KROHNE

09/93

Compact magnetic inductive flowmeters

Installation and operating instructions

ALTOFLUX IFM 1080 K IFM 3080 K+F IFM 4080 K+F IFM 5080 K+F K 480 S

3.1M47EA3 09932

Order No. DIN A4: 7.02135.33.00 US Size: 7.02135.73.00

How to use these Installation and Operating Instructions

- For easy reference these Instructions are divided into 5 parts.
- Only Part A (pages 6-21) is needed for installation and initial start-up.
- All electromagnetic flowmeters are factory-set to your order specifications. Therefore, no further adjustments are necessary prior to start-up.

Part A Install flowmeter in the pipeline (Sect. 1), (pages 6-21) connect up (Sect. 2), power the flowmeter (Sect. 3), that's all!

The system is operative.

Part B Operator control and action of the IFC 080 (pages 22-37) K+F signal converter.

Part C Special applications, service, and functional (pages 38-52) checks.

Part D Technical data, dimensions, block diagram (pages 53-71) and measuring principle.

Part E Index (pages 72-74)

Product liability and warranty

These electromagnetic flowmeters are suitable solely for measuring the volumetric flowrate of electrically conductive liquids, slurries and pastes.

For use in hazardous areas, special codes and regulations are applicable which are specified in the special "Ex installation and operating instructions" (supplied only with hazardous-duty equipment).

Responsibility as to suitability and intended use of our instruments rests solely with the operator.

Improper installation and operation of the flowmeters (systems) may lead to loss of warranty.

In addition, the "General conditions of sale" forming the basis of the purchase contract are applicable.

If ALTOFLUX flowmeters have to be returned to Krohne, please note the information given on page 75!

System description

Example of type designation

The IFM 1080 K, IFM 3080 K+F, IFM 4080 K+F, K 480 S and IFM 5080 K+F electromagnetic flowmeters are precision instruments designed for the linear flow measurement of electrically conductive liquids, pastes and slurries with a minimum conductivity of $> 5~\mu$ S/cm (μ mho/cm) or $> 20~\mu$ S/cm (μ mho/cm) for demineralized cold water.

The full-scale range is adjustable between 6 liters per hour and 12 200 m³ per hour, or 0.02 to 53 700 US gallons per minute, dependent on the meter size DN 2.5 to 600 or 1/10" to 24". This corresponds to a flow velocity of 0.3 to 12 m/s or 1 to 40 ft/s.

K 480 S is available only as "Ex version".

IFM, 4,080, F K Compact flowmeter, signal converter mounted direct on primary housing. Separate flowmeter, primary head with terminal box, IFC 080 F signal converter in rotatable field housing F 080 Signal converter designation 4000 IFS 4000 primary head 5000 IFS 5000 primary head 3000 M 900 primary head 1000 Compact flowmeter with polysulfone measuring section

IFM Electromagnetic flowmeter (system)
IFS Primary head (sensor)

IFC Signal converter

Available versions

Measuring	Meter size		Compact		Separate systems				
section / liner	DN mm	inches	flowmeters	System	Primary head	Signal converter			
Polysulfone	15 to 80	$^{1}/_{2}$ to 3	IFM 1080 K						
Fused aluminium oxide	2.5 to 100	$^{1}/_{10}$ to 4	IFM 5080 K	IFM 5080 F	IFS 5000	IFC 080 F			
PTFE	10 to 20	³ / ₈ to ³ / ₄	IFM 3080 K	IFM 3080 F	M 900	IFC 080 F			
Various	25 to 300	1 to 12							
PTFE	10 to 20	3/ ₈ to 3/ ₄	IFM 4080 K	IFM 4080 F	IFS 4000	IFC 080 F			
PFA	25 to 150	1 to 6	K 480 S-Ex						
Various	200 to 600	8 to 24				1			

Items included with supply

Compact flowmeter as ordered primary head with mounted IFC 080 K signal converter and installation material according to the following table/list or

- Separate-system flowmeter as ordered

 IFC 080 F signal converter in rotatable field housing

 primary head with installation material according to the following table/list
 - signal cable (field current cable not supplied, to be provided by customer)
- Installation and operating instructions with pull-out condensed instructions for operation of the IFC 080 signal converter
- Certificate of system calibration data
- Report on factory setting of the signal converter

122 400			
1600 1115	11 K	AAM NAAt	TIANIMATAY
II IVI IUC	, , , , , , , , , , , , ,	CUIIIDAGE	flowmeter

IFM 1080 K	Supplied		X = St	andard	O = Option		
Meter size to	Max. ope		with centering	with		nding rings E skets D1	without gaskets
<u> </u>	bar	psig	material		Е	D1	D2 2)
DIN 2501 (BS 4504)	CONTROL OF THE PARTY OF THE PAR					1 1 1 1	
DN 15	< 40	< 580	4xsleeves	4xM12	Х	Х	no
DN 25	< 40	< 580	4xsleeves	4xM12	Х	Х	no
DN 40	< 25	< 360	4xsleeves	4xM16	Х	Х	no
DN 50	< 25	< 360	4xsleeves	4xM16	Х	Х	no
DN 80	< 16	< 230	6xsleeves	8xM16	Χ	Χ	no
ANSI B16.5							
1/2"	< 20	< 290	_	4x1/2"	Х	Х	no
	< 40	< 580	4xsleeves	4x1/2"	0	0	no
1"	< 20	< 290	_	4x1/2"	Χ	Х	no
THE STATE OF THE S	< 40	< 580	4xsieeves	4x5/8"	0	0	no
1 1/2"	< 20	< 290	4xsleeves	4x1/2"	Χ	Х	no
	< 25	< 360	4xsleeves	4x3/4"	0	0.	no
2"	< 20	< 290	2, 1	4x5/8"	X	Χ	no
Non-American Salar	< 25	< 360		8x5/8"	0	0	no
3"	< 16	< 230	4xsleeves	4x5/8"	Х	Χ	no
en jaron karantar arabah dari berana d	< 16	< 230	6xsleeves	8x3/4"	0	0	no

Max. admissible operating pressure is dependent on the product temperature, see Sect. 10.51
 Gaskets D2 not suplied with flowmeter, use commercial gaskets, customer supplied!

For arrangement of gaskets D1 + D2 see "grounding diagrams" in Sect. 1.2.3!

compact flowmeter and IFS 5000 primary he	

IFM 5080 K and IFS 5000			Supplied		X = S1	andard	O = Option	Size of gaskets		
Meter size to	Max. op pressure		with centering	with	with grounding rings E and gaskets D1+D2		w/o grounding rings but with gaskets D3		3 in mm (in	ches) 3)
<u>,</u>	bar	psig	material		D1	D1 + D2	and cable V	da	di	S
DIN 2501 (BS 4505)										
DN 2.5, 4, 6, 10	40	580	2xrings	4xM12	X			D1 are spec	cial O-rings	2)
DN 15	40	580	2xrings	4xM12	Х				cial O-rings	
DN 25	40	580	2xrings	4xM12		0	Х	46 (1,81)	26 (1,02)	1.6 (0.06)
DN 40	40	580	4xsleeves	4xM16] / /	0	Χ	62 (2,44)		1.6 (0.06)
DN 50	40	580	4xsleeves	4xM16		0	Х	74 (2,91)	51 (2,01)	1.6 (0.06)
DN 80	40	580	6xsleeves	8xM16		0	Χ	106 (4,17)		1.6 (0.06)
DN 100	16	230	6xsleeves	8xM16] /	0	X	133 (5,24)	101 (3,98)	
<u>, , , , , , , , , , , , , , , , , , , </u>	25	360	6xsleeves	8xM20	V	0	X	133 (5,24)	101 (3,98)	1.6 (0.06)
ANSI B16.5										
1/10, 1/8, 1/4, 3/8, 1/2"	<20	< 290	2xrings	4x1/2"	X			D1 are spec	cial O-rings	2)
	< 40	< 580	2xrings	4x1/2"	X			D1 are spec		2)
1"	< 20	< 290	4xsleeves	4x1/2"	/	0	Х	46 (1,81)	26 (1,02)	1.6 (0.06)
	< 40	< 580	2xrings	4x5/8"] /	0	Χ	46 (1,81)	26 (1,02)	
1 1/2"	< 20	< 290	4xsleeves	4x1/2"	1 /	0	Χ	62 (2,44)	39 (1,54)	1.6 (0.06)
	< 40	< 580	4xsleeves	4x3/4"]	0	X	62 (2,44)	39 (1,54)	1.6 (006)
2"	< 20	< 290	4xsleeves	4x5/8"] /	0	Χ	74 (2,91)	51 (2,01)	
<u> </u>	< 40	< 580	6xsleeves	8x5/8"	/	0	Χ	74 (2,91)	51 (2,01)	
3"	< 20	< 290	4xsleeves	4x5/8"] /:	0	X	106 (4,17)		1.6 (0.06)
<u>Company and Cartesian Car</u>	< 40	< 580	6xsleeves	8x3/4"	/ -	0	X	106 (4,17)		1.6 (0.06)
4"	< 20	< 290	6xsleeves	8x5/8"	/	0	Χ	133 (5,24)		1.6 (0.06)
and the control of the second	< 25	< 360	6xsleeves	8x3/4"	V	0	X	133 (5,24)	101 (3,98)	

With ANSI pipe flanges, the max. admissible operating pressure is dependent on the product temperature! Gaskets D2 not supplied with flowmeter, to be provided by customer!

For arrangements of gaskets D1, D2 and D3 see "grounding diagrams" in Sect. 1.2.3!

= outside diameter

di = inside diameter s = thickness of supplied gaskets

IFM 4080 K, K 480 S + IFM 3080 K compact flowmeters and IFS 4000 + M 900 primary heads

Grounding rings E (option), if ordered.

Interconnecting cables V, see grounding diagrams in Sect. 1.3.8

Supplied without installation material (stud bolts, gaskets), to be customer supplied!

Contents

Part A	System installation	and	start-u	p
1	Installation in the pipeline			

1.	Installation in the pipeline	6–12
1.1 1.2	Preliminary information IFM 1080 K and IFM 5080 K compact flowmeters and	6+7
	IFS 5000 primary head	8+9
1.2.1	Installation requirements	8 8
1.2.2 1.2.3	Grounding Grounding diagrams	8+9
1.2.4	Torques, pipe flanges and max. allowable operating pressure	9
1.3	IFM 3080 K / IFM 4080 K, K 480 S compact flowmeter and	
	IFS 4000 / M 900 Primary head	10-12
1.3.1	Neoprene and hard-rubber liners	10
1.3.2	PTFE liner	10 10
1.3.3 1.3.4	Irethane liner Standard electrodes	10
1.3.5	Field replaceable electrodes WE	10
1.3.6	Grounding rings / Protective rings	10
1.3.7	Grounding	11
1.3.8	Grounding diagrams	11
1.3.9 1.3.10	Torques IFM 3080 K / M 900 with sanitary connections	12 12
2.	Electrical connection	13–20
<u>Z.</u>		
2.1	IFM 1080 K / IFM 3080 K / IFM 4080 K / IFM 5080 K / K 480 S Compact flowmeters	13
2.1.1	Installation location and cable diameter	13
2.1.2 2.2	Connection to power	13 14–17
2.2 2.2.1	IFC 080 F signal converter, separate version Location	14-17
2.2.2	Connection to power	14
2.2.3	Signal cables A+B	15
2.2.4	Cable length	16
2.2.5	Connection diagrams I to VI	16+17
2.3	Outputs	18
2.3.1	Abbreviations Current output I	18 18
		10
2.3.2		
2.3.2 2.3.3 2.3.4	Pulse output P Connection diagrams for outputs ① to ⑩	19 20
2.3.3	Pulse output P	19

Part B IFC 080 Signal converter

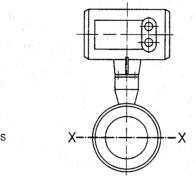
4.	Operation of the signal converter	22-29
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.4	Operating and check elements KROHE operator control concept Description Setting diagram Operation of the signal converter, function of keys Example for setting of the signal converter Table of settable functions Error messages (ERROR)	22 22-25 22 22+23 24 25 26-28
5.	Description of functions	30–37
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.7.1 5.7.2 5.7.3 5.8 5.8.1 5.8.2 5.8.3	Physical units Numerical format Full-scale range Q _{100%} and meter size Flow direction Display Internal electronic totalizer Current output I Application I (Fct. 3.3.1) Other functions that can be set for I Characteristics of current output I Pulse output P Application P (Fct. 3.4.1) Other functions that can be set for P Characteristics of pulse output P	30 30 30 31 31 32+33 32 32 33 34+35 34 34 35

5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16	Low-flow cutoff (SMU) for I + P F/R operation for I or P Language of display texts Coding desired for entry into setting level ? Measuring-point identification (tag name) Primary head constant GKL and field frequency User-defined unit Factory settings	36 36 36 36 36 36 37
Part C	Special applications, functional checks and service	
6.	Special applications	38+39
6.1 6.2 6.3 6.4 6.5	Use in hazardous areas Short response time in conjunction with rapid changes in flowrate Stable signal outputs when measuring tube empty Magnetic sensors, setting with hand-held bar magnet IFC 080 smart signal converter	38 38 38 38 39
7.	Functional checks	40–47
7.1 7.1.1 7.1.2 7.1.3 7.2 7.3 7.4 7.5 7.5.1 7.5.2	Test functions of the IFC 080 signal converter Main menu 2.0 Test functions Test of display (Fct. 2.1) Test of current output I (Fct. 2.2), pulse output P (Fct. 2.3) and measuring range Q (Fct. 2.4) Zero check System check-out Setpoint display IFC 080 with primary simulator GS 8 Testing the primary head Primary head in compact systems Primary head in separate systems	40+41 40 40+41 41 42+43 44+45 46+47 46
8.	Service	48-51
8.1 8.2 8.3 8.4 8.5 8.6	Replacement of electronic unit of signal converter Replacement of primary head in separate systems Change of operating voltage and power fuse F 9 Turning the display circuit board Turning the signal converter housing Available versions of IFM 1080 K, IFM 3080 K, IFM 4080 K, IFM 5080 K and K 480 S compact flowmeters	48 49 49 50 51
9.	Connection and operating points on the circuit boards, and Part No.	52
9.1 9.2 9.3 Part D	Line circuit board Input amplifier circuit board Part No. Technical data, measuring principle, block diagramm	52 52 52
10.	Technical data	53–69
10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.5 10.6 10.7 10.7.1 10.7.2 10.7.3 10.7.4 10.7.5	Full-scale range Q _{100%} Error limits for complete system at reference conditions IFC 080 Signal converter Primary heads IFS 5000 primary head, IFM 1080 K and IFM 5080 K compact flowmeters IFS 4000 and M 900 primary heads, IFM 4080 K and IFM 3080 K compact flowmeters Limits (operating pressure, process temperature and vacuum load rating) Instrument nameplates Dimensions and weights IFS 5000 and IFM 5080 K IFM 1080 K IFS 4000 and IFM 4080 K M 900 and IFM 3080 K IFC 080 F signal converter with wall mounting and ZD connection box Measuring principle and function of the system	53 53 54+55 56 56+57 58+59 60 61 62-68 62 63 64+65 66+67 68
12.	Block diagram and description of the signal converter	71
Part E	Index	72–74
If you nee	d to return flowmeters for testing or repair to Krohne	75

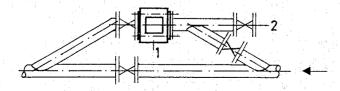
System installation and start-up Part A

1. Installation in the pipeline

1.1 Preliminary information


1.1.1 Transporting the compact flowmeter

Important: Never lift IFM 3080 K, IFM 4080 K, IFM 5080 K and K 480 S compact flowmeters sized DN 100 (4") and larger by the mounted signal converter



1.1.2 Selecting the installation location

1. Location and position as required, but electrode axis must be approximately horizontal.

- Electrode axis
- 2. Measuring tube must be completely filled at all times.
- 3. Flow direction +/-, arrows on primary heads can normally be ignored. For exceptions, refer to Sect. 5.16 "factory setting".
- 4. Bolts and nuts: to install, make sure there is sufficient room next to the pipe flanges.
- 5. Vibration: support the pipeline on both sides of the flowmeter.
- 6. Heavily contaminated fluids: install flowmeter in bypass.

- Flowmeter
- Draining and cleaning without interrupting system operation

- 7. Large meter sizes, DN > 200 (8"): use adapter pipes to permit axial shifting of counterflanges to facilitate installation.
- 8. Straight inlet run minimum of 5 x DN and outlet run minimum of 2 x DN (DN = meter size), measured from the electrode axis.
- 9. Vortex or corkscrew flow: increase inlet and outlet sections or install flow straighteners.
- 10. Strong electromagnetic fields, avoid in vicinity of flow-
- 11. Zero setting is automatic in flowmeters with pulsed DC field. Electrode contamination does not therefore cause any zero drift.

In water and waste water applications, it is frequently not practical to shut the flow off to check zero after major repair, recalibration or inadvertent and improper adjustment of the converter. In this case the primary head zero can be checked under flowing conditions as outlined in section

For most applications it is convenient and customary to check the zero by shutting off the flow. Shutoff valves should therefore be provided upstream and/or downstream of the primary head unless the pipe configuration already rules out the possibility of the primary head being drained of fluid. For zero check see section 7.2.

- 12. Mixing different fluid products. Install flowmeter upstream of mixing point or at an adequate distance downstream, minimum 30 x DN (DN = meter size), otherwise output/display may be unsteady.
- 13. Ambient temperature

Compact flowmeter:

< 60° C (104°F) for product temperature \le 60° C (140°F) < 40° C (104°F) for product temperature > 60° C (140°F)

Separate systems: < 60° C (140°F)

Refer to Sect. 10.5 for temperature, pressure and vacuum limits due to material used for measuring section/liner.

- 14. Pipeline along a wall: where possible, distance between pipe centerline and wall to be > 0.5 m or 1.6 ft for compact flowmeters; if less, first connect all cables to terminals in the terminal box (power supply and outputs) and install an intermediate connection box before installing flowmeter in the pipeline.
- 15. **Insulated pipeline:** do not insulate compact flowmeters.
- 16. Hard-to-get-at locations

If IFM 1080 K, IFM 3080 K, IFM 4080 K, IFM 5080 K and K 480 S compact flowmeters have not been ordered and supplied in accordance with Versions A – E (see Sect. 8.6), the configuration can be changed subsequently:

- Turn the display circuit board through ± 90° or 180° to obtain horizontal positioning of the display (see Sect. 8.4).
- Turn signal converter housing through ± 90° (see Sect. 8.5)
- Conversion of compact flowmeter to separate system Retrofit kit available, please consult factory.

1.1.3 Suggestions for installation

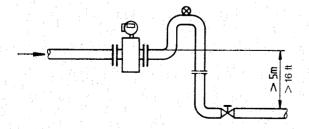
To avoid measuring errors due to air inclusion and vacuuminduced damage to PTFE and rubber liners, please observe the following:

Highest point of pipe run

(Air bubbles collect in measuring tube – faulty measurements!)

Horizontal pipe run

Install in slightly ascending pipe section. If not possible, assure adequate velocity to prevent air, gas or vapor from collecting in upper part of flow tube.


Open feed or discharge

Install meter in low section of pipe.

Downpipe over 5m (16 ft) length

Install air valve ⊗ downstream of flowmeter (vacuum).

long pipeline

Always install control and shutoff valves downstream of flow-meter (vacuum!).

Pumps

Never install flowmeter on pump suction side (vacuum!).

Sluice underpass for sewage concrete pipe with built-in flowmeter

- 1 Intake
- 2 Overflow
- 3 Intake sill
- 4 Cleaning hole
- 5 Flowmeter
- 6 Removable section
- 7 Wall seal
- 3 Outlet
- 9 Drain valve

1,2 IFM 1080 K and IFM 5080 K compact flowmeters and IFS 5000 primary head

1.2.1 Installation requirements

Mounting material

see Page 3 "Items included with supply"

Pipe flanges and operating pressure

see Table "torques" in Sect. 1.2.4.

Pipe flanges spacing

- For arrangement of grounding rings and gaskets refer to diagram in Sect. 1.2.3.
- For size of gaskets D1, D2 and D3 refer to pape 3 "Items included with supply".

Compact flowm	eters/primary he	Fitting dimensions "a" in mm (inches)					
Туре	Meter size		with	without			
	DN mm	inches	grounding rings	grounding rings			
IFM 1080 K	15 + 25 40 50 80	1/2 + 1 1 1/2 2 3	65 (2.56) 1) 89 (3,50) 1) 112 (4.41) 1) 162 (6.38) 1)				
IFM 5080 K and IFS 5000	2.5 - 15 25 40 50 80 100	1/10 - 1/2 1 1 1/2 2 3 4	65 (2.56) 1) 68 (2.68) 2) 93 (3.66) 2) 113 (4.45) 2) 163 (6.42) 2) 213 (8.39) 2)	- 3) 58 (2.28) 3) 83 (3.27) 3) 103 (4.06) 3) 153 (6.02) 3) 203 (7.99) 3)			

- plus 2 x thickness of gasket D2 between grounding rings and pipe flanges, gasket D2 not included with supply, customer supplied.
- 2) incl. gasket D2 between grounding rings and pipe flanges.
- 3) incl. gasket D3 between measuring tube and pipe flanges.

High-temperature pipelines

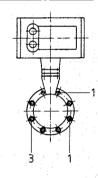
Where process temperatures exceed 100°C (212°F), provide for facilities to compensate for longitudinal expansion on heat-up of the pipeline:

- For short pipelines use resilient gaskets.
- For long pipelines install flexible pipe elements (e.g. elbows).

Position of flanges

- Install flowmeter in line with the pipe axis.
- Pipe flange faces must be parallel to each other, max. permissible deviation: L_{max} L_{min} ≤ 0.5 mm (0.02").

Arrangement of centering sleeves


For number of supplied centering sleeves see page 3 "Items included with supply".

with four centering sleeves

with six centering sleeves

- 1 Stud bolts 2 Hex. nuts
- 3 Sleeves

1.2.2 Grounding

Warning: Instrument must be properly grounded to avoid personnel shock hazard.

1. Standard grounding for compact flowmeters

- The flowmeters are normally grounded via the PE protective ground conductor incorporated in the power supply cable.
- If to be connected to a functional extra-low voltage source (e.g. 24 V DC), an FE functional ground is required for measurement reasons; connect to one of the separate U-clamp terminals either in the terminal box of the signal converter or on the "neck" of the compact flowmeter.

2. Grounding of separate primary heads

For separate systems an **FE functional ground** must be connected to the "neck" of the primary head.

3. Grounding of compact flowmeters in the case of large potential differences

Install a **separate FE functional ground** if measuring problems are likely to occur because of the reference to protec-

tive ground (e.g. due to compensating currents resulting from large voltage differences between pipeline and protective conductor, proximity of electric furnaces or electrolysis plants) or if a protective ground conductor is not provided (DC voltage operation).

Caution: Do not connect up the PE protective ground conductor in the terminal box if the FE functional ground is connected. If the AC supply voltage exceeds 50 V_{rms}, then the FE functional ground is required to act simultaneously as the protective ground conductor (combined protective/functional ground). Refer to appropriate national codes for specific requirements for this type of installation, which may require the addition of a ground fault detection circuit interrupter.

4. Grounding in hazardous areas

Special regulations applicable, refer to Sect. 6.1 and special "Ex" installation instructions.

1.2.3 Grounding diagrams

IFM 1080 K: DN 15 to 80 (1/2" to 3")

IFM 5080 K / IFS 5000: DN 2.5 to 15 ($\frac{1}{10}$ " to $\frac{1}{2}$ ")

Installation in metal pipes, with or without internal coating, and in plastic pipes

D1 Gaskets, glued to measuring tube

D2 Gaskets, customer supplied, for size refer to page 3 "Items included with supply"

E Grounding rings, screwed to housing

FE Functional ground, see Sect. 1.2.2, points 2 and 3: wire ≥ 4 mm² (10 AWG) Cu, connected to U-clamp terminal on "neck" of primary head. Wire not included with supply, to be provided by customer.

RF Pipe flanges

Y Terminal box (IFS 5000) or signal converter (IFM 1080 K / IFM 5080 K)

IFM 5080 K / IFS 5000: DN 25 to 100 (1" to 4")

Installation in metal pipes, not internally coated, without grounding rings

D3 Gaskets, glued to measuring tube

FE Functional ground, see Sect. 1.2.2, points 2 and 3: wire ≥ 4 mm² (10 AWG) Cu, connected to U-clamp terminal on "neck" of primary head. Wire not included with supply, to be provided by customer.

RF Pipe flanges

V1, V2 Connecting wires, bolted to the "neck" of the primary head; threaded holes for M6 bolts to be provided for flange-side connection

Terminal box or signal converter

Installation in plastic or internally coated metal pipes with grounding rings (option)

D1 Gaskets, glued to measuring tube

D2 Gaskets, glued to grounding rings (option)

Grounding rings with glued-on gasket D2 (option) Ε are supplied loose and must be screwed to the housing, mounting material supplied

FE Functional ground, see Sect. 1.2.2, points 2 and 3: wire ≥ 4 mm² (10 AWG) Cu, connected to U-clamp terminal on "neck" of primary head. Wire not included with supply, to be provided by customer

RF Pipe flanges

V1, V2 Connecting wires, bolted to the "neck" of the primary head; threaded holes for M6 bolts to be provided for flange-side connection

* V1 and V2 not required for plastic pipes!

Y Terminal box or signal converter

Stud bolts and tighten down un		diamet	rically o	pposed	points.		Max. t	orques	2nd s	equence equence equence	e: appro		5 } 1	of max. torque, see Table
Meter size of measuring	Pipe flanges	3	IFM 10 Comp)80 act flowr	neter		IFM 5 IFS 5	080 K Co 000 Pr	ompact imary h		er .			
tube to			Max.	1) + 2)		orques 3)	Max.	2)	Max. t	orques v	vith gask	ets made	of	
			opera pressu	_		askets of p material	opera press		Gyl	on	Che	motherm	bu	
			bar	psig	Nm	ft lbf	bar	psig	Nm	ft lbf	Nm	ft lbf	Nm	ft lbf
DIN 2501 (= E	3S 4504)	4 2 -	- 1:		1	4			17					
DN 2.5, 4, 6, 8, 10	DN 10,15	PN 40					≤ 40	≤ 580	T		1		32	23
DN 15	DN 15	PN 40	≤ 40	≤ 580	18	13.0	≤ 40	≤ 580					32	23
DN 25	DN 25	PN 40	≤ 40	≤ 580	34	24.6	≤ 40	≤ 580	22	16	32	23		
DN 40	DN 40	PN 40	≤ 25	≤ 360	67	48.4	≤ 40	≤ 580	47	34	66	48	1	
DN 50	DN 50	PN 40	≤ 25	≤ 360	119	86.0	≤ 40	≤ 580	58	42	82	59		
DN 80	DN 80	PN 40	≤ 16	≤ 230	93	67.2	≤ 40	≤ 580	48	35	69	50	ر ا	/
DN 100	DN 100	PN 16					≤ 16	≤ 230	75	54	106	77		is is tail
and the second	DN 100	PN 25		7. A			≤ 25	≤ 360	94	68	133	96		
ANSI B16.5				-										
1/10, 1/8, 1/4, 3/8"	1/2"	150 lbs					≤ 20	≤ 290	<u> </u>		1		35	25
	1/2"	300 lbs					≤ 40	≤ 580					35	25
1/2"	1/2"	150 lbs	≤ 20	≤ 290	18	13	≤ 20	≤ 290	-/				35	25
	1/2"	300 lbs	≤ 40	≤ 580	18	13	≤ 40	≤ 580		14			35	25
1	1"	150 lbs	≤ 20	≤ 290	34	25	≤ 20	≤ 290	24	17	33	24		7
	1"	300 lbs	≤ 40	≤ 580	45	33	≤ 40	≤ 580	30	22	42	30		/
1 1/2"	1 1/2"	150 lbs	≤ 20	≤ 290	52	38 •	≤ 20	≤ 290	38	28	54	39		
<u> Anglin ngayêt</u>	1 1/2"	300 lbs	≤ 25	≤ 360	83	60	≤ 40	≤ 580	57	41	81	59		
2"	2"	150 lbs	≤ 20	≤ 290	119	86	≤ 20	≤ 290	58	42	83	60		
<u></u>	2"	300 lbs	≤ 25	≤ 360	60	44	≤ 40	≤ 580	30	22	42	30		/ :
3"	3″	150 lbs	≤ 16	≤ 230	186	135	≤ 20	≤ 290	98	71	138	100		
<u> </u>	3"	300 lbs	≤ 16	≤ 230	115	83	≤ 40	≤ 580	59	43	84	61		
4"	4"	150 lbs					≤ 20	≤ 290	75	75	108	78		
	4"	300 lbs					≤ 25	≤ 360	92	67	131	95	/- · .	

The maximum allowable operating pressure is dependent on the process temperature, see Sect. 10.5!

For ANSI pipe flanges, the maximum allowable operating pressure is dependent on the process temperature!

Maximum torques is dependent on gaskets material. D2 gasket not supplied with flowmeter, must be provided by customer. 10 Nm ~ 7.23 ft lbf

1.3 IFM 3080 K / IFM 4080 K compact flowmeter and und IFS 4000 / M 900 Primary head

1.3.1 Neoprene and hard-rubber liners

Note temperature limits

● Storage: - 20 to + 60 °C (- 4 to + 140 °F),

keep immobile

Transport: -5 to +50 °C (+23 to +122 °F)

Process: Neoprene - 20 to + 60 °C (- 4 to + 140 °F)

Hard rubber -20 to +90 °C (-4 to +194 °F) [Temperatures below -5 °C (+23 °F) are only permissible if the pipe run is supported on both sides of the flow-meter, and providing there is only slight vibration and no

water hammer in the pipe.]

Gaskets are necessary for hard-rubber liners, e.g. Neoprene or soft-rubber gaskets.

Max. torques: see Sect. 1.3.9, Column B

1.3.2 PTFE liner

Install to avoid an excessive vacuum condition at the meter. **The PTFE liner is formed around the ends** of the flanges, **do not** remove or damage.

