

OPTIMASS 3000 Technisches Datenblatt

Messwertaufnehmer für Massedurchfluss

- Erste Wahl für Anwendungen mit niedrigen Durchflussmengen
- Zertifiziertes druckfestes Gehäuse
- Eine einzige Einbaulänge für alle drei Größen, aus Hastelloy ® oder Edelstahl

Die Dokumentation ist nur komplett in Kombination mit der entsprechenden Dokumentation des .

1 P	Produkteigenschaften	3
	1.1 Die Lösung für die Messung niedriger Durchflussmengen 1.2 Produkteigenschaften und Optionen 1.3 Messgerät / Messumformer Kombinationen 1.4 Messprinzip (Z-förmiges Messrohr)	5 6
2 T	echnische Daten	3
	2.1 Technische Daten 2.2 Messgenauigkeit. 2.3 Richtlinien für den maximalen Betriebsdruck 2.4 Abmessungen und Gewichte 2.4.1 Allgemeine Abmessungen 2.4.2 NPT-Anschlüsse 2.4.3 Flanschanschlüsse 2.4.4 Hygieneanschlüsse 2.4.5 Ausführung mit Heizmantel / Spülanschluss	
3 Ir	nstallation	20
	3.1 Bestimmungsgemäße Verwendung 3.2 Kunststoffeinsätze 3.3 Stütze für das Messgerät 3.4 Montage mithilfe von zwei Löchern 3.5 Horizontaler Einbau 3.6 Vertikaler Einbau 3.7 Selbstentleerend 3.8 Spülanschlüsse	
4 N	Notizen	25

1.1 Die Lösung für die Messung niedriger Durchflussmengen

Der OPTIMASS 3000 ist die kosteneffiziente Lösung für eine genaue Messung bei einer Vielzahl von Anwendungen mit niedrigem Durchfluss.

Kombiniert mit der Leistungsstärke des MFC 300 liefert der OPTIMASS 3000 exakte Messungen für die folgenden Messgrößen: Volumen, Masse, Dichte und Konzentration.

- ① Umfangreiche Diagnosemöglichkeiten.
- 2 Alle gängigen Prozessanschlüsse verfügbar, einschließlich Hygieneanschlüsse.
- 3 Zertifiziertes druckfestes Gehäuse aus Edelstahl 316L.
- Standardelektronik f
 ür alle Messwertaufnehmer mit redundanter Speicherung der Kalibrier- und Messwertaufnehmerdaten.
- (5) Modulare Elektronik mit einer Vielzahl von Ausgangsoptionen (für Details, siehe zusätzliche Produktdokumentation)

① Getrennt installierter Klemmenkasten.

Produkteigenschaften:

- Z-förmiges Messrohr
- Leerlauffähig und leicht zu reinigen
- Heizmantel optional
- Einfache Installation und Inbetriebnahme
- Modulares Elektronikkonzept einfache Austauschbarkeit von Elektronik und Messwertaufnehmer
- Datenredundanz fehlerfreier Austausch der Elektronik per Plug & Play möglich

Branchen:

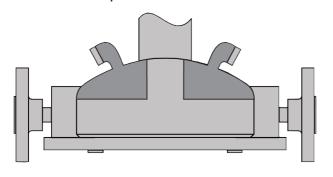
- Abwasser
- Chemie
- Lebensmittel & Getränke
- Papier & Zellstoff
- Pharmazie
- Automobilindustrie

Anwendungen

- Duftstoffdosierung und Hochpräzisionsbeschichtungen in der Pharmazie.
- CO₂-Injektion und Dosierung in der Lebensmittel- und Getränkeindustrie
- Erdgas- und Propanodorierung.
- Motorprüfstände in der Automobilindustrie.

1.2 Produkteigenschaften und Optionen

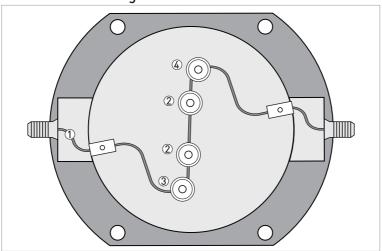
Produkteigenschaften


- Geringer Druckverlust im Messgerät dank des Designs mit Z-förmigem Messrohr.
- Selbstentleerend.
- Zertifiziertes druckfestes Gehäuse
- 150 barg / 2175 psig Standardmessrohr.
- 300 barg / 4351 psig Hastelloy®-Messrohr.

Anschlussoptionen

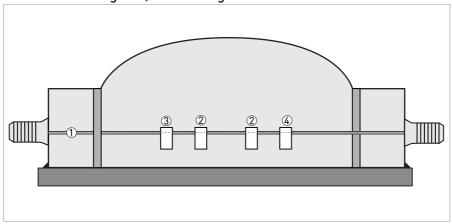
- NPT-Anschlüsse als Standard.
- Auch mit dem Industriestandard entsprechenden Hygieneanschlüssen verfügbar.
- Flansche gemäß ASME 600.

