Vortex flowmeter

Equipment protection level EPL Gc
in type of protection non-incendive Ex nA
CONTENTS

OPTISWIRL 4200

1 Safety instructions 3

1.1 General notes ... 3
1.2 TR CU conformity ... 3
1.3 Approval according to the IECEx scheme 3
1.4 Safety instructions ... 4

2 Device description 5

2.1 Device description ... 5
2.2 Description code ... 5
2.3 Marking .. 6
2.4 Flammable products ... 8
2.5 Types of protection ... 8
2.6 Ambient temperature / temperature classes 9
2.7 Electrical data .. 17

3 Installation 18

3.1 Mounting .. 18
3.2 Special conditions .. 19

4 Electrical connections 20

4.1 General notes ... 20
4.2 Power supply ... 21
4.3 Inputs / Outputs ... 21
4.4 Grounding and equipotential bonding 22
4.5 Flow sensor circuits (remote version only) 24

5 Operation 25

5.1 Start-up .. 25
5.2 Operation .. 25
5.3 Electrostatic charge .. 26

6 Service 27

6.1 Maintenance .. 27
6.2 Dismantling ... 27

7 Notes 29
1.1 General notes

These additional instructions apply to explosion-protected versions of vortex flowmeters in type of protection non-sparking "nA", equipment protection level EPL Gc. It completes the standard manual for the non explosion-protected versions.

The information given in this instruction contains only the data relevant to explosion protection. The technical details given in the manual for the non-explosion protected versions remain unchanged unless they will be excluded or replaced by this instruction.

1.2 TR CU conformity

Conformity of the vortex flowmeter for use in hazardous areas was tested in accordance with the Custom Union Technical Regulation TR CU 012/2011.

The number of the certificate is:

TC RU C-DE.AA87.B.01095

1.3 Approval according to the IECEx scheme

Conformity of the vortex flowmeter for use in hazardous areas with gas was tested in accordance with the "IECEx Certification Scheme for Explosive Atmospheres" according to IEC 60079-0: 2011 cor. 2013, IEC 60079-11: 2011 and IEC 60079-15: 2010.

The number of the IECEx certificate is:

IECEx KIWA 15.0021X

The "X" after the certificate number refers to special conditions for safe use of the device, which have been listed in these instructions.

If needed, the IEC certificate can be downloaded from the manufacturer’s website.
1.4 Safety instructions

If these instructions are not followed, there is a risk of explosion.

Assembly, installation, start-up and maintenance may only be performed by personnel trained in explosion protection!

CAUTION!
Operating conditions and place of installation may require compliance with additional standards, directives or laws. The responsibility for compliance rests solely with the operator or his agent.
2.1 Device description

Vortex flowmeters measure and display the flow of flammable and non-flammable gases and liquids. The signal converter includes either a 4...20 mA signal output with optional HART® communication or a bus connection. There are bus connections available for connecting to a Foundation Fieldbus or Profibus PA. Signal converters with signal output have a separate binary output and a separate current input.

2.2 Description code

The safety description code consists of the following elements*:

OPTISWIRL 4200 C .. -Ex

1. Product designation
2. Type series
3. Compact version
4. Electrical signal output
 - free - current output 4...20 mA with optional HART® communication
 - FF - Foundation Fieldbus bus connection
 - PA - Profibus PA bus connection
5. Ex - explosion-protected version

Figure 2-1: Safety description code for the compact version

VFC 200 F .. 020 -Ex

1. Product designation
2. Type series
3. Remote version
4. Electrical signal output
 - free - current output 4...20 mA with optional HART® communication
 - FF - Foundation Fieldbus bus connection
 - PA - Profibus PA bus connection
5. Sensor electronics VFC 020
6. Ex - explosion-protected version

Figure 2-2: Safety description code for the signal converter of the remote version
OPTISWIRL 4000 F

Figure 2-3: Safety description code for the flow sensor of the remote version
① Product designation
② Type series of flow sensor
③ Remote version

* positions which are not needed are omitted (no blank positions)

The remote version consisting of the flow sensor OPTISWIRL 4000 F and the signal converter VFC 200 F 020 is called the OPTISWIRL 4200 F.