The flanges are factory-fitted with special **protection covers.** Do not remove these until just before installation. Replace by pieces of smooth sheet metal [0.3 to 0.6 mm (0.012" to 0.024") thick] when fitting the flowmeter between the pipe flanges (to be removed after installation).

Attached protective rings can optionally be supplied, in which case the above-mentioned sheet metal pieces are not required. These protective rings can simultaneously be used as grounding rings, see Sect. 1.3.6.

Max. torques: see Sect. 1.3.9, Column A.

1.3.3 Irethane liner

Important for IFM 4080 K / K 480 S / IFS 4000 with irethane liner, > 12 mm thick:

The flange connections are larger than the diameter of the measuring tube! Use pipe flanges according to the following tables.

Meter size DN in mm

Measuring tube	Flanges
DN 350	DN 400
DN 400, 450	DN 500
DN 500, 550	DN 600
DN 600	DN 700

Meter size in inches

Measuring tube	Flanges
14"	16"
16", 18"	20"
20", 22"	24"
24"	28"

Max. torques (according to size of flanges!): see Sect. 1.3.9, Column B

1.3.4 Standard electrodes

IFM 4080 K / K 480 S / IFS 4000: DN 25 – 150 (1'' - 6'') Primary heads with PFA liner are fitted with electrodes that are inserted from the outside such that the electrode head is flush with the inner surface of the liner. The electrodes are sealed by a specially shaped collar on the electrode shaft. Cup springs ensure constant pressure between these collars and a sealing surface moulded to the liner.

IFM 3080 K / M 900: DN 10 - 300 ($^3/_8''$ - 12") IFM 4080 K / K 480 S / IFS 4000: DN 10 - 20 ($^3/_8''$ - $^3/_4''$)

DN 200 - 600 (8" - 24")

The electrode head, which is in contact with the process, has an elliptical shape, while the conical neck forms the sealing surface with the liner. Cup springs ensure constant pressure between this neck and the liner.

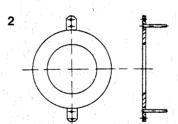
1.3.5 Field replaceable electrodes WE

IFM 3080 K / M 900: DN 50 - 300 (2" - 12")
IFM 4080 K / K 480 S / IFS 4000: DN 350 - 600 (14" - 24")

This design enables the electrodes to be removed under operating conditions and efficiently cleaned.

To remove, undo the holding screws on the protective caps. Unscrew the electrodes and pull them out until the ring mark is visible on the electrode shaft. Close valve and withdraw electrode completely.

After cleaning, install in the reverse order.



1.3.6 Grounding rings / Protective rings

- Required in conjunction with plastic or internally coated pipes.
- Grounding rings form a conductive connection with the fluid.
- Material CrNi steel 1.4571 (SS 316 Ti-AISI), others on request.

Grounding ring No. 1, 3 mm (0.12") thick.

Grounding/protective ring No. 2

for primary heads with PTFE liner, fitted to the flanges, 3 mm (0.12") thick

Grounding/protective ring No. 3

with cylindrical neck, to protect the liner of the flowmeter particularly at the inlet edge in conjunction with abrasive fluids.

- Length 30 mm for DN 10 to 300 (³/₈" to 12").
- Length 100 mm for DN 350 to 600 (14" to 24").

1.3.7 Grounding

Warning: Instrument must be properly grounded to avoid personnel shock hazard.

- 1. Standard grounding for compact flowmeters
- The flowmeters are normally grounded via the PE protective ground conductor incorporated in the power supply cable.
- If to be connected to a functional extra-low voltage source (e.g. 24 V DC), an FE functional ground is required for measurement reasons; connect to one of the separate U-clamp terminals either in the terminal box of the signal converter or on the "neck" of the compact flowmeter.
- 2. Grounding of separate primary heads

For separate systems an **FE functional ground** must be connected to the "neck" of the primary head.

3. Grounding of compact flowmeters in the case of large potential differences

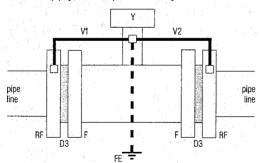
Install a separate FE functional ground if measuring problems are likely to occur because of the reference to protec-

tive ground (e.g. due to compensating currents resulting from large voltage differences between pipeline and protective conductor, proximity of electric furnaces or electrolysis plants) or if a protective ground conductor is not provided (DC voltage operation).

Caution: Do not connect up the PE protective ground conductor in the terminal box if the FE functional ground is connected. If the AC supply voltage exceeds 50 V_{rms}, then the FE functional ground is required to act simultaneously as the protective ground conductor (combined protective/functional ground). Refer to appropriate national codes for specific requirements for this type of installation, which may require the addition of a ground fault detection circuit interrupter.

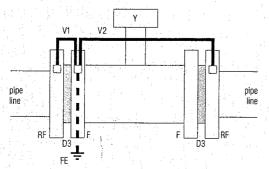
4. Grounding in hazardous areas

Special regulations applicable, refer to Sect. 6.1 and special "Ex" installation instructions.


1.3.8 Grounding diagrams

Installation in metal pipes, not internally coated, without grounding rings

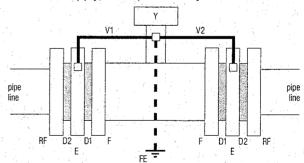
- **Gaskets,** not included with flowmeter, to be provided by customer
- F Flowmeter flanges
- RF Pipe flanges
- V1, V2 Connecting wires, bolted to the "neck" of the primary head (or to flange F on IFM 3080 K / M 900); provide threaded holes for M6 bolts (M8 bolts for IFM 3080 K / M 900: ≥ DN 50 or 11/2") for flange-side connection.
- Y Terminal box or signal converter


IFM 4080 K / K 480 S / IFS 4000, without grounding rings

FE Functional ground, see Sect. 1.3.7, points 2 and 3: wire ≥ 4 mm² (10 AWG) Cu, connected to U-clamp terminal on "neck" of primary head. Wire not included with supply, to be provided by customer.

IFM 3080 K / M 900, without grounding rings

FE Functional ground, see Sect. 1.3.7, points 2 and 3: wire ≥ 4 mm² (10 AWG) Cu, connected to flange F of of the primary head by means of cable lug for M6 bolt (or M8 for ≥ DN 40 or ≥ 11/2"). Wire and cable lug not included with flowmeter, to be provided by customer.



Installation in plastic pipes or internally coated metal pipes, with grounding rings (option)

- **D1, D2 Gaskets,** not included with flowmeter, to be provided by customer
- E Grounding rings, option
- F Flanges on flowmeter
- RF Pipe flanges
- V1, V2 Connecting wires, bolted to the "neck" (or to flange F on IFM 3080 K / M 900) of the primary head; use supplied bolts for connection with the grounding rings
- Y Terminal box or signal converter

IFM 4080 K / K 480 S / IFS 4000, with grounding rings

Functional ground, see Sect. 1.3.7, points 2 and 3: wire ≥ 4 mm² (10 AWG) Cu, connected to U-clamp terminal on "neck" of primary head. Wire not included with supply, to be provided by customer

IFM 3080 K / M 900, with grounding rings

FE Functional ground, see Sect. 1.3.7, points 2 and 3: wire ≥ 4 mm² (10 AWG) Cu, connected to flange F of the primary head by means of cable lug for M6 bolt (or M8 for ≥ DN 40 or ≥ 1½"). Wire and cable lug not included with flowmeter, to be provided by customer.

1.3.9 Torques

Bolts: tighten uniformly in diagonally opposite sequence, see Table for number and type

Column A for PTFE and PFA liners

Column B for Neoprene, Irethane, hard and soft rubber liners

IFM 4080 K / K 480 S / IFS 4000 with Irethane liner, > 12 mm / > 0.50": maximum torques refer to nominal diameter of connecting flange and not to nominal diameter of measuring tube, see Sect. 1.3.3!

10 Nm \sim 1.0 kpm \sim 7.23 ft lbf.

	<u> </u>					·
Meter size DN	Presure rating	Bolts			torque (ft lbf)	
mm	PN			Α		В
10	40	4 × M 12	7.6	5 (5.5)	4.6	(3.3)
15	40	4 × M 12	9.3	3 (6.7)	5.7	(4.1)
20	40	4 × M 12	16	(11.6)	9.6	(6.9)
25	40	4 × M 12	22	(15.9)	11	(8.0)
32	40	4 × M 16	37	(26.8)	19	(13.0)
40	40	4 × M 16	.43	(31.1)	25	(18.1)
50	40	4 × M 16	55	(39.8)	31	(22.4)
65	16	4 × M 16	51	(36.9)	42	(30.4)
65	40	8 × M 16	38	(27.5)	21	(15.2)
80	25	8 × M 16	47	(34.0)	25	(18.1)
100	16	8 × M 16	39	(28.2)	30	(21.7)
125	16	8 × M 16	53	(38.3)	40	(28.9)
150	16	8 × M 20	68	(49.2)	47	(34.0)
200	10	8 × M 20	84	(60.7)	68	(49.2)
200	16	12 × M 20	68	(49.2)	45	(32.5)
250	10	12 × M 20	78	(56.4)	65	(47.0)
250	16	12 × M 24	116	(83.9)	78	(56.4)
300	10	12 × M 20	88	(63.7)	76	(54.9)
300	16	12 × M 24	144	(104.2)	105	(75.9)
350	10	16 × M 20	97	(70.1)	75	(54.2)
400	10	16 × M 24	139	(100.5)	104	(75.2)
450	10	20 × M 24	127	(91.8)	93	(67.2)
500	10	20 × M 24	149	(107.7)	107	(77.4)
600	10	20 × M 27	205	(148.2)	138	(99.8)

Meter size	Body pressure rating	Bolts for ANSI class 150	-		torque (ft lbf)	
inches	psig	flanges		Α		В
3/8	580	4 x 1/2"	3.5	(2.5)	3.6	(2.6)
1/2	580	4 x 1/2"	3.5	(2.5)	3.6	(2.6)
3/4	580	4 x 1/2"	4.8	(3.5)	4.8	(3.5)
1	580	4 x 1/2"	6.7	(4.8)	4.4	(3.2)
11/4	580	4 x 1/2"	.10	(7.2)	8	(5.8)
11/2	580	4 x 1/2"	13	(9.4)	12	(8.7)
2	580	4 x 5/8"	24	(17.4)	23	(16.6)
21/2	580	4 x 5/8"	27	(19.5)	24	(17.4)
3	360	4 × 5/8"	43	(31.1)	39	(28.2)
4	230	8 x ⁵ / ₈ "	34	(24.6)	31	(22.4)
5	230	8 x ³ / ₄ "	53	(38.3)	47	(34.0)
6	230	8 x 3/4"	61	(44.1)	51	(36.9)
8	145	8 × 3/4"	86	(62.2)	69	(49.9)
10	145	12 × ⁷ / ₈ "	97	(70.2)	79	(57.1)
12	145	12 × ⁷ / ₈ "	119	(86.1)	104	(75.2)
14	145	12 × 1"	133	(96.2)	93 .	(76.2)
16	145	16 × 1"	130	(94.0)	91	(65.8)
18	145	16 × 11/8"	199	(143.9)	143	(103.4)
20	145	20 × 1 ¹ / ₈ "	182	(131.6)	127	(91.8)
24	145	20 × 1 ¹ / ₄ "	265	(191.6)	180	(130.1)
- 1		4.5		- Jan 18 19 19 19 19 19 19 19 19 19 19 19 19 19	- 12 kg (1 kg)	

Note: Process pressure must not exceed ANSI flange rating. Refer to ANSI Standard B 16.5.

1.3.10 IFM 3080 K / M 900 with sanitary connections

Versions

- Sanitary pipe union to DIN 11851, DN 10 to 125
- Clamp connection, measuring tube ³/₈" to 4"

Dimensions

Refer to Section 10.6.3

Cleaning the measuring tube

by CIP (cleaning in place) using various chemicals, acids, alkalis, steam or water up to 140°C (284°F).

Installation

To prevent damage to the PTFE liner, the factory-supplied rubber gaskets must be fitted without fail.

Grounding

- FE Functional ground, see Sect. 1.3.7, points 2 and 3: wire ≥ 4 mm² (10 AWG) Cu, connected to "neck" of primary head using M6 bolt (or M8 for ≥ DN 40 or ≥ 11/2") with suitable cable lug. Wire and cable lug not included with flowmeter, to be provided by customer.
- X Sanitary connections to DIN 11851, or clamp connections
- Y Terminal box or signal converter

2. Electrical connection

Important information - please note!

1. Overvoltage class, contamination

In conformity with VDE 0110, equivalent to IEC 664, the flow-meters are designed for overvoltage category III in the supply circuits and overvoltage category II in the output circuits. The overall unit is protected against ingress of water and solid foreign bodies (≥ IP 65) and, assuming proper installation, is thus dimensioned to operate under contamination 4 conditions.

2. Safety isolation, line-side fuse protection

The flowmeter must be fitted with an isolating facility. Because the EMC protective devices, in part, are arranged directly in the supply voltage input or in the outputs, it may be necessary to install suitable current limiters (e.g. additional fuse protection) to ensure that, in the event of failure of these devices due to, say, unacceptable voltage peaks in the supply or output cables, the flowmeter is not thermally overloaded due to the current rating of the line-side fuse or the downstream receiver instruments.

3. Insulation test voltages

Capacitors are located in the supply and output circuits so care must be taken to ensure that they are not overloaded during insulation tests. Therefore, please contact Krohne for test specifications before carrying out such tests.

2.1 IFM 1080 K / IFM 3080 K / IFM 4080 K / IFM 5080 K / K 480 S Compact flowmeters

2.1.1 Installation location and cable diameter

Location

- Do not expose the compact flowmeter to direct sunlight.
 Install a sunshade if necessary.
- Do not expose to intense vibration. If necessary, support the pipeline to the left and right of the flowmeter.

Cable diameter

To conform to protection category requirements, observe the following recommendations:

- Cable diameter: 8 to 13 mm (0.31" to 0.51")
- Enlarge inside diameter by removing the appropriate onion ring(s) from the seal of the screwed conduit entry only if cables have extremely tight fit.
- Fit blanking plug PG 16 and apply sealant to unused cable entries.
- Do not kink cables directly at conduit entries.
- Provide water drip point (U bend in cable).

Conduit installation, general wiring consideration

- When electrical codes require conduit, it must be installed in such a manner that the meter connection compartment remains dry at all times.
- Power and output wiring should be run in separate conduit.
- Use twisted pairs for output wiring.

2.1.2 Connection to power

- Note information given on the instrument nameplate (voltage, frequency)!
- Electrical connection in conformity with VDE 0100 "Regulations governing heavy-current installations with rated voltages up to 1000 V" or equivalent national standard.
- Special regulations apply to installation in hazardous areas. Refer to Sect. 6.1 and special "Ex" installation instructions.
- The PE protective ground conductor must be connected to the separate U-clamp terminal in the terminal box of the signal converter.
- In the case of extra-low voltages (24 V DC and 24/42 V AC), an FE functional ground must be connected to the separate U-clamp terminal in the terminal box of the signal converter (see connection diagrams in Sect. 2.2.5).
- Power supply for primary head via signal converter, terminals 7+8 in the separate terminal box of the IFC 080 F.
- Do not cross or loop the cables in the terminal box of the signal converter. Use separate PG or NPT screwed conduit entries for power and output cables.
- Ensure that the screw thread and the gasket of the round cover on the terminal box are well greased at all times.
- Connection to power, IFC 080 K

Warning

Power wiring should utilize a grounded neutral conductor to avoid possible shock hazard damage to component parts.

2.2.1 Location

- Do not expose signal converter to direct sunlight. Install a sunshade, if necessary.
- Do not expose to intense vibration.
- Install signal converter as closely as possible to the primary head.
- The rotating design of the housing makes it easier to connect the two cables for power and outputs to the terminals in the rear terminal box.
- Cable routing

- On normal customer orders, the GKL (primary constant) of the signal converter is factory-set to match that of the primary head with which it is ordered. The GKL is engraved on the primary head nameplate and also shown on the converter nameplate. These instruments should be installed together, otherwise the converter will need to be reset (see Sect. 4.3 and 8.2, Fct. 3.1.4, 3.1.5 and 3.6.1).
- Use factory-supplied standard signal cable A (Type DS), standard length 10 m (30 ft); for longer lengths and bootstrap signal cable B (Type BTS), refer to Sect. 2.2.3 and 2.2.4.
- Always use the bootstrap signal cable B (Type BTS) for IFS 5000 primary heads, DN 2.5 to 10 (1/10" to 3/8"), and in conjunction with contaminated fluids having a tendency to form electrically insulating deposits.

2.2.2 Connection to power

- Note the information given on the instrument nameplates on the primary head, signal converter (voltage, frequency)!
- Electrical connection in conformity with VDE 0100
 "Regulations governing heavy-current installations with rated voltages up to 1000 V" or equivalent national standard. Refer to connection diagrams, Sect. 2.2.5, for power connection to signal converter.
- Special regulations apply to installation in hazardous areas. Refer to Sect. 6.1 and special "Ex" installation instructions.
- The PE protective ground conductor must be connected to the separate U-clamp terminal in the terminal box of the signal converter.
- In the case of extra-low voltages (24 V DC and 24/42 V AC), an FE functional ground must be connected to the separate U-clamp terminal in the terminal box of the signal converter (see connection diagrams in Sect. 2.2.5).
- Power supply for primary head via signal converter, terminals 7+8 in the separate terminal box of the IFC 080 F.
- Do not cross or loop the cables in the terminal boxes of the primary head and signal converter. Use separate PG or NPT screwed conduit entries for each cable.
- Shielding of signal cables A+B must be reliably insulated from ground faults over its entire length.
- Line resistance for 24 V DC and 24/42 V AC max. internal resistance R_{max} of voltage supply (transformer or DC voltage source and cable) 24 Volt DC / 24 Volt AC: R_{max 24} ≤ 1.6 ohms 42 Volt AC: R_{max 42} ≤ 2.8 ohms

max. length L_{max} of power cable

 $_{-max} = 28 \times A (R_{max}-R_i)$

A Cross-section of power cable in mm² copper wire.

 R_{max} Internal resistance of voltage supply

R_{max 24} or R_{max 42}, see above

R_i Internal resistance of transformer or DC voltage source

Evample:

 $42 \text{ V AC / A} = 1.5 \text{ mm}^2 / \text{R}_i = 0.2 \text{ ohm / R}_{\text{max } 42} = 2.8 \text{ ohms}$ $L_{\text{max}} = [28 \times 1.5 (2.8-0.2)] = 109.2 \text{ m}$

109.2 m × 3.3 $\frac{\text{ft}}{\text{m}} \approx 360 \text{ ft}$

Connection of several signal converters to 1 transformer (n = number of converters)

Separate power cable: R_i increases by factor "n" $(R_i \times n)$ Common power cable: L_{max} decreases by factor "n" (L_{max}/n)

2.2.3 Signal cables A + B

1. General

KROHNE signal cables A+B with foil and magnetic shields will ensure faultless system operation.

- The signal cable must be a rigid installation. Cables must be secured so they do not move, or must be run in conduit.
- No separate installation of signal and field power supply cables required – can be run in same conduit along with other signal and field power cables. Do not run in same conduit with power cables for other devices.
- Shields are connected via stranded drain wires.
- Suitable for underwater and underground installations.
- Insulating material flame-retardant to IEC 332.1/VDE 0472
- Low in halogen and unplasticized.
- Flexible at low temperatures.

2. Signal cable A (Type DS)

with double shielding

- 1 Stranded drain wire, 1st shield, 1.5 mm² (14 AWG)
- 2 Insulation
- 3 Stranded wire 0.5 mm² (20 AWG)
- 4 Special foil, 1st shield
- 5 Insulation
- 6 Mu-metal foil, 2nd shield
- 7 Stranded drain wire, 2nd shield, 0.5 mm² (20 AWG)
- 8 Outer sheath

3. Bootstrap signal cable B (Type BTS)

The signal converter automatically controls the individual wire shields (3) to exactly the same voltage as that applied to the signal wires (5). Since the voltage difference between signal wires (5) and individual shields (3) is virtually zero, there is no flow of current via the line capacitances 3+5; thus, line capacitance is apparently zero. Much longer cable lengths are then permitted for fluids with low electrical conductivity levels.

- 1 Dummy glider wire
- 2 Insulation
- 3 Special foil, 1st shield
- 4 Insulation
- 5 Stranded wire 0.5 mm² (20 AWG)
- 6 Stranded drain wire, 1st shield, 0.5 mm² (20 AWG)
- 7 Special foil, 2nd shield
- 8 Stranded drain wire, 2nd shield, 1.5 mm² (14 AWG)
- 9 Insulation
- 10 Mu-metal foil, 3rd shield
- 11 Stranded drain wire, 3rd shield, 0.5 mm² (20 AWG)
- 12 Outer sheath

2.2.4 Cable length

- Signal cables A + B: length is dependent on the electrical conductivity, κ, of the fluid and the cross-section A_F of the field power cable C.
- Field power supply cables: length is dependent on cable cross-section A_F.
- Special regulations apply to hazardous-area operation, refer to Sect. 6.1 and special "Ex" installation instructions.
- Abbreviations used in the following tables, diagrams and connection diagrams:
- A Signal cable A (Typ DS), with double shielding

max. length, (Lmax) see Diagram

- B Signal cable B (Typ BTS), with triple shielding
- C Field power supply cable, minimum cross-section (A_F) and length see Table
- D High-temperature silicone cable, 3 x 1.5 mm² Cu / 3 x AWG 14, single shielding, length max. 5 m / 16 ft
- E High-temperature silicone cable, 2 x 1.5 mm² Cu / 2 x AWG 14, length max. 5 m / 16 ft
- A_F Cross-section of field power supply cable C see Table
- L Cable length
- α electrical conductivity of liquid
- ZD Intermediate connection box, required in conjunction with cables D and E for primary IFS 5000 and IFS 4000 primary heads where product temperatures exceed 150°C / 302°F

Length of signal cable

Primary	Meter size	Meter size		
head	DN mm	inches	cable	
IFS 5000	2.5 4 to 15 25 to 100	1/10 1/6 to 1 1 to 4	B1 B2 A2 or B3	
IFS 4000	10 to 600	3/8 to 24	A2 or B3	
M 900	10 to 300	3% to 12	A1 or B2	

 Always use the bootstrap signal cable B (Type BTS) for IFS 500 primary heads, DN 2.5 to 10 (1/10" to 3/8"), and in conjunction with contaminated fluids having a tendency to form electrically insulating deposits.

Field power supply cable C

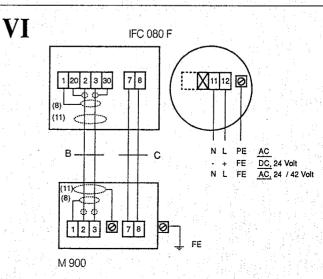
Length L		ing seek and a seek an	Cross section A _F , minimum
0 to 150 m /	5 to	500 ft	2 x 0.75 mm ² Cu / 2 x AWG 18
150 to 300 m / 5	00 to	1000 ft	2 x 1.50 mm ² Cu / 2 x AWG 14
	0 to 150 m /	0 to 150 m / 5 to	

2.2.5 Connection diagrams I to VI

- Selection table for connection diagrams, see page 16
- Connect hazardous-duty systems according to the diagrams given in the special "Ex" installation instructions.

The figures in brackets refer to the stranded drain wires for the shields, refer to sectional drawings of signal cables A and B in Sect. 2.2.3 Refer to Sect. 2.2.4 for cable types C, D and E.

Product	Primary head			Signal conv	erter	Connection	diagram
temperature	Type Meter size			IFC 080 F ZD		Signal cable	
	8 1	DN mm	inches			Α	В
below 150°C 302°F	IFS 5000	2.5 to 15 25 to 100	1/ ₁₀ to 1/ ₂ 1 to 4	X			II II
	IFS 4000	10 to 600	3/8 to 24	Χ		I	II
above 150°C 302°F	IFS 5000	2.5 to 15 25 to 100	1/ ₁₀ to 1/ ₂ 1 to 4	X X	X	_ III	I V I V
	IFS 4000	10 to 600	³ / ₈ to 24	Χ	Χ	III	IV
up to 180°C 356°F	М 900	10 to 300	³ ⁄ ₈ to 12	X		V	VI



2.3 Outputs

2.3.1 Abbreviations

Abbreviation	Stands for	Setting via Fct.No	Description see Sect
EC	Electronic totalizer	-	5.8
EMC	Electro-mechanical totalizer	_	5.8
F	Forward flow	and the state of t	5.10
P	Pulse output	3.3.1 et seq.	5.8
P _{100%}	Pulses for Q = 100% flowrate or pulse value	3.4.2 + 3.4.3	5.8
P _{max}	Pulses at Q higher than 100% flow (max. 115% of P _{100%})		5.8
1	Current output	3.3.2	5.7
l _{0%}	Current at Q = 0% flow	3.3.2	5.7
I _{100%}	Current at Q = 100% flow	3.3.2	5.7
I _{max}	Current at Q = over 100% flow	3.3.2	5. 7
Q _{0%}	0% flowrate		5.3 (5.7 + 5.8)
Q _{100%}	Full-scale range, 100% flowrate	V:3.1.1 / R:3.1.2	5.3 (5.7 + 5.8)
Q_{max}	Max. flow, Q greater than 100%, corresponding to I _{max} and P _{max}		5.3 (5.7 + 5.8)
R	Reverse flow		5.10
SMU-I / SMU-P	Low-flow cutoff for I + P	I:3.3.4 / P: 3.4.6	5.9

2.3.2 Current output I

- The current output is galvanically isolated from all input and output circuits but not from pulse output P. Therefore only one
 grounded receiver instrument may be connected to either current output I or pulse output P.
- All functions and operating data can be set, see Sect. 4 + 5.7.
- Factory-set data and functions are listed in the enclosed report on settings. This can also be used to record any changes made to the operating parameters.
- Max. load at terminals 5/6 for 1,00% (Fct. 3.3.2):

max. load =
$$\frac{14 \text{ V}}{l_{100\%} \text{ [mA]}}$$
 (e.g. 0.7 kOhm for $l_{100\%} = 20 \text{ mA}$)

- Time constant I, adjustable between 0.2 and 3600 seconds (Fct. 3.3.3), see Sect. 5.7.
- Low-flow cutoff SMU-I (Fct. 3.3.4) adjustable independently of SMU-P (pulse output). Cut-off "on" value between 1 and 19% of Q_{100%}, cut-off "off" value between 2 and 20% of Q_{100%}, see Sect. 5.9.
- Connection diagrams 1, 5, 6, 7, 8, 9 + 10, refer to Sect. 2.3.4.

2.3.3 Pulse output P

- The pulse output is galvanically isolated from all input and output circuits but not from current output I. Therefore only one
 grounded receiver instrument may be connected to either pulse output P or current output I.
- All functions and operating data can be set, see Sect. 4 + 5.8.
- Factory-set data and functions are listed in the enclosed report on settings. This can also be used to record any changes
 made to the operating parameters.
- Digital pulse division, interpulse period non-uniform, therefore if frequency meters connected allow for minimum counting interval:

gate time, counter
$$\geq \frac{1000}{P_{100\%} \text{ [Hz]}}$$
, at least 0.4 second.

- Active pulse output for electromechanical totalizers EMC (terminals 4.1/4.2 or 4/4.1/4.2), 10 to 36000000 pulses/hr (0.0028 to 10000 Hz), amplitude max. 30 V, selectable pulse widths and load rating, see below.
- Passive pulse output, open collector for connection of active electronic totalizers EC or switchgear, input voltage 5 to 30 V, load current max. 100 mA, R_i = 100 ohms, selectable pulse widths, see below.
- Pulse width (Fct. 3.4.4) as a factor of frequency (pulse rate Fct. 3.4.2 + 3.4.3) and maximum permissible load for active output (term. 4.1/4.2 or 4/4.1/4.2), see also Sect. 5.8.

Pulse width	$\underline{\text{Frequency } f} = P_{100\%}$		Load rating of active or	<u>ıtput</u>
			Load current	Load
500 ms 200 ms 100 ms 100 ms 50 ms 50 ms 30 ms 30 ms Pulse width* = $\frac{1}{2 \times P_{100\%}}$	0.0028 Hz	1 Hz 2 Hz 3 Hz 5 Hz 5 Hz 10 Hz 6 Hz 10 Hz	≤ 150 mA ≤ 150 mA ≤ 150 mA ≤ 150 mA ≤ 150 mA ≤ 60 mA ≤ 150 mA ≤ 80 mA ≤ 80 mA	≥ 160 Ohm ≥ 160 Ohm ≥ 160 Ohm ≥ 400 Ohm ≥ 160 Ohm ≥ 160 Ohm ≥ 160 Ohm ≥ 300 Ohm ≥ 1000 Ohm

^{*} Pulse width is independent of setting in Fct. 3.4.4.

- Time constant P, adjustable to 0.2 second or same as current output I (Fct. 3.4.5 + 3.3.3)
- Low-flow cutoff SMU-P (Fct. 3.4.6), adjustable independently of SMU-I (current output). Cut-off "on" value between 1 and 19% of Q_{100%}, cut-off "off" value between 2 and 20% of Q_{100%}, see Sect. 5.9.
- Connection diagrams 2, 3, 4, 6, 7, 8 + 9, see Sect. 2.3.4.