Heizmantel & Spülanschluss


- Heizmanteloption bei temperaturabhängigen Produkten.
- Verhindert die Verfestigung der Messstoffe während der Messung.
- Die Spülanschlussoption dient zum Schutz im Falle einer Messrohrleckage.
- Der Spülanschluss ermöglicht das sichere Abführen von umweltgefährdenden Medien.

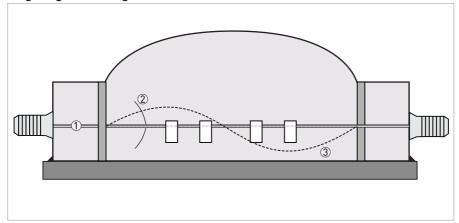
1.3 Messgerät / Messumformer Kombinationen

Messumformer	MFC 010	MFC 300			
Konfiguration	Kompakt	Kompakt	Getrennt Feldgehäuse	Getrennt Wandgehäuse	Getrennt Einschubgehäu se
OPTIMASS 3000	3010C	3300C	3300F	3300W	3300R


1.4 Messprinzip (Z-förmiges Messrohr)

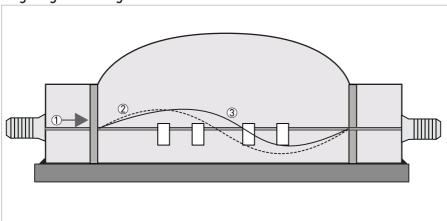
Messrohranordnung aus der Draufsicht

- ① Messrohr
- 2 Erregerspulen
- 3 Sensor 1
- Sensor 2


Statisches Messgerät, nicht erregt und ohne Durchfluss

- ① Messrohr
- ② Erregerspulen
- 3 Sensor 1
- 4 Sensor 2

Ein Coriolis-Durchflussmessgerät mit einem Z-förmigen Messrohr besteht aus einem Z-förmigen Messrohr (1), zwei Erregerspulen (2) und zwei Sensoren (3 und 4) an jeder Seite der beiden Erregerspulen.


Angeregtes Messgerät

- ① Messrohr
- Schwingungsrichtung
- 3 Sinuskurve

Wenn das Messgerät erregt wird, lassen die Erregerspulen das Messrohr vibrieren, wodurch eine Sinuskurve (③) erzeugt wird. Diese Sinuskurve wird von den beiden Sensoren überwacht.

Angeregtes Messgerät mit Durchfluss

- ① Durchfluss
- ② Sinuskurve
- 3 Phasenverschiebung

Wenn eine Flüssigkeit oder ein Gas durch das Rohr fließt, bewirkt der Coriolis-Effekt eine Phasenverschiebung in der Sinuskurve, der von den beiden Sensoren erfasst wird. Diese Phasenverschiebung ist direkt proportional zum Massedurchfluss.

Die Dichtemessung erfolgt anhand der Auswertung der Schwingungsfrequenz und die Temperaturmessung mithilfe eines Pt500-Sensors.

2.1 Technische Daten

- Die nachfolgenden Daten berücksichtigen allgemeingültige Applikationen. Wenn Sie Daten benötigen, die Ihre spezifische Anwendung betreffen, wenden Sie sich bitte an uns oder Ihren lokalen Vertreter.
- Zusätzliche Informationen (Zertifikate, Arbeitsmittel, Software,...) und die komplette Dokumentation zum Produkt können Sie kostenlos von der Internetseite (Download Center) herunterladen.

Messsystem

Messprinzip	Coriolis Massedurchfluss
Anwendungsbereich	Massedurchfluss- und Dichtemessung von Flüssigkeiten und Gasen
Gemessener Wert	Masse, Dichte, Temperatur
Berechneter Wert	Volumen, Bezugsdichte, Konzentration, Geschwindigkeit

Ausführung

Allgemein	Das System besteht aus einem Messwertaufnehmer und einem Messumformer für die Verarbeitung des Ausgangssignals.	
Produkteigenschaften	Vollverschweißter, wartungsfreier Messwertaufnehmer mit einem Z- förmigen Messrohr	
Varianten		
Kompakt-Ausführung	Integrierter Messumformer	
Getrennte Ausführung	Messumformer in Feld- oder Wand-Ausführung oder in 19" Einschubgehäuse verfügbar	
Modbus-Ausführung	Messwertaufnehmer mit integrierter Elektronik mit Modbusausgang für Anschluss an SPS	

