rightarrow$
$\uparrow \rightarrow$		ERROR QUIT.	Menu for error acknowledgement
1	TOTAL.RE		Menu for resetting totalizer
\rightarrow		RESET NO	Do not reset totalizer,
			press ↓ twice to return to measuring mode
1		RESET YES	Reset totalizer
4		TOTAL.RESET	Totalizer is reset
<u>ب</u>		/	Return to measuring mode

4.7 Examples of signal converter settings

In the following example the cursor or flashing part of the display is shown in **bold** characters.

- Change measuring range of current output and value for error messages (Fct. 1.05):
- Change measuring range from 04-20 mA to 00-20 mA
- Change value for error messages from 0 mA to 22 mA

Key	Display		Description	
\rightarrow			If "YES" is selected in Fct. 3.04 ENTRY	
			CODE, enter the 9-digit entry CODE 1: $\rightarrow \rightarrow \rightarrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	
	Fct. 1.00	OPERATION		
\rightarrow	Fct. 1. 01	FULL SCALE		
4x ↑	Fct. 1.05	CURRENT I		
\rightarrow		FUNCT. I		
\rightarrow .1		RANGE I		
\rightarrow	04-20	mA	old current range	
2x ↑	00-20	mA	new current range	
. _		I ERROR		
\rightarrow	0	mA	old value for error messages	
\uparrow	22	mA	new value for error messages	
. _	Fct. 1.05	CURRENT I		
. _	Fct. 1.00	OPERATION		
. _		STORE YES		
<u>با</u>		/	Measuring mode with new current output data	

5 Description of functions

5.1 Full-scale range Q_{100%}

Fct. 1.01 FULL SCALE

 $\mathsf{Press} \ \rightarrow \ \mathsf{key}$

Select unit for full-scale range Q100%

- m³/h (cubic metres per hour)
- Liter/Sec (litres per second)
- US.Gal/min (US gallons per minute)
- User-defined unit, factory setting = "Liter/h" (litres per hour) or "US MGal/day", see Section 5.14

Select with \uparrow and \downarrow keys.

Use \rightarrow key to change to numerical setting, 1st number (cursor) flashes.

Set full-scale range Q100%

The setting range depends on the meter size (DN) and the flow velocity (v):

 $\mathbf{Q}_{\min} = \frac{\pi}{4} DN^2 \times v_{\min}$ $\mathbf{Q}_{\max} = \frac{\pi}{4} DN^2 \times v_{\max}$ (refer to flow table in Section 10.2)

Nom. diameter/meter size

•	DN 2.5 – 1200 / ¹ / ₁₀ " – 48":	0.0053	_	48 860 m³/h
		0.0237	_	218 560 US.Gal/min
•	DN 1300 – 3000 / 52" – 120":	1435	_	305 360 m³/h
	(refer to Section 8.6)	6415	_	1 366 000 US.Gal/min

Change flashing number (cursor) with \uparrow and \downarrow keys.

Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left. Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press \rightarrow key to return to Fct. 1.1 FULL SCALE

Please note that if "VALUE P" or "VALUE P2" is displayed after pressing ↓ key:

PULSE/VOL. is set in Fct. 1.06 PULS P and/or in Fct. 1.07 PULS 2 A1, subfunction "SELECT P" and/or "SELECT P2". Due to the changed full-scale range $Q_{100\%}$, the output frequency (F) of the pulse outputs is either exceeded or not reached:

 $P_{min} = F_{min} / Q_{100\%}$ $P_{max} = F_{max} / Q_{100\%}$

Change pulse value accordingly, see Section 5.07 Pulse output P, Fct. 1.06 and/or 2nd pulse output A1, Fct. 1.07.

5.2 Time constant

Fct. 1.02 TIMECONST.

 $\textit{Press} \rightarrow \textit{key}$

Select

- ALL (applies to display and all outputs)
- **ONLY I** (applies only to display, current and status outputs)

Select with keys \uparrow and \downarrow .

Press ↓ key to change to numerical setting, 1st number (cursor) flashes.

Set numerical value

• 0.2 - 99.9 s (seconds)

Change flashing number (cursor) with keys \uparrow and \downarrow .

Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left. Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press \rightarrow key to return to Fct. 1.02 TIMECONST.

5.3 Low-flow cutoff SMU

Fct. 1.03 L.F. CUTOFF

Press \rightarrow key

Select

OFF (fixed tripping points: ON = 0.1 % / OFF = 0.2 %)
 PERCENT (variable tripping points: ON = 1 - 19 % / OFF = 2 - 20 %)

Select with keys \uparrow and \downarrow (only if PERCENT is selected). 1st number (cursor) flashes.

Setting the numerical value when "PERCENT" is selected

- **01** to **19** (cutoff "ON" value, left of hyphen)
- 02 to 20 (cutoff "OFF" value, right of hyphen)

Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left. Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press \downarrow key to return to Fct. 1.03 L.F. CUTOFF.

Note: the cutoff "OFF" value must be greater than the cutoff "ON" value.

5.4 Display

Fct. 1.04 DISPLAY

Press \rightarrow key

\rightarrow DISP. FLOW = select unit for display of flow rate, press \rightarrow key

- NO DISP (no display)
- m³/h (cubic metres per hour)
- Liter/Sec (litres per second)
- US.Gal/min (US gallons per minute)
- User-defined unit, factory setting = "Liter/h" (litres per hour) or "US MGal/day", see Section 5.14
- **PERCENT** (percentage display)
- BARGRAPH (numerical value and bar graph display in %)

Select with \uparrow and \downarrow keys.

Press , key to change to subfunction "DISP. TOTAL.".

\rightarrow DISP. TOTAL. = select unit for totalizer display, press \rightarrow key

- **NO DISP.** (no display)
- **OFF** (internal totalizer switched off)
- + TOTAL.
 TOTAL.
 +/- TOTAL.
 SUM. (Σ)
 ALL (sequential)

Select with \uparrow and \downarrow keys. Press \downarrow key to change to display unit setting.

- m³ (cubic metres)
- Liter (litres)
- US.Gal (US gallons)
- User-defined unit, factory setting = "Liter" (litres) or "US MGal/day", see Section 5.14

Select with \uparrow and \downarrow keys.

Use \rightarrow key to change to totalizer format setting.

Setting of totalizer format

- Auto (exponent notation)
- #.####### #####.###
 - ##.###### ######.##
- ###.##### #######.#
- #### . #### #######

Select with \uparrow and \downarrow keys.

Press ↓ key to change to <u>subfunction "DISP. MSG."</u>.

\rightarrow DISP. MSG. = additional messages desired in measuring mode, press \rightarrow key

- NO (no additional messages)
- YES (display additional messages, e.g. errors, in sequence with measured values)

Select with \uparrow and \downarrow keys.

Press ↓ key to return to Fct. 1.04 DISPLAY

Note: "BUSY" is displayed in measuring mode when all displays are set to *"NO DISP."* or *"NO"*. Sequencing of displays is automatic. In measuring mode, however, keys - and ⁻ can be used for manual sequencing. Return to automatic sequencing after approx. 3 minutes.

Please refer to Section 2.7 "Factory settings"

5.5 Internal electronic totalizer

The internal electronic totalizer counts in m³ regardless of the unit set in Fct. 1.04, subfunction "DISP. FLOW".

The counting range depends on the meter size and has been selected such that the totalizer will count for at least 1 year without overflow.

Meter size		Counting range		
DN mm Inch		in m ³ US Gal equivalent		
2.5 - 50	¹ / ₁₀ - 2	999 999.99999999	0 - 264 172 052.35800	
65 - 200	$2^{1}/_{2}$ - 8	9 999 999.9999999	0 - 2 641 720 523.5800	
250 - 600	10 - 24	99 999 999.999999	0 - 26 417 205 235.800	
700 -1000	28 - 40	999 999 999.99999	0 - 264 172 052 358.00	

Only part of the totalizer count is shown in the display as it is not possible to display a 14-digit number. Unit and format of the display are freely selectable. Refer to Fct. 1.04, subfunction "DISP. TOTAL." and Section 5.4 to determine which part of the count is to be displayed. Display overflow and totalizer overflow are independent of one another.

Example

Internal count	0000123 . 7654321	m³
Format, display unit	XXXX . XXXX	liter
Internal count in unit	0123765 . 4321000	liter
Displayed	3765 . 4321	liter

5.6 Internal power supply (E+/E-) for connected loads

Passive loads connected to the outputs and inputs can be fed by means of the internal power supply (terminals E+/E-).

U = 24 V DC (observe polarity)

Ri = approx. 15 Ω

 $I \leq 100 \text{ mA}$

Connection diagrams, see Section 2.6.

5.7 Current output I

Fct. 1.05 CUR. OUTP. I

Press \rightarrow key

\rightarrow FUNCT. I = select function for current output, press \rightarrow key

- **OFF** (switched off, no function)
- + DIR.) (measurement in one direction, refer to selection of main flow direction in
- – DIR. Fct. 3.02 FLOW METER, subfunction "FLOW DIR.")
- 2 DIR. (2 flow directions, F/R mode, forward/reverse)

Select with \uparrow and \downarrow keys.

Press ↓ key to change to subfunction "RANGE I".

Exception: when "OFF" is selected, return to Fct. 1.05 CUR. OUTP. I.

When "2 DIR." is selected, change to subfunction "REV. RANGE".

→ REV. RANGE = select full-scale range for reverse flow

(only displayed when "2 DIR." is selected in "FUNCT. I" above) $Press \rightarrow key$

- **100 PCT.** (same full-scale range Q_{100%} as forward flow, see Fct. 1.01)
- **PERCENT** (adjustable range) <u>Setting range 005 150 % of Q100%</u> (see Fct. 1.01)

Select with \uparrow and \downarrow keys.

Press \rightarrow key to change to numerical setting.

Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press ↓ key to change to subfunction "RANGE I".

\rightarrow RANGE I = select the measuring range, press \rightarrow key

- 0 20 mA
 4 20 mA
 fixed ranges
- mA (any value)
 lo% l100%
 (value l_{0%} < l_{100%}!)
 0-16 mA
 4-20 mA

Press \rightarrow key to change to numerical setting.

Select with \uparrow and \downarrow keys.

Change flashing number (cursor) with keys \uparrow and \downarrow . Use \to and \leftarrow keys to shift cursor 1 place to right or left.

Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press ↓ key to change to subfunction "I ERROR"

\rightarrow I ERROR = set the error value, press \rightarrow key

• 22 mA (fixed value)

• **0.0** - $I_{0\%}$ **mA** (variable value, only variable when $I_{0\%} \ge 1$ mA, see "RANGE I" above)

Select with \uparrow and \downarrow keys.

Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press → key to return to Fct. 1.05 CUR. OUTP. I

Please refer to Section 2.7 "Factory settings"

Refer to Section 2.6 for connection diagrams and to Section 5.16 for characteristics.

5.8 Pulse outputs P and A1

	Pulse output P	2nd pulse output A1
for	electronic totalizer	electromagnetic or
		electronic totalizers
Terminals	P and P	A1 and A \perp
F _{max} at full-scale range Q _{100%}	10,000 pulses/s	50 pulses/s
F _{min} at full-scale range Q _{100%}	10 pulses/h	10 pulses/h
Max. switching current	30 mA / AC or DC	100 mA / AC or DC
		200 mA / DC polarized
		(see Section 6.3)
Remark	-	"PULSOUTP." must be selected
		in Fct. 3.07 HARDWARE,
		subfunction "Terminal A1"

<u>PLEASE NOTE</u>: check that output terminal "A1" is defined as pulse output in Fct. 3.07 "HARDWARE", see Sections 2.2 and 5.17.

Fct. 1.06 PULS P		Fct. 1.07 PULS2 A1
Press $\rightarrow key$	and / or	$Press \rightarrow key$

\rightarrow FUNCT. P = select function for pulse output, press \rightarrow key

- **OFF** (switched off, no function)
- + DIR. χ (measurement in one direction, refer to selection of main flow direction in
 - **DIR.)** Fct. 3.02 FLOW METER, subfunction "FLOW DIR.")
- 2 DIR. (2 flow directions, F/R mode, forward/reverse)

Select with \uparrow and \downarrow keys.

Press → key to change to <u>subfunction "SELECT P".</u> **Exception:** when "OFF" is selected, return to Fct. 1.06 PULS P or Fct. 1.07 PULS2 A1.

- \rightarrow SELECT P = select pulse type, press \rightarrow key
- PULSE/VOL. (pulses per unit volume, flow)
- **PULSE/TIME** (pulses per unit time for 100 % flow)

Select with \uparrow and \downarrow keys.

Press ↓ key to change to <u>subfunction "PULSWIDTH".</u>

\rightarrow PULSWIDTH = select pulse width, press \rightarrow key

- AUTO (automatic = 50 % of cycle duration of 100 % output frequency)
 - **SYM.** (symmetric = pulse duty factor 1:1 across entire range)
- SEC. (variable) setting range 0.01 1.00 SEC

Select with \uparrow and \downarrow keys.

Press \rightarrow key to change to numerical setting.

Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Flashing numbers (cursor) can also be directly set with the 10-key keyboard.

Press ↓ key to change to subfunction "VALUE P" and/or "VALUE P2".

→ VALUE P = set pulse value per unit volume

only appears when "PULSE/VOL." is selected in "SELECT P", press $\rightarrow key$

- XXXX PulS/m³
- XXXX PulS/litre
- XXXX PulS/US.Gal
- XXXX PulS/user-defined unit, factory setting = "Liter" or "US MGal/day", see Section 5.14

Select with \uparrow and \downarrow keys. Press \rightarrow key to change to numerical setting, 1st number (cursor) flashes.

Set numerical value

• XXXX (setting range depends on pulse width and full-scale range:

 $P_{min} = F_{min} / Q_{100\%}$ $P_{max} = F_{max} / Q_{100\%}$

Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press ↓ key to return to Fct. 1.06 PULS P or to Fct. 1.07 PULS2 A1.

or

→ VALUE P = set pulse value per unit time

only appears when "PULSE/TIME" is selected in "SELECT P", press $\rightarrow key$

- XXXX PulSe/Sec
- XXXX PulSe/min
- XXXX PulSe/h
- XXXX PulSe/user-defined unit, factory setting = "h" or "day", see Section 5.14

Select with \uparrow and \downarrow keys.

Press \rightarrow key to change to numerical setting, 1st number (cursor) flashes.

Set numerical value

• XXXX (setting range depends on pulse width)

Change flashing number (cursor) with keys \uparrow and \downarrow . Use \to and \leftarrow keys to shift cursor 1 place to right or left.

Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press → key to return to Fct. 1.06 PULS P or to Fct. 1.07 PULS2 A1.

Please refer to Section 2.7 "Factory settings".

Refer to Section 2.6 for connection diagrams and to Section 5.16 for characteristics.

5.9 Status outputs A1 / A2 and D1 / D2

PLEASE NOTE:

Connection diagrams see Section 2.6.

Status outputs	A1	A2	D1	D2
Select Fct	1.07	1.08	1.09	1.10
then press \rightarrow key				
Terminals	A1 / A⊥	A2 / A⊥	D1 / D⊥	D2 / D⊥
Max. switching current	 100 mA/AC or DC 200 mA/DC polarized see Section 6.3 	100 mA/AC	100 mA/AC	100 mA/AC
Remark	"STATUSOUTP." must be selected in Fct. 3.07 HARDWARE, subfunction "TERMINALS".	-	-	-

PLEASE NOTE:

Select function for status outputs, press $\rightarrow key$

- ALL ERROR (indicate all errors)
- (only indicate fatal errors) FATAL.ERROR
- OFF (switched off. no function)
- (signals the operation of the flowmeter) ON F/R mode
- SIGN I

SIGN P/P2

dynamic behaviour

I = ONLYI

of outputs see Fct. 1.02, Sect. 5.2 "Time constant"

- OVERFL. I exceeding
 - output ranges OVERFL. P/P2
- P/P2 = ALL
- (switches output A2 inverse to A1. A1 and A2 then operate as **INVERS. A1** change-over elements with common centre grounding contact AL. Only available when status output is selected in Fct. 3.07 "TERM. A1".) (switches output D2 inverse to D1. D1 and D2 then operate as **INVERS. D1**
- change-over elements with common centre grounding contact D_{\perp}). (signals that measuring tube is empty, only with option "empty tube **EMPTY PIPE** detection")
- (automatic range change) Setting range 5 80 PERCENT AUTO. RNG. (= high to low range ratio, 1:20 to 1:1.25, value must be higher than that of Fct. 1.03 L.F. CUTOFF), see Section 5.20.

 FULL SCALE, see Section 5.19. Select flow direction (characteristic) for full-scale range + DIR. – DIR. • 2 DIR. Select with \uparrow and \downarrow keys. • • Define full-scale range XXX YYY normally open contact: XXX > YYY_ 0 – 150% 0 - 150% normally closed contact: XXX < YYYhysteresis: difference between XXX and YYY.

Press \dashv key to change to numerical setting, 1st number (cursor) flashes.

Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Flashing numbers (cursor) can also be directly set with the 10-key keyboard.

Press → key to return to Fct. 1.07, 1.08, 1.09 or 1.10 for status outputs A1, A2, D1 or D2.