2.3.4 Connection diagrams for outputs ① to ⑩

Output characteristics

Current output I: Diagrams I1 to I5 in Sect. 5.7 Pulse output P: Diagrams P1 to P4 in Sect. 5.8

R1 and R2 when electronic totalizers connected to term. 4/4.1/4.2, connection diagrams ③ + ④

R1 = 1 kOhm/1W

R2 = needed only for totalizers with input voltages U_{max} < 30 Volt

U _{max}	24 Volt	12 Volt	5 Volt
R2	3,9 kOhm	680 Ohm	180 Ohm

1 flow direction

F/R operation / 2 flow directions

3. (Initial) Start-up

- Check that the system has been correctly installed as described in Sect. 1 and 2.
- With separate systems, check before initial start-up that the following details on the primary head nameplate agree with the data specified in the report of settings for the signal converter. If not, resetting will be necessary:

Order No., see instrument nameplates
Meter size (DN), Fct. 3.1.4, Sect. 5.3
Primary constant GKL, Fct. 3.1.5, Sect. 5.14
Flow direction, Fct. 3.1.6, Sect. 5.4 + 5.16
Magnetic field frequency, Fct. 3.6.1, Sect. 5.14

- It is recommended to carry out a zero check, if the flow can be zeroed, as described in Sect. 7.2, before every start-up and particularly where fluid products with low electrical conductivity levels are concerned.
- When powered, the signal converter operates in the measuring mode. The Ident. No. of the signal converter appears on the display for about 3 seconds. This is followed by display of the actual flowrate and/or the internal count on a continuous or alternating basis (depends on setting, see report on settings).

Important: With regard to the factory setting, please note information given in Sect. 5.16!

Part B IFC 080 Signal converter

4. Operation of the signal converter

This section 4 is repeated in the form of pull-out condensed operating instructions between pages 38 and 39.

4.1 Operating and check elements

The operating elements are accessible after removing the cover of the electronics section using the special wrench.

Caution: Do not damage the screw thread and the gasket, never allow dirt to accumulate, and make sure they are well greased at all times.

- Display 1st (top) line
- ② Display 2nd (middle) line
- ⑤ Display 3rd (bottom) line: arrows (▼) to identify actual display

flowrate Actual flowrate

Totalizer + Totalizer (Forward flow)
- Totalizer (Reverse flow)

 Σ Sum totalizer (**H**everse flow)

- Weys for operator control of the signal converter, refer to "setting diagram" (on the right) and Sect. 4.2.3.
- Magnetic sensors (option) to set the converter by means of a handheld bar magnet without opening the housing, refer to Sect. 6.4. Function of sensors same as keys .
- © Compass field, signals actuation of a key.

4.2. KROHNE operator control concept

4.2.1 Description

The operator control concept of the signal converter consists of 3 levels (horizontal). Each menu-level is split up into 4 (or 3) columns (vertical), see Setting Diagram on right. The menus are designed for the jobs to be carried out by the various

user groups (see below).

Setting level

This level is divided into 3 main menus. It is selected by pressing the ⇔key (and, if necessary, the 9-keystroke Entry Code 1 if YES is set under Fct. 3.5.2 ENTRY. CODE 1).

Fct. 1.0 OPERATION

Maintenance, repair, process management

This menu contains **only the most important parameters** and functions of Menu 3 (*INSTALL*.) to allow rapid changes to be made during the measuring mode.

Fct. 2.0 TEST

Maintenance, repair

Test menu for checking the signal converter (display, outputs, measuring range).

Fct. 3.0 INSTALL.

Project and installation groups

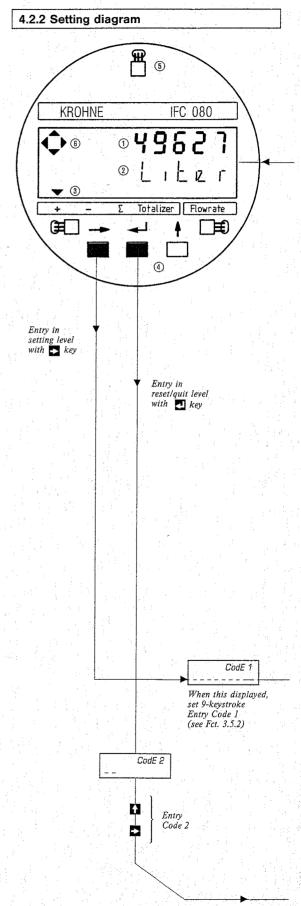
All flow measurement- and flowmeter-specific parameters and functions can be set in this menu.

Parameter check level

Fct. 4.0 PARAM.ERROR

This level is not selectable. After exiting from the "setting level", the signal converter checks new data for plausibility (inconsistency). If an error is established, the signal converter indicates *PARAM.-ERROR* in Fct. 4.0. In this menu, all functions can be scanned and those changed that are inconsistent.

Reset/acknowledge level (Quit)


Process management

This menu has 2 tasks (A + B) and is selected via Entry Code 2 $(A \cap B)$.

A) Separate resetting of "+" and "-" totalizers, provided that resetting is enabled under Fct. 3.5.8 *ENABL.RESET*,input *YES*. Resetting also affects the sum totalizers!

B) Error scanning and acknowledgement (Quit)

Errors that have occurred since the last acknowledgement are indicated in a list. After elimination of the cause(s) and acknowledgement, these errors are deleted from the list (see Sect. 4.4).

4.2.3 Operation of the signal converter, function of keys

Terminate measuring mode Press	To start		
OPERATION CodE 1			Terminate measuring mode
CodE 1	Press -		
Factory setting: Factor		or	
[9 alpha characters] keys and set the 9-keystroke Entry Code 1 again (see above). If you have forgotten Entry Code 1, the code can be decoded with the	(key)	CodE 1 ************* Fot. 1.0	Factory setting: Factory setting: Factory set
If you have forgotten Entry Code 1, the code can be decoded with the		1 ===== : .	
are of the orapina of aprila of the action o			If you have forgotten Entry Code 1, the code can be decoded with the aid of the 9 alpha characters. Please consult factory.

Function	n of the keys in the 3 levels
Cursor	is the flashing part of the display. This can be a digit, a text, a unit or a sign.
₽	The cursor key shifts the cursor to a new (different) position in the display. For the menu columns (see diagram in Sect. 4.2.2) this means: transfer to the next "right" column, i.e. from left to right, up to the data column. Only in the data column can parameters be changed and functions initiated.
	The select key changes the content (digit, text) of the flashing cursor. - Digit: Increase value by "1" (With Fct , display next main or submenu or next function) - Text/unit: Display (select) next text/unit from a list - Sign: Change from "+" to "-" or, with exponents, from "E+" to "E-", and vice versa.
₹.	The accept key (return key) is used for: - acceptance of new parameters, - acknowledgement of displayed error messages in the reset/ackn. menu, and - execution of displayed functions.
	For the menu columns (see diagram in Sect. 4.2.2) this means: transfer to the next "left" column, i.e. from right to left, up to the main menu column. Only from the main menu column is it possible to exit from the 3 levels and return to the measuring mode.
Impor- tant	If numerical values are set that are outside the permissible input range, the display will flash after the "Accept" key a has been pressed.
	1st line: permissible min. or max. value displayed 2nd line: MIN VALUE or MAX VALUE
	The incorrect numerical value is displayed again after pressing the key; set correct numerical value.
	• Time-out function: if the signal converter is in the setting level and if no keystrokes are made for approx. 15 minutes, the signal converter will automatically revert to the measuring mode without accepting any previously changed data.

To terminate		
Press 4 1-4 times		Press key (1-4 times) until following appears on the display
	STORE. YES	= acceptance of new parameters
		If the newly set parameters are not to be accepted or return to the setting level is desired, proceed as follows:
		Press 1 STORENO , from here press key to return to measuring mode (actual display) with the "old" parameters and functions.
		again Press
Press 🛂	PARAM.CHECK	= plausibility check, i.e. newly set parameters checked for plausibility (inconsistency).
	Actual display	No Error in plausibility check. Return to measuring mode
		Error(s) in parameter check, see following display
	Fct. 4. 0 PARAM.ERROR	Main menu 4.0 parameter error(s) displayed.
		In this menu, all faulty functions can be scanned and corrected. The keys here have the same function as in menus 1.0, 2.0 and 3.0, see above: function of keys.

4.2.4 Example for setting of the signal converter

The following example shows how to change the pulse rate of the pulse output (function: Fct. 3.5.2 PULSE/TIME, see Functions Table in Sect. 4.3). The cursor (flashing part of display) is shown here in bold type.

- "old" setting: 1 pulse per second (1.000E 0 PulSe/Sec)
 change to: 1000 pulses per hour (1.0000E 3 PulSe/hr)

How to use the diagram

☐ ☐ Grey boxes and black keys describe the path taken for the above example 1 White boxes and white keys identify paths taken to change data in the other main and submenus and/ or functions, see Functions Table in Sect. 4.3.

4.3 Table of settable functions

Fct. No.	Text	Description and settings
1.00	OPERATION	Main menu 1.0 Operation
1.1.0	BASIS PARAM.	Submenu 1.1.0 Basis parameters
1.1.1	FULL SCALE	Full-scale range for flowrate Q _{100%} see Fct. 3.1.1
1.1.2	REV.SCALE	Different range for reverse flow required? See Fct. 3.1.2
1.1.3	ZERO SET	Zero calibration see Fct. 3.1.3
1,2.0	DISPLAY	Submenu 1.2.0 Display
1.2.1	DISP.FLOW	
1.2.2	DISP. TOTAL	Unit for flowrate display, see Fct. 3.2.1 Function of totalizer display, see Fct. 3.2.2
1.2.3	<u> </u>	
	CYCL.DISP.	Cyclic display required? see Fct. 3.2.4
1.3.0	CUR.OUTP.I	Submenu 1.3.0 Current output I
1.3.1	TIMECONST.I	Time constant for current output I, see Fct. 3.3.3
1.3.2	L.F.CUTOFF I	Low-flow cutoff (SMU) for current output I see Fct. 3.3.4
1.4.0	PULSOUTP: P	Submenu 1.4.0 Pulse output P
1.4.1	PULSE/TIME	Pulses per unit time for 100% flowrate
	or PULSE/VOL.	or Pulses per unit volume, see Fct. 3.4.3
1.4.2	L.F.CUTOFF P	
		Low-flow cutoff (SMU) for pulse output P, see Fct. 3.4.6
2.0	TEST	Main menu 2.0 Test functions
2.1	TEST DISP.	Test of the display (Sect. 7.1.2.)
		Start with key (duration: approx. 15 sec.)
2.2	TEST I	Test of current output I (Sect. 7.1.3) Safety interrogation: SURE NO SURE YES
	, 11 , 4	● 0 mA ● 10 mA ● 20 mA
		● 4 mA ● 16 mA ● 22 mA
		Select with 1 key
		Displayed value present directly at current
	2	output.
		Actual value again present at output after pressing the decided key.
2.3	TEST P	Test of pulse output P (Sect. 7.1.3)
		Safety interrogation: SURE NO SURE YES
:		● 1 Hz ● 100 Hz ● 10000 Hz ● 10 Hz ● 1000 Hz
		Select with 🚹 key. Displayed value present directly at pulse
		output. Actual value again present at output after pressing the key.
2.4	TEST Q	Test of full-scale range (Sect. 7.1.3)
	, 10, 10	Safety interrogation: SURE NO SURE YES
	: :	• -110 / -100 / + 50 / - 10 PCT.
	* - 1	 O PCT. + 10 / + 50 / +100 / +110 PCT. of set full-scale range (Q_{100%}).
: ;		Select with key. Displayed value present directly at outputs I and P.
		Actual value again present
		at output after pressing the 🛂 key.
ferconnection and the second	INSTALL.	Main menu 3.0 Installation
3.1.0	BASIS.PARAM.	Submenu 3.1.0 Basis parameters
3.1.1.	FULL SCALE	Full-scale range for flowrate Q _{100%}
		Selection of unit and setting ranges ■ 0.0054 E0-0.3053 E6 m3/h
		• 0.0034 E0=0.3033 E6 1113/11 • 0.0015 E0=0.8482 E5 Liter/Sec
		● 0.0234 E0-0.1344 E7 US Gal/min
		(see Sect. 5.1, 5.2 + 5.3)
	11 ×	 user-defined unit, factory-set is hLiter/hr or US.MGal/DAY (hectoliters per hour or
		US million gallons per day), can be
:		changed via Fct. 3.5.5 - 3.5.7 (Sect. 5.15).
		After selecting unit, call numerical
L		value with key, 1st digit flashes.

Fct. No.	Text	Description and settings				
3.1.2	REV.SCALE	Different range for reverse flow required?				
		Set NO or YES.				
		If YES, the full-scale range for the reverse flow must be set.				
		Selection of unit and setting ranges				
		same as in Fct. 3.1.1. Value not greater than that of Fct. 3.1.1!				
3.1.3	ZERO SET	Zero calibration (Sect. 7.2)				
1		Perform only at "0" flow and with				
	1	compl. filled measuring tube. 1) Query: CALIB. NO or YES				
		2) If YES: calibration,				
		duration approx. 25 sec. with zero displayed as <i>PERCENT</i> of Q _{100%} .				
		3) Query: STORE NO or YES				
3.1.4	METER SIZE	Table of meter sizes				
		Size from DN 2.5-600 mm, equivalent to 1/10-24 inch				
		equivalent to 1/10-24 inch. Select from this table using key				
045	OK VALUE	(Sect. 5.3.).				
3.1.5	GK VALUE	Primary head constant GKL (see nameplate, primary head)				
		<u>value</u> ; 0.5 to 14				
3.1.6	FLOW. DIR.	Define direction of forward flow				
		Set according to direction of arrow on primary head: + or -				
3.2.0	DISPLAY	Submenu 3.2.0 Display				
3.2.1	DISP.FLOW	Unit for flowrate display				
		m3/hr				
		user-defined unit, factory-set is Liter/hr or US.MGal/DAY (liters per hour				
	7	or US million gallons per day) can be				
		changed via Fct. 3.5.5 – 3.5.7 (Sect. 5.15).				
		PERCENT				
200	DICTOTAL	NO DISPLAY				
3.2.2	DISP.TOTAL	Function of totalizer display ■ NO DISPLAY (= totalizer switched on				
		but not displayed)				
		 TOTAL.OFF (= totalizer switched off) + TOTAL. (= forward flow totalizer) 				
		 TOTAL. (= reverse flow totalizer) 				
100		 +/- TOTAL. (forward and reverse flow totalizers, alternating) 				
\$ 1 T F F		● SUM TOTAL. (= sum of "+" and "-"				
		totalizers) ■ ALL TOTAL. (= sum, "+" and "-"				
		totalizers, sequential)				
3.2.3	UNIT TOTAL.	Unit for totalizer display				
		● m3				
3.2.4	CYCL.DISP.	Cyclic display required?				
		Setting: NO or YES				
3.2.5	ERROR MSG.	Which error messages to be displayed? (Sect. 4.4)				
		● NO MESSAGE				
1.54		(= no display of error messages) ● ADC ERROR				
		(= ADC errors only)				
		TOTAL ERROR (= only errors of internal totalizer)				
		(= only errors of internal totalizer) ● ALL ERROR				
		(= display all errors)				
3.3.0	CUR.OUTP.I	Submenu 3.3.0 Current output I				
3.3.1	FUNCTION I	Function, current output I • OFF (= switched off)				
		● F/R IND. P				
1.21		(= F/R indication, for P) ● 1 DIR.				
		(= 1 flow direction)				
		I < I O PCT. Forward and Reverse flow.				
		(= Forward and Reverse flow, e.g. in 0 – 20 mA range:				
1		F = 10 - 20 mA				
		(= forward/reverse flow,				
		F/R measurement)				

Fct. No.	Text	Description and settings			
3.3.2	RANGE I	Range fur current output I			
		• FIXED 0-20 mA max = 22 mA			
1.5	1.	 FIXED 4-20 mA I_{max} = 22 mA VARIAB. (variable ranged) 			
200		$l_{0\%}$ (Q = 0% flow): OD-16 mA			
		$l_{100\%}$ (Q = 100% flow): 04-20 mA			
-	1	I_{max} (Q > 100% flow): 04-22 mA			
	4 - 4	Note following conditions:			
:		$ _{100\%} - _{0\%} \ge 4 \text{ mA}$ $ _{100\%} \le _{\text{max}}$			
1					
	V (4)	Display: e.g. for 5-10 mA, max. 15 mA 05-10 15 (top line)			
and a		VARIAB. mA (bottom line)			
3.3.3	TIMECONST.I	Time constant for current output I			
		<u>Value:</u> 0.2 to 3600 Sec			
3.3.4	L.F.CUTOFF I	Low-flow cutoff (SMU) for current			
	14	output I required? Setting: NO or YES.			
* .	1				
		If YES, setting ranges: "on" value: 01-19 PERCENT			
		"off" value: 02-20 PERCENT			
		Note following condition:			
		Cutoff "on" value "minus" cutoff "off"			
		value > 1%			
	*	Display, e.g. for range: on = 2%, off = 6%			
	100	02-06 (top line)			
		PERCENT (bottom line)			
3.4.0	PULSOUTP. P	Submenu 3.4.0 Pulse output P			
3.4.1	FUNCTION P	Function of pulse output P			
		 OFF (= switched off) F/R IND. I (= F/R indication, for I) 			
		• 1 DIR. (= 1 flow direction)			
1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	● 2 DIR.			
		(= forward/reverse flow, F/R measurement)			
040	UNIT P				
3.4.2	אוווים פ	Unit of pulse output P PULSE/TIME (= setting in pulses per			
4.5		unit time)			
		 PULSE/VOL. (= setting in pulses per 			
		unit volume)			
3.4.3	PULSE/TIME	Pulses per unit time for 100% flowrate see Fct. 3.1.1			
		(appears only if PULSE/TIME			
	1.5 1.6	set under Fct. 3.4.2)			
		Setting ranges			
		0.0028 E0-0.1000 E5 PulSe/Sec (= Hz)			
		0.1667 E0-0.6000 E6 PulSe/min 0.1000 E2-0.3600 E8 PulSe/hr			
	11 ft - 12 ft	After selecting unit, call numerical			
		value with key, 1st digit flashes.			
3.4.3	 PULSE/VOL.				
ن.4.ن	I OLUE/ VUL.	Pulses per unit volume (flowrate) (appears only if PULSE/VOL. set under			
7		Fct. 3.4.2)			
120		Setting ranges			
		0.0001 E0-0.9999 E9 PulS/m3			
	21.0	0.0001 E0-0.9999 E6 PulS/Liter			
		0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but:			
		$Q_{100\%}$ x pulse value $\leq 3.6 \times 10^7$ pulses/hr).			
1 - 6		After selecting unit, call numerical			
<u> </u>		value with 🗠 key, 1st digit flashes.			
3.4.4	PULSWIDTH	Pulse width for frequencies ≤ 10 Hz			
		● 30 mSec ● 200 mSec			
		● 50 mSec ● 500 mSec ● 100 mSec			
3.4.5	TIMECONST.P	Time constant for pulse output P			
J.7.J	, aviegot vot i ir	• 0.2 Sec			
		● SAME AS I (= time constant for P same as			
		for I, see Fct. 3.3.3)			
3.4.6	L.F.CUTOFF P	Low-flow cutoff (SMU) for pulse output P			
1		required? Setting: <i>ND</i> or <i>YES</i>			
- 1 I		If YES, setting ranges: "on" value: 01-19 PERCENT			
		"off" value: 02-20 PERCENT			
		Note following condition:			
	at the second se				
		Cut-off "off" value "minus" cutoff "on"			
		Cut-off "off" value "minus" cutoff "on" value > 1%			
		value $> 1\%$ Display, e.g. for range: on = 2%, off = 6%			
		value > 1%			

r=	``	<u> </u>
Fct. No.	The March College Control of the North Add William Self-villa	Description and settings
3.5.0	USER DATA	Submenu 3.5.0 User data
3.5.1	LANGUAGE	Language for display texts
		 ● GB/USA (= English) ● D (= German)
	1 × 1	● F (= French)
	and the second	others pending
3.5.2	ENTRY CODE 1	Entry Code 1 for entry into setting
1		level required?
İ		● NO = entry with ▶ key
		YES = entry with 9-keystroke code. Setting of code under Fct. 3.5.3
3.5.3	CODE 1	Set Code 1 (9-keystroke combination)
	0002 /	• factory setting:
		If different code required:
		press any 9-keystroke combination, and
		then press the same keystroke combination again.
	1 1 1 1 1 1 1 1 1	Each keystroke acknowledged by "*.
		WRONG CODE (= incorrect entry)
1		appears if 1st and 2nd entries are not equal.
<u> </u>		Press and repeat entries.
3.5.4	LOCATION	Set tag name (measuring point No.),
		max 10digits. Required only for flowmeters of "HHC" design (operator control via
f .		Hand-Held Communicator MIC 500,
	100	connected to current output).
1		Factory setting: ALTOMETER
		Characters assignable to each place:
		(underscore character = blank character)
3.5.5	UNIT TEXT	Text for user-defined unit, Sect. 5.15
		Factory setting:
7.83		Liter/hr or US.MGal/DAY (= liters per hour or US million gallons per day)
1		Characters assignable to each place:
		AZ / az / O9 /
		(underscore character = blank character)
3.5.6	FACT.QUANT.	Fraction bar "/" in 7th place is unalterable.
3.3.0	raci.guaivi.	Conversion factor for quantity (F _M), Sect. 5.15
	# 4 +	Factory setting:
		1.00000 E+3 (for liters) or
		2.64172 E-4 (for US million gallons) Factor F _M = quantity per 1 m ³ .
1.1		Setting range: 0.00001 E-9 to
2 + 121 .		9.99999 E+9
3.5.7	FACT. TIME	Conversion factor for time (F _T)
		Sect. 5.15 Factory setting:
		3.60000 E+3 (for hour) or
		8.64000 E+4 (for day)
		Factor F _T in seconds Setting range: 0.00001 E-9 to
		9.99999 E+9
3.5.8	ENABL RESET	Enable totalizer reset
- 4		for the RESET / OUIT menu, see Sect. 5.6
		Query: NO or YES
3.6.0	APPLICAT.	Submenu 3.6.0 Application
3.6.1	FIELD FREQ.	Magnetic field frequency, Sect. 5.14+8.2
2.6.0	NOICE	● 1/6 ● 1/16 ● 1/32
3.6.2	NOISE	Noise rejection, Sect. 6.2 ● NO NOISE
	a san a line	● NOISE
3.6.3	REF, SEL.	Selecting the reference voltage
		Sect. 6.2
		AUTO.REF. (= automatic reference)
		● HIGH-FLOW
		(= high flow range)
	No. 1 Garage	MED.1-FLOW (= 1st modium flow mane)
		(= 1st medium flow range) ■ MED.2-FLOW
4, 1		(= 2nd medium flow range)
		● MED.3-FLOW
		(= 3rd medium flow range) ● LOW-FLOW
		(= low flow range)
		· · · · · · · · · · · · · · · · · · ·

·		
Fct. No.	Text	Description and settings
4.0	PARAM.ERROR	Main menu 4.0 Parameter errors
4.1.0	FLOW VELOC	FLOW VELOCITY " v " incorrect: Ensure condition 0.3 m/s $\leq v \leq$ 12 m/s or 1 ft/s $\leq v \leq$ 40 ft/s is mell
4.1.1	FULL SCALE	Full-sclae range for flowrate Q _{100%} see Fct. 3.1.1
4.1.2	METER SIZE	Meter size,see Fct. 3.1.4
4.2.0	FVA FLOW	FULL-SCALE RANGE(S) for forward/reverse flow incorrect: Ensure condition F ≥ R ist met!
4.2.1	FULL SCALE	Full-scale range Q _{F100%} (forward flow) see Fct. 3.1.1
4.2.2	REV.SCALE	Different full-scale range for reverse flow required? see Fct. 3.1.2
4.3.0	P > 10 kHz	OUTPUT FREQUENCY too high: must be less than 10 kHz!
4.3.1	PULSE/VOL.	Pulse value for flow unit, see Fct. 3.4.3
4.3.2	FULL SCALE	Full-scale range for flow Q _{100%} see Fct. 3.1.1
4.4.0	P<>PULSW	FREQUENCY/PULSE WIDTH ASSIGNMENT is incorrect: Refer to Table in Sect. 2.3.3.
4.4.1	PULSWIDTH	Pulse width for frequencies ≤ 10 Hz see Fct. 3.4.4
4.4.2	PULSE/TIME	Pulse rate for 100% flowrate see Fct. 3.4.3
4.4.2	PULSE/VOL.	Pulse value for flow unit, see Fct. 3.4.3
4.4.3	FULL SCALE	Full-scale range for flow Q _{100%} see Fct. 3.1.1

4.4 Error messages (ERROR)

4.4.1 List of errors (ERRORLIST) and how shown in display

The following list gives all errors that can occur during process flow measurement.

List of errors

Error messages displayed in 2nd (middle) line	Description of error Rectify instrument fault and/or clear error message			Error output in measuring mode via display (Fct. 3.2.5) dependent on setting				
			NO MESS.	ADC ERROR	TOTAL ERROR	. ALL ERROR		
CAL.DATA	Calibration data lost or incorrect	Return to factory for recalibration		\$10,000 post of the con-	AL ER	Committee of the second		
EEPROM 1	Error in EEPROM 1, parameter error(s)	Check all instrument parameters and correct if necessary	S	ame as f	or "zero"	nin. value: flow: Invol 'Ouit men	ke .	
ROM	Check-sum error in ROM	Switch power off and on again.	to	check w	hich of th	ese 4 em ect error a	ors	
RAM	Check-sum error in RAM	Switch power off and on again.		indicate	ed. If not p insult fact	possible,		
TOTALIZER *	Counts lost or totalizer overflow Note: totalizer was reset	Cancel error in Reset/Quit menu, see Sect. 4.4.3	-	-	yes	yes		
EEPROM 2 *	Error in EEPROM 2, totalizer Note: totalizer deviation possible	Cancel error in Reset/Quit menu, see Sect. 4.4.3. Reset totalizer(s) if necessary.		, i-	yes	yes		
LINE INT. *	Power failure Note: no counting during power failure	Cancel error in Reset/Quit menu, see Sect. 4.4.3 Reset totalizer(s) if necessary.	-		yes	yes		
RESET *	Power voltage fluctuation Note: totalizer deviation possible	Cancel error in Reset/Quit menu, see Sect. 4.4.3 Reset totalizer(s) if necessary.	-	-	yes	yes		
CUR.OUTP. I *	Current output overranged	Cancel error in Reset/Quit menu, see Sect. 4.4.3. Eliminate cause, if necessary check and correct instrument parameters.	- a		1	yes		
PULSOUTP. P *	Pulse output overranged	Cancel error in Reset/Quit menu, see Sect. 4.4.3. Eliminate cause, if necessary check and correct instrument parameters.		* *		yes		
ADC *	Analog/digital converter overranged or defective	Cancel error in Reset/Quit menu, see Sect. 4.4.3	-	yes	-	yes		

* When errors are displayed during the measuring mode and in the *ERRORLIST* in the Reset/Quit menu, "a numeral" and "*Err.*" will appear in the 1st (top) line. The numeral gives the number of momentarily occurring errors that are displayed alternately with the actual measured value.

- (A) Compass field
- (B) Number of errors that have occurred
 - Plain text for error message(s)
- (D) With bar:

"new" errors, not yet acknowledged

Without bar:

"old", acknowledged errors but cause not yet eliminated

see Sect. 4.4.3

4.4.2 Error display during measuring (display) mode

In the setting level under Fct. 3.2.5 *ERROR MSG*. (error messages), it is possible to select whether and, if so, which errors are to be displayed during measurement (display mode). Depending on setting under Fct. 3.2.4 *CYCL.DISP*. (cyclic display), set *YES* or *NO*, "measured value(s)" and "error message(s)" will either alternate automatically in the display or can be alternated manually by pressing the key. The errors will continue to be displayed until their cause has been eliminated. All displays, including measured values, flash!

4.4.3 Error list in Reset/Quit menu

All errors are stored in the *ERROR LIST* in the Reset/Quit menu. The errors are retained in this list until: **1** the cause of the error has been eliminated, **and 2** the error has been acknowledged.

Errors that have been acknowledged, but whose cause has not been eliminated, are retained in the Error List but are displayed without bar. This allows identification of "old" and "new" errors.

5. Description of functions

5.1 Physical units

Fct. 3.1.1 Full-scale range Q_{100%} (Forward flow) Fct. 3.1.2 Full-scale range Q_{100%} (Reverse flow) Fct. 3.2.1 Units for flowrate display

- m³/hr Liter/Sec (Gal = gallons)
- US Gal/min
- 1 user-defined unit, refer to Fct. 3.5.5 to 3.5.7, Sect. 5.15, for flowrate, e.g. liters per day, hectoliters per hour, or for mass flowrate where density is consistent and known, e.g. kg per hour or tonnes per day. *hLiter/hr* (hectoliters per hour) **or** *US MG/DAY* (US million gallons per day) for US version are factory-set here.
- PERCENT (%), only for Fct. 3.2.1 (flow display).

Fct. 3.1.4 Meter size (diameter)

in mm (millimeters or inch (inches).

Fct. 3.2.3 Unit for totalizer display

 m^3 , Liter, US Gal (Gal = gallons) and 1 user-defined unit, e.g. d Liter (deciliters), see above. Factory-set: h Liter (hectoliters) or US MG (US million gallons).

Fct. 3.4.2 Unit for pulse output P

Pulses/time: enter in pulses per second, minute or hour. Pulses/unit volume: PulS/m3, PulS/Liter, PulS/US Gal

5.2 Numerical format

Display of actual flowrate

Max. 7-digit with floating decimal point.

Display of internal totalizers

Max. 7-digit with floating decimal point. Where count values exceed 9 999 999, automatic changeover to exponent notation, max. 9:999 E19 (= 9.999 x 1019).

Display overflow

The display format is fixed by the parameters set in submenu "3.2.0 DISPLAY". The following display will appear when a displayed value exceeds the limit:

- Top line =====
- Middle line Unit of measured variable
- Bottom line Marker ▼ identifies the measured variable for which the selected display format is no longer adequate.

Necessary action: check data in submenu "3.2.0 DISPLAY" and alter if necessary (e.g. select different unit.)