Messgenauigkeit

ricoogenaaigiteit			
Masse			
Flüssigkeit	±0,1% des?gemessenen?Durchflusses + Nullpunktstabilität		
Gas	±0,5% des gemessenen Durchflusses + Nullpunktstabilität		
Wiederholbarkeit	Besser als 0,05% plus Nullpunktstabilität (umfasst die Einflüsse von Reproduzierbarkeit, Linearität und Hysterese)		
Nullpunktstabilität			
Edelstahl / Hastelloy®	±0,0057% vom maximalen Durchfluss bei jeweiliger Sensorgröße		
Referenzbedingungen			
Messstoff	Wasser		
Temperatur	+20°C / +68°F		
Betriebsdruck	1 barg / 14,5 psig		
Einfluss von Prozesstemperatur-Abweichung auf Nullpunkt des Messwertaufnehmers			
Edelstahl / Hastelloy®	0,0056% pro 1°C / 0,0031% pro 1°F		
Einfluss von Prozessdruck-Abweichung auf Nullpunkt des Messwertaufnehmers			
Edelstahl / Hastelloy®	0,013% des max. Durchflusses pro 1 barg / 0,0009% des max. Durchflusses pro 1 psig		
Dichte			
Messbereich	4003000 kg/m ³ / 25187 lbs/ft ³		
Genauigkeit	$\pm 2 \text{ kg/m}^3 / \pm 0,13 \text{ lbs/ft}^3$		
Vor Ort-Kalibrierung	$\pm 0.5 \text{ kg/m}^3 / \pm 0.033 \text{ lbs/ft}^3$		

Temperatur	
Genauigkeit	±1°C / ±1,8°F

Betriebsbedingungen

Maximale Durchflussraten			
01	20 kg/h / 0,733 lbs/min		
03	130 kg/h / 4,766 lbs/min		
04	450 kg/h / 16,5 lbs/min		
Umgebungstemperatur			
Kompakt-Ausführung mit	-40+60°C / -40+140°F		
Messumformer aus Ăluminium	Erweiterter Temperaturbereich: 65°C / 149°F für einige I/O-Optionen. Weitere Informationen erhalten Sie vom Hersteller.		
Kompakt-Ausführung mit Messumformer aus Edelstahl	-40+55°C / -40+130°F		
Getrennte Ausführungen	-40+65°C / -40+149°F		
Prozesstemperatur	Prozesstemperatur		
Edelstahl / Hastelloy®	-40+150°C / -40+302°F		
Nenndruck bei 20°C / 68°F			
Messrohr			
Edelstahl	-1150 barg / -14,52175 psig		
Hastelloy®	-1300 barg / -14,54351 psig		
Gehäuse			
DGRL- / CRN-zugelassen	-130 barg / -14,5435 psig		
	Bei Betriebsdrücken >30barg / 435psig ist eine Berstscheibe obligatorisch		
Stoffdaten			
Zulässiger Aggregatzustand	Flüssigkeiten, Gase		
Zulässiger Gasanteil (Volumen)	Für weitere Informationen wenden Sie sich bitte an den Hersteller.		
Zulässiger Feststoffgehalt (Volumen)	Für weitere Informationen wenden Sie sich bitte an den Hersteller.		
Schutzart (nach EN60529)	IP 67, NEMA 4X		

Einbaubedingungen

Einlaufstrecken	Nicht erforderlich
Auslaufstrecken	Nicht erforderlich

Werkstoffe

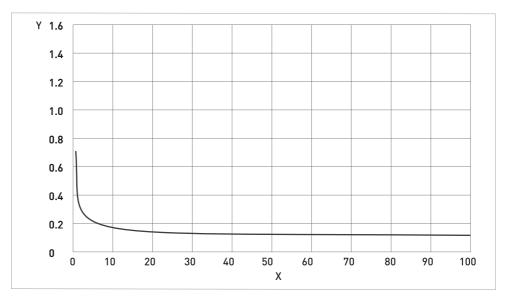
Messgerät aus Edelstahl		
Messrohr	Edelstahl 316L (1.4435)	
Prozessanschlüsse	Edelstahl 316L (1.4435)	
Grundplatte	Edelstahl 316L (1.4435)	
Gehäuse	Edelstahl 316L (1.4435)	
Messgerät aus Hastelloy®		
Messrohr	Hastelloy® C-22	
Prozessanschlüsse	Hastelloy® C-22	
Grundplatte	Edelstahl 316L (1.4435)	
Gehäuse	Edelstahl 316L (1.4435)	

Ausführung mit Heizmantel	
Heizmantel	Edelstahl 316L (1.4435)
Alle Versionen	
Sensorelektronikgehäuse	Edelstahl 316L (1.4409)
Anschlussdose (getrennte Ausführung)	Aluminium-Druckguss (polyurethanbeschichtet)
	Option: Edelstahl 316L (1.4401)

Prozessanschlüsse

Gewinde		
NPT-M	1/4"	
Flansch		
DIN	DN15 / PN4063	
ASME	½" / ASME 150600	
JIS	15A / 20K	
Hygienisch		
Tri-clover	1/2"	
Tri-clamp DIN 32676	DN10	

Elektrische Anschlüsse


Elektrische Anschlüsse	Ausführliche Informationen einschließlich Spannungsversorgung, Stromverbrauch etc. finden Sie in den technischen Daten für den jeweiligen Messumformer.
1/0	Ausführliche Informationen über die E/A-Optionen einschließlich Kommunikationsprotokolle finden Sie in den technischen Daten für den jeweiligen Messumformer.