2.3 Marking

The marking of the devices in accordance with the description code is shown on the nameplates below. On both the compact devices and the remote versions, the main plate is located on the signal converter housing. On the remote versions there is an additional marking on the flow sensor.

Compact versions with two signal converters for dual measurement (dual version) are each marked with a nameplate, which is attached to each of the signal converter housings. The details relevant to explosion protection are identical on both nameplates.

Figure 2-4: Example of a nameplate for the compact version
① Device version OPTISWIRL 4200 C
② Production order number
③ Serial number
④ Year of manufacture
⑤ Ex data according to notified body
⑥ Pressure and temperature data
⑦ Electrical connection data
⑧ Safety instructions, disposal and data matrix
⑨ Symbol for region (e.g. Russia)
Figure 2-5: Example of the nameplates for the remote version

1. Device version VFC 200 F .. 020-Ex / OPTISWIRL 4000 F
2. Production order number
3. Serial number
4. Year of manufacture
5. Ex data according to notified body
6. Pressure and temperature data
7. Electrical connection data
8. Safety instructions, disposal and data matrix
9. Symbol for region (e.g. Russia)
2.4 Flammable products

Atmospheric conditions:
The standard atmospheric conditions under which it may be assumed that Ex equipment can be operated are:

- Temperature: -20...+60°C / -4...+140°F
- Pressure: 80...110 kPa (0.8...1.1 bar) / 11.6...15.9 psi
- Air with normal oxygen content, typically 21%v/v

Ex equipment operating outside the standard temperature range must be tested and certified (e.g. for ambient temperature range -40...+65°C / -40...+149°F). Ex equipment operating outside the standard atmospheric pressure range and standard oxygen content is not permitted.

Operating conditions:
Vortex flowmeters operate outside the standard atmospheric pressure range, which means that explosion protection, regardless of the zone assignment, is fundamentally not applicable for the measuring unit (piping).

CAUTION!
Operation with flammable products is only permitted as long as no explosive fuel/air mixture builds up inside of the piping at the same time the atmospheric conditions are exceeded.

The operator is responsible to ensure that the flowmeter is operated safely in terms of the temperature and pressure of the products used. In case of operation with flammable products the measuring units must be included in the periodic pressure tests of the piping.

2.5 Types of protection

Explosion protection of vortex flowmeter is provided due to fulfilment of requirements of the following standards:

- GOST 31610.0-2014 (IEC 60079-0:2011) - Explosive atmospheres. Part 0. Equipment. General requirements

The following types of protection are used:

- Electronics compartment: "nA"
- Terminal compartment: "nA"
- Flow sensor: "i"
The marking for equipment EPL Gc is:

2Ex nA ic IIC T6...T2 Gc X (compact version)

2Ex nA [ic] IIC T6 Gc X (signal converter in remote version)

2Ex ic IIC T6...T2 Gc X (flow sensor in remote version)

The marking contains the following information:

<table>
<thead>
<tr>
<th>2</th>
<th>Gas explosion protection for zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex</td>
<td>Protection type “non-incendive”</td>
</tr>
<tr>
<td>Ex ic</td>
<td>Protection type “intrinsic safety”, level of protection “ic”</td>
</tr>
<tr>
<td>Ex [ic]</td>
<td>Protection type “intrinsic safety”, level of protection “ic”</td>
</tr>
<tr>
<td>IIC</td>
<td>Gas group, suitable for gas groups IIC, IIB and IIA</td>
</tr>
<tr>
<td>T6...T2</td>
<td>Temperature class range, suitable for temperature class T1...T6</td>
</tr>
<tr>
<td>Gc</td>
<td>EPL, suitable for zone 2</td>
</tr>
<tr>
<td>X</td>
<td>Indication of special conditions for safe use</td>
</tr>
</tbody>
</table>

Table 2-1: Description of the marking

2.6 Ambient temperature / temperature classes

Because of the influence of the temperature of the product, no fixed temperature class is assigned to vortex flowmeters. The temperature class of these devices is rather a function of the product temperature and ambient temperature that is present and the specific device version. The classification is outlined in the following tables.