Setting numerical values in exponent notation

<u>Examples</u>	Exponent notation	Setting		
0.0008	0.8 × 10 ⁻³	0.8000 E -3		
0.5	0.5 × 10 ⁰	0.5000 E 0		
0.1378	0.1378 × 10 ⁰	0.1378 E 0		
10 000	0.1 × 10 ⁵	0.1000 E 5		
36 000 000	0.36 × 10 ⁸	0.3600 E 8		

5.3 Full-scale range Q_{100%} and meter size

Fct. 3.1.1 Full-scale range Q_{100%} (Forward flow)

Set full-scale range Q_{100%} depending on meter size DN, Fct. 3.13 (forward flow in the case of F/R measuring mode); if different full-scale range required for reverse flow, see

- Selection of unit and setting ranges:
 - 0.0054 to 305 300 m³/hr
 - 0.0015 to 84 820.0 Liter/Sec
 - 0.0234 to 1 344 000 US Gal/min
 - user-defined unit, factory-set; hLiter/hr
 - (hectoliters per hour) or US MG/DAY (US million gallons per day), can be changed via Fct. 3.5.5 to 3.5.7 (see Sect. 5.15).
 - Change of unit will cause automatic conversion of numerical value.
- If the numerical value is changed in Fct. 3.1.1, it is advisable to record the totalizer counts first and then reset the totalizers (see Sect. 5.6), otherwise an incorrect count will be displayed.

Fct. 3.1.2 Separate range required for reverse flow? Set "YES" if a separate range is required for reverse flow which is different from the forward flow range. If not required, set "NO".

If "YES" set, also set the full-scale range for reverse flow measurement.

- Selection of unit and setting ranges: see above, Fct. 3.1.1.
- The set value must be smaller than that set in Fct. 3.1.1, otherwise an error will occur during the parameter check (Fct. 4.2.0), see Sect. 4.4. This function has no effect on the totalizers.

Fct. 3.1.4 Table of meter sizes

- Select from table by pressing 1 key:.
 - Meter sizes from DN 2.5 600 mm corresponding to 1/10 - 24 inch.
- If the numerical value in Fct. 3.1.4 is changed, it is advisable to record the totalizers counts first and then reset the totalizers (see Sect. 5.6), otherwise an incorrect count will be displayed.

Special settings

- For Fct. 3.1.1, 3.1.2 + 3.4.3, set the unit first and then the numerical value.
- Proceed as follows: select appropriate Function No. and then press key. The signal converter is now in the data column. The "unit" in the 2nd (middle) line of the display flashes. First select the unit by pressing the key. After pressing the key, the left digit of the numerical value in the top line of the display will flash (= cursor). Pressing the key will increase the numerical value. Pressing the key will shift the flashing digit (cursor) one place to the right.
- If the flashing digit (cursor) is in the last position (to the right) and the key is pressed again, the unit in the 2nd (middle) line of the display will flash again.
- Press key to "back out" of the data column.

5.4 Flow direction

- The flow direction or, in the case of F/R operation, the direction of the forward flow is determined for the full-scale range Q_{100%} (see Fct. 3.1.1) under Fct. 3.1.6.
- Two arrows on the primary head identify the possible flow directions with "+" and "-".
- Set "+" or "-" under Fct. 3.1.6 in accordance with the actual direction of flow.

Important

Please refer to Sect. 5.16 for factory settings!

5.5 Display

The following measured variables and functions can be shown in the display. Four markers ▼ identify the active display.

- Actual flowrate Q
- + totalizer (in F/R mode, forward totalizer)
- totalizer (in F/R mode, reverse totalizer)
- Σ totalizer (sum of + and – totalizers)

If only one display is set, the marker indicates the active display continuously. If more than one display is set, the display sequences from one display to the next every 6 seconds (see Fct. 3.2.4), and the marker indicates the active display.

Note: The signs for + and - totalizers identify forward and reverse flow, resp., amd have nothing to do with definition of the flow direction "+/-" (see Sect. 5.4, Fct. 3.1.6). For example, assume forward flow according to the arrow on the primary head is the "-" direction. Forward flow, however, is always counted with the "+" totalizer.

Display overflow is shown as follows:

Top line: ≡≡≡≡≡

Middle line: Unit of measured variable

Bottom line: Marker ▼ identifies the measured variable for

which the selected display format is no longer

adequate.

Necessary action: check data in submenu "3.2.0 DISPLAY" and alter if necessary (e.g. select different unit).

Display for flow Q = 100% (full-scale range) in F/R mode and setting in PERCENT (Fct. 3.2.1)

The display always refers to the setting of the full-scale range for forward flow (Fct. 3.1.1).

Setting	Display	
$Q_{F 100\%}$ equals $Q_{R 100\%}$ (Fct. 3.1.1/3.1.2 = <i>NO</i>)	F: 100%	R: 100%
$Q_{F 100\%}$ greater than $Q_{R 100\%}$ (Fct. 3.1.1/3.1.2 = YES	F: 100%	R: $\frac{Q_{R 100\%}}{Q_{V 100\%}} \times 100\%$

Fct. 3.2.1 Unit for flowrate display

Selectable units: see Sect. 5.1.

If "NO DISPLAY" is set, the actual flowrate is not displayed.

Fct. 3.2.2 Function of totalizer display

NO DISPLAY Internal totalizer in operation

but no display

TOTAL. OFF Internal totalizer switched off Forward flow totalizer only Reverse flow totalizer only

+/- TOTAL. Forward and reverse flow totalizers,

alternating

SUM TOTAL. Sum of + and - totalizers

ALL TOTAL: Sum, + and - totalizers, in sequence

Fct. 3.2.3 Unit for totalizer values on display

Selectable units, refer to Sect. 5.1.

Fct. 3.2.4 Cyclic display

Select whether measured value displays (and possibly error messages, see Fct. 3.2.5) are to sequence <u>automatically</u> approx. every 6 seconds (enter: *YES*) or <u>manually</u> by pressing the key (enter *NO*).

Fct. 3.2.5 Error messages

Select error messages for display (see Sect. 4.4).

NO MESSAGE
ADC ERROR
TOT.ERROR
ALL ERROR
ALL ERROR
No error messages
ADC conversion errors
Internal totalizer errors
All errors

Error messages alternate with actual flow data, either automatically or manually by pressing wey, see Fct. 3.2.4.

Important

Please refer to Sect. 5.16 for factory settings!

5.6 Internal electronic totalizer

 The internal electronic totalizer counts the volume in mathematically determined volumetric units. These numerical values are put into a non-volatile memory (EEPROM), converted into the set physical units, and displayed every 0.3 second.

Counting is interrupted in the event of a power failure or when the low-flow cutoff "on" value for P is activated. After these conditions have been eliminated, counting continues with the values stored prior to the interruption.

- The counting period without overflow is at least 1 year at 100% of flow (Q_{100%}).
- Set the time constant under Fct. 3.4.5:

O.2 Sec Time constant P = 0.2 second SAME AS I Same time constant as used for current output I (see Fct. 3.3.3)

Resetting the totalizer (TOTAL.RESET)

 "+"and "-"totalizers can be separately reset in the Reset/ Quit menu if "YES" has been set under Fct. 3.5.8 ENABL.RESET! Resetting also affects the sum totalizers!

Key	DISPLAY
 ■	CodE 2
	TOTAL.RESET
	+ TOTAL.
(poss. 🚹) - TOTAL. (poss. select)
	RESET NO
	RESET YES
	+ TOTAL. (if necessary, select "–" totalizer with ♠ key and also reset: ♠ ♠ ◘
	TOTAL.RESET
a	Measuring mode with actual display

- The measuring mode is **not** interrupted.
- Before changing the numerical values in Fct. 3.1.1, 3.1.4 and 3.1.5 (e.g. if the full-scale range is changed, see Fct. 3.1.1, or if in the case of separate systems the primary head is replaced, see Sect. 8.2), it is advisable to note down the totalizer counts first and then reset the totalizer, otherwise an incorrect count will be displayed.

Important

Please refer to Sect. 5.16 for factory settings!

5.7 Current output I

5.7.1 Application I (Fct. 3.3.1)

Application I				Other functions which can be set via Fct		Connection diagrams	Charac- teristic	
	1 3.3.1	P 3.4.1		SMU I 3.3.4		for outputs see Sect. 2.3.4	of outputs see Sect. 5.7.3	
1 flow direction	1 DIR.	any		possible		①	ll .	
F/R operation F/R changeover via P	2 DIR.	F/R IND. I		possible		6	l 2	
Direction indication for P	F/R IND.P	2 DIR.		no		789	13	
e.g. operation indicator	OFF	any		no		⑤	14	
F/R operation with 1 indicating instrument	I <iopct.< td=""><td>any</td><td></td><td>possible</td><td></td><td>100</td><td>15</td></iopct.<>	any		possible		100	15	

5.7.2 Other functions that can be set for I

Fct. 3.3.2 Ranges for current output I

Fixed ranges:

O to 20 mA or 4 to 20 mA, in each case with 22 mA current limitation.

Variable ranges:

Lower range value ($l_{0\%}$), full-scale range ($l_{100\%}$) and max. output current (l_{max}) are freely selectable, see Function 3.3.2 "VARIAB. mA".

Current for 0% flow ($I_{0\%}$) Range from 00 to 16 mA (e.g. 0.1 mA for an output range from 1 to 5 mA)

Current for 100% flow ($I_{100\%}$) Range from 04 to 20 mA (e.g. 5 mA for an output range from 1 to 5 mA). This value must be at least 4 mA greater than $I_{0\%}$, see above.

Maximum output current I_{max} Range from 04 to 22 mA (e.g. 06 mA at an output range from 1 to 5 mA, prevents damage to connected 5-mA instruments). This value must be greater than or equal to $I_{100\%}$, see above.

Fct. 3.3.3 Time constant for I

Range freely selectable between 0.2 and 3600 seconds.

Fct. 3.3.4 Low-flow cutoff

Refer to Sect. 5.9.

Important

Please refer to Sect. 5.16 for factory settings!

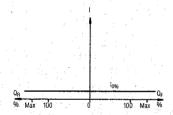
5.7.3 Characteristics of current output I

1 flow direction

(12)

F/R operation F/R changeover via P

(13)


Direction indication for P

(14)

e.g. operation indicator

(15

F/R operation with 1 indicating instrument

5.8 Pulse output P

5.8.1 Application P (Fct. 3.4.1)

Application P	Setting via Fct			Other functions which can be set via Fct		Connection diagrams	Charac- teristik	
	P 3.4.1	3.3.1		SMU P 3.4.6		for outputs see Sect. 2.3.4	of outputs see Sect. 5.8.3	
1 flow direction	1 DIR,	any		possible		234	PI	
F/R operation F/R changeover via I	2 DIR.	F/R IND. P		possible		789	P2	
Direction indication for I	F/R IND.I	2 DIR.		no		6	P3	
Switched off (≙ 0Hz/0 V)	OFF	any		no			P4	

5.8.2 Other functions that can be set for P

Fct. 3.4.2 Unit for pulse output

PULSE/TIME Setting in pulses per unit time (see Fct. 3.4.3)
PULSE/VOL. Setting in pulses per unit volume (see Fct. 3.4.3)

Example of PULSE/TIME

Full-scale range: 1000 liters per second (set via Fct. 3.1.1)
Pulse rate 1000 pulses per second (set via Fct. 3.4.3)

Pulse value: 1 pulse per liter

Changeover of full-scale range: 2000 liters per second (changed via Fct. 3.1.1) unchanged (see above), 1000 pulses per second

Pulse value **now:** 1 pulse per 2 liters

Example of PULSE/VOL.

Full-scale range: 1000 liters per second (set via Fct. 3.1.1)
Pulse value: 1 pulse per liter (set via Fct. 3.4.3)

at 1000 liters per second: 1000 pulses per second ≜ 1 pulse per liter

Changeover of full-scale range: 2000 liters per second (changed via Fct. 3.1.1) Pulse value: 2000 liters per second (changed via Fct. 3.1.1)

at 2000 liters per second: 2000 pulses per second ≜ 1 pulse per liter as before

Fct. 3.4.3 Pulses per unit time for 100% flow (P_{100%}) (pulse rate)

(appears only if "PULSE/TIME" set in Fct. 3.4.2)

Setting ranges: 0.0028 E0 - 0.1000 E5 PulSe/Sec (= Hz)

0.1667 E0 - 0.6000 E6 PulSe/min 0.1000 E2 - 0.3600 E8 PulSe/hr

Fct. 3.4.3 Pulses per unit volume (pulse value)

(appears only if "PULSE/VOL." set in Fct. 3.4.2)

Setting ranges: 0.0001 E0 - 0.9999 E9 PulS/m3

0.0001 E0 - 0.9999 E6 PulS/Liter 0.0001 E0 - 0.3785 E7 Puls/US.Gal

Entry is **not** checked **but**:

Q_{100%} "times" pulse value must be less than/equal to 36 000 000 pulses/hr (equivalent to 10 kHz).

Frequency or pulses/unit time at pulse output for flow Q = 100% (full-scale range) for F/R operation and setting in PULSE/TIME (Fct. 3.4.2 + 3.4.3)

The frequency or pulses/unit time at the output always refer to the setting of the full-scale range for the forward range $P_{100\%}$ (Fct. 3.4.3).

Setting	Frequency or pulses per unit time
$Q_{F100\%}$ equals $Q_{R100\%}$ (Fct. 3.1.1 / Fct. 3.1.2 = <i>NO</i>)	F : P _{100%} R : P _{100%}
$Q_{F 100\%}$ greater than $Q_{R 100\%}$ (Fct. 3.1.1/Fct. 3.1.2 = YES)	F: $P_{100\%}$ R: $\frac{Q_{R \ 100\%}}{Q_{F \ 100\%}} \times P_{100\%}$

Fct. 3.4.4 Pulse width

Five pulse widths are selectable for frequencies less than or equal to 10 Hz: 30 / 50 / 100 / 200 / 500 m Sec. (Note output load and frequency ranges, see Table in Sect. 2.3.3)

Fixed pulse widths are provided for frequencies above 10 Hz (see Sect. 2.3.3), regardless of the pulse width (see above) that has been set.

Fct. 3.4.5 Time constant for P

0.2 Sec.

Time constant = 0.2 second (best for counting and/or batching processes)

SAME AS I

Same time constant as for current output I, see Fct. 3.3.3.

(practical if pulse output P used for instantaneous-value measurements)

Fct. 3.4.6 Low-flow cutoff SMU

refer to Sect. 5.9.

Important

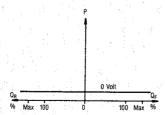
Please refer to Sect. 5.16 for factory settings!

5.8.3 Characteristics of pulse output P

1 flow direction

F/R operation

F/R changeover via I


Direction indication for I

Switched off

5.9 Low-flow cutoff (SMU) for I+P

- To avoid erroneous measurements at low flowrates, the SMU switches off the current and pulses outputs (I+P). I goes to 0/4 mA or $l_{0\%}$ (Fct. 3.3.2) and P to 0 Hz.
- If "NO" is set under functions 3.3.4 + 3.4.6, fixed cutoff "on" and cutoff "off" values of 0.1 and 0.25% (resp.) of Q₁₀₀₅ (fullscale range, see Fct. 3.1.1) act on outputs I+P.
- If "YES" is set under functions 3.3.4 + 3.4.6, the cutoff "on" and "off" values for I+P are separately adjustable in the ranges specified below.

Cutoff "on" value for SMU-I

Range: 01 to 19 PERCENT of Q100%

The low-flow cutoff drives the current output to 0/4 mA or $I_{0\%}$ when the flow decreases to the cutoff "on" value (see Fct. 3.3.2).

Cutoff "off" value for SMU-I

Range: 02 to 20 PERCENT of Q100%

This value must be greater than the cutoff "on" value I. When the flow returns to the cutoff "off" value, the output returns to normal.

Cutoff "on" value for SMU-P

Range: 01 to 19 PERCENT of Q100%

The low-flow cutoff drives the pulse output to 0 Hz when the flow decreases to the cutoff "on" value.

Cutoff "off" value for SMU-P

Range: 02 to 20 PERCENT of Q100%

This value must be greater than the cutoff "on" value P. When the flow returns to the cutoff "off" value, the output returns to normal.

5.10 F/R operation for I or P

For electrical connection, characteristics and setting of outputs, refer to Sect. 2.3, 5.7 + 5.8.

Fct. 3.1.6 Define direction of forward (normal) flow (+ or -)

For F/R operation, set the direction of the forward flow with "+" or "-" in accordance with the arrows marked "+" and "-" on the primary head.

Fct. 3.1.1 Full-scale range for flowrate Q_{100%}

Set the full-scale range. For unit and range refer to Sect. 5.1 + 5.3.

Fct. 3.1.2 Separate range required for reverse flow?

Set "YES" only if the range required for reverse flow is different from the range for the normal (forward) flow. If not, set

If "YES" set, set the full-scale range for the reverse flow. For unit and range refer to Sect. 5.1 + 5.3. This value must not be greater than that of Fct. 3.1.1, otherwise an error will occur during the parameter check (Fct. 4.2.0), see Sect. 4.3.

Note: Fct. 3.1.2 acts only on the current output!

Important

Please refer to Sect. 5.16 for factory settings!

5.11 Language of display texts

A choice of languages for the display texts is offered in Fct. 3.5.1:

- GB/US English
- D German
- F French

other languages pending

5.12 Coding desired for entry into setting level?

- Set NO or YES in Fct. 3.5.2.
- If "NO" set, all that needs to be done is to press the ≥ key to get into the setting level.
- If "YES" set, press the key and subsequently a 9-keystroke combination to get to the setting level.

Factory-set Entry Code 1

Changing Entry Code 1

Select Fct. 3.5.2 ENTRY.CODE 1: set YES. Select Fct. 3.5.3 CODE 1.

Press key, displayed: Code 1_

Press any 9-keystroke combination; each keystroke acknowledged by "%". Then press the **same** keystroke combination again. WRONG CODE (= incorrect entry) appears if 1st and 2nd entries are not equal.

Press and and keys and repeat entries.

5.13 Measuring-point identification (tag name)

- A max. 10-figure tag name can be set under Fct. 3.5.4 (e.g. TQ1 53 21 I).
- Only required for smart flowmeters (HHC design); operator control via MIC 500 Hand-Held Communicator (remote control). Refer to special operating instructions for electrical connection to current output I and operation of the MIC 500.
- Characters assignable to each of the 10 places: alpha characters A-Z / a-z numbers 0-9 or blank character (= underscore character)
- Factory setting: Altometer

5.14 Primary head constant GKL and field frequency

Fct. 3.1.5 GK value (GKL)

The primary constant GKL is factory-set.

Range: 0.5 to 14, dependent on primary head, refer to instrument nameplate.

Fct. 3.6.1 Field frequency

The magnetic field frequency is factory-set to 1/6, 1/16 or 1/32 of the power frequency, refer to signal converter nameplate.

Data of Fct. 3.1.5 and 3.6.1 must not be changed!

Exception: when a primary head pertaining to a separate system is replaced, refer to Sect. 8.2.

5.15 User-defined unit

An arbitrary volumetric flow unit or, if density of the fluid product is consistent and known, a unit of mass (weight) can be set in functions 3.5.5 to 3.5.7. The unit "h Liter/hr" (hecto-liters per hour) is factory-set unless another special unit is specified. US-version: "US MGal/DAY" (US million gallons per day).

Fct. 3.5.5 Text for user-defined unit

- Volumetric (or mass) unit per unit time
- Text for volume (mass): 6 characters (places)
- Text for time: 3 characters (places)
- The fraction bar "/" in the 7th place has a fixed position.
- Alpha characters A-Z and a-z, numbers 0-9, symbols + and - or blank character (= underscore) are selectable for every place.
- Pressing the h key will sequence the alpha characters and numbers in the order given above.
- The key shifts the cursor 1 place to the right.
- Text examples are given in the following Tables in brackets (...../...).

Fct. 3.5.6 Conversion factor Quantity F_M

Set the factor F_M = quantity per 1 m^3 .

Volumetric unit	Factor F _M	Setting
Cubic meters (m 3)	1.0	1.00000 E 0
Liters (<i>Liter</i>)	1 000	1.00000 E 3
Hecto-liter (h Liter)	10	1.00000 E 1
Deci-liter (d Liter)	10 000	1.00000 E 4
Centi-liter (c Liter)	100 000	1.00000 E 5
Milli-liter (<i>m Liter</i>)	1 000 000	1.00000 E 6
US gallons (<i>US Gal</i>)	264.172	2.64172 E 2
US million gallons (US MGal)	0.000264172	2.64172 E - 4
Imperial gallons (GB Gal)	219.969	2.19969 E 2
Imperial mega-gallons (GB MGal)	0.000219969	2.19969 E – 4
Cubic feet (Foot 3)	35.3146	3.53146 E 1
Cubic inches (inch 3)	61 024.0	6.10240 E 4
US barrels liquid	8.38364	8.38364 E O
US fluid ounces	33 813.5	3.38135 E 4

Fct. 3.5.7 Conversion factor Time F_T

Set the factor F_T in seconds.

Time unit	Factor F _T [seconds]	Setting
Second (Sec)	1	1.00000 E 0
Minute (min)	60	6.00000 E 1
Hour (<i>hr</i>)	3 600	3.60000 E 3
Day (DAY)	86 400	8.64000 E 4
Year (<i>YR</i>) (<u>←</u> 365 days)	31 536 000	3.15360 E 7

Examples of volume per unit time

Desired units:	Hecto-liters per year	Deci-liters per hour
Volumetric unit in Fct. 3.5.5	h Liter	d Liter
Factor F _M (see Table)	10	10000
Setting in Fct. 3.5.6	1.00000 E 1	1.00000 E 4
Time unit in Fct. 3.5.5	YR	hr
Factor F _T (see Table)	31 536 000 (seconds)	3600 (seconds)
Setting in Fct. 3.5.7	3.15360 E 7	3.60000 E 3

Examples of mass per unit time

Product density $\varrho = 1.2 \text{ g/cm}^3 = 1200 \text{ kg/m}^3 = \text{constant}$ Mass of 1 m³ product = 1200 kg = 2646 pounds.

<u>Desired</u> <u>unit:</u>	Kilograms per minute	Pounds per hour
Mass unit in Fct. 3.5.5	kg	to
Factor F _M (see Table)	1200	2646
Setting in Fct. 3.5.5	1.20000 E 3	2.64600 E 3
Time unit in Fct. 3.5.5	min	hr
Factor F _T (see Table)	60	3600
Setting in Fct. 3.5.7	6.00000 E 1	3.60000 E 3

5.16 Factory settings

To facilitate easy and rapid initial start-up, current output and pulse output are set to process flow measurement in "2 flow directions" (Fct. 3.3.1 + 3.4.1) so that the instantaneous flowrate is displayed and the volume flow counted independent of the flow direction ("+" or "-", Fct. 3.1.6). Measured values may possibly be displayed with a "-" sign.

This factory setting may possibly lead to measuring errors, particularly in the case of volume flow counting:

For example, if pumps are switched off and a "backflow" occurs which is not within the range of the low-flow cutoff (SMU-I, Fct. 3.3.4 and SMU-P, Fct. 3.4.6, see also Sect. 5.9), or if separate displays and counts are required for both flow directions.

To avoid faulty measurements, therefore, it may be necessary to change the factory setting of some or all of the following functions:

- flow direction, Fct. 3.1.6 (Sect. 5.4)
- current output, Fct. 3.3.1 (Sect. 5.7 + 5.10)
- pulse output, Fct. 3.4.1 (Sect. 5.8 + 5.10)
- low-flow cutoff, Fct. 3.3.4 and 3.4.6 (Sect. 5.9)
- display, Fct. 3.2.1 and 3.2.2 (Sect. 5.5 + 5.6).

Part C Special applications, functional checks and service

6. Special applications

6.1 Use in hazardous areas

6.1.1 European standards

ALTOFLUX IFM 4080 K-Ex, IFM 5080 K-Ex, IFM 4080 F-Ex, IFM 5080 F-Ex and K 480 S-Ex electromagnetic flowmeters are certified to European standard as electrical appliances suitable for use in hazardous areas.

Allocation of temperature class to temperature of the fluid, meter size and material of the measuring tube liner is specified in the test certificate.

Test certificate, certificate of conformity and wiring instructions are attached to the Installation and Operating Instructions (applies only to hazardous-duty equipment).

6.1.2 American standards

The FM approvals for ALTOFLUX IFM 4080 K-Ex, IFM 5080 K-Ex, IFM 4080 F-Ex and IFM 5080 F-Ex for Division 2 and 1 are pending.

6.2 Short response time in conjunction with rapid changes in flowrate

The signal converter is equipped with an internal automatic reference unit which ensures optimum adjustment to the input signal from the primary head during changing flowrates.

In the case of rapidly changing flowrates, e.g. batching processes and where operation with reciprocating pumps is involved, it may be necessary to influence or cut out this automatic unit via Fct. 3.6.2 and 3.6.3.

With Fct. 3.6.2, the response time of the automatic unit is decreased by up to 30%.

The automatic unit is switched off via Fct. 3.6.3. However, this reduces the measuring accuracy of the signal converter.

Since there are no hard and fast rules for applying Fct. 3.6.2 and 3.6.3, it is advisable to determine the optimum setting as follows.

- Set Function 3.2.5 (ERROR MSG) to "ADC ERROR".
- Start the flow.
- The optimum setting for the signal converter is found when the "ADC ERROR" message is no longer displayed.
- If "ADC ERROR" does show, reset the signal converter in the following order until the error message is no longer displayed.

Order	Fct. 4.08	Fct. 4.09	
1st	NOISE	AUTO. REF.	
2nd	NO NOISE	HIGH FLOW	
3rd	NO NOISE	MED.1-FLOW	
4th	NO NOISE	MED.2-FLOW	
5th	NO NOISE	MED.3-FLOW	
6th	NO NOISE	LOW FLOW	

- Subsequently, reset Fct. 3.2.5 according to its original application.
- If the above procedure does not lead to the desired effect, please consult factory.

6.3 Stable signal outputs when measuring tube empty

Output values can be stabilized to values as for "zero" flow to prevent random output signals when the measuring tube is empty or when the electrodes are not wetted in the event the measuring tube is partially full.

This means:

Totalizer display → does not accumulate random

counts

Current output \longrightarrow value of $l_{0\%}$ (see Fct. 3.3.2)

Pulse output → 0 V (= no pulses)

Preconditions

- Electrical conductivity of fluid $\geq 200~\mu$ S/cm (μ mho/cm) [$\geq 500~\mu$ S/cm (μ mho/cm) in conjunction with IFM 5080 K and IFS 5000, DN \leq 15 or \leq $^{1}/_{2}$ "]
- For separate systems max signal cable length 50 m (165 ft), for cable type DS or BTS.

Changes on input amplifier PCB

(see components drawing, Sect. 9.2)

- Insert two resistors R_{X1} and $R_{X2} = 10$ Mohms
- Insert soldering jumper "⊥".

Additional change to setting

Set low-flow cutoff (SMU) for current output I and pulse output P as follows (minimum values):

Fct. 3.3.4 for I and Fct. 3.4.6 for P

Set low-flow cutoff for I and P to YES.

Range: 01-02 PERCENT

6.4 Magnetic sensors, setting with hand-held bar magnet

- The signal converter can optionally be equipped with magnetic sensors, see Sect. 4.1, Item 5, standard for all "smart" and "Ex" versions of the signal converter.
- This allows setting of the signal converter by means of a hand-held bar magnet. Function of sensors without removing the front cover is the same as the corresponding keys. Sensor response is acknowledged by compass field in the 1st line of the display.
- Hold the bar magnet by the black rubber cap. Apply blue end of the magnet (north pole) to the glass pane above the magnetic sensors.

Condensed Instructions

KROHNE

09/93

IFC 080 Signal converter

USA

Krohne America Inc.
7 Dearborn Road
Peabody, Ma 01960
Telephone (508)535-6060
Telephone 1-800 - FLOWING
(1-800-356-9464)
Telefax (508)535-1720

Germany

KROHNE Messtechnik GmbH&Co. KG Postfach 10 08 62 47008 Duisburg Ludwig-Krohne-Strasse 5 D-47058 Duisburg Telephone (02 03) 301-0 Telex 17 203 301 Telefax (02 03) 301 389

3.1K47E/A3 099321 Subject to change without notice. Printed in F.R. Germany © Copyright KROHNE-Messtechnik GmbH&Co. KG

Table of settable functions

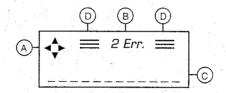
The Sect. Nos. referred to in these Condensed Instructions will be found in the Installation and Operating Instructions.

Fct. No.	Text	Description and settings
1.00	OPERATION	Main menu 1.0 Operation
1.1.0	BASIS.PARAM.	Submenu 1.1.0 Basis parameters
1.1.1	FULL SCALE	Full-scale range for flowrate Q _{100%} see Fct. 3.1.1
1.1.2	REV.SCALE	Different range for reverse flow required? See Fct. 3.1.2
1.1.3	ZERO SET	Zero calibration see Fct. 3.1.3
1.2.0	DISPLAY	Submenu 1.2.0 Display
1.2.1	DISP.FLOW >	Unit for flowrate display, see Fct. 3.2.1
1.2.2	DISP. TOTAL	Function of totalizer display, see Fct. 3.2.2
1.2.3	CYCL.DISP.	Cyclic display required? see Fct. 3.2.4
con interestations contribute		
1.3.0	CUR.OUTP.I	Submenu 1.3.0 Current output I
1.3.1	TIMECONST.I	Time constant for current output I, see Fct. 3.3.3
1.3.2	L.F.CUTOFF I	Low-flow cutoff (SMU) for current output I see Fct. 3.3.4
1.4.0	PULSOUTP. P	Submenu 1.4.0 Pulse output P
1.4.1	PULSE/TIME	Pulses per unit time for 100% flowrate
	or PULSE/VOL.	Or Pulsos por unit volume, poo Est 2.4.2
1.10		Pulses per unit volume, see Fct. 3.4.3
1.4.2	L.F.CUTOFF P	Low-flow cutoff (SMU) for pulse output P, see Fct. 3.4.6
2.0	TEST	Main menu 2.0 Test functions
2.1	TEST DISP.	Test of the display (Sect. 7.1.2.)
	TEOT DIOP.	Start with key (duration: approx. 15 sec.)
0.0	TECT	
2.2	TEST I	Test of current output I (Sect. 7.1.3) Safety interrogation: SURE NO SURE YES
		• 0 mA • 10 mA • 20 mA • 4 mA • 16 mA • 22 mA
		Select with key
		Displayed value present directly at current output.
	÷	Actual value again present at output after pressing the key.
2.3	TEST P	Test of pulse output P (Sect. 7.1.3)
	,,,,	Safety interrogation: SURE NO
		SURE YES
		● 1 Hz ● 100 Hz ● 10000 Hz ● 10 Hz ● 1000 Hz
	100	Select with 1 key.
		Displayed value present directly at pulse
	()	output. Actual value again present
	to a second	at output after pressing the key.
2.4	TEST Q	Test of full-scale range (Sect. 7.1.3)
		Safety interrogation: SURE NO
		SURE YES ● -110 / -100 / - 50 / - 10 PCT
		● 0 PCT.
	A Property of the Park	● + 10 / + 50 / +100 / +110 PCT.
		of set full-scale range (Q _{100%}).
:	i kanalan jih	Select with Makey. Displayed value present directly at outputs I and P.
	4 / 7 4 / 3 / 2	Actual value again present
	and the second	at output after pressing the 🔁 key.
3.0	INSTALL.	Main menu 3.0 Installation
3.1.0	BASIS.PARAM.	Submenu 3.1.0 Basis parameters
3.1.1.	FULL SCALE	Full-scale range for flowrate Q _{100%}
		Selection of unit and setting ranges
		● 0.0054 E0-0.3053 E6 m3/h ● 0.0015 E0-0.8482 E5 Liter/Sec
		● 0.0013 E0-0.8482 E3 Lite1/5ec ● 0.0234 E0-0.1344 E7 US Gal/min
, i		(see Sect. 5.1, 5.2 + 5.3)
1		user-defined unit, factory-set is hLiter/hr US NC al/DAY/hastalitars pay have all
,		or <i>US.MGal/DAY</i> (hectoliters per hour or US million gallons per day), can be
		changed via Fct. 3.5.5 - 3.5.7 (Sect. 5.15).
		After selecting unit, call numerical
		value with key, 1st digit flashes.