Zulassungen

Mechanisch		
Elektromagnetische Verträglichkeit	NAMUR NE 21/5.95	
(EMV) nach CE	2004/108/EG (EMV)	
	2006/95/EG (Niederspannungsrichtlinie)	
Europäische Druckgeräte-Richtlinie	DGRL 97-23 EC (nach AD 2000 Regelwerk)	
Factory Mutual / CSA	Klasse I, Div 1 Gruppen A, B, C, D	
	Klasse II, Div 1 Gruppen E, F, G	
	Klasse III, Div 1 Gefahrenbereiche	
	Klasse I, Div 2 Gruppen A, B, C, D	
	Klasse II, Div 2 Gruppen F, G	
	Klasse III, Div 2 Gefahrenbereiche	
ANSI / CSA (Dual Seal)	12.27.901-2003	
ATEX (gem. 94/9/EC)		
OPTIMASS 3300C nicht-Ex I Signalausgär	ge ohne Heizmantel / Isolierung	
Ex d Anschlussraum	II 2 G Ex d [ib] IIC T6T1	
	II 2 D Ex tD A21 IP6x T160°C	
Ex e Anschlussraum	II 2 G Ex de [ib] IIC T6T1	
	II 2 D Ex tD A21 IP6x T160°C	

OPTIMASS 3300C nicht-Ex I Signalausgänge mit Heizmantel / Isolierung		
Ex d Anschlussraum	II 2 G Ex d [ib] IIC T6T1	
	II 2 D Ex tD A21 IP6x T170°C	
Ex e Anschlussraum	II 2 G Ex de [ib] IIC T6T1	
	II 2 D Ex tD A21 IP6x T170°C	
OPTIMASS 3300C Ex I Signalausgänge oh	ne Heizmantel / Isolierung	
Ex d Anschlussraum	II 2(1) G Ex d [ia/ib] IIC T6T1	
	II 2(1) D Ex tD [iaD] A21 IP6x T160°C	
Ex e Anschlussraum	II 2(1) G Ex de [ia/ib] IIC T6T1	
	II 2(1) D Ex tD [iaD] A21 IP6x T160°C	
OPTIMASS 3300C Ex I Signalausgänge mit	t Heizmantel / Isolierung	
Ex d Anschlussraum	II 2(1) G Ex d [ia/ib] IIC T6T1	
	II 2(1) D Ex tD [iaD] A21 IP6x T170°C	
Ex e Anschlussraum	II 2(1) G Ex de [ia/ib] IIC T6T1	
	II 2(1) D Ex tD [iaD] A21 IP6x T170°C	
OPTIMASS 3000 / 3010C ohne	II 2 G Ex ib IIC T6T1	
Heizmantel / Isolierung	II 2 D Ex ibD 21 T150 °C	
OPTIMASS 3000 / 3010C mit Heizmantel	II 2 G Ex ib IIC T6T1	
/ Isolierung	II 2 D Ex ibD 21 T165 °C	

2.2 Messgenauigkeit

X Durchflussrate [%] Y Messfehler [%]

Messfehler

Der Messfehler ergibt sich aus der Kombination der Effekte von Genauigkeit und Nullpunktstabilität.

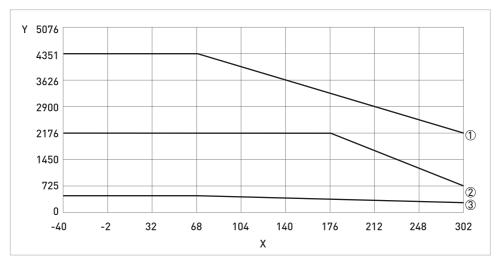
Referenzbedingungen

Produkt	Wasser
Temperatur	+20°C / +68°F
Betriebsdruck	1 barg / 14,5 psig

2.3 Richtlinien für den maximalen Betriebsdruck

Hinweise

- Stellen Sie sicher, dass das Messgerät innerhalb der zulässigen Grenzwerte betrieben wird.
- Alle hygienischen Prozessanschlüsse sind für einen maximalen Betriebsdruck von 10 barg bei 130°C / 145 psig bei 266°F ausgelegt.


Druck / Temperaturzuordung für alle Baugrössen und Werkstoffe, metrisch

X Temperatur [°C] Y Druck [barg]

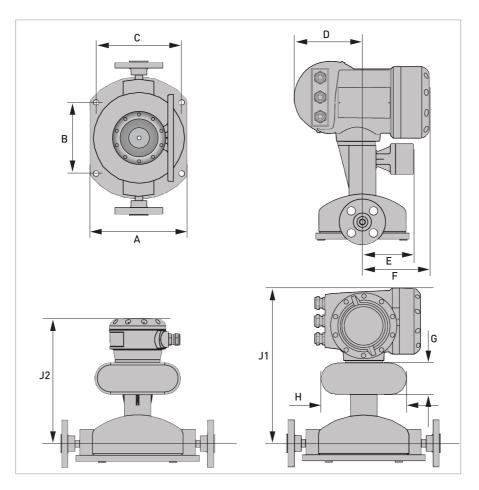
- ① Hastelloy® HC22 Messrohr
- ② Edelstahl 316L Messrohr
- 3 Gehäuse