The tables take into account the following parameters:

- Ambient temperature T_{amb}
- Product temperature T_m
- Nominal size DN
- Heat resistance of the connecting cable
INFORMATION!
The maximum permissible product temperatures listed in the tables are valid under the following conditions:

- The measuring device is installed and operated in accordance with the manufacturer’s installation instructions.
- It must be ensured that the flowmeter is not heated by the effects of additional heat radiation (sunshine, neighbouring system components) and thus operated above the permissible ambient temperature range.

- Insulation must be limited to the piping. Unobstructed ventilation of the signal converter must be ensured.

The permitted ambient temperature range is indicated on the nameplate; depending on the device version it is $T_{\text{amb}} = -40...+65^\circ\text{C} / -40...+149^\circ\text{F}$.

The minimum product temperature is $-40^\circ\text{C} / -40^\circ\text{F}$.
Max. permissible product and ambient temperatures with signal converter or connection box mounted above the flow sensor

Figure 2-6: Signal converter above the flow sensor

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamb in °C</td>
<td>60</td>
<td>65</td>
<td>60</td>
<td>65</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15...25</td>
<td>80</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>DN40...50</td>
<td>80</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>DN65...100</td>
<td>80</td>
<td>65</td>
<td>100</td>
<td>100(1)</td>
<td>135</td>
</tr>
<tr>
<td>DN150...300</td>
<td>75</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
</tbody>
</table>

Table 2-2: Temperature class in °C

① Permanent service temperature of connecting cable and cable entry min. 80°C

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamb in °F</td>
<td>140</td>
<td>149</td>
<td>140</td>
<td>149</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN15...25</td>
<td>176</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
<tr>
<td>DN40...50</td>
<td>176</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
<tr>
<td>DN65...100</td>
<td>176</td>
<td>149</td>
<td>212</td>
<td>212(1)</td>
<td>275</td>
</tr>
<tr>
<td>DN150...300</td>
<td>167</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
</tbody>
</table>

Table 2-3: Temperature class in °F

① Permanent service temperature of connecting cable and cable entry min. 176°F
Max. permissible product and ambient temperatures with signal converter or connection box mounted at side or underneath the flow sensor

![Signal converter at side of the flow sensor](image)

Figure 2-7: Signal converter at side of the flow sensor

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>amb</sub> in °C</td>
<td>60</td>
<td>65</td>
<td>60</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>Nominal size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15...25</td>
<td>85</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>DN40...50</td>
<td>80</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>DN65...100</td>
<td>85</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>DN150...300</td>
<td>80</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
</tbody>
</table>

Table 2-4: Temperature class in °C

① Permanent service temperature of connecting cable and cable entry min. 80°C

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>amb</sub> in °F</td>
<td>140</td>
<td>149</td>
<td>149</td>
<td>149</td>
<td>104</td>
</tr>
<tr>
<td>Nominal size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15...25</td>
<td>185</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
<tr>
<td>DN40...50</td>
<td>176</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
<tr>
<td>DN65...100</td>
<td>185</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
<tr>
<td>DN150...300</td>
<td>176</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
</tbody>
</table>

Table 2-5: Temperature class in °F

① Permanent service temperature of connecting cable and cable entry min. 176°F
Max. permissible product and ambient temperatures for devices with painted flow sensors / signal converters or connection box mounted above the flow sensor