Fct. No.	Text	Description and settings
	 	
3.1.2	REV.SCALE	Different range for reverse flow required? Set NO or YES.
1 2		If YES, the full-scale range for the reverse flow must be set.
		Selection of unit and setting ranges
		same as in Fct. 3.1.1.
		Value not greater than that of Fct. 3.1.1!
3.1.3	ZERO SET	Zero calibration (Sect. 7.2)
- '		Perform only at "0" flow and with
	1 1 1 1	compl. filled measuring tube.
		1) Query: CALIB. NO or YES 2) If YES: calibration.
		duration approx. 25 sec. with zero
	eg Pau	displayed as PERCENT of Q _{100%} .
4		3) Query: STORE NO or YES
3.1.4	METER SIZE	Table of meter sizes
		Size from DN 2.5-600 mm,
		equivalent to 1/10-24 inch.
		Select from this table using 4 key
		(Sect. 5.3.).
3.1.5	GK VALUE	Primary head constant GKL
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(see nameplate, primary head)
040	ELOW DE	<u>value:</u> 0.5 to 14
3.1.6	FLOW. DIR.	Define direction of forward flow
1 1 1		Set according to direction of arrow on primary head: + or -
600	DIGGL AV	
3.2.0	DISPLAY	Submenu 3.2.0 Display
3.2.1	DISP.FLOW	Unit for flowrate display
		● m3/hr ● Liter/Sec ● US Gal/min
- 1	The state of	user-defined unit, factory-set is Liter/hr or US.MGal/DAY (liters per hour
		or US million gallons per day) can be
		changed via Fct. 3.5.5 - 3.5.7
		(Sect. 5.15).
1 61		PERCENT
		● NO DISPLAY
3.2.2	DISP.TOTAL	Function of totalizer display
		NO DISPLAY (= totalizer switched on but not displayed)
		but not displayed) ■ TOTAL.OFF (= totalizer switched off)
1 17		• + TOTAL. (= forward flow totalizer)
		 TOTAL. (= reverse flow totalizer)
		 +/- TOTAL. (forward and reverse
		flow totalizers, alternating)
		• SUM TOTAL. (= sum of "+" and "-"
		totalizers) ■ ALL TOTAL: (= sum, "+" and "-"
		totalizers, sequential)
3.2.3	UNIT TOTAL.	Unit for totalizer display
J.E.J	DIVIT TOTAL.	● m3
		● user- defined unit, see Fct. 3.5.5 – 3.5.7
3.2.4	CYCL.DISP.	Cyclic display required?
0.2.,	0.702.2721.	Setting: NO or YES
3.2.5	ERROR MSG.	Which error messages to be displayed?
		(Sect. 4.4)
		● NO MESSAGE
		(= no display of error messages)
		ADC error and the second seco
1 4 4		(= ADC errors only) ● TOTAL.ERROR
		(= only errors of internal totalizer)
		ALL ERROR
		(= display all errors)
3.3.0	CUR.OUTP.I	Submenu 3.3.0 Current output I
3.3.1	FUNCTION I	Function, current output I
		OFF (= switched off)
		● F/R IND. P
		(= F/R indication, for P)
		● 1 DIR.
. I		(= 1 flow direction)
		● I < I D PCT. (= Forward and Reverse flow,
34 1		e.g. in 0 – 20 mA range:
		F = 10 - 20 mA $R = 10 - 0 mA$
	高点 医内侧畸形	● <i>2 DIR.</i>
		(= forward/reverse flow,
4 + .		F/R measurement)
the state of the s		

Fct. No.	Text	Description and settings
3.3.2	RANGE I	Range fur current output I
		● FIXED 0-20 mA I _{max} = 22 mA
		● FIXED 4-20 mA I _{max} = 22 mA
:	1	 VARIAB. (variable ranged) I_{0%} (Q = 0% flow): 00-16 mA
		$I_{100\%}$ (Q = 100% flow): 04-20 mA
		I _{max} (Q > 100% flow): 04-22 mA
1		Note following conditions:
	1	$l_{100\%} - l_{0\%} \ge 4 \text{ mA}$
2	13.7	I _{100%} ≤ I _{max}
		Display: e.g. for 5-10 mA, max. 15 mA
		05-10 15 (top line)
		VARIAB. mA (bottom line)
3.3.3	TIMECONST.I	Time constant for current output I
		<u>Value:</u> 0.2 to 3600 Sec
3.3.4	L.F.CUTOFF I	Low-flow cutoff (SMU) for current
		output I required? Setting: ND or YES.
4.3		If YES, setting ranges: "on" value: 01-19 PERCENT
1 1		"off" value: 02-20 PERCENT
	1 4	
		Note following condition: Cutoff "on" value "minus" cutoff "off"
		value > 1%
		Display, e.g. for range: on = 2% , off = 6%
44.		PERCENT (bottom line)
3.4.0	PULSOUTP. P	Submenu 3.4.0 Pulse output P
200000000000000000000000000000000000000		
3.4.1	FUNCTION P	Function of pulse output P OFF (= switched off)
		• F/R IND. I (= F/R indication, for I)
		• 1 DIR. (= 1 flow direction)
. 9		● 2 DIR.
		(= forward/reverse flow,
240	LINITE	F/R measurement)
3.4.2	UNIT P	Unit of pulse output P
3 1 2 1		 PULSE/TIME (= setting in pulses per unit time)
		● PULSE/VOL. (= setting in pulses per
<u> </u>	<u> Argani Para Para</u>	unit volume)
3.4.3	PULSE/TIME	Pulses per unit time for 100% flowrate
ALCOHOL:		see Fct. 3.1.1
		(appears only if PULSE/TIME set under Fct. 3.4.2)
4 11		<u>Setting_ranges</u> <i>0.0028 E0-0.1000 E5 PulSe/Sec</i> (=Hz)
400		0.1667 EO-0.6000 E6 PulSe/min
		0.1000 E2-0.3600 E8 PulSe/hr
		After selecting unit, call numerical
		value with key, 1st digit flashes.
3.4.3	PULSE/VOL.	Pulses per unit volume (flowrate)
- · · · ·	. 2202 (04)	(appears only if <i>PULSE/VOL</i> , set under
		Fot. 3.4.2)
- 1 - I	graph of the control	Setting ranges
	A second second	
17.5		0.0001 EO-0.9999 E9 PulS/m3
		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter
		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal
		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but:
		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q₁0004 x pulse value ≤ 3.6 x 10 ⁷ pulses/hr).
		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: 0₁00% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical
		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Lits.Gal (no input check but: $Q_{100\%}$ x pulse value $\leq 3.6 \times 10^7$ pulses/hr). After selecting unit, call numerical value with $rac{1}{2}$ key, 1st digit flashes.
3.4.4	PULSWIDTH	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q10096 x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz
3.4.4	PÜLSWIDTH	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 200 mSec
3.4.4	PÜLSWIDTH	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9998 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q10096 x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz
3.4.4 3.4.5		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q _{100%} x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit_call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 50 mSec 500 mSec 100 mSec
	PULSWIDTH TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q _{100%} x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit_call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz ■ 30 mSec ■ 200 mSec ■ 500 mSec
		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9998 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/LIS.Gal (no input check but: $Q_{100\%}$ x pulse value $\leq 3.6 \times 10^7$ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 500 mSec 500 mSec 100 mSec 100 mSec 500 mSec 100 mSec 100 mSec 500 mSec 100 mSec 100 mSec
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9998 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/LIS.Gal (no input check but: $Q_{100\%}$ x pulse value $\leq 3.6 \times 10^7$ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 50 mSec 500 mSec 100 mSec 100 mSec Time constant for pulse output P 0.2 Sec SAME AS I (= time constant for P same as for I, see Fct, 3.3.3)
3.4.5		0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/LIS.Gal (no input check but: Q1000% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 500 mSec 500 mSec 100 mSec 100 mSec 100 mSec 500 mSec 100 mSec
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Lises (Ino input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 200 mSec 50 mSec 500 mSec 100 mSec Time constant for pulse output P 0.2 Sec SAME AS I (= time constant for P same as for I, see Fct. 3.3.3) Low-flow cutoff (SMU) for pulse output P required?
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/LIS.Gal (no input check but: Q1000% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 500 mSec 500 mSec 100 mSec 100 mSec 100 mSec 500 mSec 100 mSec
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E9 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/LIS.Gal (no input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 50 mSec 500 mSec 100 mSec
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 200 mSec 50 mSec 500 mSec 100 mSec 100 mSec Time constant for pulse output P 0.2 Sec SAME AS I (= time constant for P same as for I, see Fct. 3.3.3) Low-flow cutoff (SMU) for pulse output P required? Setting: NO or YES If YES, setting ranges: "on" value: 01-19 PERCENT
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E9 PulS/Liter 0.0001 E0-0.9999 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.9999 E8 PulS/Liter 0.001 E0-0.3785 E7 PulS/Liter 0.1006 x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E9 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/Liter 0.0001 E0-0.3785 E7 PulS/LIS.Gal (no input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz ■ 30 mSec ■ 200 mSec ■ 500 mSec ■ 100 mSec ■ 100 mSec Time constant for pulse output P ■ 0.2 Sec ■ SAME AS I (= time constant for P same as for I, see Fct. 3.3.3) Low-flow cutoff (SMU) for pulse output P required? Setting: NO or YES If YES, setting ranges: "on" value: 01-19 PERCENT "off" value: 02-20 PERCENT Note following condition:
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9998 E6 PulS/Liter 0.0001 E0-0.9998 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 50 mSec 50 mSec 500 mSec 500 mSec 100
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 PulS/m3 0.0001 E0-0.9999 E9 PulS/Liter 0.0001 E0-0.9999 E6 PulS/Liter 0.0001 E0-0.3785 E7 PulS/US.Gal (no input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 200 mSec 50 mSec 500 mSec 100 mSec 100 mSec Time constant for pulse output P 0.2 Sec SAME AS I (= time constant for P same as for I, see Fct. 3.3.3) Low-flow cutoff (SMU) for pulse output P required? Setting: NO or YES If YES, setting ranges: "on" value: 01-19 PERCENT "off" value: 02-20 PERCENT Note following condition: Cut-off "off" value "minus" cutoff "on" value > 1%
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 Puls/m3 0.0001 E0-0.9998 E6 Puls/Liter 0.0001 E0-0.9998 E6 Puls/Liter 0.0001 E0-0.3785 E7 Puls/LJS.Gal (no input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 500 mSec 500 mSec 500 mSec 500 mSec 100 mSec 1
3.4.5	TIMECONST.P	0.0001 E0-0.9999 E9 Puls/m3 0.0001 E0-0.9999 E9 Puls/Liter 0.0001 E0-0.9999 E9 Puls/Liter 0.0001 E0-0.3785 E7 Puls/US.Gal (no input check but: Q100% x pulse value ≤ 3.6 x 10 ⁷ pulses/hr). After selecting unit, call numerical value with key, 1st digit flashes. Pulse width for frequencies ≤ 10 Hz 30 mSec 200 mSec 50 mSec 500 mSec 100

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T
Fct. No.	Text	Description and settings
3.5.0	USER DATA	Submenu 3.5.0 User data
3.5.1	LANGUAGE	Language for display texts
1		● GB/USA (= English)
		● D (= German)
		● F (= French)
<u> </u>		others pending
3.5.2	ENTRY CODE 1	Entry Code 1 for entry into setting
'		level required?
		 NO = entry with
		• YES = entry with 9-keystroke code.
		Setting of code under Fct. 3.5.3
3.5.3	CODE 1	Set Code 1 (9-keystroke combination)
		<u>factory setting:</u>
	1	If different code required:
		press any 9-keystroke combination, and
		then press the same keystroke combination again.
		Each keystroke acknowledged by "*.".
		WRONG CODE (= incorrect entry)
		appears if 1st and 2nd entries are not equal.
44,		Press and Press and repeat entries.
3.5.4	LOCATION	Set tag name (measuring point No.).
		max. 10digits. Required only for flowmeters
		of "HHC" design (operator control via
		Hand-Held Communicator MIC 500,
		connected to current output).
		Factory setting: ALTOMETER Characters assignable to each place:
		AZ / az / O9 / _
		(underscore character = blank character)
3.5.5	UNIT TEXT	Text for user-defined unit, Sect. 5.15
0.0.0	Orth TEXT	Factory setting:
		Liter/hr or US.MGal/DAY (= liters
		per hour or US million gallons per day)
		Characters assignable to each place:
		AZ / az / O9 / _
1		(underscore character = blank character)
0.5.0	FACTOVIANT	Fraction bar "/" in 7th place is unalterable.
3.5.6	FACT.QUANT.	Conversion factor for quantity (F _M), Sect. 5.15
		Factory setting:
	Ų.	1.00000 E+3 (for liters) or
		2.64172 E-4 (for US million_gallons)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Factor $F_M = \text{quantity per 1 m}^3$.
4		Setting range: 0.00001 E-9 to
		9.99999 E+9
3.5.7	FACT. TIME	Conversion factor for time (F _T)
13		Sect. 5.15
		Factory setting: 3.60000 E+3 (for hour) or
		8.64000 E+4 (for day)
		Factor F _T in seconds
		Setting range: 0.00001 E-9 to
5,000		9.99999 E+9
3.5.8	ENABL.RESET	Enable totalizer reset
100		for the RESET / DUIT menu, see Sect. 5.6
go <u>w</u> o gwydau baddol		Query: NO or YES
3.6.0	APPLICAT.	Submenu 3.6.0 Application
3.6.1	FIELD FREQ.	Magnetic field frequency, Sect. 5.14+8.2
		● 1/6 ● 1/16 ● 1/32
3.6.2	NOISE	Noise rejection, Sect. 6.2
		NO NOISE
	<u> </u>	● NOISE
3.6.3	REF. SEL.	Selecting the reference voltage
		Sect. 6.2
		AUTO.REF. (= automatic reference)
, I		• HIGH-FLOW
		(= high flow range)
		● MED.1-FLOW
	7	(= 1st medium flow range)
		● MED.2-FLOW
		(= 2nd medium flow range) ■ MED.3-FLOW
1	f 1	(= 3rd medium flow range)
		• LOW-FLOW
		(= low flow range)


Fct. No.	Text	Description and settings
4.0	PARAM.ERROR	Main menu 4.0 Parameter errors
4.1.0	FLOW VELOC.	FLOW VELOCITY "v" incorrect: Ensure condition 0.3 m/s \leq v \leq 12 m/s or 1 ft/s \leq v \leq 40 ft/s is met!
4.1.1	FULL SCALE	Full-sclae range for flowrate Q _{100%} see Fct. 3.1.1
4.1.2	METER SIZE	Meter size, see Fct. 3.1.4
4.2.0	F/R FLOW	FULL-SCALE RANGE(S) for forward/reverse flow incorrect; Ensure condition F ≥ R ist met!
4.2.1	FULL SCALE	Full-scale range Q _{F100%} (forward flow) see Fct. 3.1.1
4.2.2	REV.SCALE	Different full-scale range for reverse flow required? see Fct. 3.1.2
4.3.0	P > 10 kHz	OUTPUT FREQUENCY too high: must be less than 10 kHzl
4.3.1	PULSE/VOL.	Pulse value for flow unit, see Fct. 3.4.3
4.3.2	FULL SCALE	Full-scale range for flow Q _{100%} see Fct. 3.1.1
4.4.0	P<>PULSW.	FREQUENCY/PULSE WIDTH ASSIGNMENT is incorrect: Refer to Table in Sect. 2.3.3.
4.4.1	PULSWIDTH	Pulse width for frequencies ≤ 10 Hz see Fct. 3.4.4
4.4.2	PULSE/TIME	Pulse rate for 100% flowrate see Fct. 3.4.3
4.4.2	PULSE/VOL.	Pulse value for flow unit, see Fct. 3.4.3
4.4.3	FULL SCALE	Full-scale range for flow Q _{100%} see Fct. 3.1.1

List of errors

displaye	essages d in ddle) line	Description of error
ıα	CAL.DATA	Calibration data lost or incorrect
₽Ō	EEPROM 1	Error in EEPROM 1, parameter error(s)
FATAL	ROM	Check-sum error in ROM
шш	RAM	Check-sum error in RAM
TOTALI	ZER *	Counts lost or totalizer overflow Note: totalizer was reset
EEPROI	M 2 *	Error in EEPROM 2, totalizer Note: totalizer deviation possible
LINE IN	★	Power failure Note: no counting during power failure
RESET	*	Power voltage fluctuation Note: totalizer deviation possible
CUR.OL	JTP, I *	Current output overranged
PULSO	UTP.P *	Pulse output overranged
ADC	*	Analog/digital converter overranged or defective

When errors are displayed during the measuring mode and in the *ERRORLIST* in the Reset/Quit menu, "a numeral" and "*Err.*" will appear in the 1st (top) line. The numeral gives the number of momentarily occurring errors that are displayed alternately with the actual measured value.

Error representation

- (A) Compass field
- B) Number of errors that have occurred
- C) Plain text for error message(s)
- D With bar:

"new" errors, not yet acknowledged

Without bar:

"old", acknowledged errors but cause not yet eliminated

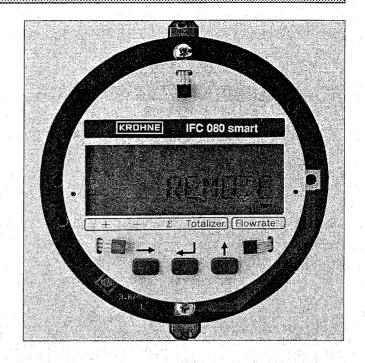
Error display during measuring (display) mode

In the setting level under Fct. 3.2.5 ERROR MSG. (error messages), it is possible to select whether and, if so, which errors are to be displayed during measurement (display mode). Depending on setting under Fct. 3.2.4 CYCL.DISP. (cyclic display), set YES or NO, "measured value(s)" and "error message(s)" will either alternate automatically in the display or can be alternated manually by pressing the key. The errors will continue to be displayed until their cause has been eliminated. All displays, including measured values, flash!

Error list in Reset/Quit menu

All errors are stored in the *ERROR LIST* in the Reset/Quit menu. The errors are retained in this list until: 1 the cause of the error has been eliminated, **and 2** the error has been acknowledged.

Errors that have been acknowledged, but whose cause has not been eliminated, are retained in the Error List but are displayed **without** bar. This allows identification of "old" and "new" errors.


6.5 IFC 080 smart signal converter

smart signal converters are identifiable by the **black "bar"** on the front panel, see photo.

These signal converters can be operated by remote control using the MIC 500 hand-held communicator. The MIC 500 is connected to the two cables of the current output, max. distance from signal converter: 1600 m or 6000 ft. Receiver instruments, milliammeters, recorders, etc. that are also connected to the current output are not affected by the MIC 500. For tag names, refer to Sect. 5.1.3, Fct. 3.5.4.

The smart signal converters are equipped with magnetic sensors, see Sect. 6.4.

Please refer to the MIC 500 operating instructions for further details on connection and operator control.

7. Functional checks

7.1 Test functions of the IFC 080 signal converter

7.1.1 Main menu 2.0 Test functions

2.0	TEST	Main menu 2.0 Test functions
2.1	TEST DISP.	Test of the display (Sect. 7.1.2)
		Start with key (duration: approx. 15 sec.)
2.2	TEST I	Test of current output I (Sect. 7.1.3) Safety interrogation: SURE NO SURE YES
		Select with key Displayed value present directly at current output. Actual value again present at output after pressing the key.
2.3	TEST P	Test of pulse output P (Sect. 7.1.3) Safety interrogation: SURE NO SURE YES 1 Hz 100 Hz 10000 Hz 10 Hz 1000 Hz
		Select with way key Displayed value present directly at current output. Actual value again present at output after pressing the way key.
2.4	TEST Q	Test of full-scale range (Sect. 7.1.3) Safety interrogation: SURE NO SURE YES 110 / -100 / -50 / -10 PCT. 0 PCT. +10 / +50 / +100 / +110 PCT. of set full-scale range (Q₁00%). Select with key. Displayed value present directly at outputs I and P. Actual value again present at output after pressing the key.

7.1.2 Test of display (Fct. 2.1)

- Select Function 2.1, as described in Sect. 4.2 and 4.3.
- Press key to start the display test, duration: approx. 15 seconds.
- All segments in the 3 lines of the display are activated sequentially.

7.1.3 Test of current output I (Fct. 2.2), pulse output P (Fct. 2.3) and measuring range Q (Fct. 2.4)

PLEASE NOTE!

Simulated values are present at outputs I and P when these 3 test functions are operative. To avoid faulty measurements, false alarms, etc., proceed as follows:

- deactivate external alarm contacts
- switch controllers to manual operation
- take readings of internal and external volumetric meters/totalizers before and after the tests.

Test of current output

- ◆ A milliammeter must be connected to terminals 5 and 6 for this test, see Sect. 2.3.3 and 2.3.4, connection diagram ①.
- Select Function 2.2 as described in Sect. 4.2 and 4.3, and press
 □ key.
- Safety interrogation: SURE NO SURE YES
 select with leave
 key
- After SURE YES, press the
 ■ key to display the 1st value in the following list.
- Select current value with

 key:
- 0 mA
- 4 mA
- 10 mA
- 16 mA
- 20 mA
- 22 mA

The milliammeter indicates the current value selected.

Press the

Rey to terminate the test and display the actual value again.

Test of pulse output P, Fct. 2.3

- An electronic totalizer (EC) must be connected to terminals 4.1/4.2, 4/4.1/4.2 or 4/4.1 for this test; see Sect. 2.3.3 and 2.3.4, connection diagrams ②, ③ and ④.
- Select Function 2.3 as described in Sect. 4.2 and 4.3, and press key.
- Safety interrogation: SURE NO | select | with key
- After SURE YES, press the key to display the 1st value in the following list.
- Select frequency value with key:
 10 Hz
 100 Hz
 1000 Hz
 1000 Hz

The totalizer indicates the frequency value selected.

 Press the M key to terminate the test and display the actual value again. Test of measuring range Q, Fct. 2.4

- For this test a measured value in the range of -110 to +110 percent of Q_{100%} (set full-scale range, see Fct. 3.1.1) can be simulated.
- Select Function 2.4 as described in Sect. 4.2 and 4.3, and press
 key.
- Safety interrogation: SURE NO SURE YES select with key
- After SURE YES, press the

 key to display the 1st value in the following list.

Current output I and pulse output P indicate corresponding values.

 Press the key to terminate the test; the actual values are then again present at the outputs.

7.2 Zero check

Always switch off power source before connecting and disconnecting cables!

Set "zero" flow in the pipeline, but make sure that the primary head is completely filled with liquid.

Switch on the signal converter and wait 15 minutes.

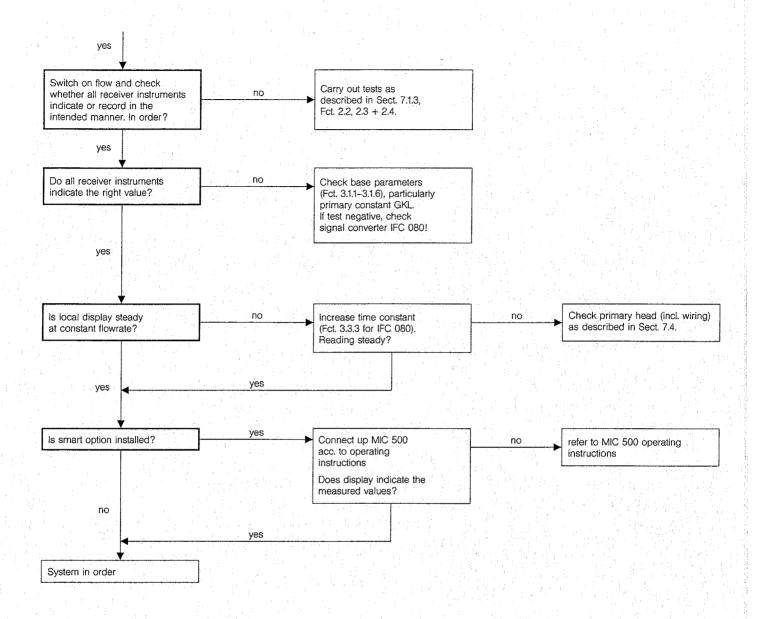
Press the following keys for zero measurement (Fct. 1.1.3):

Key	Display		Description
2			If Entry Code 1 selected, see Fct. 3.5.2, set 9-keystroke Code 1 now
	1.0	OPERATION	
	1.1.0	BASIS.PARAM.	
5	1.1.1	FULL SCALE	机设置 医身体韧带 第
2x 🚹	1.1.3	ZERO SET	[4] "在"图》 医透验门 医基斯氏
	1 7 7	CALIB. NO	
4		CALIB. YES	
	0.0	PERCENT	Zero measurement in
			progress (approx. 50 seonds duration), Display: actual flowrate as 0.0% of full-scale range, max. deviation ± 0.2%; if greater, check whether flowrate is actually "zero".
		STORE NO	If new value not to be accepted, press key 5 times = return to measuring mode.
		STORE YES	
■ _	1.1.3	ZERO SET	Zero set to new value
4x 🔼			Measuring mode with new zero value.

For separate systems only

If "zero" flow in the pipeline cannot be set, switch off signal converter, disconnect signal cable from terminals 1, 2+3 in the converter terminal box, and short terminals 1, 2+3.

7.3 System check-out


Always switch off power source before connecting and disconnecting cables!

The test points in boxes with thin line borders need only be checked when:

- 1. the system has been newly installed,
- 2. signal converter or primary head has been replaced,
- 3. the wiring arrangement has been changed.

The test points in boxes with **rhick** line borders should be checked every time the system is tested.

If you have to return your ALTOFLUX flowmeter to Krohne, please note information given on page 75!

7.4 Setpoint display IFC 080 with primary head simulator GS 8

7.4.1 GS 8: Operating elements and connection cable

D switch, flow direction
 H socket for plug H2 of connection cable Z
 LED power supply "on"
 P potentiometer "zero point"
 W compartment for connection cable
 Y switch measuring ranges
 Z connection cable between

IFC 080 and GS 8

7.4.2 Electrical connection between IFC 080 and GS 8

1. Switch off power source!

Remove cover from terminal and electronic compartments.

Important:

make sure screw threads are neither damaged nor dirty.

- Remove screws A in electronic compartment and fold display circuit board to side. Carefully pull out plug connectors B (2-pin) and C (5-pin) by the connector shell (not by the cables!)
- Electrical connection as shown in the following diagram using ribbon cable Z. Insert plug connector H2 into socket H on the front panel of the GS8.
- 5. Provisionally refix display circuit board (short-circuit risk!).
- = milliammeter accuracy class 0.1

 R_i < 600 ohms range 0 to 20 mA
- electronic frequency counter input resistance min. 1 kOhm (see connection diagrams of pulse output in Sect. 2.3.4)

 range 0 to 10 kHz

 time base min. 1 second

7.4.3 Check of setpoint display

- Switch of power source, allow at least 15 minutes' warm-up time
- 2. Set switch **D** (front panel GS8) to "0" position.
- 3. Adjust zero with the 10-turn potentiometer **P** (front panel GS8) to $10\% \pm < 10 \ \mu A$.
- Determine position of switch Y and setpoints I and f as follows:

4.1
$$X = \frac{2 \times Q_{100\%} \times K}{GKL \times DN^2}$$

Q_{100%} = full-scale range (100%) in volumetric units (**V**) per unit time (**t**)

GKL = primary constant (see primary head nameplate)

DN = meter size in mm, use only the "mm" value for calculation. To convert "inch" to "mm" see Table "meter size" in Fct. 3.1.4.

t = time in seconds (Sec.) minutes (min), hours (hr)

V = volume

K = constant, see following Table

DN	V t	Sec.	min	hr
mm	Liter	25464	424.4	7.074
	m ³	25464800	424413	7074
	US gallons	96396	1607	26.78

Note: Sticker on the GS 8 primary head simulator still gives values for "inch" flowmeters. Do not use any more!

4.2 Determine position of switch Y

Use table (front panel GS8) to determine the value Y which comes closest to the factor X and meets condition $Y \le X$.

