Level measurement
Product overview
Contents

5 Product selection
6-7 Overview Technology Icons
8-15 Radar (FMCW) level transmitters
16-21 Guided Radar (TDR) level transmitters
22-29 Magnetic level indicators (MLI)
30-38 Ultrasonic level transmitters
31-39 Displacer and Potentiometric level transmitters
40-51 Hydrostatic level measurement
52-57 Level switches
58-59 Communication technology
60-61 Services
62-63 Calibration

KROHNE trademarks:
KROHNE
measure the facts
CalSys
CARGOMASTER
EcoMATE
EGM
KROHNE Care
M-PHASE
OPTIBAR
OPTIBATCH
OPTIBRIDGE
OPTIFLEX
OPTIFLUX
OPTIMASS
OPTISENS
OPTISONIC
OPTISOUND
OPTISWIRL
OPTISWITCH
OPTISYS
OPTIWAVE
PipePatrol
WATERFLUX
SENSOFIT
SMARTBASE
SMARTMAC
SMARTPAT

Trademarks of other owners:
Amphenol
Bluetooth®
EtherNet/IP™
FDT Group
FOUNDATION™ fieldbus
HART®
HASTELLOY®
Metaglas®
PACware
PROFIBUS®
PROFINET®
VARIVENT®
KROHNE is your reliable partner for process instrumentation and automation. As our client, you benefit from our ability to solve your applications with matching measurement solutions; we offer a complete product portfolio, industry specific system solutions and complementary services for instrumentation projects of any size.

By having specialised in industrial process measurement since 1921, we have gained an enormous amount of application knowledge in various industries that is integrated into our products, solutions and services. We have truly mastered the physical principles our meters are based on: our ability to utilise physical effects and to find a matching measuring solution time after time are the reasons we are trusted by clients worldwide. The primary measured value is as accurate as possible to avoid consecutive faults that might affect your process control. It also enables our meters to measure reliably, even under changing or difficult process conditions. Both aspects are reflected by our claim “Measure the facts”.

The innovative technologies we employ for your benefit are based on our extensive R&D activities: 10% of the >3700 KROHNE employees work in research and development. Next to sensor physics, their focus is on device communication and enabling technologies for the Internet of Things (IoT) in process industry, e.g. ethernet communication to transmit process and device diagnostic data for evaluation and process optimisation.

Our “Technology Icons” perfectly sum up the above mentioned advantages for you. You will find them highlighted within our complete portfolio in this brochure. If you don’t find a matching solution for your measurement application, feel free to contact us, we look forward to solving it.
KROHNE has unique expertise in the field of level measurement. We continuously demonstrate our capabilities in standard applications as well as applications considered challenging or requiring tailor-made solutions.

For us, customer orientation begins in the research and development phase. Many process instrument designs now considered to be industrial standards, were in fact developed by us in close cooperation with our customers. Today, users of devices from other market leaders benefit from KROHNE innovations: In 1990, we introduced the first radar for the process industry. Five years later, it was followed by a guided (TDR) radar level transmitter using electromagnetic pulses. OPTIWAVE and OPTIFLEX, a new generation of radar and TDR devices based on a unique and innovative operating philosophy, were launched in 2004 and redesigned. They provide high accuracy and reliability even in difficult applications. A complete series of level switches for liquids and solids as well as mechanical level indicators round out the KROHNE level portfolio.
Product selection list

The following table will help you in selecting the right measuring principle for your application:

<table>
<thead>
<tr>
<th></th>
<th>Radar (FMCW)</th>
<th>Guided radar (TDR)</th>
<th>Magnetic float</th>
<th>Ultrasonic</th>
<th>Displacer</th>
<th>Pressure</th>
<th>Vibration</th>
<th>Capacitance</th>
</tr>
</thead>
</table>