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>amb</sub> in °C</td>
<td>60</td>
<td>65</td>
<td>60</td>
<td>65</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN15...25</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
<td>65</td>
<td>100</td>
<td>95</td>
<td>120</td>
<td>115</td>
<td>120</td>
<td>120</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>115</td>
<td>120</td>
<td>120</td>
<td>115</td>
<td>120</td>
<td>120</td>
<td>115</td>
<td>120</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>115</td>
<td>120</td>
<td>120</td>
<td>115</td>
<td>120</td>
<td>120</td>
<td>115</td>
<td>120</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN40...50</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
<td>65</td>
<td>100</td>
<td>95</td>
<td>115</td>
<td>105</td>
<td>120</td>
<td>115</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>105</td>
<td>120</td>
<td>115</td>
<td>105</td>
<td>120</td>
<td>115</td>
<td>105</td>
<td>120</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>105</td>
<td>95</td>
<td>120</td>
<td>105</td>
<td>95</td>
<td>120</td>
<td>105</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN65...100</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
<td>65</td>
<td>100</td>
<td>90</td>
<td>105</td>
<td>95</td>
<td>120</td>
<td>105</td>
<td>95</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>95</td>
<td>120</td>
<td>105</td>
<td>95</td>
<td>120</td>
<td>105</td>
<td>95</td>
<td>95</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>110</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>120</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN150...300</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65</td>
<td>65</td>
<td>95</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>110</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>120</td>
<td>110</td>
</tr>
</tbody>
</table>

Table 2-6: Temperature class in °C

(1) Permanent service temperature of connecting cable and cable entry min. 80°C

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>amb</sub> in °F</td>
<td>140</td>
<td>149</td>
<td>140</td>
<td>149</td>
<td>140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN15...25</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>159</td>
<td>149</td>
<td>212</td>
<td>203</td>
<td>248</td>
<td>239</td>
<td>248</td>
<td>248</td>
<td>239</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>239</td>
<td>248</td>
<td>248</td>
<td>239</td>
<td>248</td>
<td>248</td>
<td>239</td>
<td>248</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>239</td>
<td>248</td>
<td>248</td>
<td>239</td>
<td>248</td>
<td>248</td>
<td>239</td>
<td>248</td>
<td>239</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN40...50</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>159</td>
<td>149</td>
<td>212</td>
<td>203</td>
<td>239</td>
<td>221</td>
<td>248</td>
<td>239</td>
<td>221</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>239</td>
<td>221</td>
<td>248</td>
<td>239</td>
<td>221</td>
<td>248</td>
<td>239</td>
<td>221</td>
<td>248</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>221</td>
<td>248</td>
<td>248</td>
<td>221</td>
<td>248</td>
<td>248</td>
<td>221</td>
<td>248</td>
<td>221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN65...100</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>158</td>
<td>149</td>
<td>212</td>
<td>194</td>
<td>221</td>
<td>203</td>
<td>248</td>
<td>221</td>
<td>203</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>194</td>
<td>221</td>
<td>248</td>
<td>248</td>
<td>221</td>
<td>248</td>
<td>248</td>
<td>221</td>
<td>248</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN150...300</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>149</td>
<td>149</td>
<td>203</td>
<td>194</td>
<td>248</td>
<td>230</td>
<td>248</td>
<td>248</td>
<td>230</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>194</td>
<td>248</td>
<td>230</td>
<td>248</td>
<td>230</td>
<td>248</td>
<td>248</td>
<td>230</td>
<td>248</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>230</td>
<td>248</td>
<td>248</td>
<td>230</td>
<td>248</td>
<td>248</td>
<td>230</td>
<td>248</td>
<td>230</td>
</tr>
</tbody>
</table>

Table 2-7: Temperature class in °F

(1) Permanent service temperature of connecting cable and cable entry min. 176°F
Max. permissible product and ambient temperatures for devices with painted flow sensors / signal converters or connection box mounted at side or underneath the flow sensor

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_amb in °C</td>
<td>60</td>
<td>65</td>
<td>60</td>
<td>65</td>
<td>40</td>
</tr>
</tbody>
</table>

Nominal size

DN15...25	65	65	95	90	120	120	120	120	120	120	120	120
DN40...50	65	65	85	80	120	120	120	120	120	120	120	120
DN65...100	65	65	95	90	120	120	120	120	120	120	120	120
DN150...300	65	65	85	85	120	120	120	120	120	120	120	120