Druck / Temperaturzuordnung für alle Nennweiten / Werkstoffe, englisches Maßsystem

X Temperatur [°F]
Y Druck [psig]

- ① Hastelloy® HC22 Messrohr
- 2 Edelstahl 316L Messrohr
- 3 Gehäuse

Flansche


- Die DIN Flanschangaben basieren auf EN 1092-1 2001 Tabelle 18, 1% Bezugsspannung, Werkstoffklasse 14E0
- Alle ASME Flanschangaben basieren auf ASME B16.5: 2003, Tabelle 2, Werkstoffklasse 2.2
- Die JIS Flanschangaben basieren auf JIS 2220: 2001, Tabelle 1, Division 1, Werkstoffklasse 022a

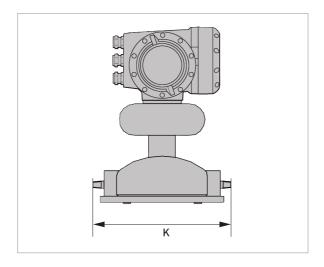
Hinweise

- Als maximaler Betriebsdruck gilt entweder der Wert für den Flansch oder für das Messrohr, JE NACHDEM, WELCHER NIEDRIGER IST!
- Der Hersteller empfiehlt, die Dichtungen regelmäßig zu ersetzen. Auf diese Weise wird eine stets einwandfreie Hygiene des Anschlusses gewährleistet.

2.4 Abmessungen und Gewichte

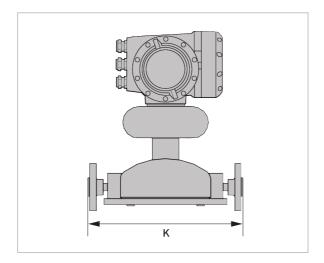
2.4.1 Allgemeine Abmessungen

Gewicht der Messgeräte für die Werkstoffe Hastelloy $^{\scriptsize (B)}$ (H) und Edelstahl (S)

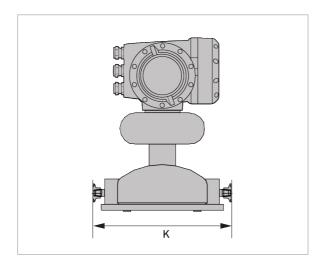

	Gewicht [kg]		
H/S 01 H/S 03 H/S 04		H/S 04	
Aluminium (kompakt)	16	16	16
Edelstahl (kompakt)	22,1	22,1	22,1
Aluminium (getrennt)	13,2	13,2	13,2
Edelstahl (getrennt)	14	14	14

	Gewicht [lbs]		
	H/S 01	H/S 03	H/S 04
Aluminium (kompakt)	35,2	35,2	35,2
Edelstahl (kompakt)	48,62	48,62	48,62
Aluminium (getrennt)	29,04	29,04	29,04
Edelstahl (getrennt)	30,8	30,8	30,8

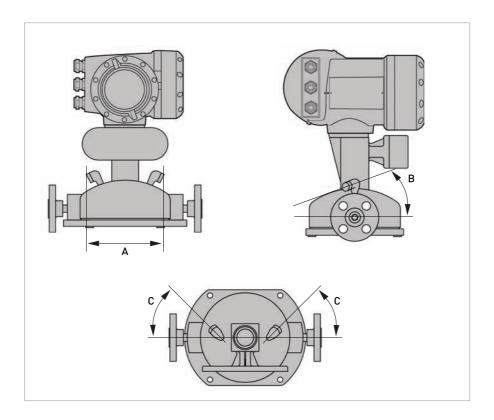
Abmessungen


	Baugröße [mm] / [Zoll]		
	S/H 01	S/H 03	S/H 04
Α		180 / 7.1	
В		132 / 5.2	
С		156 / 6.1	
D	123.5 / 4.9		
Е	98.5 / 3.9		
F	137 / 5.4		
G	60 / 2.4		
Н	160 / 6.3		
J1	348 / 13.7		
J2	269 / 10.6		
Messrohr-Innendurchmesser [mm]	1.2	2.6	4.0

2.4.2 NPT-Anschlüsse


Anschlusstyp	Abmessung K		
	[mm]	[Zoll]	
1/4" NPT(M)	256±3	10.1 ±0.1	

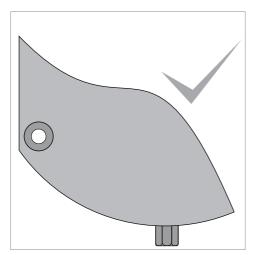
2.4.3 Flanschanschlüsse


Anschlusstyp	Abmessung K		
	[mm]	[Zoll]	
ASME150	286±3	11,3 ±0,1	
ASME300	286±3	11,3 ±0,1	
ASME600	295±3	11,6 ±0,1	
DN15 PN40	286±3	11,3 ±0,1	
DN15 PN63	295±3	11,6 ±0,1	
15A JIS 20K	286±3	11,3 ±0,1	