Characteristic of status outputs	Switch open	Switch closed
OFF (switched off)	no	function
ON (e.g. operation indicator)	power supply OFF	power supply ON
SIGN I (F/R mode)	forward flow	reverse flow
SIGN P/P2 (F/R mode)	forward flow	reverse flow
FULL SCALE (full-scale indicator)	inactive	active
AUTO. RNG. (autom. range change)	high range	low range
OVERFL. I (I range exceeded)	current output O.K.	cur. output range exceeded
OVERFL. P/P2 (P range exceeded)	pulse output O.K.	pulse output range exceeded
ALL ERROR (all errors)	error	no error
FATAL.ERROR (only fatal errors)	error	no error
INVERS A1: status output A2	when A1 is closed	when A1 is open
INVERS D1: status output D2	when D1 is closed	when D1 is open
EMPTY PIPE (empty tube	when measuring tube	when measuring tube
identification option)	is empty	is full

For factory settings please refer to Section 2.7.

5.10 Control inputs C1 and C2

Fct. 1.11 CONTROL C1	and/ar	Fct. 1.12 CONTROL C2
Press \rightarrow key	and/or	Press \rightarrow key

<u>Select function for the control inputs</u>, press \uparrow or \downarrow key

- **OFF** (switched off, no function)
- OUTP. HOLD (hold output values)
- OUTP. ZERO (set outputs to "min. values") display and totalizer
- TOTAL. RESET (reset totalizer)
- ERROR. RESET (acknowledge/delete error messages)
- EXT. RNG. (external range change for automatic range change, see Sect. 5.20. <u>Setting range</u> 5 - 80 PERCENT = low to high range ratio 1:20 to 1:1.25, value must be greater than that of Fct. 1.03 L.F. CUTOFF)

Functions also act on

Press \downarrow key to change to numerical setting, 1st number (cursor) flashes. Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left. Flashing numbers (cursor) can also be directly set with the 10-key keyboard.

Press ↓ key to return to Fct. 1.11 CONTROL C1 or to Fct. 1.12 CONTROL C2.

Please refer to Section 2.7 for factory settings.

Connection diagram see Section 2.6.

5.11 Language

Fct. 3.01 LANGUAGE

 $\textit{Press} \rightarrow \textit{key}$

.

Select language for texts in display

D (German)

S (Swedish)

- GB/USA (English) • F (French)
- Other languages on request

Select with \uparrow and \downarrow keys. Press \downarrow key to return to Fct. 3.01 LANGUAGE.

5.12 Entry code

Fct. 3.04 ENTRY CODE

 $\textit{Press} \rightarrow \textit{key}$

<u>Select</u>

- NO (no code, enter setting mode by pressing \rightarrow key)
- YES (enter setting mode by pressing \rightarrow key and Code 1: $\rightarrow \rightarrow \rightarrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow$)

Select with \uparrow and \downarrow keys. Press \downarrow key to return to Fct. 3.04 ENTRY CODE.

5.13 Flow sensor

Fct. 3.02 FLOW METER

Press \rightarrow key

\rightarrow DIAMETER = set meter size (see instrument nameplate), *press* \rightarrow *key* Select size from table of meter sizes:

• DN 2.5 – 1200 equivalent to ¹/₁₀ - 48 inch

• DN 1300 - 3000 equivalent to 52 - 120 inch, see Section 8.6.

Select with \uparrow and \downarrow keys.

Press ↓ key to change to subfunction "FULL SCALE".

\rightarrow FULL SCALE = set full-scale range, press \rightarrow key

Set as described in Section 5.1.

Press ↓ key to change to subfunction "GK VALUE".

Please note that if "VALUE P" or "VALUE P2" is displayed after pressing ↓ key:

PULSE/VOL. is set in Fct. 1.06 PULS P and/or in Fct. 1.07 PULS 2 A1, subfunction "SELECT P" and/or "SELECT P2". Due to the changed full-scale range $Q_{100\%}$, the output frequency (F) of the pulse outputs is either exceeded or not reached:

 $\label{eq:Pmin} \begin{array}{ll} \textbf{P}_{min} = F_{min} \ / \ Q_{100\%} & \textbf{P}_{max} = F_{max} \ / \ Q_{100\%} \\ \\ \mbox{Change pulse value accordingly, see Section 5.08 Pulse output P, Fct. 1.06} \\ \mbox{and/or 2nd pulse output A1, Fct. 1.07.} \end{array}$

\rightarrow GK VALUE = set flow sensor constant GK, press \rightarrow key

• **1.0000 - 9.9999** (note information on instrument nameplate, do not change setting)

Change flashing number (cursor) with keys \uparrow and \downarrow .

Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left. Flashing numbers (cursor) can also be directly set with the 10-key keyboard. Press \rightarrow key to change to <u>subfunction "FIELD FREQ."</u>

\rightarrow FIELD FREQ. = set magnetic field frequency, press \rightarrow key

- 1/2 1/6 (1/2, 1/6, 1/18 or 1/36 of power frequency, see instrument nameplate,
- 1/18 1/36 do not change setting, <u>exceptions</u> see Sections 6.4-6.10)

Select with \uparrow and \downarrow keys.

Press
↓ key to change to <u>subfunction "FLOW DIR."</u> (for DC instruments change to subfunction "LINE FREQ.").

\rightarrow LINE FREQ. = set power frequency customary in country

where instrument is used, press \rightarrow key

(Please note: only applies to instruments with DC power unit)

- **50 Hz** Select with \uparrow and \downarrow keys.
- 60 Hz Press ↓ key to change to subfunction "FLOW DIR.".

\rightarrow FLOW DIR. = set flow direction, press \rightarrow key

- + DIR. (for identification of flow direction see "+" arrow on flow sensor;
- - **DIR.** F/R mode: identification of "positive" flow direction)

Select with \uparrow and \downarrow keys.

Press ↓ key to return to Fct. 3.02 FLOW METER.

Zero check, see Fct. 3.03 and Section 7.1.

Please refer to Section 2.7 "Factory settings".

5.14 User-defined units

Fct. 3.05 USER UNIT

Press \rightarrow key

\rightarrow TEXT VOL. = set text for user-defined flow unit, press \rightarrow key

 Liter (max. 5 characters, factory setting = "Liter" or "US MGal") <u>Characters which can be assigned to each place:</u> A-Z, a-z, 0-9 or "-" (= blank character).

Change flashing number (cursor) with keys \uparrow and \downarrow .

Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Press ↓ key to change to <u>subfunction "FACT. VOL.".</u>

\rightarrow FACT. VOL. = set factor FM for volume, press \rightarrow key

• **1.00000 E+3** (factory setting "1000" / Factor \mathbf{F}_{M} = volume per 1 m³) Setting range: 1.00000 E-9 to 9.99999 E+9 (= 10⁻⁹ bis 10⁺⁹)

Change flashing number (cursor) with keys \uparrow and \downarrow .

Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Press ↓ key to change to <u>subfunction "TEXT TIME"</u>.

\rightarrow TEXT TIME = set text for required time, press \rightarrow key

 h (max. 3 places, factory setting = "h"/hours or "day") <u>Characters which can be assigned to each place:</u> A-Z, a-z, 0-9 or "-" (= blank character).

Change flashing number (cursor) with keys \uparrow and \downarrow .

Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Press ↓ key to change to <u>subfunction "FACT. TIME".</u>

\rightarrow FACT. TIME = set factor FT for time, press \rightarrow key

• 3.60000 E+3 (factory setting "3600" / set factor FT in seconds)

<u>Setting range:</u> 1.00000 E-9 to 9.99999 E+9 (= 10^{-9} bis 10^{+9})

Change flashing number (cursor) with keys \uparrow and \downarrow .

Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Press ↓ key to return to Fct. 3.05 USER UNIT

Flashing numbers (cursor) can also be directly set with the 10-key keyboard.

Factors for volume F_M (factor F_M = volume per 1 m³)

Volumetric unit	Text example	Factor F _M	Setting
Cubic metres	m³	1.0	1.00000 E+0
Liter	Liter	1 000	1.00000 E+3
Hectolitres	h Lit	10	1.00000 E+1
Decilitres	d Lit	10 000	1.00000 E+4
Centilitres	c Lit	100 000	1.00000 E+5
Millilitres	m Lit	1 000 000	1.00000 E+6
US gallons	USGal	264.172	2.64172 E+2
Millions US gallons	USMG	0.000264172	2.64172 E-4
Imperial gallons	GBGal	219.969	2.19969 E+2
Mega imperial gallons	GBMG	0.000219969	2.19969 E-4
Cubic feet	Feet3	35.3146	3.53146 E+1
Cubic inches	inch3	61 024.0	6.10240 E+4
US barrels liquid	US BaL	6.28982	6.28982 E+0
US barrels ounces	US BaO	33 813.5	3.38135 E+4

Factors for time FT (factor F_T in seconds)

Time unit	Text example	Factor FT (seconds)	Setting
Seconds	sec	1	1.00000 E+0
Minutes	min	60	6.00000 E+1
Hours	h	3 600	3.60000 E+3
Day	DAY	86 400	8.64000 E+4
Year (=365 days)	YR	31 536 000	3.15360 E+7

5.15 F/R mode, forward/reverse flow measurement

- Refer to Section 2.6 for electrical connection of outputs.
- **Define direction of forward flow,** see Fct. 3.02, subfunction "FLOW DIR.": in conjunction with F/R operation, this is where to set the direction of the forward flow. "+" means the same direction as shown by the arrow on the flow sensor. "-" means the opposite direction.
- Set one of the **status outputs** to "SIGN I", "SIGN P" or "SIGN P2", see Fct. 1.08-1.10 (1.07). Dynamic behaviour of outputs in case of "SIGN I, P or P2" see Section 5.8.
- Current and/or pulse outputs must be set to "2 DIR.", see Fct. 1.05, 1.06 and 1.07, subfunctions "FUNCT. I", "FUNCT. P" and "FUNCT. P2".

5.16 Output characteristics

l	current output
I _{0%}	0 or 4 mA
I _{100%}	20 mA
P P _{100%}	pulse outputs P and A1 (P2) pulses at $Q_{100\%}$, full-scale range
Q _F	1 flow direction, forward flow in F/R mode
Q _R	reverse flow in F/R mode
Q _{100%}	full-scale range
s 	status outputs A1, A2, D1 and D2 switch open switch closed

1 flow direction

2 flow directions

5.17 Applications

Fct. 3.06 APPLICAT.

 $\textit{Press} \ \rightarrow \ \textit{key twice}$

Set flow characteristics, select with \uparrow or \downarrow keys

- **STEADY** (steady flow)
- **PULSATING** (pulsating flow, e,g, caused by reciprocating pumps, refer to Sections 6.5 to 6.10 "Special applications")

Press ↓ key to change to subfunction "ADC GAIN".

Set ADC GAIN, select with \uparrow or \downarrow keys

- AUTO (for homogeneous process liquids, low pulsation)
- 10 (for high solids contents or extremely pulsating flows)
- **30** (for solids contents or pulsating flows)
- **100** (high resolution even at low flows)

Press ↓ key three times to return to Fct. APPLICAT.

Do not change the settings of subfunctions "SPEC. FILT.", "LIMIT VAL." and "LIMIT CNT." as these functions are needed to obtain steady signals for display and outputs for special applications, see Section 6.6.

5.18 Hardware settings

Fct. 3.07 HARDWARE

 $\textit{Press} \rightarrow \textit{key}$

Define function of terminal A1, press \rightarrow key

٠	PULSOUTP.	(= pulse output))	Select with \uparrow or \downarrow keys,
•	STATUSOUTP.	(= status output)	Ś	press ↓ key to change to "Selfcheck"

Carry out selfcheck during measurement? Press \rightarrow key

• NO • YES Select with \uparrow or \downarrow keys, press \downarrow key to change to "Field current".

<u>What is checked?</u> ADC gain and other parameters are continuously checked for their permissible values and deviations.

Errors are only displayed when "YES" is selected in Fct. 1.04 DISPLAY, subfunction "DISP. MSG.". After acknowledging/deleting the errors in the ERROR/QUIT menu (see Section 4.6), the tests described in a) and b) above are re-started. Test duration 4 to 20 minutes.

	Select field	current supply,	press \rightarrow key
--	--------------	-----------------	-------------------------

•	INTERNAL	(DN 2.5–1600 / 1/10"–64")	Soloot with	\uparrow	or	kovo
•	EXTERNAL	(see Section 8.6)	Select with	I	01 4	ĸeys,

Press ↓ key to return to Fct, 3.07 HARDWARE.

5.19 Limit switches

Fct. 1.07 - 1.10 Status outputs A1, A2, D1 or D2

(Define operating mode of output terminals A1, see Section 5.18) Press $\rightarrow key$ Press \uparrow key as often as required to set one of the status outputs to "TRIP. POINT"

Press \rightarrow key to change to "Characteristic" (flow direction).

 Select:
 • + DIR.

 • - DIR.
 • Select with ↑ or ↓ keys

 • 2 DIR.
 • Select with ↑ or ↓ keys

Press \downarrow key to change to numerical setting, 1st number (cursor) flashes. Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

- <u>Display:</u> XXX YYY
- <u>Setting ranges:</u> XXX value = 0 150% of $Q_{100\%}$ YYY value = 0 - 150% of $Q_{100\%}$ hysteresis $\ge 1\%$ (= difference between XXX and YYY values)
- Switching behaviour (NO/NC contact) and hysteresis are adjustable.

<u>NC contact</u> XXX value > YYY value Switch closes when flow exceeds XXX value <u>NC contact</u> XXX value < YYY value Switch opens when flow exceeds YYY value

Example: XXX = 55% YYY = 45% hysteresis = 10% Example: XXX = 45% YYY = 55% hysteresis = 10%

Please note: if two status outputs (e.g. D1 and D2) are activated it is possible to have e.g. min. and max. values signalled.

5.20 Range change

Automatic range change by status output

Fct. 1.07 - 1.10 Status outputs A1, A2, D1 or D2

(Define operating mode of output terminal A1, see Section 5.18)

 $\textit{Press} \rightarrow \textit{key}$

Press \uparrow key as often as required to set one of the status outputs to automatic range change "AUTO. RNG."

Press \downarrow key to change to numerical setting, 1st number (cursor) flashes. Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left.

Flashing numbers (cursor) can also be directly set with the 10-key keyboard.

<u>Setting range:</u> 5 - 80 PERCENT of Q_{100%} (= low to high range ratio 1:20 to 1:1.25)

Press \downarrow key to return to Fct. 1.07 - 1.10, status outputs A1, A2, D1 or D2.

External range change by control input

Fct. 1.11 or 1.12 Control inputs C1 or C2

Press \rightarrow key

Press \uparrow key as often as required to set one of the control inputs C1 or C2 to range change "EXT. RNG."

Press \downarrow key to change to numerical setting, 1st number (cursor) flashes. Change flashing number (cursor) with keys \uparrow and \downarrow . Use \rightarrow and \leftarrow keys to shift cursor 1 place to right or left. Flashing numbers (cursor) can also be directly set with the 10-key keyboard.

Setting range: 5 – 80 PERCENT of Q_{100%} (= low to high range ratio 1:20 to 1:1.25)

Press ↓ key to return to Fct. 1.11 or 1.12, control inputs C1 or C2.

6 Special Applications, Functional Checks, Service and Order Numbers

6.1 Use in hazardous areas

6.1.1 General

Signal converters of type IFC 110 F - EEx are type tested as associated electrical apparatus in compliance with European Directive 94/9/EG (ATEX 100a) in conformity with European Standards EN 50 014 / EN 50 020.

The EC type examination certificate has been issued by the Physikalisch-Technische Bundesanstalt (PTB) under: **PTB 02 ATEX 2163 X**

Important, please note!

- Observe the directions, regulations and electrical data specified in the EC type examination certificate, see Section 13.
- In addition to the regulations for power installations (VDE 0100), pay particular attention to the regulations specified in EN 60079-14 "Electrical installations in hazardous areas".
- Assembly, installation, commissioning and maintenance may only be carried out by "personnel trained in explosion protection"!

6.1.2 Main safety features

Both generation of the intrinsically safe electrode circuit and also protection of the non-intrinsically safe field circuit by fusible links form integral parts of the IFC 110 F - EEx signal converter.

Category / Zone

IFC 110 F - EEx signal converters are associated electrical apparatus required to be installed outside the hazardous area.

The intrinsically safe electrode circuit is designed in Category 2 for use in Zone 1.

• Types of protection

The **electrode circuit** is designed in Intrinsic Safety **EEx ib IIC** type of protection. The **non-intrinsically safe field circuit** must be installed inside the hazardous area using a type

of protection conforming to European Standard (e.g. Increased Safety "e").

Power supply and signal inputs / outputs are non-intrinsically safe.

Field current fuse protection

The field circuit is fuse-protected in the signal converter IFC 110F – EEx by two fusible links on the FSV circuit board (TR5, 160 mA F).

• Safety-relevant type code

The following code is used for type designation:

IFC 110 F / - E Ex

1 2 3 4 5 6

- 1 Electromagnetic signal converter
- 2 Type series
- **3** Field housing for "remote" measuring systems
- 4 Marking no effect on explosion protection
 - S Special version for -40 °C
 - ... others as required
- 5 Approval to European standard
- 6 Explosion-protected equipment

6.1.3 Installation and electrical connection

Type IFC 110 F - EEx signal converters are type tested as **associated electrical apparatus**. They are installed outside the hazardous area.

The PE/PA connection (housing) must have protective bonding with the potential of the hazardous area (PA).

Insulation ratings

The insulation of signal converters Type IFC 110 F - EEx is rated in conformity with VDE 0110-1, equivalent to IEC 664-1, and the following rated values have been taken into consideration:

- overvoltage category for the line circuit: III
- overvoltage category for the signal and measuring circuits: II
- insulation pollution degree: 2

Important, please note without fail!