Table 2-8: Temperature class in °C

1. Permanent service temperature of connecting cable and cable entry min. 80°C

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_amb in °F</td>
<td>140</td>
<td>149</td>
<td>140</td>
<td>149</td>
<td>104</td>
</tr>
</tbody>
</table>

Nominal size

DN15...25	149	149	203	194	248	248	248	248	248	248	248	248
DN40...50	149	149	185	176	248	248	248	248	248	248	248	248
DN65...100	149	149	203	248	248	248	248	248	248	248	248	248
DN150...300	149	149	185	248	248	248	248	248	248	248	248	248

Table 2-9: Temperature class in °F

1. Permanent service temperature of connecting cable and cable entry min. 176°F
Maximum permissible product and ambient temperatures with signal converter stainless steel (metallic bright) or connection box stainless steel (metallic bright) mounted above the flow sensor

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{amb} in °C</td>
<td>60</td>
<td>65</td>
<td>60</td>
<td>65</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN15...25</th>
<th>DN40...50</th>
<th>DN65...100</th>
<th>DN150...300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75</td>
<td>65</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2-10: Temperature class in °C

(1) Permanent service temperature of connecting cable and cable entry min. 80°C

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{amb} in °F</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>104</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal size</th>
<th>DN15...25</th>
<th>DN40...50</th>
<th>DN65...100</th>
<th>DN150...300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>167</td>
<td>149</td>
<td>212</td>
<td>212</td>
</tr>
</tbody>
</table>

Table 2-11: Temperature class in °F

(1) Permanent service temperature of connecting cable and cable entry min. 176°F
Maximum permissible product and ambient temperatures with signal converter stainless steel (metallic bright) or connection box stainless steel (metallic bright) mounted at side or underneath the flow sensor

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamb in °C</td>
<td>60</td>
<td>65</td>
<td>60</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>Nominal size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15...25</td>
<td>85</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>DN40...50</td>
<td>75</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>DN65...100</td>
<td>85</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>DN150...300</td>
<td>75</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>135</td>
</tr>
</tbody>
</table>

Table 2-12: Temperature class in °C

1 Permanent service temperature of connecting cable and cable entry min. 80°C

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamb in °F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN15...25</td>
<td>185</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
<tr>
<td>DN40...50</td>
<td>167</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
<tr>
<td>DN65...100</td>
<td>185</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
<tr>
<td>DN150...300</td>
<td>167</td>
<td>149</td>
<td>212</td>
<td>212</td>
<td>275</td>
</tr>
</tbody>
</table>

Table 2-13: Temperature class in °F

1 Permanent service temperature of connecting cable and cable entry min. 176°F
2.7 Electrical data

Signal circuits

The vortex flowmeter signal circuits may only be connected to circuits with the following maximum values. A safety value of $U_m = 253$ V is considered for the power supply units.

<table>
<thead>
<tr>
<th>Device version</th>
<th>Circuit Terminals</th>
<th>Nominal voltage</th>
<th>Nominal current</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTISWIRL 4200 C Ex VFC 200 F 020 Ex</td>
<td>Current output 4...20 mA C1, C2</td>
<td>12...32 VDC</td>
<td>4...20 mA</td>
</tr>
<tr>
<td></td>
<td>Binary output M1, M2, M3, M4</td>
<td>8...32 VDC</td>
<td>≤100 mA</td>
</tr>
<tr>
<td></td>
<td>Current input I1, I2</td>
<td>9...32 VDC</td>
<td>4...20 mA</td>
</tr>
<tr>
<td>OPTISWIRL 4200 C FF Ex</td>
<td>Bus connection A1, A2 B1, B2</td>
<td>9...32 VDC</td>
<td>20 mA</td>
</tr>
<tr>
<td>OPTISWIRL 4200 C PA Ex VFC 200 F PA 020 Ex</td>
<td>Bus connection A1, A2 B1, B2</td>
<td>9...32 VDC</td>
<td>20 mA</td>
</tr>
</tbody>
</table>

Table 2-14: Maximum values for signal circuits

1. Further information for operation of the FF transmitter are provided in separate supplementary instructions.
2. Further information for operation of the PA transmitter are provided in separate supplementary instructions.