4.3 Calculate setpoint reading (I) for current output

$$I = I_{0\%} + \frac{Y}{X} (I_{100\%} - I_{0\%}) \text{ [mA]}$$

lo% = current at 0% flowrate, see Fct. 3.3.2 (e.g. 4 mA, at 4 to 20 mA)

hoo% = current at 100% flowrate, see Fct. 3.3.2 (e.g. 20 mA, at 0/4 to 20 mA)

4.4 Calculate setpoint reading (f) for pulse output

$$f = \frac{Y}{X} \times P_{100\%} \text{ [Hz]}$$

P_{100%} = pulses per second at 100% flowrate, see Fct. 3.4.2 and 3.4.3 "PULSE/TIME".

- Set switch **D** (front panel GS8) to position "+" or "-" (forward or reverse flow).
- Set switch Y (front panel GS8) to the value determined by the method described above.
- 7. Check setpoint readings I or f (see Points 4.3 and 4.4).
- Deviation <1.5% of setpoint! If greater, exchange electronics of IFC 080, see Sect. 8.1.
- Linearity test: adjust lower Y values, readings will drop in proportion to the determined Y value (see Point 4.2).
- 10. Switch off power source after completing the test.
- 11. Disconnect GS8.
- 12. Reconnect plug connectors B and C.
- Replace housing cover. The screw threads and gaskets of the two covers on the IFC 080 must always be well greased.
- The system is ready for operation after the power source has been switched on.

7.4.4 Example

Full scale range	Q _{100%}	= 280m³/hr (Fct. 3.1.1)
Meter size	DN	= 80 mm (≙ 3") (Fct. 3.1.4)
Current at Q _{0%} Current at Q _{100%}	lo% l100%	= 4 mA = 20 mA (Fct. 3.3.2)
Pulses at Q _{100%}	P _{100%}	= 280 pulses/hr (Fct. 3.4.2 + 3.4.3)
Primary head constant	GKL	= 3,571 (see nameplate)
Constant (V in m³, t in hr / DN in mm)	K	= 7074 (see Table)

Calculation "X" and position of switch "Y"

$$\mathbf{X} = \frac{2 \times Q_{100\%} \times K}{GKL \times DN^2} = \frac{2 \times 280 \times 7074}{3.571 \times 80 \times 80} = \mathbf{173.33}$$

Y = 160, position of switch Y, see front panel GS8 (comes closest to X value and is smaller than X)

Calculation setpoint reading I and f

$$I = l_{0\%} + \frac{Y}{X} (l_{100\%} - l_{0\%}) =$$

$$4 \text{ mA} + \frac{160}{173.33}$$
 (20 mA - 4 mA) \approx **18.8 mA**

Deviations are permissible between $\underline{18.5}$ and $\underline{19.1}$ mA (equivalent to \pm 1.5%).

$$\mathbf{f} = \frac{Y}{X} \times P_{100\%} = \frac{160}{173.33} \times 280 \text{ pulses/hr} \approx 258.5 \text{ pulses/hr}$$

Deviations are permissible between $\underline{254.6}$ and $\underline{262.3}$ pulses/hr (equivalent to $\pm 1.5\%$).

If you have to return your ALTOFLUX flowmeter to Krohne, please note information given on page 75!

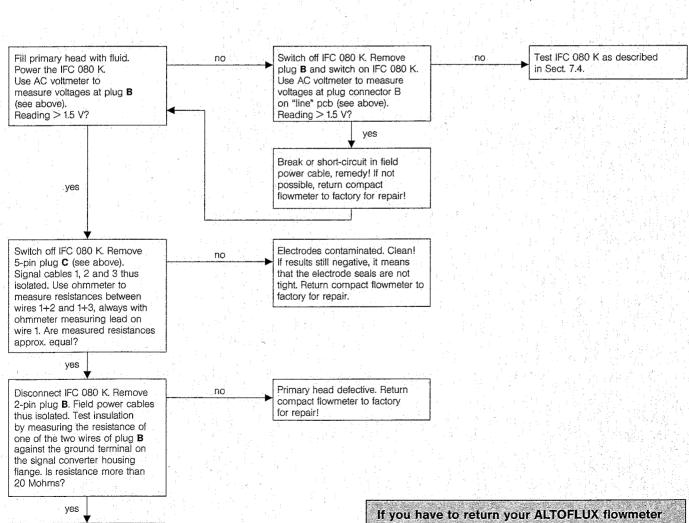
7.5 Testing the primary head

7.5.1 Primary head in compact systems

Always switch off power source before connecting and disconnecting cables!

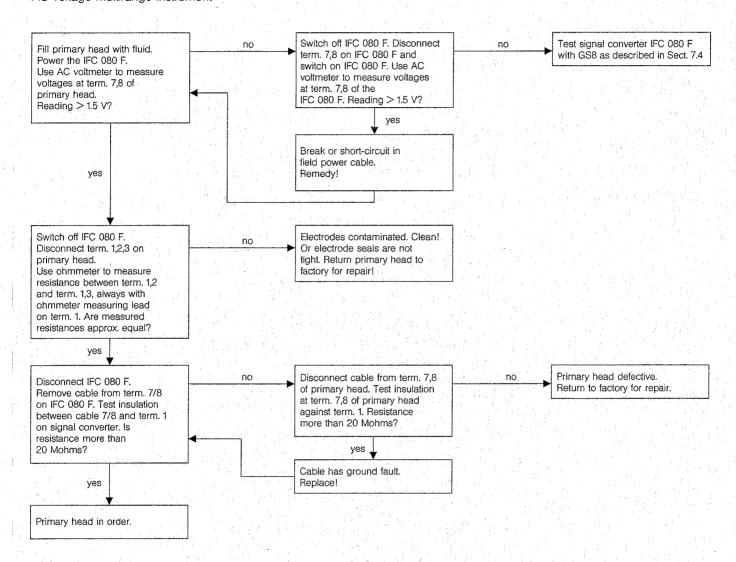
Required measuring instruments and tools:

- Ohmmeter with at least 6 V range, or AC voltage/resistance bridge
- AC voltage multirange instrument
- Special wrench for housing cover


Preparatory work

- Switch off power source!
- Use the special wrench to remove the cover from the electronic compartment.
- Remove screws A and fold display board to side.
 Be sure it does not come into contact with the housing short-circuit risk!
- Wire identifier at plug C:

to Krohne, please note information given on


Primary head in order.

7.5.2 Primary head in separate systems

Always switch off power source before connecting and disconnecting cables!

Required measuring instruments:

Ohmmeter with at least 6 V range, or AC voltage/resistance bridge AC voltage multirange instrument

If you have to return your ALTOFLUX flowmeter to Krohne, please note information given on page 75!

8.1 Replacement of electronic unit of signal converter

Order No. of electronic unit IFC 080 smart/S, refer to Sect. 9.3 (S = Service).

The IFC 080 smart/S electronic unit can be used as replacement unit for the following signal converters (compact flowmeters):

IFC 080 K (IFM 1080 K, IFM 3080 K, IFM 4080 K, IFM 5080 K, K 480 S

IFC 080 K/MP (IFM 1080 K/MP, IFM 3080 K/MP, IFM 4080 K/MP, IFM 5080 K/MP, K 480 S/MP)

IFC 080 K smart (IFM 1080 K smart, IFM 3080 K smart, IFM 4080 K smart, IFM 5080 K smart, K 480 S smart)

IFC 080 F

(F = field housing, IFC 080 F/MP separate system) IFC 080 F smart

SC 80 AS (K 180 AS, K 280 AS, K 380 AS, K 480 AS) SC 80 AS/MP (K 180 AS/MP, K 280 AS/MP, K 380 AS/MP, K 480 AS/MP)

SC 80 AS/F SC 80 AS/MP/F (F = field housing, separate system)

SC 80 A (K 180 A, K 280 A, K 380 A, K 480 A)

SC 80 A/MP (K 180 A/MP, K 280 A/MP, K 380 A/MP, K 480 A/MP)

A special electronic unit is available for hazardous-duty versions (see separate "Ex" installation instructions).

Always switch off power source before commencing work!

- Use the special wrench to remove the cover from the terminal box
- 2. Disconnect all cables from the terminals: IFC 080 and SC 80 AS: term. 5/6/4/4.1/4.2/11/12 SC 80 A : term. 5/6/4/4.1/11/12
- 3. Use the special wrench to remove the cover from the electronic compartment.

- 4. Remove screws A and fold display board to side.
- Remove plug B (2-pin, field power cable) and plug C (signal cable).

IFC 080 and SC 80 AS: plug C / 5-pin : plug C / 3-pin SC 80 A

- 6. Remove screws **D** using a screwdriver for recessed-head screws (size 2, blade length min. 200 mm [8"]), and carefully remove the complete electronics.
- 7.1 On the new electronic unit, check the supply voltage and fuse F9, and change over/replace if necessary, see Sect.
- 7.2 The following applies only to SC 80 A because terminal assignment is different!
 - Clean the housing partition in the terminal box with methylated spirit or similar. Then stick the self-adhesive terminal marking tag over the terminal numbers in the cast metal. Make sure positioning is correct!
 - Connect to power as described in Sect. 2.1.2 or 2.2.2.
 - Connect current output as described in Sect. 2.3.1, 2.3.2 + 2.3.4.
 - Connect pulse output as described in Sect. 2.3.1, 2.3.3 + 2.3.4.

Important: Ensure that the screw thread and the gaskets of the covers on the electronic and terminal compartments are well greased at all times.

- 8. Reassemble in reverse order (Points 6 to 1).
- 9. All data must be reset after replacement of the electronic unit. The supplied report on settings contains the standard factory setting. Customer-specific data should be recorded in the report before resetting as described in Sect. 4 + 5.
- 10. Subsequently be sure to check the zero and store the new zero value, see Sect. 7.2 and Fct. 3.1.3.

8.2 Replacement of primary head in separate systems

Always switch off power source before commencing work!

- Specific calibration data for each primary head, specified on the nameplate, are determined during factory calibration. This includes the primary head constant GKL and the magnetic field frequency.
- The signal converter must be reset as follows when a primary head is replaced.
- At all events, reset the internal totalizer as described in Sect. 5.6. Note down totalizer counts beforehand.
- Magnetic field frequency, indicated behind the type designation on the primary head nameplate. Meaning:

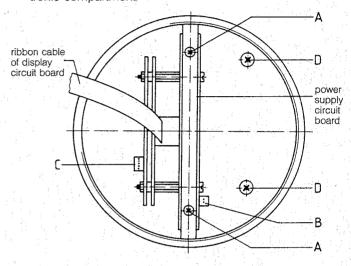
.../6 = 1/6.../16 = 1/16 } of power frequency

 $\frac{1}{1}$ 10 = 1/10 $\frac{1}{1}$ of power frequency $\frac{1}{1}$ 1/32 = 1/32

Check setting under Fct. 3.6.1 "FIELD FREQ." and reset if necessary.

GKL value

Set under Fct. 3.1.5 "GK VALUE".


Do not set the GK value which is also specified on the nameplate!

- A zero check (Fct. 3.1.3) is advisable following resetting, see Sect. 7.2.
- If the new primary head has a different meter size (diameter), the new size must be additionally set in Fct. 3.1.4 and the new full-scale range for Q_{100%} in Fct. 3.1.1; in the case of F/R operation, see also Fct. 3.1.2.

8.3 Change of operating voltage and power fuse F9

Always switch off power source before commencing work!

- Use the special wrench to remove the cover from the terminal compartment.
- 2. Disconnect all cables from terminals 5 / 6 / 4 / 4.1 / 4.2 / 11 / 12
- Use the special wrench to remove the cover from the electronic compartment.

- 4. Remove screws A and fold display board to side.
- Remove plug B (2-pin, field power supply) and plug C (5-pin, signal cables)
- Remove screws D using a screwdriver for recessed-head screws (size 2, blade length min. 200 mm [8"]), and carefully remove the complete electronics.

7.1 Replacement of power fuse F9

For location of the F9 fuse, refer to drawing of "line" circuit board in Sect. 9.1.

Connection of 230 or 240 V AC to the 240 V coil.

Voltage	Fuse	∍ F9
	Rating	Order No.
200/220/230/240 V AC	T 0.125/250 G	5.06627
120 V AC	T 0.2/250 G	5.05678
100/110 V AC	T 0.25/250 G	5.08315

7.2. Change of operating voltage

- Transpose voltage select cable E on "line" circuit board, see drawing in Sect. 9.1, to obtain desired voltage.
- If necessary, change fuse F9 to suit the new voltage.
 For values, refer to Table under Item 7.1 (above).
- 8. Reassemble in reverse order.

Important: Ensure that the screw threads and the gaskets of the covers on the electronic and terminal compartments are well greased at all times.

8.4 Turning the display circuit board

To ensure horizontal positioning of the display irrespective of the location of the IFM 1080 K, IFM 3080 K, IFM 4080 K, IFM 5080 K and K 480 S compact flowmeters, the display circuit board can be turned through \pm 90° or 180°.

- Switch off the power supply!
- Unscrew the cover from the electronics compartment using the special wrench.
- Remove screws A from the display board.

- Turn display board into desired position.
 Please note Versions A E in Sect. 8.6!
- Fold the ribbon cable as shown in the following drawings for versions A and D or B or C and E. Please follow directions scrupulously so as to avoid damage to electronic components and printed boards!
- For Version B the screws A must be repositioned on the display board.
- Carefully screw down the display board.

for Versions C and E

see also Sect. 8.6 (on the right)

Directions for folding the ribbon cable on the display circuit board

Viewed from above through the pc board!

for Versions A and D see also Sect. 8.6 (on the right)

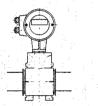
for Version B see also Sect. 8.6 (on the right)

8.5 Turning the signal converter housing

To facilitate access to connecting, indicating and operating elements on compact flowmeters IFM 1080 K, IFM 3080 K, IFM 4080 K, IFM 5080 K and K 480 S installed in locations that are hard to get at, the signal converter housing can be turned through \pm 90° (see Versions A to E in Sect. 8.6), but not the hazardous-duty version!

Any faults resulting from failure to follow these instructions scrupulously shall not be covered by our warranty!

 The connection wires between primary head and signal converter housing are extremely short and can break easily.


- Switch off the power source!
- Clamp the flowmeter firmly by the primary head housing.
- Secure converter housing against slipping and tilting.
- Remove the 2 hexagon socket screws connecting the two housings and push out the 2 plugs.
- Carefully turn the converter housing clockwise or anti-clockwise a maximum of 90°, but do not lift the housing. If the gasket should stick, do not attempt to lever it off.
- To conform to the requirements of protection category IP 67, equivalent to NEMA 6, keep connecting faces clean and tighten the 2 hexagon socket screws uniformly. Replace the plugs in the two free holes.

8.6 Available versions of IFM 1080 K, IFM 3080 K, IFM 4080 K, IFM 5080 K and K 480 S compact flowmeters

Compact flowmeters are supplied in 5 different versions, A – E, for various positions of the display circuit board and signal converter housing.

Version A

Version D

9. Connection and operating points on the circuit boards, and Part No.

9.1 Line circuit board

9.2 Input amplifier circuit board

9.3 Part No.

5 6

4 4.1 4.2

Electronic unit IFC 080 smart/S complete with display, magnetic sensors and smart interface for remote control with the MIC 500, installation and operating instructions IFM 1080 K/IFM 3080 K+F/IFM 4080 K+F/IFM 5080 K+F/K 480 S and self-adhesive terminal marking tag (needed only for compact units K 180 A, K 280 A, K 380 A and K 480 A with SC 80 A signal converter).

Power supply:	230 Volt AC	Order	No. 2.07386.00
	240 Volt AC		.01
	200 Volt AC		.02
	120 Volt AC		.03
	110 Volt AC		.04
	100 Volt AC		.05
	220 Volt AC		.06
	24 Volt AC		.24
	42 Volt AC		.42
	24 Volt DC		2.07387.00

Terminal marking tag, self-adhesive

3.07496.01

Fuses		Rating	Order No
Line power F9:	200/220/230/240 A	AC T 0,125/250 G	5.06627
	120 V AC	T 0,2/250 G	5.05678
	100/110 V AC	T 0,25/250 G	5.08315
	48 V AC	T 0,5/250 G	5.07094
医乳蛋白 医毒素	42 V AC	T 0,63/250 G	5.05827
	24 V AC	T 1,25/250 G	5.06232
	24 V DC	T 1,6/250 G	5.07823
Field current:	F10 + F11	T 0,1/250	5.07561

Special wrench for housing cover Bar magnet Order No. 3.07421.01

Order No. 2.07053

Technical data, measuring prinziple, block diagramm

10. Technical Data

10.1 Full-scale range Q

Responsibility as to suitability and intended use of our instruments rests solely with the purchaser.

Full-scale range

adjustable

Flowrate for Q = 100%

6 liters/hr to 12215 m³/hr or 0.02 to 53700 US G/min

corresponding to flow velocity v = 0.3 to 12 m/s or 1 to 40 ft/s (see table below)

m³/hr, liters/sec or US gallons/min,

and 1 user-defined unit e.g. hectoliters per hour or US million gallons per day

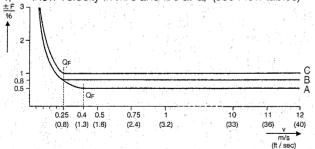
Flow table for Q in m3/hr and l/hr

Flow table for Q in US G/min

Meter	size	Full-scale ran	ge Q _{100%}	Q F	in the second of	Meter	size	Full-scale ran	ge Q _{100%}	Q F	
DN mm	inches	minimum (v = 0,3 m/s)	maximum (v = 12 m/s)	for error limit at v _F = 0.25 m/s	for error limit at v _F = 0.4 m/s	DN mm	inches	minimum (v = 1 ft/s) in US G/min	maximum (v = 40 ft/s) in US G/min	for error limit at v = 0.8 ft/s in US G/min	for error limit at v = 1.3 ft/s in US G/min
2.5 4 6 10 15 20 25 32 40 50 65 80 100 125 150 200 250 300 400 500	1/0 1/6 1/4 3/8 1/2 3/4 1 1/4 11/2 2 21/2 3 4 5 6 8 10 12 16 20	5.301 l/hr 13.56 l/hr 30.54 l/hr 84.83 l/hr 190.9 l/hr 339.3 l/hr 530.2 l/hr 868.6 l/hr 1.358 m³/hr 2.121 m³/hr 3.584 m³/hr 5.429 m³/hr 13.26 m³/hr 19.09 m³/hr 13.02 m³/hr 76.35 m³/hr 76.35 m³/hr 76.35 m³/hr 76.35 m³/hr	212.1 l/hr 542.9 l/hr 1.221 m³/hr 3.392 m³/hr 7.634 m³/hr 21.20 m³/hr 34.74 m³/hr 54.28 m³/hr 44.33 m³/hr 217.1 m³/hr 339.2 m³/hr 763.4 m³/hr 763.4 m³/hr 1357 m³/hr 2120 m³/hr 3053 m³/hr 5428 m³/hr 8482 m³/hr	4.418 l/hr 11.31 l/hr 25.45 l/hr 70.69 l/hr 159.0 l/hr 159.0 l/hr 441.8 l/hr 7.069 m³/hr 1.767 m³/hr 4.524 m³/hr 4.524 m³/hr 15.83 m³/hr 15.83 m³/hr 44.18 m³/hr 63.62 m³/hr 112.1 m³/hr 112.1 m³/hr	7.069 l/hr 18.10. l/hr 40.72 l/hr 113.1 l/hr 254.4 l/hr 452.5 l/hr 706.9 l/hr 1.158 m³/hr 2.827 m³/hr 4.779 m³/hr 7.238 m³/hr 11.31 m³/hr 11.31 m³/hr 11.36 m³/hr 25.33 m³/hr 45.25 m³/hr 70.69 m³/hr 10.18 m³/hr 179.4 m³/hr	2.5 4 6 10 15 20 25 32 40 50 65 80 100 125 150 200 250 300 400 500	1/10 1/8 1/4 3/8 1/2 3/4 1 11/2 2 21/2 3 4 5 6 8 10 12 16 20	0.02334 0.05970 0.1345 0.3735 0.8405 1.494 2.334 3.824 5.979 9.339 15.78 23.90 37.35 58.38 84.05 149.4 233.4 336.2 597.9 933.9	0.9339 2.390 5.376 14.93 33.61 59.75 93.34 153.0 239.0 373.5 630.9 955.9 1493 2334 3361 5975 9334 13442 23899 37345	0.01945 0.04980 0.1121 0.3112 0.7001 1.245 1.945 3.187 4.980 7.780 13.15 19.92 31.12 48.61 69.70 124.5 194.5 280.1 493.6 778.0	0.03112 0.07967 0.1793 0.4980 1.120 1.992 3.112 5.099 7.967 12.45 21.04 31.87 49.80 77.77 111.5 199.2 311.2 448.2 789.7
600	24	305.4 m ³ /hr	12215 m ³ /hr	254.5 m ³ /hr	407.2 m³/hr	600	24	1345	53781	1121	1793

10.2 Error limits for complete system at reference conditions

Pulse output


±F Error in % of flowrate (actual value)

Q Actual flowrate

Flow for error limit $v_F = 0.25$ and 0.4 m/s or $v_F = 0.8$ and 1.3 ft/s (see Flow tables) Q_F

Flow velocity in m/s and ft/s

Flow velocity in m/s and ft/s at QF (see Flow tables)

Reference conditions Product Electrical conductivity

Power supply (line voltage) Ambient temperature

Warm-up time Straight Inlet run Straight outlet run Water, 10 to 30°C/50 to 86°F > 300 μ S/cm (μ mho/cm)

 $U_{N} (\pm 2\%)$

20 to 22°C/68 to 71.6°F

30 minutes

>10 DN

meter size 3 DN

Curve	Primary head	Meter size		Error limits a	s % of measured valu	ıe
	(System)	DN mm	inches	$Q \ge Q_F$	Q < Q _F	VF
A	IFS 5000 IFS 4000, K 480 S (Option)	10 - 100 10 - 600	3/8 - 4 3/8 - 24	$F = \pm 0.5 \%$	$F = \pm 0.5 \% \times \frac{Q_F}{Q}$	0.4 m/s or 1.3 ft/s
В	IFS 5000 IFS 4000, K 480 S (Standard) M 900	2.5 - 6 10 - 600 10 - 300	1/10 - 1/4 3/8 - 24 3/8 - 12	F=±0.8%	$F = \pm 0.8 \% \times \frac{Q_F}{Q}$	0.25 m/s or 0.8 ft/s
С	IFM 1080	15 – 80	1/2 - 3	F=±1.0%	$F = \pm 1.0 \% \times \frac{Q_F}{Q}$	0.25 m/s or 0.8 ft/s

Current output

same as above error limit for pulse output plus...

0 to 20 mA: $\pm 0.05 \%$ 4 to 20 mA: $\pm 0.062 \%$ generally: ±0.05 % ×

of full-scale range in each case

10.3 IFC 080 Signal converter

Current output (term. 5/6) - all operating data adjustable Function - galvanically isolated (not from pulse output) Current 0 to 20 mA and 4 to 20 mA Fixed ranges Other ranges $l_{0\%}$ for Q = 0 %: 0 - 16 mA $I_{100\%}$ for Q = 100 %: 4 - 20 mA adjustable in increments of 1 mA I_{max} for Q > 100 %: 4 - 22 mALow-flow cutoff (SMU) Cut off "on" value 1 to 19% of Q100%, adjustable in 1% increments, independent of pulse output Cut off "off" value 2 to 20% selectable performance, direction identified via pulse Forward/reverse measurements output, see under "status indication output" (F/R) Time constant 0.2 to 3600 seconds, adjustable in increments of 1 or 0.1 second 14000Ω Max. load at 1100% (e.g. 0.7 kohm at 20 mA, 2.8 kohm at 5 mA) I_{100%} [mA] **Pulse output** - all operating data adjustable Function - galvanically isolated (not from current output) - digital pulse division, interpulse period non-uniform, therefore if frequency meters connected allow for minimum counting interval: gate time, totalizer $\geq \frac{1000}{P_{100\%}[Hz]}$, at least 0.4 seconds 10 to 36000000 pulses per hour Pulse rate for Q = 100%0.167 to 600000 pulses per minute 0.0028 to 10000 pulses per second (= Hz) optionally in pulses per liter, m³ or US gallons short-circuit-proof Active output for electromechanical (EMC) or electronic (EC) totalizers Terminals 4.1/4.2 Terminals 4/4.1/4.2 for electronic (EC) totalizers Amplitude 24 Volt (≤ 30 Volt) see Table "pulse width" Load rating Passive output open collector for connection of active electronic totalizers (EC) or switchgear Terminals 4/4.1 Input voltage 5 to 30 V max. 100 mA Load current 100 ohms Load rating of active output Frequency $f = P_{100\%}$ (at Q = 100%) Pulse width Load current Load 0.0028 Hz < f ≤ ≤ 150 mA 160 Ohm 500 ms 1 Hz 160 Ohm $0.0028 \, Hz < f \le$ ≤ 150 mA 200 ms 2 Hz \geq ≤ 150 mA 100 ms $0.0028 \text{ Hz} < f \le$ 160 Ohm 3 Hz $3 \text{ Hz} < f \leq$ 400 Ohm 60 mA 100 ms 5 Hz ≤ $0.0028 \text{ Hz} < f \le$ ≤ 150 mA 160 Ohm 50 ms 5 Hz 400 Ohm 50 ms $5 \, \text{Hz} < f \le$ 10 Hz 60 mA \leq \geq $\leq 150 \, \text{mA}$ $0.0028 \, Hz < f \le$ 160 Ohm 6 Hz 30 ms 6 Hz < f ≤ 300 Ohm 30 ms 10 Hz 80 mA \geq 1000 Ohm $10 \, \text{Hz} < f \le$ 10000 Hz 25 mA pulse width = Low-flow cutoff (SMU) cutoff "on" value 1 to 19% of Q_{100%}, adjustable in 1% increments, independent of current output cutoff "off" value 2 to 20% selectable performance, direction identified via current output, see under Forward/reverse measurements "status indication output" (F/R) 0.2 second or same as current output (see above) Time constant Current output 5 + 6 Status indication output Pulse output 4.1 + 4.2Connection terminals 24 V DO 24 V DC Voltage $I_{max} \le 22 \text{ mA}$ < 25 mA Load current

>1 kohm

 $l_{0\%} \le 16 \text{ mA}$ $\ge 1.2 \text{ kohms}$

Load

Local display 3-line illuminated LCD

Display functions actual flowrate, forward, reverse and sum totalizers (7-digit),

each can be set for continuous display or in sequence with others, and output of error

messages

Display units

m³/hr, liters/Sec or US gallons/min Actual flowrate

1 user-defined unit (e.g. hectoliters per day or US million gallons per day)

and percent of full-scale range

Totalizers liters, m³ or US gallons and 1 user-defined unit (e.g. hectoliters or US million gallons),

min 1 year overflow time

Language of plain texts

German, English, French, others on request

Display

1st line (top) 8-digit, 7-segment numeral and sign display, symbols for key acknowledgement 2nd line (middle)

10-character, 14-segment text display 3rd line (bottom) 4 markers ▼ to identify actual display

Power supply

230 V AC, ±10% (changeable to 100, 110, 120, 200, 220, 240 V AC, +10%/-15%), Standard

24 V AC (changeable to 21, 42, 48 V AC), ± 10%, 48 to 63 Hz Special versions

24 V DC, ± 30%

AC: 16 VA Power consumption

incl. primary head DC: 11 W

Housing

die-cast aluminium with polyurethane finish Material

HUD (ambient temperature – 25 to + 60°C / – 13 to + 140°F), in operation and in storage, Environment class (to DIN 40040)

relative humidity < 80% annual mean)

Protection category (DIN 40050 / IEC 144)

IFC 080 K (compact)

IP 67 equivalent to NEMA 6

(max. 1 m or 3.3ft underwater for max. 30 minutes)

IP 65 equivalent to NEMA 4 and 4X IFC 080 F (separate)

10.4 Primary heads

10.4.1 IFS 5000 primary head, IFM 1080 K and IFM 5080 K compact flowmeters

Compact system	IFM 1080 K	IFM 5080 K
Primary head for separate systems		IFS 5000
Version	Sandwich (flangeless) design	Sandwich (flangeless) design
Meter size	DN 15 to 80 ¹ / ₂ " to 3"	DN 2.5 to 100 1/ ₁₀ " to 4"
Scope of supply	see "IFM 1080 K" Table, page 3	see "IFM 5080 K + IFS 5000" Table, page 3
Pipe flanges and rated pressure of measuring tube (max. operating pressure)	see "Torques" Table Sect. 1.2.3 and "Limits", Sect. 10.5	see "Torques" Table in Sect. 1.2.3 and "Limits", Sect. 10.5
Electrical conductivity	\geq 5 μ S/cm (μ mho/cm); \geq 20 μ S/cm (μ mho/cm) for demineralized cold water	$\geq 5\mu$ S/cm (μ mho/cm); $\geq 20\mu$ S/cm (μ mho/cm) for demineralized cold water
Process temperature	refer to Sect. 10.5 "Limits"	refer to Sect. 10.5 "Limits.,
Compact system	- 10 to + 75°C or 14 to 167°F	Standard: - 60 to + 140°C or - 76 to + 284°F
		= 76 to + 264 F Ex version: - 60 to + 180°C or - 76 to + 356°F
Separate system		- 60 to + 180°C or - 76 to + 356°F
Ambient temperature for ≤ 60°C or ≤ 140°F process temperature for > 60°C or > 140°F process temperature	- 25 to + 60°C or - 13 to + 140°F - 25 to + 40°C or - 13 to + 104°F	 25 to + 60°C or - 13 to + 140°F compact system:
		 25 to + 40°C or - 13 to + 104°F separate system: 25 to + 60°C or - 13 to + 140°F
Change in process temperature Temperature rising Temperature falling		$\Delta T = 150$ °C or 302°F, in 10 minutes $\Delta T = 100$ °C or 212°F, for sudden change $\Delta T = 80$ °C or 176°F, in 10 minutes $\Delta T = 60$ °C or 140°F, for sudden change
	0 mbar abs. or 0 psia	0 mbar abs. or 0 psia
Vacuum load	o moar abs. or o psia	O Imbai abs. of o psia
Insulation class of field coils Compact system Separate system	E, ≤ 75°C or ≤ 167°F process temperature -	H, ≤ 140°C or ≤ 284°F process temperature H, ≤ 180°C or ≤ 356°F process temperature
Power supply for field coils	max. 60 V from signal converter	max. 60 V from signal converter
Electrode design	pin electrodes	fused-fitted electrodes
Protection category (DIN 40050 / IEC 144)	IP 66 equivalent to NEMA 4X	IP 67 equivalent to NEMA 6
Environment class (DIN 40040)	HUD (ambient temperature – 25 to + 60°C or – 13 to + 140°F, relative humidity < 80% annual mean)	HUD (ambient temperature - 25 to + 60°C or - 13 to + 140°F, relative humidity < 80% annual mean)