- The buffer barrier for the intrinsically safe electrode circuit is an integral part of the IFC 110 F EEx signal converter and is safety galvanically isolated.
- The cable entry for the interconnecting cable of the intrinsically safe electrode circuit is marked in light blue.
- The terminals of the intrinsically safe electrode circuit may only be connected to intrinsically safe circuits, even if the device is operated in the non-hazardous area.
- Electrical connection between front panel and potential to ground to be made by way of the fastening screws on the front panel. These must therefore always be properly tightened down (torque approx. 1.3 Nm).

Start-up

Check the following points before starting up:

- that the line voltage (power supply) agrees with the details given on the nameplate.
- that the nominal value of the fuse for field current protection agrees with the maximum permissible nominal value specified for the flow sensor.

Evidence shall be furnished of the intrinsic safety for the electrode circuit together with the safety-relevant data of the interconnecting cable and of the flow sensor.

Operation

Operator control of the signal converter is permitted during operation. For this purpose, remove the cover of the electronic compartment. Definitely avoid ingress of dirt and moisture when the housing cover is open.

Preventive maintenance

The signal converter does not require any maintenance when used for the intended purpose. Within the scope of checks required to be carried out in hazardous areas to maintain systems in proper working order, visual inspection of the housing, cable entries and interconnecting cables for signs of damage should be carried out at regular intervals.

Maintenance

Maintenance work of a safety-relevant nature within the meaning of explosion protection may only be carried out by the manufacturer, his authorized representative or under the supervision of authorized inspectors.

Please note ! Safety data see Sect. 10.1 !

6.2 Magnetic sensors MP (optional)

- The MP magnetic sensors allow the signal converter to be operated with a bar magnet without opening the housing.
- This optional equipment can also be retrofitted (see Section 8.2). A green LED in the "magnet active" field on the front panel indicates that magnetic sensors are installed.
- The function of the three magnetic sensors is identical to the function of the corresponding keys.
- Take hold of the plastic cap of the bar magnet and touch the glass pane on top of the magnetic sensors with the blue end of the bar magnet (north pole).
- Sensor tripping is acknowledged by corresponding symbols appearing on the display and by a change of colour of the green LED referred to above.

6.3 Changing the load capacity of the output A1 for polarized DC operation

In case of polarized DC operation of output A1 (status or pulse output), the load capacity can be increased to I \leq 200 mA (factory setting: I \leq 100 mA).

Switch off the power supply before opening the housing!

- 1) Remove the cover from the terminal compartment (remove 2 screws).
- 2) Pull all plug-in terminals out of the sockets inside the terminal compartment.
- 3) Remove the glass cover from the control compartment (remove 4 screws).
- 4) Remove 4 screws from the front panel, take hold of the handle on the upper end of the front panel and carefully pull the complete electronic unit out of the signal converter housing.
- 5) Put down the electronic unit with the front panel facing down.
- 6) Unscrew the SLP screw from the I/O printed circuit board (inputs/outputs) and carefully pull the PCB out of the plug base (see illustration in Section 8.3).
- 7) Remove the two X4 jumpers from the I/O printed circuit board, turn them by 90° and plug them back into the PCB in "DC position" (see illustration of PCB I/O in Section 8.7).
- 8) Re-assemble in reverse order (items 6 to 1).

6.4 Interfaces

Important, please note!

- Observe the directions and regulations and the electrical data specified in the **EC type test certificate**.
- In addition to the regulations for heavy-current installations (VDE 0100), pay particular attention to the requirements specified in **EN 60079-14** "**Electrical** equipment in hazardous areas".
- Assembly, installation, commissioning and maintenance work may only be carried out by "personnel trained in explosion protection"!

6.4.1 RS 232 adapter incl. IMoCom software (optional)

An RS 232 adapter including IMoCom software is available as an optional extra for operation of the signal converter with an MS-DOS PC. Detailed instructions are included in the package.

The RS 232 adapter connecting the signal converter to the PC or laptop is plugged into the IMoCom bus multipoint connector on the front panel of the signal converter (underneath the sliding window, see Section 4.2).

6.4.2 HART[®]- interface

The HART[®] interface is a smart interface, in other words a communication signal superimposed on the current output. All functions and parameters can be accessed via this interface.

The following HART[®] features are supported:

- point-to-point connection
- multidrop (up to 15 HART devices)

The burst mode is not normally used.

Further information about HART is available from the HART[®] Communication Foundation, of which KROHNE is a member.

Electrical connection

HART[®] - active

Bürde \geq 230 Ω

not with multidrop operation

HART[®] - passive

only with multidrop operation

<u>Power supply unit (and section switch amplifier)</u> must be set up accordingly if in use for HART[®] operation. For setting active/passive operation see Sect. 6.8.

Settings and operation

Fct.	Parameter	Point-to-point mode	Multidrop mode
1.05	Function	1 CORRECT. or 2 CORRECT.	OFF
	Range I	4-20 mA or $I_{0\%} \ge 4 \text{ mA}$	$I_{0\%} \ge 4 \text{ mA}$
3.09	Communication	HART	HART
	Address	0	01, 02, 03 15 (use one address at one time only)
Operation Current output		active or passive	passive only

For further information on setting the signal converter refer to chapters 4 and 5.

HART[®] operating tools / Device Description (DD)

The signal converter can be operated either via its local operator interface or by means of the HART[®] communicator, which is available from KROHNE.

Operator control by means of the HART[®] communicator requires a device description (DD) which we can load for you into the communicator. We can, of course, also load the DDs of all manufacturers who have filed their DDs with the HART[®] Communication Foundation.

If you wish to use the signal converter in your operating tool, for example, please ask for the description of the HART[®] command used so that you can address the complete signal converter functionality via HART[®].

6.4.3 KROHNE RS 485 Interface (Option)

Electrical connection

RS 485 Interface (Option, connection at plug-in terminal RS)

- * The shields can be grounded as follows:
 - 1) directly at both ends
 - or where there is risk of circulating currents,
 - 2) directly at one end (static shielding) or
 - 3) directly at one end and capacitive at the other end.

In the case of 2) and 3), a decrease in EMC is to be expected.

It is essential to blank off the final signal converter's electrical bus. To do this, solder up the semicircular circuits of solder points S3 and S4 on the RS485 - PCB. For further information refer to section 8.7.

The RS 485 protocol is available. Please contact your local KROHNE supplier / company.

Settings for use in interface operation

Fct.	Parameter	KROHNE RS 485 Interface
3.09	Communication	KROHNE
	Address	000-239
	Baud rate	• 1200 • 9600
		• 2400 • 19200
		• 4800

For further information on setting the signal converter refer to chapters 4 and 5.

6.5 Pulsating flow

Application

Downstream of positive displacement pumps (reciprocating or diaphragm pumps) without pulsation damper.

Resetting the signal converter, see Sections 4 and 5.

Changing the settings

- <u>Fct. 3.02</u> FIELD FREQ. (change the magnetic field frequency)
 - Stroke frequency less than 80 strokes/min. (at max. pump lift), do not change setting.
 - Stroke frequency 80-200 strokes/min. (at max. pump lift), change setting to 1/2, only recommended for PROFIFLUX 5000 F (DN 2.5-100 and ¹/₁₀"-4") and ALTOFLUX 4000 F (DN 10, 15, 50-100 and ¹/₁₀", ¹/₂", 2"-4"), for other types and sizes please consult factory.
 - Please note: at stroke frequencies near the limit of 80 strokes/min. additional measurement deviations of \pm 0.5 % of the measuring value may occur occasionally.
- <u>Fct. 3.06 APPLICAT.</u> (adapt modulation limit of A/D converter to the application) Change setting of subfunction "FLOW" to "PULSATING".
- <u>Fct. 1.04 DISP. FLOW</u> (change display of flow) Change setting to "BARGRAPH" in order to be able to evaluate the display ripple.
- <u>Fct. 1.02 TIMECONST.</u> (change time constant)
 Change setting to "ALL" and set time (t) to seconds.

– Recommendation: t [s] = <u>1000</u> min. number of strokes/min.

- Example: min. number of strokes during operation = 50 strokes/min.

 $t[s] = \frac{1000}{50/min.} = 20 s$

With this setting, the residual ripple of the display is approx. ± 2 % of the measuring value. Doubling the time constant reduces the residual ripple of the display by a factor of 2.

6.6 Unstable display and outputs

Unstable displays and outputs may occur:

- with high amounts of solids,
- with inhomogeneities,
- with badly blended mixtures,
- after constant chemical reactions in the process liquid or
- in ALTOFLUX 4000 F flow sensors when the wrong electrode material is selected for the process liquid, e.g. Hastelloy B2 for hydrochloric acid.

If the flow is pulsating because of the use of diaphragm or reciprocating pumps please refer to Section 6.5.

Resetting the signal converter, see Sections 4 and 5.

When changing the signal converter settings, the green LED (normal) and the red LED (error) on the front panel of the signal converter start to flash rapidly and frequently. This indicates that the A/D converter range is frequently exceeded and that not all measured values are evaluated.

Change the following settings to allow the display ripple to be properly evaluated:

Select "BARGRAPH" in Fct. 1.04 DISPLAY, subfunction "DISP. FLOW" and select "YES" in submenu "DISP. MSG.".

Press \downarrow key 4 times to return to measuring mode.

The following displays are possible in measuring mode:

ADC = A/D converter range exceeded

and

OVERFL. I, P and/or P2 = one or several output ranges exceeded

Change procedure A

PLEASE NOTE:

After each of the following changes check if the display and outputs are unsteady in measuring mode. Do not proceed to the next step unless the display and outputs continue to be unsteady.

- <u>Fct. 1.02 TIMECONST.</u> (change time constant)
 - Set to "ONLY I"; set to "ALL" when pulse output is also unsteady.
 - Set time constant to approx. "20 seconds", check if display remains unsteady and correct if necessary.
- <u>Fct. 3.06 APPLICAT.</u> (adapt modulation limit of A/D converter to the application) Change setting of subfunction "FLOW" to "PULSATING" on a trial basis.

When the green LED and red LED continue to flash, change the setting of subfunction "ADC GAIN" to 30. Should the green LED and red LED continue to flash frequently, set value to 10.

 <u>Fct. 3.02 FIELD FREQ.</u> (change magnetic field frequency) Change the setting to 1/2 on a trial basis.
 If this has no significant effect, restore the last setting (usually 1/6).

Only recommended for PROFIFLUX 5000 F (DN 2.5-100 and $^{1}/_{10}$ -4 inch) and ALTOFLUX 4000 F (DN 10, 15, 50-100 and $^{1}/_{10}$, $^{1}/_{2}$, 2-4 inch), for other types and sizes please consult factory.

If display and outputs continue to be unsteady or if the set time constant proves too high for your specific application (Fct. 1.02) please proceed as described in **change procedure B**.

Change procedure B

PLEASE NOTE:

Do not proceed according to change procedure B unless the steps of change procedure A proved unsuccessful.

Change procedure B must not be adopted for pulsating flows downstream of positive displacement pumps.

The following settings result in a **modified dynamic behaviour** of the system which is no longer defined by the setting of the time constant in Fct. 1.02.

- Fct. 1.02 TIMECONST. Change setting to 3 seconds.
- Fct. 3.06 APPLICAT.
 - Select "YES" in subfunction "SPEC. FILT." to activate a special noise filter.
 - Subfunction "LIMIT VAL." defines a window with a width (somewhere around the mean flow) equivalent to the value in PERCENT of the full-scale range Q_{100%} set here (Fct. 3.02, subfunction "FULL SCALE").

This value must always be a lot smaller than the amplitude of the display ripple (peak-to-peak).

Example:	full-scale range Q _{100%}	500 m³/h
	ripple mean value	$\pm 25 \text{ m}^3/\text{h} = \pm 5\%$ of full-scale range $Q_{100\%}$
	set amplitude to e.g.	± 2%

Signals outside the \pm LIMIT VALUE window are cut off (clipping). When e.g. interferences cause the measuring value to leave this window for a short time, the rate of change of the display and outputs is limited to...

ΔQ_{max}	%	LIMIT VAL.	Formula applying to	ΔQ_{max} _	2%	- 0 66	%
ΔT	S	TIMECONST. (Fct. 1.02)	the above example	ΔT	3 s	- 0.00	S

The delay required for passing on major changes of flow to the display and outputs is defined in subfunction "LIMIT CNT.".

Set subfunction "LIMIT CNT." to 10 on a trial basis.

Should the measuring value leave the above window in one direction more than 10 times, this window is temporarily rendered inactive.

Display and outputs follow major changes of flow with the appropriate speed.

This setting provides an additional dead time for display and outputs:

Dead time = LIMIT CNT. x duration of measuring cycle

Duration of measuring cycle = **approx. 60 ms** (for magnetic field frequency = 1/6 ⁻ line frequency, see Section 3.02, subfunction "FIELD FREQ.").

A "10" set in subfunction "LIMIT CNT." results in a dead time of approx. 600 milliseconds.

By changing the subfunctions "LIMIT VAL.", "LIMIT CNT." and "TIMECONST." (Fct. 1.02) on a trial basis, a setting can normally be found which ensures that the display and outputs are sufficiently stable.

Each of the steps described above must be followed by a check of the ripple of display and outputs in measuring mode.

6.7 Quickly changing flows

Application

For filling processes, high-speed control circuits, etc.

Resetting the signal converter, see Sections 4 and 5.

Changing the settings

- <u>Fct. 1.02 TIMECONST.</u> (change the time constant)
 Change the setting to "ONLY I" and set time to 0.2 seconds.
- <u>Dynamic behaviour</u> for sizes DN 2.5-300 and ¹/₁₀ -12 inch Dead time: approx. 0.06 at 50 Hz line frequency approx. 0.05 at 60 Hz line frequency Time constant: as set above, current output (mA) then is 0.1 seconds
- <u>Reduction of dead time by factor 3</u> (possible by changing the magnetic field frequency) Change Fct. 3.02 FLOW METER, subfunction "FIELD FREQ." to "1/2", only recommended for PROFIFLUX 5000 F (DN 2.5-100 and ¹/₁₀ -4 inch) and ALTOFLUX 4000 F (DN 10, 15, 50-100 and ¹/₁₀, ¹/₂, 2-4 inch), for other types and sizes please consult factory.

6.8 Changeover of current output, active / passive mode

Standard factory setting: active mode

The current output can be changed over to the passive mode. This requires a power source, either an external one or via the isolated internal one (24 V DC), power terminals E+ / E-. See Sect. 2.6 for connection diagrams.

Proceed as follows to change over from active to passive mode, or vice versa.

Changes on the I/O circuit board (inputs/outputs), see diagram in Sect. 8.7

Switch off power source before opening the housing!

- 1) Remove glass cover from control compartment (detach 4 screws).
- 2) Remove cover from terminal compartment (detach 2 screws).
- 3) In terminal compartment, pull off all plug-in terminals.
- 4) Detach 4 screws from the front panel **F** and carefully pull complete electronic unit out of the converter housing using the grip at the top of the front panel.
- 5) Place electronic unit down on front panel F.
- 6) Detach the two fastening screws SLP from the **I/O board** (inputs/outputs) and carefully pull the board out of the pin base, see figures in Sect. 8.7.
- On the printed side of the I/O board, transpose the two jumpers X3 and X6, in the same direction, to Position A (= active mode) or Position P (= passive mode).
- 8) Reassemble in reverse order, Points 6) 1).
- 9) Please note:

In the passive mode, load impedance monitoring under Fct. 1.04 DISPLAY and DISP. MESSAGES - yes is not possible.

6.9 Empty pipe detection EPD

The signal converter is equipped as standard with an EPD (Empty Pipe Detection) which only needs to be activated as and when required.

I o ensure proper functioning, the following requirements need to be me	To ensure proper fur	nctioning, the followi	ing requirements n	need to be met
---	----------------------	------------------------	--------------------	----------------

Type of signal cable	Electrical conductivity of process liquid	Nominal size of flow sensor	Max. length of signal cable
A = Type DS	> 200 µS/cm	≥ DN 25 / ≥ 1"	< 20 m / 65 ft
B = Type BTS	> 50 µS/cm	≥ DN 25 / ≥ 1"	< 20 m / 65 ft

Settings for empty pipe detection (EPD)

• Fct. 3.06 APPLICATION • EMPTY PIPE • YES (switched on) • NO (switched off)

The calibration mode must be run through during initial start-up!

- If YES selected, the impedances for EMPTY and FULL PIPE need to be determined.
- Select subfunction VALUE FULL and CALIB. YES (determine impedance for "full pipe") WAIT (approx. 20 s)
- Select subfunction VALUE EMPTY and CALIB. YES (determine impedance for "empty pipe") WAIT (approx. 20 s)
- Store values after completion of calibration for "Full" and "Empty" values; quit operator control after the second calibration.

When the electrodes are not wetted (= empty pipe), typically a response time of approx. 20 seconds is required before "empty pipe" is indicated. In this time undefined display values and output signals are possible.

Functional description

A high-resistance AC voltage is applied to the electrodes. The process liquid in the measuring tube forms a voltage divider together with the internal resistance of the circuit. The voltage ratio is measured and weighted (see figure on right). Impedance and length of electrode cable will also affect the result.