Flow sensor circuits

For the compact versions, the intrinsically safe flow sensor circuits are designed as internal circuits.

For the remote versions, the intrinsically safe flow sensor circuits are led through. The maximum permissible safety values of the flow sensor circuits are listed below:

Remote signal converter, flow sensor circuit (terminal 1 to 7, colour-coded)

$U_o = 6.65$ V; $I_o = 1107$ mA; $P_o = 650$ mW; $C_o = 1.5$ µF; $L_o = 73$ µH

Remote flow sensor (terminal 1 to 7, colour-coded)

$U_i = 7$ V; $I_i = 1107$ mA; $P_i = 650$ mW; $C_i = 0$; $L_i = 0$

INFORMATION!

The verification of intrinsic safety for the interconnection between the flow sensor and the signal converter is not necessary, if the cable length does not exceed 50 m / 164 ft and the supplied cable is used.
3.1 Mounting

Mounting and setup must be carried out according to the applicable installation standards (e.g. IEC 60079-14) by qualified personnel trained in explosion protection. The information given in the manual and these instructions must always be observed.

Vortex flowmeters must be installed in such a way that
- no external forces are affecting the indication unit.
- the device is accessible for any necessary visual inspections and can be viewed from all sides.
- the nameplate is clearly visible.
- it can be operated from a location with secure footing.

CAUTION!
The manufacturer is not liable for any damage resulting from improper use or use other than the intended purpose. This applies in particular to hazards due to insufficient corrosion resistance and suitability of the materials in contact with product.

Aligning the signal converter

The signal converter and the connection box for the remote versions may be aligned on the base or the wall bracket up to a maximum of ± 180°. For this reason, the M4 hexagon socket screw connecting the base and the signal converter or the connection box must be loosened. Once the signal converter or the connection box has been turned, it must be screwed back on to the base again (tightening torque 2 Nm).

1. De-energise the signal converter.
2. Loosen the hexagon socket screw ①.
3. Turn the signal converter or the connection box.
4. Screw signal converter or connection box back to the base again.
3.2 Special conditions

Electrostatics
For installations in explosive atmospheres of the gas group IIC and coating thickness > 200 μm, risks due to electrostatic charge must be minimised.
For further information refer to Electrostatic charge on page 26.

Thermal and electrical data
Observe the maximum ambient and product temperatures and electrical data.
For further information refer to Ambient temperature / temperature classes on page 9 and refer to Electrical data on page 17.
4.1 General notes

Rated values for insulation

- The insulation of the vortex flowmeter OPTISWIRL 4200 . .. - Ex is rated in compliance with the following rating parameters:
- Overvoltage category for signal and instrument loops: II
- Pollution degree of the insulation: 2

Terminal compartment

The signal circuit is electrically connected in the terminal compartment of the signal converter. The protection type of the terminal compartment is “nA”. Unused entries shall be closed in compliance with IEC 60079-15.

Connecting cables

The connecting cables should be selected according to the applicable installation standards (e.g. IEC 60079-14) and the maximum operating temperature.

The connecting cable between the flow sensor and the wall bracket for remote versions is part of the supply.

- The connecting cables must be fixed and laid so they are sufficiently protected against damage.
- Lay cables so as to ensure that there is sufficient distance between surfaces of the measuring unit and the connecting cable.
- If the blind plugs / cable entries supplied separately on customer request, the influence of the components on the IP protection class of the housing or the thermal data must be validated.
 Recommendation:
 - IP protection class: ≥ IP66/67 according to IEC 60529
 - Temperature range: -40...+80°C / -40...+176°F
- The outer diameter of the connecting cable must be within the sealing range of the cable entry (7...12 mm / 0.28...0.47”).
- Before connecting or loosening the equipotential bonding cable, ensure there are no differences in potential.

Ensure that the gaskets and incised gasket ring are tight.

CAUTION!
The IP protection category of the signal converter housing is largely determined by the cable gland used and the installation.

Connection terminals

The capacity of the connection terminals is 0.5 mm² to 2.5 mm².