2.4.4 Hygieneanschlüsse

Anschlusstyp	Abmessung K		
	[mm]	[Zoll]	
DN10 DIN32676	260±3	10,2 ±0,1	
½" Tri-Clover	262±3	10,3 ±0,1	

2.4.5 Ausführung mit Heizmantel / Spülanschluss



Messgerätgröße	01	03	04
A [mm / Zoll]		129 ±5,0 / 5,01 ±0,2	
В		45º (ungefähr)	
С		45° ±6°	

3.1 Bestimmungsgemäße Verwendung

Dieses Massedurchfluss-Messgerät dient der direkten Messung des Massedurchflusses sowie der Dichte und der Temperatur des Messstoffs. Indirekt ermöglicht es auch die Messung von Parametern wie beispielsweise Gesamtmasse, Konzentration gelöster Substanzen und Volumendurchfluss. Beim Einsatz in gefährdeten Bereichen gelten besondere Vorschriften und Richtlinien, die in einer separaten Produktdokumentation beschrieben werden.

3.2 Kunststoffeinsätze

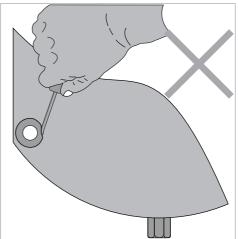
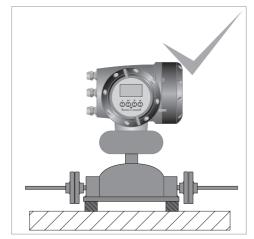



Abbildung 3-1: Kunststoffeinsätze der Grundplatte

Die vier Montagelöcher in der Grundplatte des Messgeräts sind mit Kunststoffeinsätzen ausgestattet. Entfernen Sie diese Einsätze vor der Installation nicht.

3.3 Stütze für das Messgerät

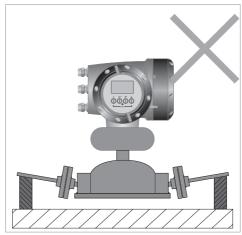
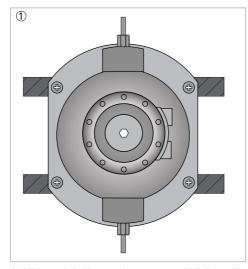



Abbildung 3-2: Abstützen des Messgeräts

Die Grundplatte dient zur Montage und als Stütze für das Gewicht des Messgeräts.

Verwenden Sie NICHT die Prozessleitungen als Stütze für das Gewicht des Messgeräts. Anderenfalls sind schwere Schäden an der Vorrichtung die Folge.

3.4 Montage mithilfe von zwei Löchern

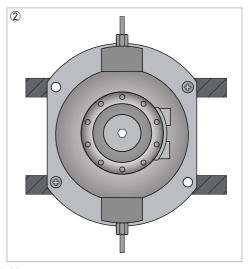
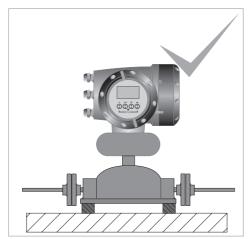



Abbildung 3-3: Verwendung von zwei Löchern für die Montage

- ① Es wird empfohlen, dass ALLE vier Montagelöcher verwendet werden, um das Messgerät ordnungsgemäß und sicher zu installieren.
- ② Das Messgerät kann jedoch auch unter Verwendung von nur zwei der Montagelöcher montiert werden.

3.5 Horizontaler Einbau

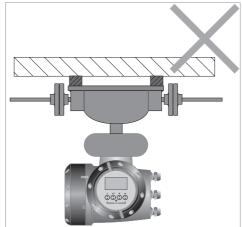
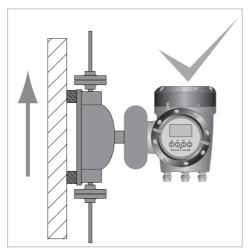
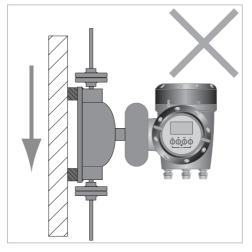



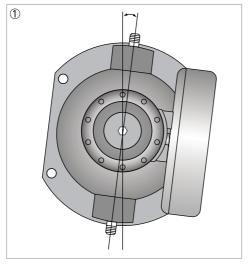
Abbildung 3-4: Horizontaler Einbau

Montieren Sie das Messgerät auf einem festen, schwingungsfreien Untergrund.

Montieren Sie das Messgerät NICHT kopfstehend.