The result is a numerical value proportional to the impedance at the input. The switching point of the Empty Pipe Detector is defined when the system is calibrated for "full pipe" and "empty pipe" (at approx. 2/3 of the range between the two calibration points). In order to function properly there must be a difference of at least "10" between the two calibration points. In operation, the display indicates in the range between 0 and 150 (non-dimensional). The value for "FULL PIPE" must be lower than that for "EMPTY PIPE".

6.10 Stable signal outputs with empty measuring tube

⟨£x⟩

Prerequisite:

- Important, please note!
 - Observe the directions and regulations and the electrical data specified in the **EC type test certificate**.
- In addition to the regulations for heavy-current installations (VDE 0100), pay particular attention to the requirements specified in **EN 60079-14** "**Electrical equipment in hazardous areas**".
- Assembly, installation, commissioning and maintenance work may only be carried out by "personnel trained in explosion protection"!

Output signals can be stabilized to values as for "zero" flow to prevent undefined output signals when the measuring tube is empty.

 Display 	0
 Current output 	0 or 4 mA, see setting in Fct. 1.05
 Pulse output P 	no pulses (= 0 Hz), see setting in Fct. 1.06
 2nd pulse output A1 	no pulses (= 0 Hz), see setting in Fct. 1.07

- electrical conductivity of process liquid $\ge 200 \text{ mS/cm}$, $\ge 500 \text{ mS/cm}$ for sizes DN 2.5 - 15 and $^{1}/_{10}$ " - $^{1}/_{2}$ ".
- Signal cable length \leq 20 / \leq 65 ft and vibration free with signal converter.

LA / S2 Empty Tube stabilization	LA / S4 electrode cleaning	
steady display at "0" flow	and Empty Tube stabilization	
LA / S2 should be used when problems are	LA / S4 prevents any deposits of high-	
encountered with EPD or the limits of the	resistance layers on the electrodes (e.g. fat	
application are exceeded.	from very creamy milk) and effects stabilization	
At "0" flow, the electrodes are connected to 0 V	similar to the LA / S2.	
(chassis) via high-resistance resistors.	For this purpose, the electrodes are connected	
	to -12 v via high-resistance resistors.	
To join the "semicircles" of the three soldering	To join the "semicircles" of the three soldering	
points 51, 52 and 54, see under Point 8.	points 51, 53 and 54, see under "Point 8".	
Possibly reset low-flow cutoff (SMU),	Possibly reset low-flow cutoff (SMU),	

Please note!

Only use the two functions, if **Empty Pipe Detection (EPD)** is switched off, see Sect. 6.9 and in Fct. 3.06 Application \rightarrow EMPTY PIPE.

Changes on A/D converter PCB, see illustration in Section 8.7

Switch off the power supply before opening the housing !

- 1) Remove the glass cover from the control compartment (remove 4 screws).
- 2) Remove the cover from the terminal compartment (remove 2 screws).
- 3) Pull all plug-in terminals out of the sockets inside the terminal compartment.
- **4)** Remove 4 screws from the front panel, take hold of the handle on the upper end of the front panel and carefully pull the complete electronic unit out of the signal converter housing.
- 5) Put down the electronic unit with the front panel **F** facing down.
- 6) Unscrew the two S_{LP} screws from the printed circuit boards FSV (field current supply) and ADC (analog/digital converter) and carefully pull both PCBs out of their plug bases (see illustration in Section 8.7).
- 7) Loosen the common plug-and-socket connection.
- 8) The circuit side of the ADC circuit board has 4 soldering points S1-S4 (two semicircles, each - see illustration in Section 8.7). Carefully scratch the protective lacquer off the soldering points which are used. Do not remove the protective lacquer from soldering point S3. Do not damage the conductive tracks.
- 9) Connect the semicircles of soldering points which are used with tin solder.
- 10) Re-assemble in reverse order (items 7 to 2).
- For LA / S2 (empty tube stabilization) and LA / S4 (electrode cleaning and empty tube stabilization), check the setting of the low-flow cutoff SMU, Fct. 1.03, and reset if necessary:

L.F.Cutoff switched on, range:	Full scale r	ange Q _{100%}	Cutoff values	
			OFF	ON
	> 3 m/s	> 10 ft/s	> 2%	1 %
	1 – 3 m/s	3 -10 ft/s	> 6%	4 %
	< 1 m/s	< 3 ft/s	> 10 %	8 %

7 Functional checks

7.1 Checking the zero with IFC 110 F signal converter, Fct. 3.03

- Set "zero" flow in the pipeline. Make sure that the measuring tube is completely filled with liquid.
- Switch on the system and wait 15 minutes.
- Press the following keys for zero measurement:

Key	Display		Description
\rightarrow			If "YES" is selected in Fct. 3.04 ENTRY CODE,
			key in 9-stroke CODE 1 now: $\rightarrow \rightarrow \rightarrow \rightarrow \downarrow \downarrow \uparrow \uparrow \uparrow$
	Fct. 1.00	OPERATION	
2x ↑	Fct. 3.00	INSTALL.	
\rightarrow	Fct. 3.01	LANGUAGE	
2x ↑	Fct. 3.03	ZERO SET	
\rightarrow		CALIB. NO	
↑		CALIB. YES	
۲	0.00	/	Flow rate displayed in set unit, see Fct. 1.04 DISPLAY, subfunction "DISP. FLOW". Zero is measured, duration approx. 15-90 s. "WARNING" is displayed when flow in "" acknowledge by pressing. Likey
		STORE NO	If new value is not to be stored, press , key (3 times)
			4 times = return to measuring mode
Ť		STORE YES	
+J	Fct. 3.03	ZERO SET	Store new zero value
(2x) 3x .⊣		/	Measuring mode with new zero

7.2 Checking the measuring range Q, Fct. 2.01

- For this test a measuring value can be simulated in the range of -110 to +110 percent of Q_{100%} (set full-scale range, see Fct. 1.01 FULL SCALE).
- Switch on the system.
- Press the following keys for checking the measuring range:

Key	Display		Description		
\rightarrow			If "YES" is selected in Fct. 3.04 ENTRY CODE,		
			key in 9-stroke CODE 1 now: $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \uparrow \uparrow \uparrow \uparrow$		
	Fct. 1.00	OPERATION			
↑	Fct. 2.00	TEST			
\rightarrow	Fct. 2.01	TEST Q			
\rightarrow		SURE NO			
\uparrow		SURE YES			
ᅱ	0	PCT.	Current, pulse and status outputs indicate corresponding values.		
	± 10	PCT.			
\uparrow	± 50	PCT.	Select with ↑ key		
	± 100	PCT.			
	± 110	PCT.			
-J	Fct. 2.01	TEST Q	End of test, actual measured values again available at outputs		
(2x) 3x .J		/	Measuring mode		

7.3 Hardware information and error status, Fct. 2.02

- Before consulting the factory about errors or flow measurement problems, please invoke Fct. 2.02 HARDW. INFO (hardware information).
- An 8-character and a 10-character status code are stored under this function in each of 3 "windows". These 6 status codes allow your compact flowmeter to be subjected to a simple and rapid diagnosis.
- Switch on the system.
- Press the following keys for a display of the status codes:

Key	Display		Description		
\rightarrow			If "YES" is selected in Fct. 3.04 ENTRY CODE,		
			key in 9-stroke	CODE 1 now: $\rightarrow \rightarrow \rightarrow$	
	Fct. 1.00	OPERATION	-		
\uparrow	Fct. 2.00	TEST			
\rightarrow	Fct. 2.01	TEST Q			
\uparrow	Fct. 2.02	HARDW. INFO			
\rightarrow	\rightarrow MODUL ADC	-,,	1st window		
				Example for status code	
لہ	\rightarrow MODUL I/O	-,,	2nd window	3.25105.02 (8-character code, 1st line)	
				3A47F01DB1 (10-character code, 2nd line)	
لہ	\rightarrow MODUL DISP.		3rd window		
PLEASE NOTE DOWN ALL 6 STATUS CODES !					
Ļ	Fct. 2.02 HARDW. INFO		Terminate hard	ware information	
(2x) 3x .⊣		/	Measuring mod	le	

7.4 Hardware test, Fct. 2.03

Please note:

Before beginning the test, deactivate any alarms and controllers as the current output will be tested with three values 4, 4.7 and 23 mA for a short period.

Key	Display		Description		
\rightarrow			If "YES" is selected in Fct. 3.04 ENTRY CODE,		
			key in 9-stroke CODE 1 now: $\rightarrow \rightarrow \rightarrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$		
	Fct. 1.00	OPERATION			
\uparrow	Fct. 2.00	TEST			
\rightarrow	Fct. 2.01	TEST Q			
2 x ↑	Fct. 2.03	HARDW. TEST	Hardware test		
\rightarrow		SURE NO			
\uparrow		SURE YES			
1		WAIT	Hardware test in progress, duration approx. 60 seconds		
			1st error List of errors see Sect. 4.5. Errors are		
↑			2nd error always displayed independent of setting in		
1			3rd error Fct. 1.04. If no error is detected, refer to next line.		
4	Fct. 2.03	HARDW. TEST	Terminate hardware test		
(2x) 3x ₊J		/	Measuring mode		

If you need to return your flowmeter to KROHNE, please refer to the last-but-one page of these instructions.

7.5 Faults and symptoms during start-up and flow measurement

- Most faults and symptoms occurring with the flowmeters can be eliminated by following the instructions indicated in the following tables.
- For greater clarity, faults and symptoms in the tables are divided into different groups.
- LED light-emitting diodes on the front panel (status messages)
 - D display
 - I current output I
 - P pulse outputs P and A1
 - **S** status outputs D1, D2, A1 and A2
 - **C** control inputs C1 and C2

Before contacting the KROHNE Service Department, please read the instructions in the table. THANK YOU.

Group LED	Display	Cause	Remedial action
LED 1	Both LEDs flash	A/D converter range exceeded	Reduce flow rate; if unsuccessful, test as described in Section 7.6
		Measuring tube drained,- A/D conv. range exceeded	Fill measuring tube
LED 2	Red LED flashes	Fatal error, hardware and/or software fault	Replace signal converter, see Section 8.3
LED 3	Cyclic flashing of red LED, approx. 1 sec.	Hardware fault, watchdog trips	Replace signal converter, see Section 8.3
LED 4	Red LED on continuously	Hardware fault	Replace signal converter, see Section 8.3

Group D	Display	Cause	Remedial action
D 1	LINE INT.	Power failure <u>Note:</u> no counting during power failure	Delete error message in RESET/QUIT. menu, reset totalizer if necessary.
D 2	OVERFL. I	Current output range exceeded	Check instrument parameters and correct if necessary. Error message is deleted automati- cally after cause has been eliminated.
D 3	OVERFL. P	Pulse output range exceeded <u>Note:</u> totalizer deviation is possible	Check instrument parameters and correct if necessary. Reset totalizer. Error message is dele- ted automatically after cause has been eliminated.
D 4	ADW	A/D converter range exceeded	Error message is deleted automatically after cause has been eliminated.
D 5	FATAL.ERROR	Fatal Error, all outputs are set to "min" values	Replace signal converter, see Sect. 8.3 or consult KROHNE Service, having first noted down hardware information and error status, see Sect. 7.3, Fct. 2.02.
D 6	TOTALIZER	Counts lost (overflow, data error)	Delete error message in RESET/QUIT. menu.
D 7	ISHORT	Short circuit at current output	Check electrical connection acc. to Sect. 2.2 and correct if necessary. Load \geq 15 Ω !
D 8	I OPEN	Open current output	Provide load \leq 500 Ω !
D 9	ADC PARAM.	Fault detected on the	Check measuring accuracy.
D 10	ADC HARDW.	ADC printed circuit	Replace ADC printed circuit
D 11	ADC GAIN		board (see Sect. 8.4) or con- sult KROHNE Service, having first noted down hardware information and error status, see Sect. 7.3, Fct. 2.02
D 12	STARTUP, cyclic flashing	Hardware fault, watchdog trips	Replace signal converter (see Sect. 8.3) or consult KROHNE Service, having first noted down hardware information and error status, see Sect. 7.3, Fct. 2.02.
D 13	BUSY	Displays for flow, totalizers and messages disabled	Change setting in Fct. 1.4
D 14	Unsteady display	Low electrical conductivity, high solids content, pulsating flow	Increase time constant in Fct. 1.2, refer to Sect. 6.5 and 6.7.
D 15	No display	Power supply OFF	Switch on power supply.
		Check power supply fuse F5 (F6 for DC versions) in terminal compartment	Replace if blown,

Group I	Faults / Symptoms		Cause	Remedial action
11	Receiver instrument indicates "0" Invoke test function 2.03 for analysis see Sect 7.4	3	Display shows	
	(this check is only usefully			Eliminate short circuit
	if current output is operation	, na in	Current output shorted	Emininate short circuit,
	active mode, see Sect. 6.8!)			Load must be ≥ 15.52 !
				Find interruption and eliminate
			1 ord resistance > 500 O	i ind interruption and eliminate.
			No information displayed	
			after test	
			as described fo	r faults I 2 and I 9
12	Receiver instrument indicates "0".		Wrong connection/polarity	Connect properly, see Sect. 2.2 and 2.6.
		active mode	Circuit and/or receiver instruments defective	Check circuit and receiver instrument at I_s / I and replace if necessary. Check position of jumper X3 + X6 for active mode, see Sect. 6.8 and check fuse F9 on I/O PCB and replace if necessary, see Sect. 8.4 and 8.7.
			Receiver instruments and/or exernal voltage source defective	Check connections, receiver instruments and external voltage source and replace if necessary.
		passive mode	Internal power supply (E+E-) is voltage source, shorted or defective current output	Check connections and cables, see Sect. 2.3 and 2.6. Voltage between E+and E- approx. 24 V. If voltage is a lot smaller, switch off the instru- ment, eliminate the short circuit, check position of jumper X3 + X6 for passive mode, (see Sect. 6.8) and replace fuses F1 and F8 on the I/O PCB if necessary. Switch the instrument back on. If it still does not operate, current output is defective. Replace I/O PCB or complete electronic unit, see Sect. 8.3 and/or 8.4.
			Defective current output	Replace I/O PCB (see Sect. 8.4) or consult KROHNE Service, having first noted down hard- ware information and error status, see Sect. 7.3, Fct. 2.02.
			Wrong flow direction setting	Set properly in Fct. 3.1.
			Current output switched off	Switch on in Ect. 1.5
Group I	Faults / Symptoms	Cause	Remedial action	
---------	---	--	--	
13	22 mA are available at current output (fault current)	Range of current output I is exceeded	Check instrument parameters and correct if necessary (see Sect. 2.2 and 5.7) or con- sult KROHNE Service, having first noted down hardware information and error status, see Sect. 7.3, Fct. 2.02.	
14	22 mA are available at current output (fault current) and red LED flashes	Fatal Error	Replace signal converter or consult KROHNE Service, having first noted down hard- ware information and error status, see Sect. 7.3, Fct. 2.02	
15	Unsteady display	Electric conductivity of process liquid too low	Increase time constant (see Sect. 5.2, Fct. 1.2). Also refer to Sect. 6.7.	
16	Receiver instruments indicate "constant value"	Control input C1 or C2 is set to "Hold outputs" and is activated	Change setting (see Sect. 5.10, Fct. 1.11 and 1.12), or deactivate control input.	
17	Jumping current values	Current output is set to automatic range change	Change hysteresis or tripping ranges, see Sect. 5.20.	
18	F/R-Mode: different displays for identical flow volumes in both directions	Different ranges set for "forward flow" and "reverse flow"	Change setting, see Sect. 5.15, Fct. 1.05 "Rev. range".	
19	Receiver instruments indicate "min. values"	Control input C1 or C2 is set to "Zero outputs" or "Hold outputs" and is activated	Change setting (see Sect. 5.10, Fct. 1.11 and 1.12) or deactivate control input.	

Group P	Faults / Symptoms	Cause	Remedial action
Р 1	Totalizer connected but does not count pulses	Wrong connection/polarity	Connect properly, see Sect. 2.3 and 2.6, note recommended resistances !
		Totalizer or exernal voltage source defective	Check connections, totalizer and external voltage source and replace if necessary.
		Internal power supply (E+E-) is voltage source, shorted or defective pulse output	Check connections and cables, see Sect. 2.3 and 2.6. Voltage between E+and E- approx. 24 V. If voltage is a lot smaller, switch off the instru- ment, eliminate the short circuit and replace fuses F1 and F8 on the I/O PCB if necessary. Switch the instrument back on. If it still does not operate, pulse output is defective. Replace I/O PCB or complete electronic unit, see Sect. 8.3 and/or 8.4.
		Pulse output switched off or wrong flow direction setting	Switch on pulse output and change flow, see Sect. 5.8 and 5.13, Fct. 1.06 (P), 1.07 (A1) and 3.02.
		Fatal Error, red LED is on	Replace signal converter or consult KROHNE Service, having first noted down hardware information and error status, see Sect. 7.3, Fct. 2.02.
		Control input C1 or C2 is set to "Zero outputs" and is activated	Change settings, see Sect. 5.10, Fct. 1.11 and 1.12 or deactivate control input.
	These causes only apply	Terminals A1 and A [^] are not defined as a 2nd pulse output	Switch on in Fct. 3.07 and set in Fct. 1.07.
	to the 2nd pulse output P2, terminal A1 !	Resistance of totalizer too low for DC operation, I > 100 mA	Re-position jumper X4 on I/O PCB to suit DC operation, see Sect. 6.3.
P 2	Constant output of totalizer pulses	Control input C1 or C2 is set to "Hold outputs" and is activated	Change setting, see Sect. 5.10, Fct. 1.11 and 1.12 or deactivate control input.
Р3	Unsteady pulse rate	Electrical conductivity of process liquid is too low	Increase time constant (see Sect. 6.5-6.8) or consult KROHNE Service.
P 4	Pulse rate too high or too low	Incorrect pulse output settings	Correct settings in Fct. 1.06 (P) or 1.07 (A1).