Compact system	IFM 1080 K	IFM 5080 K
Primary head for separate systems		IFS 5000
Materials Measuring section	polysulfone, glass fiber reinforced	fused aluminium oxide, 99.7% Al ₂ O ₃
<u>Electrodes</u>	stainless steel 1.4571 or SS 316 Ti – AISI	platinum
Housing ≤ DN 15, ≤ $\frac{1}{2}$ " ≥ DN 25, ≥ 1"	malleable cast iron (GTW 40) or grey cast iron (GG20) * malleable cast iron (GTW 40) or grey cast iron GG 20 *	stainless steel 1.4462/Duplex stainless steel 1.4301 or SS 304 – AISI
Terminal box (separate systems only)		die-cast aluminium *
Grounding rings **	stainless steel 1.4301 or SS 304 – AISI	stainless steel 1.4571 or SS 316 Ti – AISI
Gaskets ** \leq DN 15, \leq $^{1}/_{2}$ " \geq DN 25, \geq 1"	EPDM gaskets EPDM gaskets	Viton O-rings, optionally with PFA coating Gylon 3500 (beige) gaskets (range of application similar to that of PTFE), optionally
Centering material ** ≤ DN 25, ≤ 1"	rubber sleeves rubber sleeves	Chemotherm (graphite) gaskets EPDM rings rubber sleeves
≥ DN 40, ≥ 1 ¹ / ₂ " <u>Stud bolts</u> <u>Standard</u> Special version	steel, electrogalvanized stainless steel 1.4301 or SS 304 – AISI	steel, electrogalvanized stainless steel 1.4301 or SS 304 – AISI

^{*} with polyurethane finish** see Tables on page 3 for scope of supply

10.4.2 IFS 4000 an	d M 900 primary	heads, IFM 4080	K and IFM 3080	K compact flowmeters

Compact system	IFM 3080 K	IFM 4080 K, K 480 S
Primary head for separate systems	M 900	IFS 4000
Versions/meter sizes with flange connections	DN 10-300 and ³ / ₈ " to 12" (see below)	DN 10-600 and ³ / ₈ " to 24" (see below)
for the food industry Sanitary connection DIN 11851 Clamp connection	Meter sizes DN 10-25 Pressure rating PN Measuring tube	
SMS connection	nom. dia. 1" to 4" on request	
Rated pressure	dependent on meter size, connecting flange, liner and process temperature, see Sect. 10.5 "Limits"	dependent on meter size, connecting flange, liner and process temperature, see Sect. 10.5 "Limits"
Connecting flanges to DIN 2501 (= BS 4504) to ANSI	DN 10 to 50 and DN 80: PN 40 DN 65 and DN 100 to 150: PN 16 DN 200 to 300: PN 10 3/8" to 12" Class 150 or 300 lbs / RF	DN 10 to 50 and DN 80: PN 40 DN 65 and DN 100 to 150: PN 16 DN 200 to 600: PN 10 3/8" to 24" Class 150 lbs / RF
Electrical conductivity	\geq 5 μ S/cm (μ mho/cm); \geq 20 μ S/cm (μ mho/cm) for demineralized cold water	\geq 5 μ S/cm (μ mho/cm); \geq 20 μ S/cm (μ mho/cm) for demineralized cold water
Process temperature (see Sect. 10.5) Compact system Separate system	- 60 to + 140°C or - 76 to + 284°F - 60 to + 180°C or - 76 to + 356°F	- 60 to + 140°C or - 76 to + 284°F - 60 to + 180°C or - 76 to + 356°F
Ambient temperature at ≤ 60°C or ≤ 140°F process temperature at > 60°C or > 140°F process temperature Compact system Separate system	- 25 to + 60°C or - 13 to + 140°F - 25 to + 40°C or - 13 to + 104°F - 25 to + 60°C or - 13 to + 140°F	- 25 to + 60°C or - 13 to + 140°F - 25 to + 40°C or - 13 to + 104°F - 25 to + 60°C or - 13 to + 140°F
Insulation class of field coils / process temperature Standard Special version	E / \leq 120°C or \leq 248°F H / \leq 180°C or \leq 356°F	DN 10 to 300 ($^{9}/_{8}''$ to 12"): H / \leq 180°C or \leq 356°F DN 350 to 600 (14" to 24"): E / \leq 120°C or \leq 248°F DN 350 to 600 (14" to 24"): H / \leq 180°C or \leq 356°F
Power supply for field coils	max. 60 V from converter	max. 60 V from converter
Electrode design Standard Special version	flat elliptical, solidly fitted, surface-polished, self-cleaning DN 50 to 300 or 2" to 12"	DN 25 to 150 or 1" to 6" replaceable when measuring tube drained DN 10 to 20 / DN 200 to 600 or $^3/_8$ " to $^3/_4$ " / 8" to 24" flat elliptical, surface-polished, self-cleaning DN 350 to 600 or 14" to 24"
	field replaceable electrodes WE	field replaceable electrodes WE
Protection category (to DIN 40050/IEC 144) Compact system Separate system	IP 67 equivalent to NEMA 6 IP 65 equivalent to NEMA 4 and 4X (option: IP 67, IP 68 equivalent to NEMA 6)	IP 67 equivalent to NEMA 6 (IP 65 equivalent to NEMA 4 and 4X with field replaceable electrodes WE) IP 67 equivalent to NEMA 6 (option: IP 68 equivalent to NEMA 6)
Environment class (DIN 40040)	HUD (ambient temperature -25 to +60°C or -13 to +140°F, relative air humidity < 80% annual mean)	HUD (ambient temperature -25 to +60°C or -13 to +140°F, relative air humidity < 80% annual mean)
Grounding rings	available as option	available as option

Compact system	IFM 3080 K	IFM 4080 K, K 480 S
Primary head for separate systems	M 900	IFS 4000
Materials Measuring tube Liner	stainless steel (1.4301 or high material number) equivalent to SS 304 – AISI	stainless steel (1.4301 or higher material number) equivalent to SS 304 – AISI
Standard: DN 10-20 or ${}^{3}/_{8} - {}^{3}/_{4}"$ DN 25-150 or 1" - 6" \geq DN 200 or \geq 8"	PTFE (Teflon) Neoprene or PTFE (Teflon) Neoprene or PTFE (Teflon)	PTFE (Teflon) PFA (reinforced with stainless steel mesh) Neoprene or PTFE (Teflon)
Special versions ≥ DN 200 or ≥ 8"	Irethane, hard and soft rubber, others on request	irethane, hard and soft rubber, others on request
Food version <u>Electrodes</u> Standard	PTFE (Teflon) Hastelloy C4	Hastelloy C4
Special versions	stainless steel 1.4571 or SS 316 Ti – AISI, Hastelloy B2, titanium, tantalum, platinum, others on request	stainless steel 1.4571 or SS 316 Ti – AISI, Hastelloy B2, titanium, tantalum, platinum, platinum/iridium, others on request
Food version	stainless steel 1.4571 or SS 316 Ti – AISI	
Field replaceable electrodes WE	stainless steel 1.4571 or SS 316 Ti – AISI	stainless steel 1.4571 or SS 316 Ti – AISI
Housing * DN 10 - 40 or ³ / ₈ " - 1 ¹ / ₂ "	GTW 30	GTW 30
≥ DN 50 or ≥ 2"	sheet steel	sheet steel
Food version	optionally stainless steel 1.4571 or SS 316 Ti – AISI without enamel finish	
Terminal box * (primary head only) Standard	die-cast zinc	die-cast aluminium
Food version	aluminium, without enamel finish	
<u>Connecting flanges</u> * o DIN 2501: DN 10 - 50, DN 80 DN 65, ≥ DN 100	steel 1.0402 (C22) or AlSI: C 1020 steel 1.0501 (RST 37.2) oe AlSI: C 1035	steel 1.0402 (C22) or AlSI: C 1020 steel 1.0501 (RST 37.2) or AlSI: C 1035
o ANSI:	steel ASTM A 105 N	steel ASTM A 105 N
<u>Grounding rings</u>	stainless steel 1.4571 or SS 316 Ti – AISI	stainless steel 1.4571 or SS 316 Ti – AISI

^{*} with polyurethane finish

Limits for fused aluminium oxide, PFA and PTFE

Liner	Flange standard	Nominal diameter of measuring tube	Flange pressure	S= Standard		iting pressur	e in bar (and are of	d psig)				
		and flanges	rating or class	O= Option	≤ 40°C (≤ 105°F)	≤ 60°C (≤ 140°F)	≤ 70°C (≤ 158°F)	≤ 90°C (≤ 195°F)	≤ 100°C (≤ 210°F)	≤ 120°C (≤ 250°F)	≤ 140°C (≤ 285°F)	≤ 180°C (≤ 355°F)
Fused aluminium oxide	DIN 2501	DN (2.5) 15-80* DN 100* DN 100*	PN 40 PN 16 PN 25	S S O	40 (580) 16 (230) 25 (360)	40 (580) 16 (230) 25 (360)	40 (580) 16 (239) 25 (360)	40 (580) 16 (230) 25 (360)				
	ANSI B 16.5	(1/10") 1/2"-4" * (1/10") 1/2"-3" * 4" *	150 lbs 300 lbs 300 lbs	S O O	19.6 (284) 40 (580) 25 (360)	19 (275) 40 (580) 25 (360)	18.7 (271) 40 (580) 25 (360)	18.1 (262) 40 (580) 25 (360)	17.7 (256) 40 (580) 25 (360)	17 (246) 40 (580) 25 (360)	16.2 (235) 40 (580) 25 (360)	14.7 (213) 40 (580) 25 (360)
PFA	DIN 2501	DN 25-50, DN 80 DN 65, DN 100-150	PN 40 PN 16	S S	40 (580) 16 (230)							
No. 10 18 1	ANSI B 16.5	1"-6"	150 lbs	S	19.6 (284)	19 (275)	18.7 (271)	18.1 (262)	17.7 (256)	17 (246)	16.2 (235)	14.7 (213)
PTFE (Teflon)	DIN 2501	DN 10–50, DN 80 DN 65, DN 100-150 DN 200–600 DN 65, DN 100–150 DN 200–600	PN 40 PN 16 PN 10 PN 40 PN 16	\$ \$ \$ 0	40 (580) 16 (230) 10 (150) 40 (580) 16 (230)	on request 16 (230) 10 (150) on request 16 (230)						
	ANSI B 16.5	3/8"-24" 3/8"-24"	150 lbs 300 lbs	S O	19.6 (284) 40 (580)	19.0 (275) 40 (580)	18.7 (271) 40 (580)	18.1 (262) 40 (580)	17.7 (256) 40 (580)	17.0 (246) 40 (580)	16.2 (235) 40 (580)	14.7 (213) on request

Pipe flanges, DN 2.5-100 and 1/10"-4" are flangeless design!

Limits for neoprene, irethane, hard and soft rubber

Liner	Flange standard	Nominal diameter of measuring tube	Flange pressure rating or class	S= Standard	Max. operating pressur at max. possible produ			
		and flanges		O= Option	Soft rubber ≤ 40°C (≤ 105°F)	Neoprene ≤ 60°C (≤ 140°F)	Irethane ≤ 70°C (≤ 158°F)	Hard rubber ≤ 90°C (≤ 195°F)
Neoprene, irethane, hard and soft	DIN 2501	DN 25-50, DN 80 DN 65, DN 100-150 DN 200-600 DN 25-600	PN 40 PN 16 PN 10 PN 16–1500	S S S O	40 (580) 16 (230) 10 (150) ** 16-64 (150-920)	40 (580) 16 (230) 10 (150) ** 16-100 (150-1450)	40 (580) 16 (230) 10 (150) ** 16-1500 (150-20000)	40 (580) 16 (230) 10 (150) ** 16-80 (150–1160)
rubber	ANSI B 16.5	1"-24" 1"-24" 1"-24"	150 lbs 300 lbs 600 lbs	s 0 0	*** \le 19.6 \le 284\right) *** \le 50.8 \le 737\right) \le 64 \le 920\right)	*** \le 19.0 (\le 275) *** \le 49.2 (\le 714) \le 100 (\le 1450)	*** ≤ 48.4 (≤ 702)	*** ≤ 18.1 (≤ 262) *** ≤ 46.8 (≤ 679) ≤ 80 (≤ 1160)
	API 6 BX	≥1"	20000 psig	0	5 4 4 4 4		≤ 1500 (≤ 20000)	

dependent on flange pressure rating dependent on product temperature

Limits for polysulfone

Liner	Flange standard	Nominal diameter of	Flange pressure	S= Standard			sure in ba		i)						81
		measuring tube and flanges *	rating or class	O= Option	≤ 20°C (≤ 68°F)	≤ 25°C (≤ 77°F)	≤ 30°C (≤ 86°F)	≤ 35°C (≤ 95°F)	≤ 40°C (≤ 105°F)	≤ 50°C (≤ 122°F)	≤ 55°C (≤ 131°F)	≤ 60°C (≤ 140°F)	≤ 65°C (≤ 149°F)	≤ 70°C (≤ 158°F)	≤ 75°C (≤ 167°F)
Poly- sulfone	DIN 2501	DN 15 DN 25 DN 40 DN 50 DN 80	PN 40 PN 40 PN 40 PN 40 PN 40	S (O ****) S (O ****) S (O ****) S (O ****) S	40 (580) 40 (580) 25 (360) 25 (360) 16 (230)	40 (580) 25 (360) 16 (230)	40 (580) 40 (580) 16 (230) 16 (230) 10 (150)	40 (580) 25 (360) 16 (230) 16 (230) 10 (150)	25 (360) 16 (230) 16 (230)	25 (360) 16 (230) 10 (150) 10 (150) 6 (90)	16 (230) 16 (230) 10 (150) 6 (90) 6 (90)	16 (230) 10 (150) 6 (90) 6 (90) 2.5(37)	6 (90)	6 (90) 2.5(37) 2.5(37)	2.5(37) 2.5(37) 2.5(37) 2.5(37)
	ANSI B 16.5	1/2" 1" 1 1/2" 2" 3"	150 lbs 150 lbs 150 lbs 150 lbs 150 lbs	S S S S S (O ****)	19.7(285) 19.7(285)	19.7(285) 19.7(285) 19.7(285) 16 (230) 10 (150)	19.7(285) 16 (230) 16 (230)	19.7(285) 19.7(285) 16 (230) 16 (230) 10 (150)	19.6(284) 19.6(284) 16 (230) 16 (230) 10 (150)	19.3(280) 16 (230) 10 (150) 10 (150) 6 (90)	16 (230) 16 (230) 10 (150) 6 (90) 6 (90)	16 (230) 10 (150) 6 (90) 6 (90) 2.5(37)		6 (90) 6 (90) 2.5(37) 2.5(37) 2.5(37)	2.5(37) 2.5(37) 2.5(37) 2.5(37)

Vacuum load

Liner	Meter size			iting pressur ct temperatu		and psia)				
	DN mm	inches	≤ 40°C (≤ 105°F)	≤ 60°C (≤ 140°F)	≤ 70°C (≤ 158°F)	≤ 90°C (≤ 195°F)	≤ 100°C (≤ 210°F)	≤ 120°C (≤ 250°F)	≤ 140°C (≤ 285°F)	≤ 180°C (≤ 355°F)
Fused aluminium oxide	2.5 - 100	1/10 - 10	. 0 (0).	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
PFA	25 - 100 125 - 150	1 - 4 5 - 6	0 (0) 50 (0.7)	0 (0) 50 (0.7)	0 (0) 50 (0.7)	0 (0) 50 (0.7)	0 (0) 100 (1.5)	0 (0) 200 (2.9)	150 (2.2) 300 (4.4)	200 (2.9) 400 (5.8)
PTFE (Teflon)	10 - 600	3/8 - 24				on	request			
Neoprene	25 - 300 350 - 600	1 - 12 14 - 24	400 (5.6) 600 (8.7)	400 (5.6) 600 (8.7)	-	-	- 10 mm	Ī.	Ī	7
Irethane	25 - 600	1 - 24	500 (7.3)	-	-	- 3	-	-	-	-
Hard rubber	25 - 300 350 - 600	1 - 12 14 - 24	250 (3.6) 500 (7.3)	400 (5.8) 600 (8.7)	400 (5.8) 600 (8.7)	400 (5.8) 600 (8.7)	_		<u>-</u>	
Soft rubber	25 - 300 350 - 600	1 - 12 14 - 24	500 (7.3) 600 (8.7)	-		<u>.</u> 21.	-	-	<u> </u>	-
Polysulfone	15 - 80	1/2 - 3	0 (0)	0 (0)	0 (0)	+	-	-	+	-1.

Pipeline flanges, because of flangeless design. Same operating pressure if ANSI pipe flanges $^{1/2}$ " to 3", class 300 lbs are used.

10.6 Instrument nameplates

IFM 1080 K
IFM 3080 K
IFM 4080 K
IFM 5080 K
K 480 S

IFC 080 F

<u>Liner</u>		Electroc	de material
AL H NE	Fused aluminium oxide (99.7% Al ₂ O ₃) Hard rubber Neoprene	HB HC IN M4	Hastelloy B2 Hastelloy C4 Incoloy Monel 400
PFA	Teflon-PFA	Ni	Nickel
PS	Polysulfone	PT	Platinum cap on
PUI	Irethane	:	stainless steel 1.4571 (SS 316 Ti)
T	Teflon-PTFE	TA-	Tantalum
W	Soft rubber	TI	Titanium
7R:	Zirconium oxide	V4A	Stainless steel 1.4571 (SS 316 Ti)

10.7 Dimensions and weights

10.7.1 IFS 5000 and IFM 5080 K

Dimensions in mm and (inches)

Necessary flange spacing

DN 2.5 to 15, 1/10" to 1/2": Dimension a + 2 times gasket thickness

(gasket between grounding rings and pipe flanges)

DN 25 to 100, 1" to 4"

without grounding rings:
with grounding rings (option):
Dimension a incl. gaskets between primary head and pipe flanges
with grounding rings (option):
Dimension a incl. gaskets between primary head and pipe flanges
Dimension a + 10 mm or a + 0.4", incl. gaskets between grounding rings and pipe flanges

* For compact flowmeters:
Weight as specified in Table plus approx. 2.2 kg or 4.9 lbs

** Meter size DN 2.5 - 15 and $\frac{1}{10}$ " - $\frac{1}{2}$ ": Pipe flanges DN 15 / PN 40 or $\frac{1}{2}$ " / Class 150 lbs (300 lbs).

Meter siz	е	Din	nens	ions	in mr	n (inches)		:					1 1			:	5° °		app weig		
DN mm	inches	а		br		b _K	С		d ₁		d ₂		e :	7 - T. 2 - 1 - 1	f .		g	* 4	in kg	(lbs)	
2.5 – 15 **	1/10 - 1/2 **	65	(2.56)	208	(8.19)	310 (12.20)	50	(1.97)	15	(0.58)	-		44	(1.73)	-		51	(1.99)	1.7	(3.7)	
25	1	58	(2.28)	189	(7.44)	291 (11.46)	55	(2.17)	26	(1.02)	46	(1.81)	102	(4.02)	68	(2.68)	34	(1.34)	1.7	(3.7)	
40	1 1/2	83	(3.27)	204	(8.03)	306 (12.05)	80	(3.15)	39	(1.54)	62	(2.44)	117	(4.61)	83.	(3.27)	42	(1.63)	2.5	(5.5)	
50	2	103	(4.06)	222	(8.74)	324 (12.76)	100	(3.94)	51	(2.01)	74	(2.91)	135	(5.31)	101	(3.98)	51	(1.99)	3.0	(6.6)	
80	3	153	(6.02)	254	(10.00)	356 (14.02)	150	(5.91)	80	(3.15)	106	(4.17)	167	(6.57)	133	(5.24)	67	(2.62)	5.6	(12.3)	
100	4	203	(7.99)	279	(10.98)	381 (15.00)	200	(7.87)	101	(3.98)	133	(5.24)	192	(7.56)	158	(6.22)	79	(3.11)	8.9	(19.6)	

IFS 5000 **Primary head**

DN 2.5 to 15 $\frac{1}{10}$ " to $\frac{1}{2}$ "

IFM 5080 K **Compact flowmeter**

DN 2.5 to 15 $^{1}/_{10}$ " to $^{1}/_{2}$ "

Detail A

DN 25 to 100 1" to 4"

DN 25 to 100 1" to 4"

Detail A (standard)

10.7.2 IFM 1080 K

Dimensions in mm and (inches)

Necessary distance between pipe flanges (dimension a)

DN 15 - 80 and 1/2" - 3": dimension a + 2 × thickness of gaskets between grounding ring and pipe flange

Dimension a incl. grounding rings and gaskets between primary head and grounding rings

Meter size		Dimensions	Dimensions in mm (inches)								
DN mm	inches	a	b	С	d	е	in kg (lbs)				
15	1/2	65 (2.56)	310 (12.20)	52 (2.05)	67 (2.64)	47 (1.85)	4.2 (9.3)				
25	1	65 (2.56)	320 (12.60)	52 (2.05)	62 (2.44)	66 (2.60)	4.5 (9.9)				
40	1 1/2	89 (3.50)	335 (13.19)	76 (2.99)	70 (2.76)	82 (3.23)	5.0 (11.0)				
50	2	112 (4.41)	354 (13.94)	98 (3.86)	70 (2.76)	102 (4.02)	5.9 (13.0)				
80	3	162 (6.38)	370 (14.57)	148 (5.83)	81 (3.19)	131 (5.16)	7.3 (16.1)				

DN 15 - 40 1/2" - 1 1/2"

DN 50 and DN 80 2" and 3"

10.7.3 IFS 4000, IFM 4080 K and K 480 S

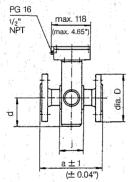
Dimensions in mm (inches)

Flanged connections ... DIN 2501 (=BS 4504) / DN 10-300 / PN 40, 16 oder 10: ... ANSI B 16.5 / ³/₈"-12" / Class 150 lbs / RF:

see Table see Table

Dimension a without flange gaskets: Not supplied with flowmeter, to be provided by customer. Weight as specified in Table plus approx. 2.2 kg or 4.9 lbs

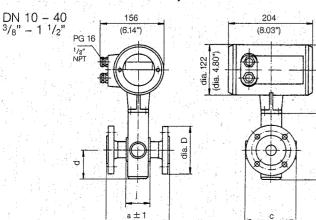
* For compact flowmeters:


** Meter size 3/8":

Flanged connection 1/2"

Meter size	to		Dimensi	ons in mm	(inches)			1.00			Approx. *
DIN		ANSI	A CAMPAGE A					Talva e			weight
DN mm	PN	Inches	a	bF	bĸ	С	d	j.	dia. D _{DIN}	dia. D _{ANSI}	in kg (lbs)
10	40	3/8**	150 (5.91)	231 (9.09)	333 (13.11)	121 (4.76)	61 (2.40)	58 (2.28)	90 (3.54)	88.9 (3.50)	4 (8.8)
15	40	1/2	150 (5.91)	231 (9.09)	333 (13.11)	121 (4.76)	61 (2.40)	58 (2.28)	95 (3.74)	88.9 (3.50)	4 (8.8)
20	40	3/4	150 (5.91)	231 (9.09)	333 (13.11)	121 (4.76)	61 (2.40)	58 (2.28)	105 (4.13)	98.6 (3.89)	6 (13)
25	40	1	150 (5.91)	231 (9.09)	333 (13.11)	121 (4.76)	61 (2.40)	58 (2.28)	115 (4.53)	108.0 (4.25)	6 (13)
32	40		150 (5.91)	247 (9.72)	349 (13.74)	139 (5.47)	70 (2.76)	73 (2.87)	140 (5.51)	_	7 (15)
40	40	11/2	150 (5.91)	252 (9.92)	354 (13.94)	150 (5.91)	75 (2.95)	73 (2.87)	150 (5.91)	127.0 (5.00)	7 (15)
50	40	2	200 (7.87)	290 (11.42)	392 (15.43)	181 (7.13)	- 1	99 (3.90)	165 (6.50)	152.4 (6.00)	8 (18)
65	16	-	200 (7.87)	300 (11.81)	402 (15.83)	181 (7.13)	- :	99 (3.90)	185 (7.28)	_	12 (27)
80	40	3	200 (7.87)	307 (12.09)	409 (16.10)	195 (7.68)	+	99 (3.90)	200 (7.87)	190.5 (7.50)	12 (27)
100	16	4	250 (9.84)	358 (14.09)	460 (18.11)	257 (10.12)	-	131 (5.16)	220 (8.66)	228.6 (9.00)	14 (31)
125	16	-	250 (9.84)	369 (14.53)	471 (18.54)	257 (10.12)	-	131 (5.16)	250 (9.84)	-	19 (42)
150	16	6	300 (11.81)	399 (15.71)	501 (19.72)	281 (11.06)	-	143 (5.63)	285 (11.22)	279.4 (11.00)	22 (49)
200	10	8	350 (13.78)	457 (17.99)	559 (22.01)	342 (13.46)	-	177 (6.97)	340 (13.39)	342.9 (13.50)	35 (77)
250	10	10	400 (15.75)	509 (20.04)	611 (24.06)	383 (15.08)	-	205 (8.07)	395 (15.55)	406.4 (16.00)	49 (108)
300	10	12	500 (19.69)	572 (22.52)	674 (26.54)	433 (17.05)	-	235 (9.25)	445 (17.52)	482.6 (19.00)	61 (134)

IFS 4000 Primary head



IFM 4080K and K 480 S Compact flowmeters

(± 0.04")

Flanged connections

L. DIN 2501 (=BS 4504) / DN 350-2000 / PN 10 or 6: L. DIN 2501 (=BS 4504) / DN 350-2000 / PN 25: L. ANSI B 16.5 / 14" - 40" / Class 150 lbs / RF: L. ANSI B 16.5 / 14" - 40" / Class ≥ 300 lbs / RF: L. AWWA / ≥ 24" / Class B or D / FF:

Dimensions in mm (inches)

see Table

see Table, dimension a_{DIN} + 200 mm or + 7.87"

see Table

Dimensions supplied on request

Dimensions supplied on request

Dimension a without flanged gaskets:

Not supplied with flowmeter, to be provided by customer

Irethane liner, thickness > 12 mm/> 10.5":

Size of flange greater than size of measuring tube, see Tables below. Weight as specified in Table plus approx. 2.2 kg or 4.9 lbs

For compact flowmeters:

Meter size	to		Dimension	imensions in mm (inches)							
DIN		ANSI									weight
DN mm	PN	inches	a _{DIN}	a _{ANSI}	b⊧	bĸ	С	d	е	j	in kg (lbs)
350	10	14	500 (19.69)	700 (27.56)	753 (29.65)	853 (33.66)	570 (22.44)	329 (12.95)	332 (13.07)	305 (12.01)	145 (320) *
400	10	16	600 (23.62)	800 (31.50)	802 (31.57)	904 (35.59)	620 (24.41)	353 (13.90)	349 (13.74)	385 (15.16)	180 (400) *
500	10	20	600 (23.62)	800 (31.50)	903 (35.55)	1005 (39.57)	720 (28.35)	404 (15.91)	371 (14.61)	385 (15.16)	240 (530) *
600	10	24	600 (23.62)	800 (31.50)	1005 (39.57)	1107 (43.58)	822 (32.36)	455 (17.91)	493 (19.41)	385 (15.16)	330 (730) *

IFS 4000 Primary head

DN 350 - 2000 14" - 40"

IFM 4080K and K 480 S Compact flowmeters

DN 350 - 600 14" - 24"

Flange size for irethane liner, thickness > 12 mm/> 0.5"

Nominal size DN in mm (DIN 2501)

Measuring tube	Flanges						
DN 350	DN 400						
DN 400, 450	DN 500						
DN 500, 550	DN 600						
DN 600, 650	DN 700						
DN 700, 750	DN 800						
DN 800, 850	DN 900						
DN 900, 950	DN 1000						
DN 1000	DN 1200						

Nominal size in inches (ANSI B 16.5)

Measuring tube	Flanges
14" 16", 18" 20", 22" 24", 26" 28", 30" 32", 34" 36", 38" 40"	16" 20" 24" 28" 32" 36" 40" 48"

WE = Field replaceable electrodes

Dimension c + 900 mm or C + 35.50" (minimum dimension)

10.7.4 M 900 and IFM 3080 K

Flanged connections

... DIN 2501 (=BS 4504) / DN 10-300 / PN 40, 16 or 10: ... ANSI B 16.5 / $^3/_8$ "-12" / Class 150 lbs / RF: ... ANSI B 16.5 / $^3/_8$ "-12" / Class \geq 300 lbs / RF:

Dimensions in mm and (inches)

see Table see Table

dimensions on request

Dimension a without flange gaskets:

Not supplied with flowmeter, to be provided by customer. Weight as specified in Table plus approx. 2.2 kg or 4.9 lbs

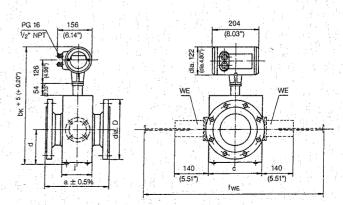
* For compact flowmeters:

** Meter size 3/8":

Flanged connection 1/2"

= Field replaceable electrodes, optional for meter sizes DN 50 – 300 and 2" – 12" = Dimension c + 900 mm or c + 35,50" (minimum dimension)