3.6 Vertikaler Einbau




Abbildung 3-5: Vertikale Durchflussrichtung

Bei vertikalem Einbau des Messgeräts MUSS der Durchfluss von unten nach oben verlaufen.

3.7 Selbstentleerend

Vertikale Einbauwinkel für die Selbstentleerung

Wenn das Messgerät vertikal montiert wird und die Selbstentleerung des Geräts erforderlich ist, montieren Sie das Messgerät im in der Tabelle angegebenen Winkel. Die Winkel sind auf der Grundplatte des Messgeräts angegeben.

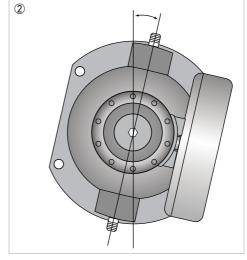


Abbildung 3-6: Drehwinkel für die Selbstentleerung

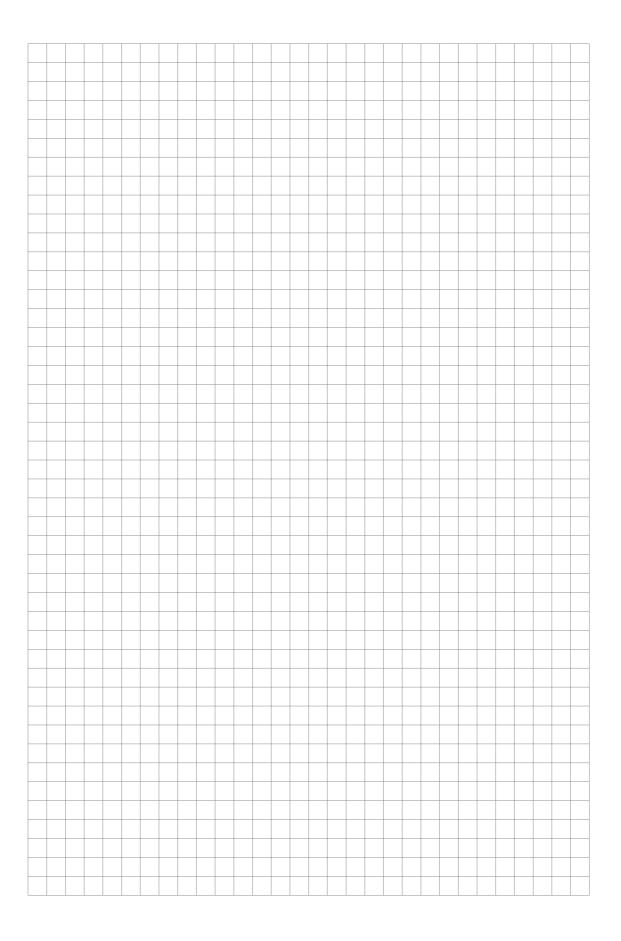
- ① 7º im Uhrzeigersinn von der Vertikalen für die Selbstentleerung. (Siehe Tabelle mit den relevanten Messgerätgrößen.)
- 2 13º im Uhrzeigersinn von der Vertikalen für die Selbstentleerung. (Siehe Tabelle mit den relevanten Messgerätgrößen.)