Group S	Faults / Symptoms	Cause	Remedial action
S 1 (A1, A2, D1, D2)	No reaction from connected signalling instrument(s)	Defective signalling instrument(s) or external voltage source	Check signalling instrument(s) or external voltage source and replace if necessary.
		Internal power supply (E+/E-) is voltage source: shorted, one or several pulse outputs defective	Check connections and cables, change if necessary (see Sect. 2.6). Voltage between E+ and E- approx. 24 V. Check fuse F8 on the I/O PCB and replace if necessary (see Sect. 8.7). If instrument still does not operate, check fuses F on the I/O PCB for the status outputs and replace if necessary: F2 for terminals A1 and A⊥ F3 for terminals A2 and A⊥ F4 for terminals D1 and D⊥ F5 for terminals D2 and D⊥. If it still does not operate, one or several pulse outputs are defective. Replace I/O PCB, see Sect. 8.4.
		Control inputs C1 and C2 are set to "Hold outputs" or to "0"	Change setting, see Sect. 4.4 and 5.10, Fct. 1.11 and 1.12
		LED flashes = Fatal Error	see Sect. 8.3.
S 2 (A1, A2, D1, D2)	Signalling instrument(s) is(are) constantly tripped	"All Error" or "Fatal Error" settings	Check settings in Fct. 1.07-1.10 and change if necessary, see Sect. 4.4 and 5.9.
S 3	No reaction of connected	Terminal "A1" not defined as	Adjust in Fct. 3.07.
(only for A1)	signalling instrument	status output Wrong connection/polarity	Observe polarity for driver capacity $0.1 < I \le 0.2 A$ see Sect. 6.3. $A1 = "+"$ and $A \perp = "-"$
S 4 (only for A1)	Cyclic tripping of signalling instrument	Terminal "A1" not defined as status output	Adjust in Fct. 3.07.

Group C	Faults / Symptoms	Cause	Remedial action
C 1	No function of control inputs	Wrong connection	Connect properly, see Sect. 2.5 and 2.6.
		Defective control input C or voltage source (internal or external)	Check connections and cables and change or replace if necessary. Check voltage source. Check fuses F6 and F7 on I/O PCB and replace if necessary.
		Wrong setting of control inputs	Change, see Sect. 4.4 and 5.10.

7.6 Checking the flow sensor

Always switch off the power supply before opening the housing.

Required measuring instruments and tools

- Ohmmeter with at least 6 V measuring voltage range
- or AC voltage/resistance bridge
- Note: accurate measurements in the electrode area can only be obtained with an AC voltage/resistance bridge. The measured resistance also heavily depends on the electrical conductivity of the process liquid.

Preparations

- Switch off the power supply.
- Remove the cover from the terminal compartment (remove 2 screws).
- Pull out the two plug-in terminals SC (5-pin, signal line) and FP (4-pin, field current supply line), see illustration in Section 8.1.
- Fill the measuring tube of the flowmeter completely with process liquid.
- **Please note:** the following measurements must only be carried out for plug-in terminals which are occupied (used).

Action Resistance measurements at plug-in terminals SC (5-pin, signal line) and FP (4-pin, field current supply line)		Typical result	Incorrect result for 1–3 = defective flow sensor, return to factory for repair, refer to last-but-one page !
	7 and 8	30 - 170 22	<u>In tower</u> , interwinding fault. <u>If higher</u> , wire break.
2	Measure resistance between wires 1 and 7 or between wires 1 and 8	> 20 MΩ	If lower, interwinding fault to PE or FE.
3	Measure resistance between wires 1 and 2 and between 1 and 3 (same measuring conductor always on wire 1 !)	1 kΩ – 1 MΩ (see " Note " above) Both values should be approx. equal	If lower, drain measuring tube and repeat measurement; if still too low, short-circuit in electrode wires. If higher, break in electrode wires or electrodes contaminated. If values differ considerably, break in electrode wires or electrodes contaminated.
4	When signal line B (type BTS/ bootstrap) is used: measure resistance between the following lines: 1 and 20 / 1 and 30 / 20 and 30 2 and 20 / 3 and 30	> 20 MΩ	If lower, line fault. Check connection cables, replace signal line if necessary.

7.7 Checking the signal converter using a GS 8 A simulator (optional)

GS 8 A operating elements and accessories

Connection of GS 8 A to signal converter

20 7 10 2 7 11 12 1 8 a 3 3 1 2 0 8 7 10 30 z 100-230 V AC: L (PE) N H1 24 V AC / DC; 0L= 1L≂ (FE)

Switch off the power supply before starting work.

- 1) Remove the cover from the terminal compartment of the signal converter.
- 2) Disconnect all flow sensor cables from terminals 1, 2, 3, 7, 8, 20 and 30, having first noted down which cable is connected to which terminal.
- 3) Connect the GS 8 A to the signal converter as shown above.
- 4) Slip plug H1 of cable Z into socket H on the front panel of the GS 8 A.
- 5) Connect the mA meter to terminals Is/I: accuracy class 0.1

range 0 / 4 - 20 mA

6) Connect the electronic totalizer to terminals **P** / **P**: range 0 - 10 kHz

time basis at least 1 s

D

н

L

Р

Υ

Ζ

switch, flow direction

of cable Z

H1 plug of cable Z

switch.

socket for plug H1

power supply ON

measuring ranges

potentiometer "zero"

cable between GS 8 A

For **further details** on the totalizer and its connection for active or passive modes of operation please refer to the connection diagrams **in Section 2.6**.

- 7) Test as described on the following two pages.
- 8) When the test is completed, disconnect the GS 8 A and re-connect the flow sensor and receiver instruments (items 4 to 1 above).

PLEASE NOTE

that an adapter is needed to connect the GS 8 simulator to the signal converter (adapter Order No. 210764.00)

Checking the setpoint reading

- 1) Switch on the power supply and allow at least 15 minutes for "warming up".
- 2) Turn switch **D** (GS 8 A front panel) to "0".
- Adjust zero to 0 or 4 mA with the 10-turn potentiometer P (GS 8 A front panel), depending on the setting in Fct. 1.05, deviation <± 10 μA.
- 4) Calculate the position of switch **Y** and displayed setpoints "I" and "f".

4.1)
$$X = \frac{Q_{100\%} \times K}{GK \times DN^2}$$

Q_{100%} full-scale range (100%) in unit volume **V** per unit time **t**

- GK flow sensor constant, see instrument nameplate
- DN meter size DN in mm, not inches, see instrument nameplate
- t time in seconds (sec.), minutes (min.) or hours (h)
- V unit volume
- K constant according to the following table

t	Sec	min	h
v			
liters	25 464	424.4	7.074
m³	25 464 800	424 413	7 074
US Gallons	96 396	1 607	26.78

4.2) Determine position of switch Y: use table (GS 8 A front panel) to determine value Y which comes closest to factor X and meets condition $Y \le X$.

4.3) Calculate setpoint reading "I" for current output:
$$I = I_{0\%} + \frac{Y}{V}$$

/ ; (I_{100%} - I_{0%}) in mA

 $I_{0\%}$ current (0/4mA) at 0% flow rate $I_{100\%}$ current (20mA) at 100% flow rate

4.4) <u>Calculate setpoint reading "f" for pulse output:</u> $f = \frac{Y}{X} \times P_{100\%}$ in Hz

P_{100%} pulses per second (Hz) at 100% flow rate

- 5) Turn switch **D** (GS 8 A front panel) to "+" or "-" (forward/reverse flow).
- 6) Set switch **Y** (GS 8 A front panel) to the value determined as described above.
- 7) Check setpoint readings I and f, see items 4.3 and 4.4 above.
- 8) Deviation < 1.5 % of setpoint. If higher, replace signal converter, see Section 8.7.
- 9) Linearity test: set lower Y values, readings will drop in proportion to the calculated values for Y.
- 10) **Switch off power supply** after completing the test.
- 11) Disconnect the GS 8 A.
- 12) Re-assemble in reverse order (items 2 to 1 "in connection of GS 8A"). See also illustration in Section 8.1 and 8.7.
- 13) The system is ready for operation after the power supply is switched on again.

Example: see next page.

Example

Full-scale rang Meter size	ge		Q _{100%} DN	= 200 m³/h (Fct. 1.01) = 80 mm = 3 inch (Fct. 3.02)
Current at	Q _{0%} Q _{100%}		I _{0%} I _{100%}	= 4 mA = 20 mA } (Fct. 1.05)
Pulses at	Q _{100%}		P _{100%}	= 200 pulses/h (Fct. 1.06)
Flow sensor c	onstar	nt	GK	= 3.571 (see instrument nameplate)
Constant	(V (t	in m ³) in h)	к	= 7074 (see table)
	(DN	in mm)		

Calculation of "X" and setting of "Y"

 $X = \frac{Q_{100\%} \times K}{GK \times DN^2} = \frac{200 \times 7074}{3.571 \times 80 \times 80} = 61.905$

Y = 80, setting of switch Y, see GS 8 A front panel (comes closest to the value of X and is smaller than X).

Calculation of setpoint readings I and f

$$I = I_{0\%} + \frac{Y}{X} (I_{100\%} - I_{0\%}) = 4 \text{ mA} + \frac{40}{61.905} (20\text{mA} - 4\text{mA}) = 14.3\text{mA}$$

Deviations are permissible between 14.1 and 14.6 mA (equivalent to ± 1.5 %).

$$f = \frac{Y}{X} x P_{100\%} = \frac{40}{61.905} x \text{ pulses / h} = 180.9 \text{ pulses/h}$$

Deviations are permissible between $\underline{178.2}$ and $\underline{183.6}$ pulses/h (equivalent to ± 1.5 %).

If you need to return your flowmeter to KROHNE, please refer to the last-but-one page of these instructions.

8 Service

8.1 Replacing the power supply fuse

Switch off the power supply before opening the housing.

- 1) Remove the cover from the terminal compartment (remove 2 screws).
- 2) Unscrew the cap of the power supply fuse F.

3)	Replace fuse F5 or F6, type 5 x 20 G	(Order No. see Sect. 9).
	F5: value for 100-230 V AC	0.8 A T , breaking capacity 1500 A
	F6: value for 24 V AC / DC	1.6 A T, breaking capacity 150 A

- F5/F6 power supply fuses, values are indicated above
- **FP** plug-in terminal for field current supply line, 4-pin
- I/O plug-in terminal for outputs and inputs, 2x8-pin
- PE/FE U-clamp terminal for connecting protective conductor PE or functional grounding conductor FE
- **PS** plug-in terminal for power supply line, 3-pin
- **RS** plug-in terminal for interface(s)
- **S** U-clamp terminal for connecting the signal line shielding:
- signal line A: 2nd shield (7)
- signal line B: 3rd shield (11)
- SC plug-in terminal for electrode signal line, 5-pin
- S-EEx Same as "S", only available for hazardous duty version
- **W** internal connection, may not be removed.

8.2 Retrofitting of magnetic sensors MP (optional)

Switch off the power supply before opening the housing.

- 1) Remove the cover from the terminal compartment (remove 2 screws).
- 2) Pull all cables out of the plug-in terminals.
- 3) Remove the glass cover from the control compartment (remove 4 screws).
- 4) Remove 4 screws from the front panel F, take hold of the handle on the upper end of the front panel and carefully pull the complete electronic unit out of the signal converter housing.
- 5) Put down the electronic unit with the front panel F facing down (see illustration on the next but one page).
- 6) Position the 2 mm (0.08") thick insulating strip (Order No. 3 15940.01) loosely on top of the MP printed circuit board (PCB). The magnetic sensors and chip capacitor slip into the 4 holes in the insulating strip. Slip the MP PCB and insulating strip from right to left between the front panel and BDE PCB, taking care that the MP PCB and insulating strip are slipped through the three retaining clips H at the back of front panel F. Slip the socket connector of the MP PCB onto the (5-pin) plug connector PL_{MP}.
- 7) Fix the MP PCB with special steel tooth lock washer and nut S_{MP} to establish contact between the back of the PCB and the back of the front panel. When correctly fitted, the MP PCB must be slightly bent between the final retaining clip H and the plug connector PL_{MP}.
- 8) Re-assemble in reverse order (items 4 to 1 above).
- 9) Switch on the power supply. The "magnet active" LED on the front panel is green. The function of the corresponding keys is tripped by touching the glass pane above the 3 white fields "→, → and ↑" with the bar magnet. The LED lights up red, see Section 4.2, items ⑦ and ⑧.

8.3 Replacing the complete electronic unit of the IFC 110 F signal converter

Switch off the power supply before opening the housing.

- 1) Remove the cover from the terminal compartment (remove 2 screws).
- 2) Pull all cables out of the plug-in terminals.
- 3) Remove the glass cover from the control compartment (remove 4 screws).
- 4) Remove 4 screws from the front panel F, take hold of the handle on the upper end of the front panel and carefully pull the complete electronic unit out of the signal converter housing.
- 5) Carefully remove the **data EEPROM IC 14** (on ADC printed circuit board) from the old electronic unit and move it to the new electronic unit. Observe the direction of the IC when plugging the data EEPROM. After changing the EEPROM from the old to the new electronic unit, no further adjustments or settings are required. Refer to the drawing on the next page and to the illustrations of the printed circuit boards in Section 8.7.
- 6) Re-assemble in reverse order (items 4 1 above).

ADC BDE F F5	printed circuit board of A/D converter (ADC) motherboard front panel power supply fuse for 100 – 230 V AC,
F6	see Sect. 8.1 and 9 power supply fuse for 24 DC/AC, see Sect. 8.1 and 9
FSV H	printed circuit board for field current supply 3 retaining clips at the back of the front panel
IC 14	data EEPROM (8-pin)
I/O	printed circuit board for outputs and inputs
MP	printed circuit board for magnetic sensors (optional), see Sect. 6.2 and 8.2
NT	printed circuit board for power unit
OP	connection plug for additional modules
PL _{MP}	5-pin plug connector for connection of the printed circuit board MP for the magnetic sensors
S	7 nuts for fastening the electronic unit to front panel F
S _{LP} S _{MP}	screws for fastening the PCBs nut and special steel tooth lock washer for fixing the MP PCB for the magnetic sensors

8.4 Replacing single printed circuit boards (PCBs)

Switch off the power supply before opening the housing.

- 1) Remove the cover from the terminal compartment (remove 2 screws).
- 2) Pull all cables out of the plug-in terminals.
- 3) Remove the glass cover from the control compartment (remove 4 screws).
- 4) Remove 4 screws from the front panel **F**, take hold of the handle on the upper end of the front panel and carefully pull the complete electronic unit out of the signal converter housing.
- 5) Put down the electronic unit with the front panel **F** facing down.
- 6) Remove screw(s) **S**_{LP} from the PCB(s) to be replaced and carefully pull the PCB(s) out of the plug base(s). Fit new PCB(s), refer to the illustration in Sect. 8.3 (preceding page).
 - When **replacing** the PCBs **FSV** and/or **ADC**, always remove both PCBs together as they have a common plug-and-socket connector.
 - When **replacing** the **ADC** PCB, carefully move the data EEPROM **IC 14** from the old to the new PCB and observe the direction of the IC during plugging. After changing the EEPROM from the old to the new electronic unit, no further adjustments or settings are required. Refer to the illustration in Section 8.7.
- 7) Re-assemble in reverse order (items 6 1 above).

8.5 Replacing the flow sensor

Switch off the power supply before beginning work.

- 1) Before removing the "old" flow sensor please note down which cable is connected to which terminal.
- 2) Install the new flow sensor as described in the installation instructions supplied with the instrument.
- **3)** Electrically connect the flow sensor to the signal converter as described in these installation and operating instructions, see Sections 1.3.5 and 1.3.6.
- 4) During factory calibration, specific calibration data are determined for each flow sensor which are indicated on the instrument nameplate. These data include the primary constant GK and the magnetic field frequency which must be reset in Fct. 3.02 FLOW METER, subfunctions "GK VALUE" and "FIELD FREQ.", see Sections 4.4 and 5.13.
- 5) If the meter size of the flow sensor has changed, also reset the full-scale range Q_{100%} and the meter size in Fct. 3.02 FLOW METER, subfunctions "DIAMETER" and "FULL SCALE", see Sections 4.4 and 5.13.
- 6) Perform zero test as described in Section 7.1 after the signal converter is reset.
- 7) Reset the internal electronic totalizer of the signal converter as described in Sect. 4.6 if necessary.

8.6 IFC 110 F replacements for old KROHNE signal converters

The IFC 110 F can replace all older KROHNE signal converter versions:

TIV 60 F / T 900 F / SC 100 A/F / SC 100 AS/F

This also applies to systems up to the size of DN 3000 / 120" that are operated with a power driver. Such replacements are delivered together with any new wiring diagrams and additional instructions for installation and setting of the IFC 110 F. You are kindly requested to comply with these instructions.