The torque of the connection terminals is 0.6 Nm.
4.2 Power supply

The vortex flowmeter does not require a separate power supply. The required supply for the built-in electronics is provided via the 4...20 mA current output or the bus connection.

4.3 Inputs / Outputs

The terminal assignment of the built-in electrical equipment is described in the standard documentation. The signal circuits of the vortex flowmeter may only be connected to downstream devices or circuits that satisfy the requirements of protective extra-low voltage (PELV).

Only circuits that are suitable for operation in zone 2 hazardous areas may be connected. Outside of the vortex flowmeter, measures must be taken for the circuits to prevent the rated voltage from being exceeded by more than 40% due to temporary faults.

Connecting power supply and I/O functions

- Before connecting or disconnecting the electrical connection cables of the device, make sure that all cables leading to the signal converter are isolated from the ground of the hazardous area. This also applies to protective earth (PE) and equipotential bonding conductors (PA).
- All connecting cable conductors and shields that are not securely connected to the equipotential grounding system of the hazardous area shall be carefully isolated from each other and from ground (test voltage 1500 V_{eff} for non-intrinsically safe cables).
4.4 Grounding and equipotential bonding

CAUTION!

Equipotential bonding

Vortex signal converters and flow sensors must be included in the on-site equipotential bonding system according to the installation standard! They are connected to the PA terminals.

For compact versions and measuring devices with flange connections, the flow sensor is conductively connected to the pipeline.

For compact versions and measuring device of the type “sandwich”, a separate conductor connected either to the internal or external PA terminal must be provided to connect to the equipotential bonding.

Figure 4-1: Ground connection of the compact version

1. Electrical grounding connection on connection piece between the flow sensor and the signal converter
2. Electrical grounding terminal in the housing
For remote versions the connection of the flow sensor can either be made via the PA connection in the terminal compartment of the signal converter or via the external PA connection.

Figure 4-2: Ground connection of the remote version

1. Electrical grounding connection on the flow sensor
2. Electrical grounding connection on the housing of the signal converter
4.5 Flow sensor circuits (remote version only)

Observe the following points when connecting the flow sensor to the signal converter:

- Use only the supplied connecting cable (max. length 50 m / 164 ft).
- Before connecting or loosening the equipotential bonding cable, ensure there are no differences in potential.
- Connect the connecting cable shield to the equipotential bonding of the hazardous area in the wall bracket. On the flow sensor side, the shield must be carefully isolated from the earth [test voltage 500 V_{eff}] and connected via the terminal end to the corresponding connector on the terminal block.
- The terminal compartments of the flow sensor circuits are supplied with a bridge between the internal PA connection and the terminal with the designation “gnye”. This connection must not be separated.

![Connection of remote version](image)

Figure 4-3: Connection of remote version

1. Connection terminal flow sensor
2. Connection terminal signal converter
3. Connection shielding flow sensor
4. Shielding (drain wire and overall shield)
5. Connection shielding signal converter
6. Heat shrink tubing

The flow sensor circuit is designed in protection type intrinsically safe Ex ic IIC.
5.1 Start-up

Start-up is only permitted when the measuring device:

- is correctly installed in the system and connected.
- has been checked for the proper state with regard to its installation and connection requirements.
- has been correctly locked to the electronics and terminal compartment.

The electronics and terminal compartment of the vortex flowmeter must be locked during operation. The covers for the electronics and terminal compartment are secured by a lock. First manually tighten the covers until the stop. Then loosen the covers (≤ 90°) so that the lock (special closure) can be secured in the next possible position in the cover. Use a WS3 Allen key to turn the screw.

No waiting period is necessary prior to opening the housing.

The operator of the system has to check prior to start-up, if the start-up was in compliance with the national regulations for checks.

If the device needs to be configured due to the existence of an explosive atmosphere, this can be done using the supplied bar magnets. There is no need to open the housing as it can be done through the glass window of the electronics compartment or digitally via the signal output (HART® interface).