Meter size to		Dimension	Dimensions in mm (inches)								
DIN		ANSI	1 11 19								weight
DN mm	PN	inches	a	b _F	bĸ	С	d	j	dia. D _{DIN}	dia. D _{ANSI}	in kg (lbs)
10	40	3/8**	200 (7.87)	169 (6.65)	358 (14.09)	92 (3.62)	66 (2.60)	70 (2.76)	90 (3.54)	88.9 (3.50)	10 (22)
15	40	1/2	200 (7.87)	169 (6.65)	358 (14.09)	92 (3.62)	66 (2.60)	70 (2.76)	95 (3.74)	88.9 (3.50)	10 (22)
20	40	3/4	200 (7.87)	169 (6.65)	358 (14.09)	92 (3.62)	66 (2.60)	70 (2.76)	105 (4.13)	98.6 (3.89)	10 (22)
25	40	1	200 (7.87)	191 (7.52)	380 (14.96)	96 (3.78)	77 (3.03)	94 (3.70)	115 (4.53)	108.0 (4.25)	11 (24)
32	40	11/4	200 (7.87)	191 (7.52)	380 (14.96)	96 (3.78)	77 (3.03)	94 (3.70)	140 (5.51)	117.3 (4.62)	11 (24)
40	40	11/2	200 (7.87)	236 (9.29)	425 (16.73)	184 (7.24)	99 (3.90)	94 (3.70)	150 (5.91)	127.0 (5.00)	13 (29)
50	40	2	200 (7.87)	236 (9.29)	425 (16.73)	184 (7.24)	99 (3.90)	94 (3.70)	165 (6.50)	152.4 (6.00)	14 (31)
65	16	21/2	200 (7.87)	256 (10.08)	445 (17.25)	184 (7.24)	109 (4.29)	94 (3.70)	185 (7.28)	177.8 (7.00)	15 (33)
80	40	3	200 (7.87)	256 (10.08)	445 (17.25)	184 (7.24)	109 (4.29)	94 (3.70)	200 (7.87)	190.5 (7.50)	17 (37)
100	16	4	250 (9.84)	316 (12.44)	505 (19.88)	234 (9.21)	139 (5.47)	125 (4.92)	220 (8.66)	228.6 (9.00)	28 (62)
125	16	5	250 (9.84)	316 (12.44)	505 (19.88)	234 (9.21)	139 (5.47)	125 (4.92)	250 (9.84)	254.0 (10.00)	35 (77)
150	16	6	300 (11.81)	336 (13.23)	525 (20.67)	266 (10.47)	149 (5.87)	172 (6.77)	285 (11.22)	279.4 (11.00)	45 (99)
200	10	8	350 (13.78)	396 (15.59)	585 (23.03)	354 (13.94)	179 (7.05)	210 (8.27)	340 (13.39)	342.9 (13.50)	56 (123)
250	10	10	400 (15.75)	456 (17.95)	645 (25.39)	434 (17.09)	209 (8.23)	244 (9.61)	395 (15.55)	406.4 (16.00)	75 (165)
300	10	12	500 (19.69)	532 (20.94)	721 (28.39)	490 (19.29)	247(9.72)	280 (11.02)	445 (17.52)	482.6 (19.00)	110 (243)


M 900 Primary head

DN 10 - 300 3/8" - 12"

IFM 3080 K Compact flowmeter

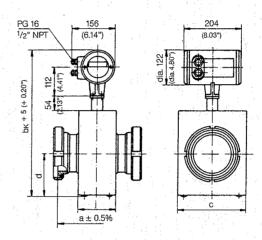
DN 10 - 300 3/8" - 12"

M 900 and IFM 3080 K with sanitary connection to DIN 11851

Dimensions in mm and (inches)

* For compact flowmeters:

Dimension b + 127 mm or + 5.00" Dimension c + 14 mm or + 0.55"


** For stainless steel housing:

Meter size	Dimensions in m	m (inches)				
DN mm	a	b*	C**	d	j	
10 and 20	200 (7.87)	223 (8.78)	92 (3.62)	66 (2.60)	70 (2.76)	
25 and 32	200 (7.87)	245 (9.65)	96 (3.78)	77 (3.03)	94 (3.70)	
40 and 50	200 (7.87)	290 (11.42)	184 (7.24)	99 (3.90)	94 (3.70)	
65 and 80	200 (7.87)	310 (12.20)	184 (7.24)	109 (4.29)	94 (3.70)	
100 and 125	250 (9.84)	370 (14.57)	234 (9.21)	139 (5.47)	125 (4.92)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M 900 primary head with sanitary connection to DIN 11851 DN 10 - 125 / PN 10

IFM 3080 K compact flowmeter with sanitary connection to DIN 11851 DN 10 - 125 / PN 10

M 900 and IFM 3080 K with clamp connection Dimensions in mm and (inches)

* For compact flowmeters: ** For stainless steel housing:

Dimension b + 127 mm or + 5.00" Dimension c + 14 mm or + 0.55"

Meter size	Dimensi	on in mm	(inches)								
inches	a	b*	C**	d	dia. e	dia. f	j	dia. k	dia. I	m	1 f 1
1	200 (7.87)	245 (9.65)	96 (3.78)	77 (3.03)	18.5 (0.71)	49.6 (1.95)	94 (3.70)	25.5 (1.00)	22.1 (0.87)	25.4 (1.00)	
11/2	200 (7.87)	245 (9.65)	96 (3.78)	77 (3.03)	28.5 (1.12)	49.6 (1.95)	94 (3.70)	38.2 (1.50)	34.8 (1.37)	25.4 (1.00)	
2	200 (7.87)	290 (11.42)	184 (7.24)	99 (3.90)	44.5 (1.73)	76.6 (3.02)	94 (3.70)	51.0 (2.01)	47.5 (1.87)	25.0 (0.98)	
3	200 (7.87)	310 (12.20)	184 (7.24)	109 (4.29)	64.5 (2.52)	117.7 (4.63)	94 (3.70)	76.3 (3.00)	72.9 (2.87)	25.4 (1.00)	
4	250 (9.84)	370 (14.57)	234 (9.21)	139 (5.47)	93.8 (3.66)	117.7 (4.63)	125 (4.92)	108.9 (4.25)	97.6 (3.84)	24.3 (0.96)	

M 900 primary head with clamp connection 1" - 4"

1/2" NPT (4.33" bF + 5 (+ 0.20")

a ± 0.5%

IFM 3080 K compact flowmeter with clamp connection

10.7.5 IFC 080 F signal converter with wall mounting and ZD connection box

Dimensions and weights dimensions in mm and (inches)

IFC 080 F Signal converter Weight approx. 4.2 kg/9.3 lbs

ZD Intermediate connection box Weight approx. 0.5 kg/1.1 lbs

11. Measuring principle and function of the system

The flowmeter is designed for electrically conductive fluids.

Measurement is based on Faraday's law of induction, according to which a voltage is induced in an electrically conductive body which passes through a magnetic field. The following expression is applicable to the voltage.

$$U = K \times B \times \overline{V} \times D$$

where:

U = induced voltage

K = an instrument constant

B = magnetic field strength

 $\bar{v} = \text{mean velocity}$

D = pipe diameter

Thus the induced voltage is proportional to the mean flow velocity, when the field strength is constant.

Inside the magnetic inductive flowmeter, the fluid passes through a magnetic field applied perpendicular to the direc-

tion of flow. An electric voltage is induced by the movement of the fluid (which must have a minimum electrical conductivity). This is proportional to the mean flow velocity and thus to the volume of flow. The induced voltage signal is picked up by two electrodes which are in conductive contact with the fluid and transmitted to a signal converter for a standardized output signal.

This method of measurement offers the following advantages:

- No pressure loss through pipe constriction or protruding parts.
- Since the magnetic field passes through the entire flow area, the signal represents a mean value over the pipe cross-section; therefore, only relatively short straight inlet pipes (5 x DN) from the electrode axis are required upstream of the primary head.
- Only the pipe liner and the electrodes are in contact with the fluid.
- Already the original signal produced is an electrical voltage which is an exact linear function of the mean flow velocity.
- Measurement is independent of the flow profile and other properties of the fluid.

The magnetic field of the primary head is generated by a square wave current fed from signal converter to the field coils.

This field current alternates between positive and negative values. Alternate positive and negative flowrate-proportional signal voltages are generated at the same frequency by the effect of the magnetic field, which is proportional to the current. The positive and negative voltages at the primary head electrodes are subtracted from one another in the signal converter. Subtraction always takes place when the field current has reached its stationary value, so that constant interference voltages or external or fault voltages changing slowly in relation to the measuring cycle are suppressed. Power line interference voltages coupled in the primary head or in the connecting cables are similarly suppressed.

12. Block diagram and description of the signal converter

The SC 80 AS(F) consists of five functional groups.

Functional group 1 contains an input amplifier, and a high-resolution analog/digital converter (ADC) that is controlled and monitored by microprocessor μ P 01.

Functional group 2 generates a pulsed, electronically controlled direct current for the primary head coils. This group is galvanically isolated from all other groups.

In **functional group 3** the digitalized data supplied by μ P 01 are evaluated by microprocessor μ P 02 in acordance with the functions, operating and primary head data set by way of the 3 keys. Microprocessor μ P 02 controls with the aid of the Krohne-developed LSI circuit (KSA) the outputs that are galvanically isolated by optocouplers (functional groups 4 and 5). The last measured value and other information are forwarded via this circuit to the alphanumeric LCD for indication.

The KSA module is also used to feed last counts to the EEPROM. In the event of a power failure, last counts are saved in EEPROM 2. In the same way as operating and functional data are permanently stored in EEPROM 1, both are retained for 10 years without auxiliary power.

Functional group 4 converts an output signal into a proportional current. This group is galvanically isolated from the other groups but not from functional group 5.

Functional group 5 consists of power drivers to allow control of electronic (EC) and electromechanical (EMC) totalizers. This group is galvanically isolated from the other groups but not from functional group 4.

Functional group 6 (option) consists of an FBA modem which allows bidirectional data transmission between the signal converter and the MIC 500 hand-held communicator. This group is electrically isolated from functional group 4 (current output) and functional group 3 by a transformer.

Part E Index

Keyword	Section No.	Fct. No.
Abbreviations Accuracies ADC = analog-digital converter Ambient temperature B Bar magnet Block diagram IFC 080 Bootstrap, see signal cable B (Type BTS) BTS, see signal cable B (bootstrap)	2.3.1 10.2 4.4 + 12 10.3 to 10.5 4.1 + 6.4 12 2.2.3 2.2.3	
Cable lengths Centering sleeves, rings Changeover, power supply Characteristics — I output — P output Check-sum error Clearing error messages Coding for entry into setting level Connecting & operating points — front panel IFC 080 — PCB "basic board" — PCB "input amplifier" Connection diagrams — GS8 simulator — Output I — Output P — Separate system (I to VI) Conversion factor — Quantity — Time Current output I Cut-off "off" value (SMU OFF) — for I — for P Cut-off "on" value (SMU ON) — for I — for P	2.2.4 1.2.1 8.3 5.7.3 5.8.3 4.4.1 4.4 5.12 4.1 9.1 9.2 7.4 2.3.4 2.3.4 2.2.5 4.3 + 5.15 2.3.2 + 2.3.4 4.3 + 5.7 5.9 4.3 + 5.9 5.9 4.3 4.3 4.3	3.3.0 et seq. 3.4.0 et seq. 3.5.2 + 3.5.3 3.5.6 3.5.7 3.3.0 3.3.4 3.4.6 3.3.4 3.4.6
Data Data column Data errors Dimensions - IFC 080 - IFM 1080 K - IFM 3080 - IFM 5080 - IFM 5080 - IFS 4000 - IFS 5000 - K 480 S - M 900 - ZD (intermediate connection box) Display DN = meter size in mm DS, see signal cable A	4.3 4.1 to 4.3 4.3 + 4.4 10.7 10.7.5 10.7.2 10.7.4 10.7.3 10.7.1 10.7.3 10.7.1 10.7.3 10.7.4 10.7.5 4.3, 5.2 + 5.5 4.3, 10.4.1 + 10.4.2 2.2.3	3.2.0 et seq. 3.1.4

	<u> </u>	
Keyword	Section No.	Fct. No.
EC = electronic totalizer Electrical connection.	2.2.3, 2.3.4, 4.6 + 5.8	3.4.0 et seq.
see connection diagrams Electrodes EMC = electromechanical totalizer Error	2.1.2, 2.2.5 + 2.3.4 1.3.4, 1.3.5 10.4.1 + 10.4.2 2.3.3, 2.3.4 4.6 + 5.8 4.4	3.4.0 et seq.
Error list Error (messages) - cancel - limits - reset / delete "Ex" versions External totalizers,	4.4.1 4.4 4.4 10.2 4.2.2 + 4 6.1	
see pulse output	2.3.3, 2.3.4 4.3 + 5.8	3.4.0 et seq.
F = forward flow FI to F = fuses Fatal error FE = functional ground	4.3 + 5.10 8.3 + 9.3 4.4 1.2.2, 1.2.3, 1.3.7, 1.3.8, 2.1.2, 2.2.2 + 2.2.5	3.1.1 + 3.1.2
Field power - cables - supply Field replaceable electrodes WE Flange spacing (dimen. "a") - IFM 1080 K - IFM 3080 K, M 900 - IFM 4080 K	2.2.4 + 2.2.5 2.2.4 + 2.2.5 1.3.5 1.2.1 + 10.7.2 10.7.4	
IFS 4000, K 480 S - IFM 5080 K, IFS 5000 Flow direction Flow rate (0) Flow velocity v Food version	10.7.3 1.2.1 + 10.7.1 1.1 + 4.3 4.3 + 5.3 4.3 + 5.3	3.1.6 3.1.1 + 3.1.2 3.1.1, 3.1.2 + 4.1.0
- IFM 3080 K, M 900 Frequency output, see pulse output P Full-scale range Q _{100%} Function(s) Function of keys	1.3.10 + 10.4.2 2.3.3, 2.3.4 4.3 + 5.8 4.3 + 5.3 4.1 + 4.2	3.4.0 et seq. 3.1.1 + 3.1.2
Functional checks - primary head - setpoint display values IFC 080 - system - test functions IFC 080 - zero Functional ground FE	7.1 et seq. 7.5 7.4 7.3 7.1 7.2 1.2.2, 1.2.3,	2.0 et seq. 3.1.3 (+ 1.1.3)
Functions column Fuses (F) – power supply – others	1.3.7, 1.3.8, 2.1.2, 2.2.2 + 2.2.5 4.1 to 4.3 8.3 9.1 + 9.3	

Keyword	Section No.	Fct. No.
G		
Gaskets	1.2, 1.3, 10.4.1 + 10.4.2	* 1
GK/GKL = primary (head) constant	4.3 + 5.14	3.1.5
Grounding - IFC 080 F	2.2.2 + 2.2.5	
- IFC 080 K	1.2.2, 1.3.7 + 2.1.2	
- IFM 1080 K, IFM 5080 K, IFS 5000	1.2.2 + 1.2.3	
- IFM 3080 K, IFM 4080 K, IFS 4000, K 480 S, M 900 Grounding rings	1.3.7 + 1.3.8	
(protective rings) - IFM 1080 K, IFM 5080 K,		
IFS 5000	1.2.2, 1.2.3 + 10.4.1	
- IFM 3080 K, IFM 4080 K, IFS 4000, K 480 S, M 900	1.3.6 + 10.4.2	
GS 8 = primary (head) simulator	7.4	
u de la companya de l		
Hand-held communicator	6.5	3.5.4
Hard rubber liner	1.3.1, 1.3.9 + 10.5	
Hazardous-duty versions HHC (hand-held communicator)	6.1	
= MIC 500 ligh-temperature	6.5	3.5.4
– cables with ZD– pipelines	2.2.4 + 2.2.5 1.2.1	100 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m
= current (analog) output	2.3.2, 2.3.4, 4.3 + 5.7	3.3.0 et seq.
nitial start-up nput (programming)	3 4.1 et seq.	
stallation of primary head, see primary head	1.1, 1.2 + 1.3	
strument nameplates termediate connection box ZD	10.6 2.2.4, 2.2.5 + 10.7.4	
ternal electronic totalizer ethane liner	5.6 1.3.3, 1.3.9	3.4.0 et seq.
Small of the control	10.4.2 + 10.5	
keys Keystroke combinations for	4.1	
- entry into setting level - error cancellation - quitting setting level	4.1 to 4.3 4.1, 4.2 + 4.4 4.1 to 4.3	
- totalizer reset	4.1, 4.2 + 5.6	3.5.8
anguage of display texts DC display, see display	5.11 3.5.1 4.3, 5.2 +	3.2.0 et seq.
iner – hard rubber	5.3 1.3.1	+ 3.5.1
nara rubberirethanelimits	1.3.1 1.3.3 10.5	
- Neoprene - PTFE	1.3.1 1.3.2	
ine resistance (24 V DC / 24, 42 V AC)	2.2.2	
ine voltage, see power supply .ow-flow cutoff (SMU)	4.3 + 5.9	Hard Control
une voltage, see power supply ow-flow cutoff (SMU) — for I — for P	4.3 + 5.9 4.3 + 5.9 4.3 + 5.9	3.3.4 3.3.5

Keyword	Section No.	Fct. No.
Magnetic field frequency Magnetic sensors Main menu column Main menus	4.3 + 5.14 4.1 + 6.4 4.1 to 4.3 4.1 to 4.3	3.6.1
Mass flow measurement, see user-defined unit Measuring principle Measuring tube Menu Metal pipeline, grounding	4.6 + 5.15 11 10.4 + 10.5 4.1	+ 4.0 3.5.5 to 3.5.7
- IFM 080 K, IFM 5080 K, IFS 5000 - IFM 3080 K, IFM 4080 K, IFS 4000, K 480 S, M 900 Meter size (DN) = dia. of measuring tube in mm or	1.2.2 + 1.2.3 1.3.7 + 1.3.8 4.3, 10.4.1 + 10.4.2	3.1.4
inches MIC 500	6.5	3.5.4
Neoprene liner Noise rejection Numerical format, display	1.3.1, 1.3.9 + 10.5 6.2 5.2 + 5.5	3.6.2
Option = optional equipment Order numbers - PCB "basic" board - PCB "input amplifier" - power fuses Outputs	6.4 + 6.5 10.3 + 10.4 8.3 + 9.3 9.3 9.3 8.3	
- characteristics I P - connection diagrams - setting I P - voltage stable when measuring tube empty Overflow, display	5.7.3 5.8.3 2.3.4 4.6 5.7 5.8 6.3 5.2, 5.5 + 5.6	3.3.0 et seq. 3.4.0 et seq.

Keyword	Section No.	Fct. No.
P		
P = pulse output	2.3.3, 2.3.4, 4.3 + 5.8	3.4.0 et seq.
Parameter check (plausibility check)	4.3 + 5.6	4.0 et seg.
PCB = printed circuit boards - basic (110 to 240 V AC)	9.1	
input amplifier PE = protective conductor	9.2 1.2.2, 1.2.3,	
PFA liner	1.3.7, 1.3.8, 2.1.2 + 2.2.2 1.3.9	
Plastic pipelines, grounding	10.4.2 + 10.5	
- IFM 1080 K, IFM 5080 K, IFS 5000	1.2.2 + 1.2.3	
- IFM 3080 K, IFM 4080 K, IFS 4000, K 480 S, M 900 Plausibility check	1.3.7 + 1.3.8 4.3	4.0 ot cog
Power supply (= line voltage) - changeover	8.3	4.0 et seq.
- connection - consumption	2.1.2 + 2.2.2 2.1.2, 2.2.2	
- failure	+ 10.3 4.1	
frequencyvoltage	2.1.2, 2.2.2 2.1.2, 2.2.2, 10.3	
Primary constant, see GK/GKL Primary head	4.3 + 5.14	3.1.5
- constant, see GK/GKL - installation	4.3 + 5.14	3.1.5
- – IFM 1080 K, IFM 5080 K, IFS 5000 - – IFM 3080 K, IFM 4080 K,	1.1 + 1.3	
IFS 4000, K 480 S, M 900 – installation dimension "a"	1.1 + 1.2 1.2.1	
- replacement	10.7.1 to 10.7.4 8.2	
simulator GS 8testingPrimary simulator, see GS 8	7.4 7.5 7.4	
Printed circuit boards, see PCB Process temperature	9.1 + 9.2 10.4 + 10.5	
Program organization Programming = input	4.1 + 4.2 4.1 + 4.2	
Programming mode, entry into Protective conductor PE	4.1 + 4.2 1.2.2, 1.2.3,	不能是不能
Protective rings	1.3.7, 1.3.8, 2.1.2 + 2.2.2 1.3.6	
PTFE liner	1.3.2, 1.3.9, 10.4.2 + 10.5	
Pulse output P	2.3.3, 2.3.4, 4.3 + 5.8	3.4.0 et seq.
Pulse width Pulses per unit time Pulses per unit volume	4.3 + 5.8 4.3 + 5.8 4.3 + 5.8	3.4.4 3.4.2 + 3.4.3 3.4.2 + 3.4.3
Q Q = flow rate	4.3 + 5.3	211.010
Q= now rate Q _{100%} = full-scale range	4.3 + 5.3	3.1.1 + 3.1.2 3.1.1 + 3.1.2
R		
R = reverse flow Range setting	4.3 + 5.10 4.3 + 5.3	3.1.1 + 3.1.2 3.1.1 + 3.1.2
Reference voltage Remote control	6.2 6.5	3.6.3 3.5.4
Replacement - electronic unit	8.1	
- primary head Reset totalizers Reverse flow (R)	8.2 4.1, 4.2 + 5.6 4.3 + 5.10	3.5.8 3.1.1 ± 3.1.2
Revert to - functions column	4.1 + 4.2	3.1.1 + 3.1.2
main menu columnmeasuring mode	4.1 + 4.2 4.1 + 4.2	
- submenu column	4.1 + 4.2	

Keyword	Section No.	Fct. No.
S		
Scope of supply Setting level	see page 3 4.2.1 + 4.2.2	1.0 et seg., 2.0 et seg.,
Signal cables A + B Signal converter IFC 080	2.2.3	3.0 et seq.
- accuracies - changeover, power supply - connecting & operating	10.2 8.3	
points - connection to power - functional checks	4.1, 9.1 + 9.2 2.1.2 + 2.2.2 7.1, 7.2 + 7.4	
fuses ,powermounting location	8.3 2.1.1 + 2.2.1	
- nameplates - operator control - power consumption	10.6 4.1 et seq. 10.3	
printed circuit boards spare parts technical data	9.1 + 9.2 8.3 + 9.3 10.1 to 10.3	
Simulator GS 8 smart version IFC 080 SMU = low-flow cutoff	7.4 6.5 4.3 + 5.9	3.5.4 3.3.4 + 3.3.5
Spare parts, see order nos. Special electrodes Soft rubber liner	8.3 + 9.3 1.3.5 1.3.9,	# # # # # # # # # # # # # # # # # # #
Submenu column	10.4.2 + 10.5 4.1 to 4.3	
T = time constant	4.3 + 5.7	3.3.4
- for I - for P Technical data - accuracies	4.3 + 5.8 10.2	3.3.5
- dimensions & weights - liner limits - primary head	10.2 10.7 et seq. 10.5 10.4	
- IFM 1080 K, IFM 5080 K, IFS 5000 - IFM 3080 K, IFM 4080 K,	10.4.1	
IFS 4000, K 480 S, M 900 - signal converter IFC 080 Temperatures	10.4.2 10.1 + 10.3	
- ambient - liquid product Tests, see functional checks	10.3 to 10.5 10.4 + 10.5 7.1 et seq.	
Tightening torques, see torques Time constant (T) – for I	1.2.4 + 1.3.9 4.3 + 5.7	222
- for P Timeout function Torques	4.3 + 5.7 4.3 + 5.8 4.1 to 4.4 1.2.4 + 1.3.9	3.3.3 3.4.5
Totalizer (internal electronic) Troubleshooting, see functional checks	5.2, 5.5 + 5.6	
U	7.1 et seq.	
Unit P Units for - display	4.3 + 5.8 4.3	3.4.2 + 3.4.3 3.2.1 to 3.2.3
- flow User-defined unit - text	4.3 4.6 + 5.14 5.14	3.1.1 + 3.1.2 3.5.5 to 3.5.7 3.5.5
time factorvolum factor	5.14 5.14	3.5.7 3.5.6
V v = flow velocity	4.3 + 5.3 3.1.2 + 4.1.0	3.1.1,
VDE 0100	1.2.2, 1.2.3, 1.3.7, 1.3.8, 2.1.2 + 2.2.2	
W E = field-replaceable electrodes	1.3.5	
Weights, see dimensions Z	10.7.1 et seq.	
ZD = intermediate connection box	2.2.4, 2.2.5 + 10.7.4	
Zero check (adjustment)	7.2	3.1.3

If you need to return flowmeters for testing or repair to Krohne

Your ALTOFLUX electromagnetic flowmeter

Company stamp:

- has been carefully manufactured and tested by a company with ISO 9001 certification
- and volumetrically calibrated in one of the world's most accurate test rigs.

If installed and operated in accordance with these operating instructions, your flowmeter will rarely present any problems.

Should you nevertheless need to return an ALTOFLUX flowmeter for checkout or repair, please pay strict attention to the following points:

Due to statutory regulations concerning protection of the environment and the health and safety of our personnel, Krohne may only handle, test and repair returned flowmeters that have been in contact with liquids if it is possible to do so without risk to personnel and environment. This means that Krohne

can only service your flowmeter if it is accompanied by a certificate in line with the following model confirming that the flowmeter is safe to handle.

If the flowmeter has been operated with toxic, caustic, flammable or water-endangering liquids, you are kindly requested

- to check and ensure, if necessary by rinsing or neutralizing, that all cavities in the flowmeter are free from such dangerous substances.
 (Directions on how you can find out whether the primary
 - head has to be opened and then flushed out or neutralized are obtainable from Krohne on request.)
- to enclose a certificate with the flowmeter confirming that the flowmeter is safe to handle and stating the liquid used.

Krohne regret that they cannot service your flowmeter unless accompanied by such a certificate.

SPECIME	N certificate
Company:	Address:
	로마 발매 보이는 사람들의 살으면 보다는 것이다. [편집]
Department;	Name:
Tel. No.:	
The enclosed electromagnetic flowmeter	
ALTOFLUX, Type:	Krohoo Ordon Nie ou Oodon Nie
	Krohne Order No. or Series No.:
has been operated with the following liquid:	
Because this liquid is	
water-endangering * / toxic * / caustic * / flammable *	도기 역 선생님들은 경찰과 독특하고를 되네.
we have	
- checked that all cavities in the flowmeter are free from such	substances *
- flushed out and neutralized all cavities in the flowmeter *	
(* delete if not applicable)	
	아이들의 얼마를만 통료통력 경우로 만들었
We confirm that there is no risk to man or environment through	any residual liquid contained in this flowmeter.
	요. 그 기술의 프로젝트 그는 그 가는 명기 생기 많은 것이 집 라고현이 많이 다. 하는 이에 길 그는 그렇지 않는 후 말이를 고향한 된 사람들으로 되어 그런 안이 될
Date: Signature:	

Krohne Messtechnik GmbH&Co. KG

Postfach 10 08 62 D-47008 Duisburg

Ludwig-Krohne-Strasse 5 D-47058 Duisburg

Federal Republic of Germany

Telephone (02 03) 301-0 Telex 17 203 301 Telefax (0203) 301 389

Subject to change without notice. Printed in Germany © Copyright Krohne Messtechnik GmbH & Co. KG KIEFER | DESIGN Urh. 84130

Austria

Krohne Ges.m.b.H. Wagramerstrasse 81 Donauzentrum A-1220 Wien Telephone: (01) 23 45 32 Telex: 115 864 Telefax: (01) 23 47 78

Great Britain

Krohne Measurement & Control Ltd. Rutherford Drive Park Farm Industrial
Estate Wellingborough
GB-Northants NN8 6AE
Telephone: (0933) 40 85 00
Telefax: (0933) 40 85 01

Japan

Krohne Tokyo Keiso JVC ORI BLDG. 6-15-3 Shimbashi Minato-KU Tokyo 105 Telephone: (03) 34 38 18 81 Telefax: (03) 34 38 11 35

Switzerland

Krohne AG Uferstrasse 90 Postfach 568 CH-4019 Basel Telephone: (0 61) 6 31 11 22 Telex: 963 452 Telefax: (061) 6311418

Belgium

Krohne Belgium N.V. Brusselstraat 320 B-1702 Groot Bijgaarden Telephone: (02) 4 66 00 10 Telex: 64 321 Telefax: (02) 4 66 08 00

India

Krohne Marshall Pvt. Ltd. A-34/35, MIDC Industrial Estate 'H'-Block, Pimpri Poona 411018 Telephone: (0212) 777472 Telex: 0146-323 FSON 0146-221 JNMS Telefax: (0212) 77 70 49

Netherlands

Krohne Persenaire Procesinstrumentatie Gooierserf 121 Postbus 365 NL-1270 AJ Huizen Telephone: (0 21 52) 8 61 11 Telex: 43 318 Telefax: (0 21 52) 6 96 72

South Africa

Krohne (Pty.) Ltd. P.O.Box 2078 ZA-1685 Halfway House Telephone: (0 11) 3 14 - 13 51 Telefax: (0 11) 3 14 - 11 37 France

Krohne S.A. «Usine des Ors» B.P. 98 F-26 103 Romans Cedex Telephone: 75 05 44 00 Telex: 345 153 Telefax: 75 05 00 48

Italy

Krohne Italia Srl Via V. Monti 75 1-20145 Milano Telephone: (02) 48 01 19 84 Telex: 332190 Telefax: (02) 48 00 83 54

Spain

Krohne España C/Corpa 20 E-28806 Alcala de Henares Telephone: (91) 8803741 Telefax: (91) 8803741

USA
Krohne America Inc.
7 Dearborn Road
Peabody, MA 01960
Telephone (508) 535-60 60
1-800-FLOWING
(1-800-356-9464)
Telefax (508) 535-17 20
PC. Telefax (508) 535-38 51 PC Telefax (508) 535-38 51