8.7 Illustration printed circuit boards (PCBs)

110 - 230 AC	24 V DC / AC	Description
X2	X1	Plug-in terminal inside terminal compartment
X1	X2	Internal connection to mother board
F5	F6	Power supply fuse (typ, value and order No. see Sect. 9)
		Small fuses TR5 (values and order No. see Sect. 9)
F3	F5	5 V voltage
F4	F3	Field current supply
F7	F4	Current output and power for passive operation of outputs
F1	-	Coupling element

PCB 110 - 230 V AC

PCB 24 V DC / AC

Analog/digital converter PCB, (ADC)

- **X1** internal connection to motherboard
- X2 plug-in terminals in terminal compartment
- X4 multipoint connector
- IC 11 peripheral IC

incl. control program

- IC 12 microprocessor
- IC 14 data EEPROM D3 green LED on fro
 - green LED on front panel
- **D4** red LED on front panel
- **EPD** empty pipe detection

S1 solder bridges for steady output signals

S2 when measuring tube is empty,

S4 J see Sect. 6.8

Inputs/outputs PCB, I/O Jumper X3 + X6 Jumper X4 X3 + DC operation ≤ 0.2 A Œ active operation X6 + AC operation ≤ 0.1 A (factory setting) Ħ X3 + passive operation X6 + 0 X4 XЗ + + + IC 11 X6 Χ5 Small fuses TR 5, values and Order X1 plug-in terminals inside terminal compartment X2 internal connection to motherboard No. see Section 9 X4 Ρ jumper, change-over of AC/DC operation F1 of output A1, see Sect. 6.3 F2 A1

- Χ5 multipoint connector
- IC 11 control program EPROM
- IC 12 microprocessor
- X3/X6 jumper for active or passive operation of current output

Terrere and the

IC3

IC18

IC1

X1

Spare parts					Order No.
Electronic unit with display 100-230 V AC without magnetic					2135520100
		sensors			
	-	100-230	V AC with HART	/ RS 485	2135520300
		24 V AC	/ DC without mag	gnetic	2135520700
Dower ownely fuege		sensors			
(5 x 20 C fues brocking o	anagity 150	0 4)	EE. 100 220 \/ A	~ ^ ^ 	5090950000
$(5 \times 20 \text{ G fuse, breaking c})$	apacity 150		F5. 100-230 V AV	0.0AT	5110230100
Various small fuses TP5	apacity 150	A)	F0. 24 V AC/DC	1.0 A I	5119230100
 I/O PCB (inputs/out 	nute)		F2 F8	T 250 mA	5075640000
	.puts)		F1 F3_F7 F9	T 250 mA	507500000
	100 - 220				3073900000
• NTFCB	E2 E4	VAC		T 620 mA	509010000
(power unit)	гз, г4 Е7		гэ, гэ Ел	T 500 mA	5075860000
			Г4	T 500 mA	5075500000
nlug in terminala	2 nin nour	or our oby	-	1 50 MA	3073780000
plug-in terminals	3-pin powe	er supply	D insulta O		3101180100
(printed and coded)		uts D and	P, inputs C		3160220100
	8-pin outpi	uts A and	I, internal power s	supply E	3160230200
		current su	ирру		3160200100
	5-pin signa	ai line			3160210100
RS 232 adapter Incl. COI	NFIG opera	tor softw	are	•	1/ 005400404
(from version V 3.1 onward	ds)			German	V 035100131
for operator control of signal converter by MS-DOS PC or laptop English					V 035100132
Conversion kit MP for m	agnetic ser	ISOIS (COI	mplete retrofitting	kit)	V 150100004
Bar magnet for operating	the magnet	ic sensors	3		2070530000
Flow sensor simulator G	IS 8 A				2070680200
Adapter to make older ve	ersions of (GS 8 simi	ulators suitable fo	or use	
with IFC 110 F					2107640000
Glass cover for housing					2106730000
Sealing material for housing cover, by the metre					3137030000
ADC PCB (A/D converter)					VX 2134250100
I/O PCB (inputs/outputs)					VX 2115140100
FSV PCB (field current supply)					VX 2135520200
NT PCB (power unit) 100-230 V AC					2127970100
NT PCB (power unit) 24 V	AC / DC				2133330100
HART / RS 485 PCB					2134310100

Sect. 9

10 Technical data

10.1 Signal converter

Mode of operat	ion and system structure				
Measurement pr	inciple	Faraday's law of induction			
Modularity		Measuring system consisting of			
-		signal converter and flow sensor			
Measured variat	ble	Volumetric flowrate			
		(electrode voltage from flow sens	sor)		
Electrical conduct	ctivity of product	≥ 5 µS/cm			
	· · · ·	\geq 20 µS/cm for demineralized col	d water		
Versions					
IFC 110 F / D (s	tandard)	Display version, with local displa	y / control elements (15 keys)		
IFC 110 F / D / N	IP (option)	same as display version, addition	ally with magnetic sensors (MP) to control		
		the signal converter using bar ma	agnet without opening the housing		
IFC 110 F / D / N	/IP / _ EEx (option)	ATEX-EEx version for hazardous	areas, PTB 02 ATEX 2163 X		
Interfaces	,	– HART [®] 1	and a second data		
		– RS 485 / PROFIBUS 🥇 🤅			
Add-on equipme	ent	 CONFIG software and adapter 	r for operator control via MS-DOS-PC,		
		connection to internal IMoCom	n interface (equipment bus)		
Full-scale range	e				
Flowrate for Q =	100%	6 Liter/h to 86 860 m³/h or 0.03 to	o 401 080 US Gal/min,		
		corresponding to flow velocity v =	= 0.3 – 12 m/s or v = 1 to 40 ft/s		
Units		m³/h, liter/s, US Gal/min or user-o	defined unit, e. g. liter/day or US Gal/day		
Input / output c	ircuits				
Nominal voltage	S	$\leq 25 \text{ V AC} / \leq 50 \text{ V DC}$ (safety)	value Um = 253 V)		
Active / passive/	mode	connection to protective extra-lov	v voltage (PELV)		
Current output		all an analism data and Co			
Function		 all operating data configurable achievenically isolated from all isolated 	nut and output aircuite		
Current	fixed represe	- gaivanically isolated from all in	iput and output circuits		
Current:	lixed ranges	v = 20 mA and 4 = 20 mA	16		
	variable ranges	$I_{00} = 0\%$ $I_{0\%} = 0-1$	adjustable in 1mA increments		
		for $Q = 100\%$ $I_{100\%} = 4 - 20$ mA J			
Load	- active operation	$\min 450$			
LUAU					
	- passive operation	$22 \text{ V DC} \ge \text{U} \ge 32 \text{ V DC}$: $R_{L} \le 800$	0.22		
Error identifiesti		15 V DC \leq U \leq 22 V DC: R _L \leq 500 Ω			
	Ju flow mooouromont	U / 22 MA and Variable			
Pulso cutroute (
Function	passive)	F for electropic totalizors	for electromechanical totalizers		
FUNCTION		- IUI Electronic totalizers	- IOI Electromechanical totalizers		
Terminale					
Dulso rato			$\Lambda \cup \Lambda \perp$		
r uise i dle		v = 10000 puises per s [= Hz] min h m ³ liter etc	u – Ju puises pei s [= Hz] min h m³ liter etc		
		any scaling	any scaling		
Electrical data		alvanically isolated	alvanically isolated but not from $\Delta 2$		
		$ < 32 \vee DC / < 24 \vee \Delta C$	II < 32 V DC / < 24 V AC		
		$0 \ge 02 \vee D0 / \ge 24 \vee A0$	$0 \ge 02 \vee D07 \ge 24 \vee A0$		
		$1 \ge 50$ mA, any polarity	$r \ge 100$ mA, any polarity or $11 < 32$ V DC $1 < 200$ mA		
			or $0 \ge 32$ V DC, $1 \ge 200$ IIIA		
Pulse width		automatic: pulse duty cycle 1:1 r	$\frac{1000}{10000000000000000000000000000000$		
		automatic. pulse duty cycle 1.1, 1	11ax. 10 000 puises/s - 10 km2		
		variable: 10 ms – 1 s, $P_{100\%}$ [pulses/s] = f_{max} [Hz] = $\frac{1}{2 \text{ x pulse width}}$			
		digital pulse division, interpulse period non-uniform, therefore if frequency and cycle meters connected allow for minimum counting interval:			
		gate time, totalizer $\geq \frac{1000}{P_{100\%}}$ [H	z		
Forward/reverse	flow measurement	direction identified via status output			

Status outputs (passive)	D1 / D2 / A2	A1 (can also be operated as pulse output)			
Function, set for	trip point	trip point			
	flow direction	flow direction			
	automatic range change	automatic range change			
	error identification	error identification			
	overdriving	overdriving			
	empty pipeline	empty nineline			
Terminele					
reminals	D1 / D2 / D \perp / A2 / A \perp	A1 / A⊥			
	Please note: D 1 com	mon reference potential for D1 and D2			
		mon reference notential for A1 and A2			
		non reference potentiar for A r and Az			
Electrical data	galvanically isolated	galvanically isolated, but not from A2			
	$U \le 32 V DC / \le 24 V AC$	$U \le 32 V DC / \le 24 V AC$			
	l < 100 mA any polarity	l < 100 mA any polarity			
		or $0 \le 32$ v DC, $1 \le 200$ mA, note polarity			
Control inputs C1 and C2 (passive)					
Function set for	automatic range change to	otalizer reset error reset start self-test			
	ent outpute to min values	or hold last measured values of outputs			
Terminele	Set outputs to min. values				
reminals	$C1/C \perp$ and $C2/C \perp$, ga	aivanically isolated			
	Please note: C 1 commo	n reference potential for C1 and C2			
	I = 8 - 32 V DC I < 10 m/s	A any polarity			
Internal newer cupris		s, any polarity			
internal power supply	ior passive outputs and inp	buts and external receiver instruments			
Ierminals	⊢ + and ⊢ −, please note p	olarity, galvanically isolated			
Electrical data	U = 24 V DC / Ri = approx	x. 15 Ohm / I ≤ 100 mA			
Time constant	0.2 - 99.9 s adjustable in	increments of 0.1 second			
Lew flew exteff					
LOW-IIOW CUTOTT	cuton on value: 1 – 19 %	of Q _{100%} , adjustable in 1% increments			
	<u>cutoff "off" value: 2 – 20 %</u>	b J			
Local display and operation	3-line back-lit LCD				
Display function	actual flowrate forward re	verse sum totalizers (7 digits)			
Bioplay failedon	ar 25 obstrator har graph	with persent dianlay and status massages			
	or 25-character bar graph	with percent display and status messages			
Units: actual flowrate	m ⁻ /h, liter/s., US gallons/m	in or user-defined unit, e. g. hecto liter/h			
totalizer	m ³ , liter, or US gallons or u	ser-defined unit (adjustable counting time till overflow)			
Language of plain texts	English German French Swedish others on request				
Display: 1st line	8-character 7-segment numerical and sign display				
Display. Ist IIIC	o-onaraoter, 7-seyment, numencar anu sign uispiay,				
	and symbols for key acknowledgement				
2nd line	10-character, 14-segment,	text display			
3rd line	6 markers to identify display in measuring mode				
Operation elements	15 keys or as option with 3 additionally magnetic sensors for operation without				
Operation elements	To keys of as option with 5	additionally magnetic sensors for operation without			
	opening the nousing				
Electrode circuit					
Type of protection	intrinsic safety [EEx ib IIC]]			
Max. values (cumulative)	$U_0 = 18 V / I_0 = 40 mA /$	$P_0 = 80 \text{ mW}$			
Kinked characteristic	capacitance C < 225 pE	/ inductance l < 5 mH			
	capacitative $C_0 \ge 223$ IF				
Field power supply					
Туре	pulsed bipolar DC field for	all KROHNE primary heads,			
	galvanically isolated from a	all input and output circuits			
Terminals	2 x 7 and 8				
Current / voltage					
Current / voltage	\pm 0.125 A (\pm 5%) / U _N \leq 40	v DC (irequency controllea)			
Clock frequency	1/36 to 1/2 of power frequence	Σy,			
	configurable to the calibrat	ion data of the primary head			
Internal fuse protection	$l_{\rm M} < 160 {\rm mA}$, ,			
Deman anna ha					
Power supply	AC version	AC / DC Version (switch-selectable)			
	standard	option, in preparation			
Voltage range (without change over)	100 – 230 V AC	24 V AC 24 V DC			
Tolerance band	85 - 255 VAC				
Safety value	$U_{\rm m} = 253 \text{ V}$	$U_{\rm m} = 253 \text{ V}$ $U_{\rm m} = 253 \text{ V}$			
Frequency	48 – 63 Hz	48 – 63 Hz –			
Power consumption (incl. primary head)	18 VA, typical (max. 25 VA)	18 VA, typical (max. 25 VA) 18 W, typical (max. 18 W)			
	When connected to a functional e	xtra-low voltage, 24 V AC / DC, protective separation (PELV) must be			
	ensured (VDE 0100 / VDE 0106 a	and IEC 364 / IEC 536 or equivalent national standards).			
Approvals and housing	,				
Material of field housing	die oast aluminium with so	luurethane finish			
waterial of field housing	uie-cast aluminium with po				
Ambient temperature • operation	standard -25 to	+60 °C / -13 to +140 °F			
	EEx -20 to	+55 °C / - 4 to +131 °F			
	FEx special "S" _40 to	+55 °C / -40 to +131 °E			
- storage		100 °C / 40 to ±140 °E			
• storage					
Protection category (IEC 529 / EN 60 529)	IP 65, equivalent to NEMA	. 4 / 4X			
EU_EMC Directives	to EN 61326-1 (1977) and	A1 (1998) directives and NAMUR Standard NE 21			
Certificates and approvals	II (2) G [EEx ib] IIC				
	PTB 02 ATEX 2136 X				

10.2 Error limits

Display, digital values, pulse output

- F maximum error in % of measured value (MV), not typical values
- v Flow velocity in m/s and ft/s

Reference conditions similar to EN 29 104	
Product	water at 10 – 30°C/ 50 – 86°F
Electrical conductivity	> 300 µS/cm
Power supply (rated voltage)	U _N (± 2%)
Ambient temperature	20 – 22°C / 68-71.6 °F
Warm-up time	60 min
Max. calibration equipment error	$10 \times smaller than F$
Inlet / outlet runs	$10 \times DN / 2 \times DN$ (DN = meter size)
Flow sensor	properly grounded and centered

Calibrated on EN 17025 accredit to calibration equipment in direct volumetric comparsion.

* VARIFLUX 6000 F (DN 2.5 – 4 and 1/10" – 1/6") additional error ± 0,3% of MV

MV Measured Value

z = 1 mm/s = 0.04 inch/s

Flow	Meter size		Standard details	Standard details		Option (extra cha	rge)	
sensor	DN mm	inch	v ≥ 1.0 m/s	v < 1.0 m/s	Curve	v ≥ 1.0 m/s	v < 1.0 m/s	Curve
			v ≥ 3.3 ft/s	v < 3.3 ft/s		v ≥ 3.3 ft/s	v < 3.3 ft/s	
VARIFLUX	2.5- 6	$\frac{1}{10} - \frac{1}{4}$	± 0.5% of MV	± 0.4% of MV + z	С	-	-	-
6000 F	10 - 80	³ / ₈ - 3	± 0.3% of MV	± 0.2% of MV + z	В	-	-	-
PROFIFLUX	2.5- 6	$\frac{1}{10} - \frac{1}{4}$	± 0.5% of MV	± 0.4% of MV + z	С	-	-	-
5000 F	10 - 100	³ / ₈ - 4	± 0.3% of MV	± 0.2% of MV + z	В	± 0.2% of MV	± 0.1% of MV + z	Α
ALTOFLUX	10 25	³ / ₈ - 1	+ 0.2% of MV	$\pm 0.2\%$ of $MV \pm 7$	Р		-	-
4000 F	32 -1600	1 ¹ / ₄ -64	± 0.3 /0 01 WIV	± 0.2 /8 01 WIV + 2	D	± 0.2% of MV	± 0.1% of MV + z	Α
ALTOFLUX	150 - 250	6 -10	+ 0.3% of MV	$\pm 0.2\%$ of MV ± 7	в	+ 0.2% of MV	$\pm 0.1\%$ of MV/ ± 7	Δ
2000 F	130 - 230	0 -10	10.570 01 1010	10.270 01 101 0 + 2	5	10.270 01 1010	± 0.170 01 WIV + 2	~
ECOFLUX	10 - 150	³ / ₂ - 6	+ 0.5% of MV	$\pm 0.4\%$ of MV ± 7	в	_	_	_
1000 F	10 - 150	78 - 0	10.570 01 1010	10.470 01 101 0 + 2		_	_	
M 900	10 25	³ / ₈ - 1	+ 0.3% of MV	$\pm 0.2\%$ of MV ± 7	в	-	-	-
	32 - 300	1 ¹ / ₄ -12	± 0.570 01 WIV	± 0.270 01 WIV + 2	5	± 0.2% of MV	± 0.1% of MV + z	Α

Current output	same error limits as above, additionally \pm 10 μ A					
Reproducibility and						
repeatability	0,1% of MV, minimum	n 1 mm/s / 0.04 inch/s a	at constant flow			
External influences	typical values	<u>maximum values</u>				
Ambient temperature						
Pulse output	0,003% of MV (1)	0,01 % of MV (1)	per 1 K / 1.8° F			
Current output	0,01 % of MV (1)	0,025% of MV (1) 5	temperature variation			
Power supply	< 0,02 % of MV	0,05 % of MV	at 10% variation			
Load	< 0,01 % of MV	0,02 % of MV, at max	k. load, see Sect. 10.1			

(1) All KROHNE signal converters undergo burn-in tests, duration minimum 20 hours at varying ambient temperatures - 20 to + 60°C/- 4 to + 140°F. The tests are controlled by computers.