5.2 Operation

Vortex flowmeters must be operated in such a way that they remain within the maximum and minimum permissible temperatures and pressures and the electrical limit values.

Vortex flowmeters may only be operated if the equipment parts necessary for safety are effective in the long run, and are not rendered inoperable during operation.

In case of operation with flammable products the measuring units must be included in the periodic pressure tests of the system.

During operation it is only permitted to open the indicator if no explosive atmosphere is present.
5.3 Electrostatic charge

In order to avoid ignition hazards due to electrostatic charge, vortex flowmeters may not be used in areas with:

- processes that generate strong charges,
- mechanical friction and cutting processes,
- spraying of electrons (e.g. in the vicinity of electrostatic painting systems) or
- pneumatically conveyed dust is exposed.

CAUTION!

Electrostatic charging of the housing surface by friction must be avoided. The devices must not be dry cleaned.
6.1 Maintenance

Maintenance work of a safety-relevant nature within the meaning of explosion protection may only be carried out by the manufacturer, his authorised representative or under the supervision of authorised inspectors.

Treat cover threads as necessary with the lubricating paint UNIMOLY C220®.

For systems in hazardous areas, regular tests are required in order to maintain the proper condition.

The following checks are recommended:

- Check the housing, the cable entries and the feed lines for corrosion and/or damage.
- Checking the measuring unit and the piping connections for leakage.
- Check the measuring unit and the indicator for dust deposits.
- Including the flowmeter in the regular pressure test of the process line.

6.2 Dismantling

Exchanging the built-in equipment

The dismantling and installation is within the responsibility of the operator.

Due to the modular design of the vortex flowmeters, from a safety perspective, the electrical equipment built into the signal converter can be replaced with identical spare parts. To do so, remove the housing cover. Close the housing cover immediately after the spare parts are exchanged. Ensure that the cover seal is tight.

General notes

Only identical displays or components from the manufacturer may be used.

The device must be de-energised, if it is absolutely necessary to open the housing in the presence of a potentially explosive atmosphere.

Before connecting or disconnecting the electrical connection cables of the device, make sure that all cables leading to the signal converter are isolated from the ground of the hazardous area. This also applies to protective earth (PE) or functional earth (FE) and equipotential bonding conductors (PA).

Display

The display can be rotated in 90° increments. It is connected to the connector as shown in the following figure.

Exchanging the converter insert

It is permitted to replace the entire VFC 200 converter insert with a version identical in construction.
Take special note of the following figure and:

- ensure that the construction is the same by checking the nameplates.
- the connecting cable of the flow sensor circuits is to be laid in the cutout provided between the converter insert and housing. Avoid damage such as that caused by crushing.
- proper connection of the connector for the flow sensor \(4\) and for the display \(1\).
- tighten the mounting screws M4 \(6\) evenly.

![Figure 6-1: Connection of the signal converter module](image)

1. Connector for LC display
2. Service connector
3. SIL jumper
4. Display clamps
5. Connection to the flow sensor
6. Nameplate of the converter insert
7. Fixing screw

Exchanging the entire device

The dismantling and installation is within the responsibility of the operator.

Before disconnecting the electric connecting cable of the device, make sure that all cables leading to the indication unit are isolated from the ground of the hazardous area. This also applies to functional earthing conductors (FE) and equipotential bonding conductors (PA).

Observe the information above. Also, ensure that all process connections and the pipeline are depressurised and free of product. Where environmentally critical products are concerned, carefully decontaminate the wetted parts of the flange system after dismantling.

CAUTION!

- Pressurised pipes have to be depressurised before removing the measuring unit.
- In the case of environmentally critical or hazardous products, appropriate safety precautions must be taken with regard to residual liquids in the measuring unit.
- New gaskets have to be used when re-installing the device in the piping.
KROHNE – Process instrumentation and measurement solutions

- Flow
- Level
- Temperature
- Pressure
- Process Analysis
- Services

Head Office KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Germany)
Tel.: +49 203 301 0
Fax: +49 203 301 10389
info@krohne.com

The current list of all KROHNE contacts and addresses can be found at:
www.krohne.com