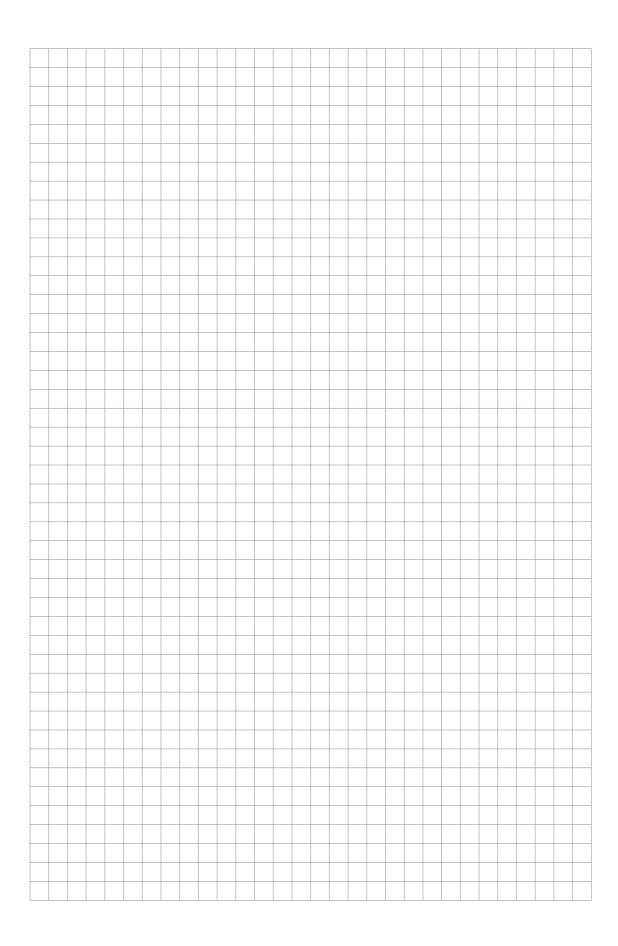
Einstellwinkel

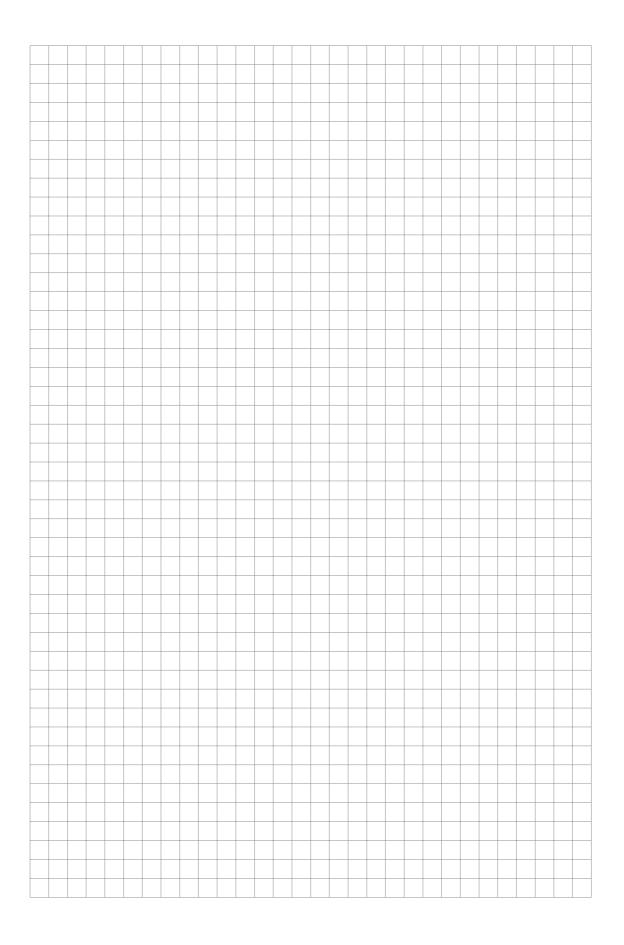
Messgerätgröße	Drehwinkel (im Uhrzeigersinn)	
01	70	
03	130	
04	130	

3.8 Spülanschlüsse

Spülanschlüsse


- Mit dem optionalen Spülanschluss bestellte Messgeräte sind mit ¼" NPT-Innengewindeanschlüssen ausgestattet.
- Die NPT-Anschlüsse sind mit NPT-Stopfen und PTFE-Band verschlossen.


Entfernen Sie die NPT-Stopfen AUF KEINEN FALL!


Das Messgerät wird werkseitig verschlossen und mit trockenem Stickstoffgas gefüllt. Wenn die Stopfen entfernt werden, gelangt Feuchtigkeit in das Messgerät, was zu Schäden am Gerät führt. Wenn Sie den Eindruck haben, dass eine Störung des Messgeräts vorliegt, machen Sie das Gerät drucklos (sofern dies unter Beibehaltung der Sicherheit möglich ist) und entfernen Sie die Stopfen. Spülen Sie das Messgerätgehäuse, um den Messstoff zu entfernen.

Berstscheiben

- Wenn der Betriebsdruck höher als der Bemessungsdruck des druckfesten Gehäuses ist, MUSS auch die optionale Berstscheibe bestellt werden.
- Der Berstdruck der Scheibe beträgt 20 barg bei 20°C / 290 psig bei 68°F.
- Wenn sich die Prozessbedingungen gegenüber den bei der Bestellung angegebenen Bedingungen ändern, MÜSSEN Sie sich an den Hersteller wenden und sich die Eignung der montierten Scheibe bestätigen lassen.
- Wenn es sich beim Messstoff um einen Gefahrstoff handelt, wird empfohlen, dass ein Ablassrohr in das NPT-Außengewinde eingesetzt wird, um den Ablass in einen sicheren Bereich zu ermöglichen.
- Stellen Sie sicher, dass der Pfeil auf der Berstscheibe vom Messgerät weg zeigt.

KROHNE Produktübersicht

- Magnetisch-induktive Durchflussmessgeräte
- Schwebekörper-Durchflussmessgeräte
- Ultraschall-Durchflussmessgeräte
- Masse-Durchflussmessgeräte
- Wirbelfrequenz-Durchflussmessgeräte
- Durchflusskontrollgeräte
- Füllstandmessgeräte
- Temperaturmessgeräte
- Druckmessgeräte
- Analysenmesstechnik
- Produkte und Systeme für die Öl- und Gasindustrie
- Messsysteme für die Schifffahrtsindustrie

Hauptsitz KROHNE Messtechnik GmbH Ludwig-Krohne-Str. 5 47058 Duisburg (Deutschland) Tel.:+49 203 301 0 Fax:+49 203 301 103 89 sales.de@krohne.com

Die aktuelle Liste aller KROHNE Kontakte und Adressen finden Sie unter: www.krohne.com