10.3 Dimensions and weights IFC 110 F / IFC 110 F-EEx and ZD / ZD-EEx Dimensions in mm and inch

10.4 Flow table

v = flow velocity in m/s and ft /s

Meter s	ize	Full-scale ra	nge Q _{100%} in I	m³/h	Meter s	size	Q100% in US G	al/min
DN		v = 0.3 m/s	v = 1 m/s	v = 12 m/s	DN		v = 1 ft/s	v = 40 ft/s
mm	inch	(minimum)		(maximum)	inch	mm	(minimum)	(maximum)
2.5	¹ / ₁₀	0.0053	0.0177	0.2121	¹ / ₁₀	2.5	0.0245	0.979
4	¹ / ₈	0.0136	0.4520	0.5429	¹ /8	4	0.0383	1.530
6	$^{1}/_{4}$	0.0306	0.1018	1.222	$^{1}/_{4}$	6	0.1530	6.120
10	³ /8	0.0849	0.2827	3.392	³ /8	10	0.3735	14.93
15	$^{1}/_{2}$	0.1909	0.6362	7.634	$^{1}/_{2}$	15	0.8405	33.61
20	3/4	0.3393	1.131	13.57	3/4	20	1.494	59.75
25	1	0.5302	1.767	21.20	1	25	2.334	93.34
32		0.8686	2.895	34.74		32	3.824	153.0
40	$1^{1}/_{2}$	1.358	4.524	54.28	$1^{1}/_{2}$	40	5.979	239.0
50	2	2.121	7.069	84.82	2	50	9.339	373.5
65	-	3.584	11.95	143.3	-	65	15.78	630.9
80	3	5.429	18.10	217.1	3	80	23.90	955.6
100	4	8.483	28.27	339.2	4	100	37.35	1493
125	-	13.26	44.18	530.1	-	125	37.35	2334
150	6	19.09	63.62	763.4	6	150	84.05	3361
200	8	33.93	113.1	1357	8	200	149.43	5975
250	10	53.02	176.7	2120	10	250	233.4	9334
300	12	76.35	254.5	3053	12	300	336.2	13442
400	16	135.8	452.4	5428	16	400	597.9	23899
500	20	212.1	706.9	8482	20	500	933.9	37345
600	24	305.4	1018	12215	24	600	1345	53781
700	28	415.6	1385	16625	28	700	1919	76760
800	32	542.9	1810	21714	32	800	2507	100272
900	36	662.8	2290	26510	36	900	3173	126904
1000	40	848.2	2827	33929	40	1000	3917	156672
1200	48	1221	4072	48858	48	1200	5640	225608
1400	56	1663	5542	66501	56	1400	7677	307080
1600	64	2171	7238	86859	64	1600	10027	401080

11 Measuring principle

The flowmeter is designed for electrically conductive fluids.

Measurement is based on Faraday's law of induction, according to which a voltage is induced in an electrically conductive body which passes through a magnetic field. The following expression is applicable to the voltage:

- $\mathsf{U} = \mathsf{K} \times \mathsf{B} \times \overline{\mathsf{v}} \times \mathsf{D}$
- K an instrument constant
- B magnetic field strength
- v mean velocity
- D pipe diameter

Inside the electromagnetic flowmeter, the fluid passes through a magnetic field applied perpendicular to the direction of flow. An electric voltage is induced by the movement of the fluid (which must have a minimum electrical conductivity). This is proportional to the mean flow velocity and thus to the volume of flow. The induced voltage signal is picked up by two electrodes which are in conductive contact with the fluid and is transmitted to a signal converter for a standardized output signal.

This method of measurement offers the following advantages:

- 1) No pressure loss through pipe constriction or protruding parts.
- Since the magnetic field passes through the entire flow area, the signal represents a mean value over the pipe cross-section; therefore, only relatively short straight inlet pipes 5 x DN from the electrode axis are required upstream of the flow sensor.
- 3) Only the pipe liner and the electrodes are in contact with the fluid.
- 4) Already the original signal produced is an electrical voltage which is an exact linear function of the mean flow velocity.
- 5) Measurement is independent of the flow profile and other properties of the fluid.

The magnetic field of the flow sensor is generated by a square wave current fed from signal converter to the field coils. This field current alternates between positive and negative values. Alternate positive and negative flowrate-proportional signal voltages are generated at the same frequency by the effect of the magnetic field, which is proportional to the current. The positive and negative voltages at the flow sensor electrodes are subtracted from one another in the signal converter. Subtraction always takes place when the field current has reached its stationary value, so that constant interference voltages or external or fault voltages coupled in the flow sensor or in the connecting cables are similarly suppressed.

12 Block diagram

(1) ADC printed circuit board, analog / digital converter (terminals 1, 2, 3, 20 and 30)

- Signal processor protected against overload, for quick and precise processing of flow peaks up to and exceeding 20 m/s or 60 ft/s.
- Digital signal processor, sequential control and test routines.
- Patented high-resolution analog/digital converter, digitally controlled and monitored.
- Input amplifier allowing control of potential of signal line shielding (bootstrap).
- User parameter and internal calibration values are stored in separate EEPROMs (easily replaceable).

- (2) FSV printed circuit board, field current supply (terminals 7 and 8)
 - Large signal-to-noise ratio owing to low-loss field current supply with high frequencies and high currents.
 - Pulsed direct current which is precisely controlled electronically, for the magnetic coils of the flow sensor.
 - Operating and calibrating data are stored in an EEPROM so that the PCB can be easily replaced without the need for re-calibration.

③ BDE printed circuit board, motherboard

- Large illuminated LC display.
- 15 keys for operator control of signal converter
- Can be retrofitted with optional operator control by bar magnet.
- Distribution of general signals such as IMoCom bus, power supply.

④ I/O printed circuit board, inputs and outputs

- Groups, inputs and outputs are galvanically isolated from each other and from all other circuits.
- Power supply source for the inactive inputs and outputs.
- Specific KROHNE circuit KSA 04 for fine quantization of output pulses across a wide dynamic range.
- Active current output I (e.g. 0/4-20 mA) with load control.
- Pulse output **P** for electronic totalizers, max. 10 Hz.
- Pulse output **A1** for electromechanical totalizers, max. 50 Hz, can also be used as status output **A1**.
- Several status outputs A1, A2, D1, D2.
- Control inputs C1 and C2.

5 IMoCom bus plug

Connecting external operating and testing devices, e.g. RS 232 adapter and CONFIG software for operator control of signal converter by MS-DOS PC or laptop.

- ⑥ Slots for plug-in modules, for upgrading or converting the signal converter
 - HART / RS 485 ancillary board
 - GTEX ancillary board for Ex-i operation of the signal converter outside hazardous areas.
 - Other modules and ancillary boards in preparation.

13 Approvals

Ph Brai	uysikalisch- unschweig und Ber	Technische Bu	ndesanstalt	PĪB
(1)	EC-TYP	E-EXAMINATIO (Translatio		E
(2)	Equipment and Protect Potentially Explosive A	ive Systems Intended for Use in mospheres - Directive 94/9	EC	
(3)	EC-type-examination C	ertificate Number:		\CX/
		PTB 02 ATEX	2163 X	
(4)	Equipment:	Measuring transduce	er, type IFC 110 F/EEx	
(5)	Manufacturer:	Krohne Messtechnik	GmbH & Co. KG	
(6)	Address:	Ludwig Krohne Stral	Se 5, 47058 Duisburg, Germa	iny
(7)	This equipment and an the documents therein it	y acceptable variation thereto referred to.	are specified in the schedule to	this certificate and
(8)	The Physikalisch-Techt Council Directive 94/9/ the Essential Health an protective systems into Directive.	nische Bundesanstalt, notified EC of 23 March 1994, certifies Id Safety Requirements relating ended for use in potentially of	body No. 0102 in accordance v that this equipment has been fo to the design and construction explosive atmospheres, given i	with Article 9 of the und to comply with of equipment and in Annex II to the
	The examination and te	st results are recorded in the co	onfidential report PTB Ex 02-22	121.
(9)	Compliance with the Es	sential Health and Safety Requ 0 014:1997 +A1 +A2	irements has been assured by c EN 50 020:199	compliance with: 4
(10)	If the sign "X" is placed conditions for safe use	after the certificate number, i specified in the schedule to this	indicates that the equipment is certificate.	s subject to special
(11)	This EC-type-examinati equipment in accordan manufacturing process	ion Certificate relates only to the to the Directive 94/9/EC. If and supply of this equipment. T	ne design, examination and tes further requirements of the Dire hese are not covered by this ce	ts of the specified ective apply to the rtificate.
(12)	The marking of the equi	pment shall include the followir	g:	
	2	🕼 II (2) G IEE	x ib] IIC	
	Zertifizierungsstelle E By order. DrIng. U. Johannsm Regierungsdirektor	events a structure	Braunschweig, No	ovember 08, 2002
				sheet 1/3
				51661 1/0
	EC-type-examination Cert only without alteration.	ificates without signature and official st Extracts or alterations are subject to ap	amp shall not be valid. The certificates m proval by the Physikalisch-Technische B	hay be circulated lundesanstalt.
	Discution	In case of dispute, the Germ	an text shall prevail.	

English translation

Brai	unschweig und Berlin	
(13)		SCHEDULE
(14)	EC-TYPE-EXAMIN	ATION CERTIFICATE PTB 02 ATEX 2163 X
(15)	Description of equipment	8
	The measuring transducer, typ electroconductive liquids. The ap	e IFC 110 F/EEx is used for flow rate measurement of oparatus is installed outside the hazardous area.
	The permissible range of the am	bient temperature is: -20 °C bis 55 °C (standard version) resp40 °C bis 55 °C (special version).
	Electrical data	
	Auxiliary power dependent on variant (terminals 11 and 12)	24/100 230 V AC +10% -15%, 25 VA U_m = 253 V 24 V DC +30% -25%, 15 W U_m = 253 V
	Input/output circuits (aktive / passive)	for connection to functional extra low voltage with safe electrical isolation (PELV) $\begin{array}{l} U_N \leq \ 25 \ V \ AC \\ U_N \leq \ 50 \ V \ DC \\ U_m = 253 \ V \end{array}$
	Field circuit (terminals 7, 8)	$U_N \le \pm 40$ V (switched-mode direct voltage) $I_N \le 160$ mA (internal fuse)
	Electrode circuit (terminals 1, 2, 3, 20, 30)	type of protection Intrinsic Safety EEx ib IIC Maximum values: $U_o = 18 V (\pm 9 \text{ V against ground})$ $I_o = 40 \text{mA}$ $P_o = 80 \text{mW}$ kinked characteristic $L_o = 5 \text{mH}$ $C_o = 225 \text{nF} (C_i \text{ considered})$
	The electrode circuit is safely ele nominal voltage of 375 V.	ectrically isolated from all other circuits up to a peak value of the
		sheet 2

English translation

	unschweig und Berlin
SCH	IEDULE TO EC-TYPE-EXAMINATION CERTIFICATE PTB 02 ATEX 2163 X
16)	Test report PTB Ex 02-22121
17)	Special conditions for safe use
.,,	 Equipotential bonding has to be installed along the entire cable run of the intrinsically safe circuit.
	The terminal for the equipotential bonding conductor has to be connected to equipotential bonding conductor of the hazardous area.
18)	Essential health and safety requirements
1	met by compliance with the standards mentioned above
	Regierungsdirektor

13.2 EC-type examination certificate

German original

			÷	
(1)	EG-	Baumusterprüf	bescheinigung	
(2)	Geräte und Schutzsys in explosionsgefährde	steme zur bestimmungsgemäße ten Bereichen - Richtlinie 9 4	n Verwendung I/9/EG	\overline{c}
(3)	EG-Baumusterprüfbes	scheinigungsnummer		\cx/
		PTB 02 ATEX	(2163 X	
(4)	Gerät:	Messumformer Typ	IFC 110 F/EEx	
(5)	Hersteller:	Krohne Messtechni	k GmbH & Co. KG	
(6)	Anschrift:	Ludwig Krohne Stra	ße 5, 47058 Duisburg, Deutsch	hland
(7)	Die Bauart dieses Ger darin aufgeführten Un	rätes sowie die verschiedenen z terlagen zu dieser Baumusterpr	ulässigen Ausführungen sind in d üfbescheinigung festgelegt.	er Anlage und den
(8)	Die Physikalisch-Tech Richtlinie des Rates of grundlegenden Sicher und Schutzsystemen gemäß Anhang II der	nnische Bundesanstalt beschein der Europäischen Gemeinschaft heits- und Gesundheitsanforder uzur bestimmungsgemäßen M Richtlinie.	igt als benannte Stelle Nr. 0102 ten vom 23. März 1994 (94/9/EG ungen für die Konzeption und der Verwendung in explosionsgefäh	nach Artikel 9 der) die Erfüllung der n Bau von Geräten rdeten Bereichen
	Die Ergebnisse der Pr	üfung sind in dem vertraulichen	Prüfbericht PTB Ex 02-22121 fe	stgehalten.
(9)	Die grundlegenden S mit	icherheits- und Gesundheitsan	forderungen werden erfüllt durch	Übereinstimmung
	EN 5	50 014:1997 +A1 +A2	EN 50 020:1994	
(10)	Falls das Zeichen "X" sichere Anwendung d	hinter der Bescheinigungsnum es Gerätes in der Anlage zu die	mer steht, wird auf besondere Be ser Bescheinigung hingewiesen.	adingungen für die
(11)	Diese EG-Baumuster Gerätes gemäß Richt und das Inverkehrbrin abgedeckt.	prüfbescheinigung bezieht sich tlinie 94/9/EG. Weitere Anforde gen dieses Gerätes. Diese Anfo	nur auf Konzeption und Prüfung rungen dieser Richtlinie gelten f rderungen werden nicht durch die	des festgelegten ür die Herstellung ese Bescheinigung
(12)	Die Kennzeichnung de	es Gerätes muß die folgenden A	ngaben enthalten:	
		🐼 II (2) G [EF	Ex ib] IIC	
	Zertifizierungsstelle Im Auftrag DrIng. U. Johannst Regierungsdirektor	Explosionsschutz	Braunschweig, 08.	November 2002
				Seite 1/

German original

	una ante dan dan 🥌 Media di Inggradian	
(13)		Anlage
(14)	EG-Baumusterp	rüfbescheinigung PTB 02 ATEX 2163 X
(15)	Beschreibung des Gerätes	
	Der Messumformer Typ IFC 110 leitfähigen Flüssigkeiten. Das errichtet.	0 F/EEx dient zur Volumendurchflussmessung von elektrisch Gerät wird außerhalb des explosionsgefährdeten Bereiches
	Der zulässige Bereich der Umge	bungstemperatur beträgt: -20 °C bis 55 °C (Standardausführung) bzw40 °C bis 55 °C (Sonderausführung).
	Elektrische Daten:	
	Hilfsenergie je nach Ausführung (Klemmen 11 und 12)	24/100 230 V AC +10% -15%, 25 VA U _m = 253 V 24 V DC +30% -25%, 15 W U _m = 253 V
	Ein-/Ausgangsstromkreise (aktiv / passiv)	zum Anschluss an Funktionskleinspannung mit sicherer Trennung (PELV) $\begin{array}{ll} U_N \leq & 25 \ V \ AC \\ U_N \leq & 50 \ V \ DC \\ U_m = 253 \ V \end{array}$
	Feldstromkreis	$1_{\rm H} < +40$ V (getaktete Gleichspannung)
	(Klemmen 7, 8)	$I_N \leq 160$ mA (interne Absicherung)
	Elektrodenstromkreis (Klemmen 1, 2, 3, 20, 30)	in Zündschutzart Eigensicherheit EEx ib IIC Höchstwerte: $U_o = 18$ V (± 9 V gegen Erde) $I_o = 40$ mA $P_o = 80$ mW
		geknickte Kennlinie L _o = 5 mH
		$C_o = 225$ nF (C _i berücksichtigt)
	Der Elektrodenstromkreis ist vo Nennspannung von 375 V sicher	n allen anderen Stromkreisen bis zu einem Scheitelwert der galvanisch getrennt.
		Seite 2/3

German original

Physikalisch-Technische Bundesanstalt **Braunschweig und Berlin** Anlage zur EG-Baumusterprüfbescheinigung PTB 02 ATEX 2163 X (16) Prüfbericht: PTB Ex 02-22121 (17) Besondere Bedingungen: 1. Im gesamten Verlauf des eigensicheren Stromkreises ist Potenzialausgleich zu errichten. 2. Der Anschluss für den Potenzialausgleichsleiter ist mit dem Potenzialausgleich des explosionsgefährdeten Bereiches zu verbinden. (18) Grundlegende Sicherheits- und Gesundheitsanforderungen: erfüllt durch Übereinstimmung mit den vorgenannten Normen Zertifizierungsstelle Explosionsschutz Braunschweig, 08. November 2002 Im Auftrad Dr.-Ing. U. Johannsm Regierungsdirektor Seite 3/3 EG-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit. Diese EG-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt. Physikalisch-Technische Bundesanstalt • Bundesallee 100 • D-38116 Braunschweig

14 Index

Keyword	Sect No	Ect No
Δ	Jeci. NO.	T CL. NO.
A1 status or 2nd pulse output	2.3. 2.6.	1.07. 3.07
	5.7. 5.18	
A1/A2 status outputs	2.4, 2.6, 5.10	1.07, 1.08
Abbreviations	1.3.2, 1.3.4,	
	2.1, 4.1, 4.4	
ADC see analog/digital converter	60.64.40.4	
Analog/digital.converter	0.2, 0.4, 10.1 4 5 11	
Applications	5.17	3.06
Automatic range change	2.6, 5.20	1.05, 1.07-1.10
B		
Bar magnet	4.2, 6.2, 8.2	
BIOCK Uldgraffi BTS bootstran signal line B	12	
bro, bootstrap signal line b	1.5	
С		
C1/C2 control inputs	2.5, 2.6, 5.9	1.11, 1.12
Cable length	1.3.4	
Characteristic of outputs	5.16	
Code for entering setting level	5.12	3.04
front nanel	4.Z 9.7	
 printed circuit boards 	0.1	
Connection diagrams		
– GS 8 A simulator	7.7	
 inputs/outputs 	2.6	
 power supply 	1.3.5, 1.3.6	
- primary head	1.3.5, 1.3.6	
Control inputs C	2.5, 4.4, 5.9	
	4.4, 5.14	3.05
- time	ч.ч, 3 . 14	3.05
Current output I	2.2, 5.6	
D		
D1/D2 status outputs	2.4, 2.6, 5.8	1.09, 1.10
Data Data orror	4.4	
Data level	4.5	
Delete error messages	4.6	
Dimensions	10.3	
Disconnection	2.1	
Display	4.2, 5.5	1.04
– language	4.4, 5.11	3.01
- unsteady	6.6 1.2	
DS signal line A	1.3	
E		
E+/E- internal power supply for		
inputs/outputs	2.1, 2.5, 5.10	
EC electronic totalizer	2.3, 2.6, 5.9	1.06
ELX VERSION	1.3.6, 6.1, 10.1	
= GS 8 A simulator	77	
- inputs	2.6	
- outputs	2.6	
- power supply	1.3.5, 1.3.6	
Electromagnetic compatibility	page 5	
Electromechanical totalizer	2.3, 5.7	1.07, 3.07
Electronic totalizer	2.3, 5.1	1.00
	2.3, 2.0 5.7 5.17	1 07 3 06
Empty pipe detection EPD	6.9	1.07, 3.00
Entry (programming)	4	
EPD (empty pipe detection)	6.9	
Error	4.5	
Error list	4.5	
Error (messages)	4.5	
- emmale	4.0 10.1	
- reset (delete)	4.6	
- search	7.1 et seq.	
FU standards	nage 5	

Keyword	Sect. No.	Fct. No.
External totalizer	2.3, 2.6, 5.7	1.06, 1.07
	., ., .	
F		
F = TORWARD TIOW Factory setting(s)	4.4, 5.1, 5.15 2 7	1.04-1.07, 3.02
Fatal error	4.5	
FE = functional grounding conductor	1.1, 1.2, 1.3.3	
	1.3.5, 1.3.6	
Field current supply	5.13, 10.1	
Flow	11, 12	
 pulsating 	6.5, 6.6	3.06
- quickly changing	6.6, 6.7	0.00
Flow constant GK	4.4, 5.13	3.02
Flow rate (Q)	4.4, 5.1	3.02
Flow sensor		
- constant GK	4.4, 5.13	3.02
- replacement	8.5 7.6	
Flow simulator GS 8 A	7.7	
Flow velocity (v)	4.4, 5.1	3.03
Frequency output see pulse output	2.3, 5.7	1.06
Full-scale range Q100%	4.4, 5.1	1.01, 3.02
 – hardware information 	7.3	2.02
 measuring range 	7.2	
 primary head 	7.6	
 signal converter 	7.7	
– setpoint readings – system	7.7	
– zero	7.1	3.03
Functional grounding conductor FE	1.1, 1.2, 1.3.3	
Eurotian level	1.3.5, 1.3.6	1.01 at and
Function level	4.1	1.01 et seq., 2.01 et seg
		3.01 et seq.
Function of keys	4.1, 4.3	
Function(s)	4.4	
Fuses (F)	8.1, 8.7, 9	
G		
GK primary head constant	4.4, 5.13	3.02
Grounding	1 2 2	
- signal converter	1.2. 1.3	
– system	1.2-1.3	
GS 8 A primary simulator	7.7	
u		
Hardware		
- information	7.3	2.02
- setting(s)	5.18	3.07
- test	7.4	2.03
Hazardous areas	1.3.6. 6.1. 10.1	
	page 5	
= current output	22.56	1.05
IEC standards	2.2, 3.0 page 5	1.05
IMoCom bus (plug)	6.4, 8.7, 11	
ImoCom software	6.4.1	
Inputs/outputs	5 16	
- connection diagrams	2.6	
- setting	4.4	
- control inputs	5.9	1.11, 1.12
- current output	5.6 5.7	1.05
— puise outputs — status outputs	5.8	1.07-1.10, 3.07
 steady voltage with empty tube 	5.7	
Interfaces	6.4, 10.1	
Intermediate connection box (ZD)	1.4, 10.3	
internal power supply (E+/E-)	∠.1, ∠.0, 0.1U	

KROHNE

Keyword	Sect. No.	Fct. No.
к		
Keys	4.1-4.3	
- deleting errors	4.6	
 entering the setting level 	4.1-4.3	
 leaving the setting level 	4.1-4.3	
- resetting the totalizer	4.0	
L		
Language of display texts	4.4, 5.11	3.01
Light-emitting diode (LED)	3, 4.2, 8.7	
Limit (indicator)	2.4, 2.6, 5.19	1.07-1.10
Line voltage see power supply	4453	1.03
	4.4, 0.0	1.00
M	4.4.5.40	0.00
Magnetic sensors	4.4, 5.13	3.03
Main menu level	4.1	1.00, 2.00, 3.00
Main menus	4.1-4.3	1.00, 2.00, 3.00
Measuring principle	4.1.4.4	
Meter size (DN)	4.4, 5.13	3.02
MP magnetic sensors	4.2, 6.2, 8.2	
Ν		
Noise suppression	6.6	
Number format of display	5.4, 5.5	1.04
0		
Off value for low-flow cutoff (SMU)	5.3	1.03
On value for low-flow cutoff (SMU) Option(al) = supplementary equipment	5.3	1.03
Order numbers	9	
Overflow (display)	5.4	1.04
- I (current output)	2.2. 2.6. 5.6	1.05
P (pulse outputs)	2.3, 2.6, 5.7	1.06, 1.07
D		
P = pulse outputs	2.3, 4.4, 5.7	1.06, 1.07
PCB = printed circuit board	8.7	
PC software	6.5	
PE - protective conductor	1.3.3. 1.3.5	
	1.3.6	
Power driver	8.6	3.07
- connection	2.1, 10.1	
– failure	4.5, 7.7	
– trequency	2.1, 10.1	
– internal	2.1, 2.6, 5.10	
- voltage	2.1, 10.1	
Printed circuit board (PCB) Program configuration	8.7	
Programming range (entry in)	4.1-4.3	
Protective conductor PE	1.1, 1.2	
	1.3.3, 1.3.5	
Pulsating flow	6.5, 6.6, 6.7	3.06
Pulse	4457	1.06 1.07
– outputs P	4.4, 5.7	1.06, 1.07
 per volume 	4.4, 5.7	1.06, 1.07
 per time width 	4.4, 5.7 4.4, 5.7	1.06, 1.07 1.06, 1.07
Pulse output (frequency output)	2.3, 5.7	1.06, 1.07
0		
Q = flow rate	4.4 + 5.1	1.01, 3.02
Q100%	4.4 + 5.1	1.01, 3.02
R		
R = reverse flow	4.4, 5.15	1.04-1.07, 3.02
Range change	26.520	1 06 1 07-1 10
– external	2.6, 5.20	1.06, 1.07-1.10

Keyword	Sect No	Ect No
Range setting	44.51	1 01. 140.
Rating plate	page 4	3.02
Replacement	000407	
 electronic unit power supply fuse(s) 	8.3, 8.4, 8.7 8.1	
Resetting of totalizer	4.6	
Return of signal converter (form)	page 107	
– – function level	4.1-4.3	
– – main menu level	4.1-4.3	
 – measuring mode submonu level 	4.1-4.3	
Reverse flow (R)	4.4, 5.15	1.04-1.07, 3.02
RS 232 adapter	6.4.1	
RS 485 interface	6.4.3	
S		
S = status output	2.4, 4.4, 5.8	1.07-1.10
Setting level	4.4, 7.4 4.1	3.07 1.00 et seg
g		2.00 et seq. +
Signal convertor		3.00 et seq.
- connect, and operation parameters	4.2. 8.7	
- connection of power supply	2.1	
- error limits	10.1	
 – instrument nameplate 	7.1-7.5, 7.7 page 4	
- location	1.1	
 operation/operator control 	4.1-4.3	
 power input power supply fuses 	8.1.9	
– PCBs		
 spare parts 	9	
Signal lines A and B	1.3.1 et sea.	
Simulator GS 8 A	7.7	
SMU = low-flow cutoff	4.4, 5.3	1.03
Spare parts see Order numbers	9	
Start-up	3	
Status output	2.4, 4.4, 5.8	1.07-1.10
	4.1-4.5	
T T	5.0	1.00
Technical data	5.2	1.02
- dimensions and weights	10.3	
- error limits	10.1	
Terminals	2.1. 2.6. 5.18	3.07
		(1.06, 1.07)
Tests see functional checks	7.1 et seq.	1.02
Totalizer (internal, electronic)	5.4	1.02
U Unit		
– display	4.4, 5.5	1.04
- flow	4.4, 5.1	1.01
- puise output Unsteady display, outputs	4.4, 5.7 6.6	1.06, 1.07
User-defined unit	4.4, 5.14	3.05
v		
v = flow velocity	4.4, 5.1	3.03
VDE standards	page 5,	
	1.1 et seq.	
	2.1 01 304.	
W		
Weights (dimensions)	10.3	
z		
ZD = intermediate connection box	1.4, 10.3	
∠ero check (setting)	7.1	3.03
	1	1

Notice

If you need to return flowmeters for testing or repair to KROHNE

Your electromagnetic flowmeter

- has been carefully manufactured and tested by a company with ISO 9001 certification
- and volumetrically calibrated in one of the world's most accurate test rigs.

If installed and operated in accordance with these operating instructions, your flowmeter will rarely present any problems.

Should you nevertheless need to return a flowmeter for checkout or repair, please pay strict attention to the following points:

Due to statutory regulations concerning protection of the environment and the health and safety of our personnel, Krohne may only handle, test and repair returned flowmeters that have been in contact with liquids if it is possible to do so without risk to personnel and environment. This means that Krohne can only service your flowmeter if it is accompanied by a certificate in line with the following model confirming that the flowmeter is safe to handle.

If the flowmeter has been operated with toxic, caustic, flammable or water-endangering liquids, you are kindly requested

- to check and ensure, if necessary by rinsing or neutralizing, that all cavities in the flowmeter are free from suchdangerous substances.
 (Directions on how you can find out whether the flow sensor has to be opened and then flushed out or neutralized are obtainable from Krohne on request.)
- to enclose a certificate with the flowmeter confirming that the flowmeter is safe to handle and stating the liquid used.

KROHNE regret that they cannot service your flowmeter unless accompanied by such a certificate.

SPECIMEN certificate

Company:	Address:	
Department:	Name:	
Tel. No.:		
The enclosed electromagnetic flowmeter		
Туре:	KROHNE Order No. or Series No	
has been operated with the following liquid:		
Because this liquid is water-endangering * / toxic * / caustic * / flammable * we have - checked that all cavities in the flowmeter are free from such substances * - flushed out and neutralized all cavities in the flowmeter * (* delete if not applicable) We confirm that there is no risk to man or environment through any residual liquid contained in this flowmeter.		
Date: Signature:		
Company stamp:		

Australia

KROHNE Australia Pty Ltd. Unit 19 No. 9, Hudson Ave. Castle Hill 2154, NSW TEL : +61(0)2-98948711 FAX: +61(0)2-98994855 e-mail: krohne@krohne.com.au

Austria KROHNE Austria Ges.m.b.H. Modecenterstraße 14 A-1030 Wien TEL.: +43(0)1/203 45 32 FAX: +43(0)1/203 47 78 e-mail: info@krohne.at

Belgium

KROHNE Belgium N.V. Brusselstraat 320 B-1702 Groot Bijgaarden TEL.: +32(0)2-4 66 00 10 FAX: +32(0)2-4 66 08 00 e-mail: krohne@krohne.be

Brazil

KROHNE Conaut Controles Automaticos Ltda. Estrada Das Águas Espraiadas, 230 C.P. 56 06835 - 080 EMBU - SP TEL: +55(0)11-4785-2700 FAX: +55(0)11-4785-2768 e-mail: conaut@conaut.com.br

China KROHNE Measurement Instruments Co. Ltd. Room 7E, Yi Dian Mansion 746 Zhao Jia Bang Road Shanghai 200030 TEL.: +86(0)21-64677163 FAX: +86(0)21-64677166 Cellphone: +86(0)139 1885890 e-mail: info@krohne-asia.com

CIS

Kanex KROHNE Engineering AG Business-Centre Planeta, Office 403 ul. Marxistskaja 3 109147 Moscow/Russia TEL.: +7(0)095-9117165 FAX: +7(0)095-9117231 e-mail: krohne@dol.ru

Czech Republic

KROHNE CZ, spol. s r.o. Soběšická 156 CZ-63800 Bmo TEL.: +420 545 532 111 FAX: +420 545 220 093 e-mail: brno@krohne.cz

France KROHNE S.A.S. Usine des Ors BP 98 E-26 103 Romans Cedex TEL.: +33(0)4-75 05 44 00 FAX: +33(0)4-75 05 00 48 e-mail: info@krohne.f

Germany KROHNE Messtechnik GmbH & Co. KG Ludwig-Krohne-Straße D-47058 Duisburg TEL.: +49(0)203-301-0 FAX: +49(0)203-301 389 e-mail: krohne@krohne.de

India

KROHNE Marshall Ltd. A-34/35, M.I.D.C. Industrial Area, H-Block Pimpri Poona 411018 TEL.: +91(0)20 -744 20 20 FAX: +91(0)20 -744 20 40 e-mail: pcu@vsnl.net

Italy KROHNE Italia Srl.

Via V. Monti 75 I-20145 Milano TEL.: +39(0)2-4 30 06 61 FAX: +39(0)2-43 00 66 66 e-mail: krohne@krohne.it

Korea

Hankuk KROHNE 2 F, 599-1 Banghwa-2-Dong Kangseo-Ku Seoul TEL.: +82(0)2665-85 23-4 FAX: +82(0)2665-85 25 e-mail: flowtech@unitel.co.kr

Netherlands KROHNE Altometer

Kerkeplaat 12 NL-3313 LC Dordrecht TEL.: +31(0)78-6306300 FAX: +31(0)78-6306390 e-mail: postmaster@krohne-altometer.nl

KROHNE Nederland B.V. Kerkeplaat 12 NL-3313 LC Dordrecht TEL.: +31(0)78-6306200 FAX: +31(0)78-6306405 Service Direkt: +31(0)78-6306222 e-mail: info@krohne.nl

Norway Krohne Instrumentation A.S.

Ekholtveien 114 NO-1526 Moss PO Box 2178 NO-1521 Moss TEL.: +47(0)69-264860 FAX: +47(0)69-267333 e-mail: postmaster@krohne.no Internet: www.krohne.no

South Africa

KROHNE Pty. Ltd. 163 New Road Halfway House Ext. 13 Midrand TEL.: +27(0)11-315-2685 FAX: +27(0)11-805-0531 e-mail: midrand@krohne.co.za

Spain I.I. KROHNE Iberia, S.r.L.

Poligono Industrial Nilo Calle Brasil, nº. 5 E-28806 Alcalá de Henares-Madrid TEL: +34(0)91-8 83 21 52 FAX: +34(0)91-8 83 48 54 e-mail: krohne@krohne.es

Switzerland

KROHNE AG Uferstr. 90 CH-4019 Basel TEL.: +41(0)61-638 30 30 FAX: +41(0)61-638 30 40 e-mail: info@krohne.ch

United Kingdom

KROHNE Ltd. Rutherford Drive Park Farm Industrial Estate Wellingborough, Northants NN8 6AE, UK TEL.: +44(0)19 33-408 500 FAX: +44(0)19 33-408 501 e-mail: info@krohne.co.uk

USA

KROHNE Inc 7 Dearborn Road Peabody, MA 01960 TEL.: +1-978 535-6060 FAX: +1-978 535-1720 e-mail: info@krohne.com

Overseas Representatives

Algeria Japan Argentina Jordan Bulgaria Kuwait Camaroon Marocco Canada Mauritius Chile Mexico Columbia New Zealand Croatia Denmark Pakistan Poland Ecuador Portugal Egypt Saudi Arabia Finland Senegal French Antilles Singapore Slovakia Greece Guinea Slovenia Hong Kong Sweden Hungary Taiwan Indonesia Thailand Ivory Coast Turkev Tunesia Iran Ireland Venezuela Israel Yugoslavia

Other Countries:

KROHNE Messtechnik GmbH & Co. KG Ludwig-Krohne-Str. D-47058 Duisburg TEL.: +49(0)203-301 309 FAX: +49(0)203-301 389 e-mail: export@krohne.de