Continuous measurement

Liquids

<table>
<thead>
<tr>
<th>Feature</th>
<th>Radar (FMCW)</th>
<th>Guided radar (TDR)</th>
<th>Magnetic float</th>
<th>Ultrasonic</th>
<th>Displacer</th>
<th>Pressure</th>
<th>Vibration</th>
<th>Capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage tanks</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vapours</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Agitation</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>High temperature >200°C/392°F</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>–</td>
</tr>
<tr>
<td>High pressure >100 barg/1450 psig</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>–</td>
</tr>
<tr>
<td>Low temperature <50°C/-58°F</td>
<td>–</td>
<td>0</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>++</td>
<td>–</td>
</tr>
<tr>
<td>Low pressure (vacuum)</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Interface</td>
<td>–</td>
<td>++</td>
<td>0</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Slurries</td>
<td>++</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Low ε, value (<1.4)</td>
<td>–</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Density change</td>
<td>++</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Corrosive product</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Foam</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Viscous product (>5000 cp)</td>
<td>++</td>
<td>0</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Still well/ reference chambers</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>–</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

Solids

<table>
<thead>
<tr>
<th>Feature</th>
<th>Radar (FMCW)</th>
<th>Guided radar (TDR)</th>
<th>Magnetic float</th>
<th>Ultrasonic</th>
<th>Displacer</th>
<th>Pressure</th>
<th>Vibration</th>
<th>Capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk solids (e.g. rocks)</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Granulates</td>
<td>++</td>
<td>0</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Powders/ Dusty atmosphere</td>
<td>++</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Feature</th>
<th>Radar (FMCW)</th>
<th>Guided radar (TDR)</th>
<th>Magnetic float</th>
<th>Ultrasonic</th>
<th>Displacer</th>
<th>Pressure</th>
<th>Vibration</th>
<th>Capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal obstructions</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>–</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Long measuring range >35 m/114 ft</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>++</td>
<td>–</td>
</tr>
<tr>
<td>Deposit/Coating</td>
<td>++</td>
<td>+</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Open-channel flow</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hygienic</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>+</td>
<td>++</td>
<td>–</td>
</tr>
</tbody>
</table>

++ = recommended, + = suitable, o = suitable under certain conditions, – = not suitable
Technology Icons

To deliver reliable values even under difficult conditions, KROHNE products and solutions use a number of high-end technologies.

These are highlighted by the technology icons, each representing a unique and characteristic feature that also generates additional benefit for users:

Ceramic durability

By implementing oxide ceramic sensors into OPTIFLUX and BATCHFLUX electromagnetic flowmeters as well as ceramic diaphragms into OPTIBAR pressure devices, KROHNE is using a superior material that is permanently resistant to corrosive and abrasive media and also immune to temperature shocks.

EGM™ Entrained Gas Management

EGM™ was developed for the OPTIMASS Coriolis mass flowmeters to overcome problems caused by air or gas entrainments in a liquid. Powerful control algorithms maintain measurement, even during a complete transition from a pure liquid phase to a gas phase and back. Mass flow and density measurements remain stable and continuous, which has been demonstrated in batch / loading / empty-full-empty applications.

Total 3D linearisation

For a robust and accurate differential pressure measurement, even under changing process conditions, each OPTIBAR DP 7060 differential pressure transmitter is linearised in 3 dimensions during calibration: differential pressure, ambient temperature and static pressure are taken into account in combination. Since the full specified operating range is covered, an outmost stable and accurate measurement under all process conditions is guaranteed.

SmartSense insulation monitoring

Temperature assemblies with Pt100 or thermocouple sensors can produce erroneous measurements due to humidity in the measuring insert, e.g. caused by wear, corrosion or cracks. OPTITEMP temperature transmitters with SmartSense monitor the temperature sensor and warn for isolation errors.
Transmitter built-in

The SMARTPAT series of analysis sensors significantly eases the handling of analytical sensors: formerly an external device, the transmitter has now been miniaturised and built into the sensor head, enabling direct 4...20 mA/HART® 7 communication. This reduces the costs of ownership, eases installation and maintenance, and allows for usage in Ex applications (zone 0).

Flow computer built-in

Many KROHNE flowmeters have a built-in flow computer that compensates for the effects of pressure and temperature on the flow measurement or to convert to standard volume. The OPTISONIC 7300/8300 have analogue input for P & T sensors, the OPTISWIRL 4200 has both integrated. This saves both cost and installation efforts for an external flow computer.

80 GHz radar level measurement

The 80 GHz technology used in the OPTIWAVE series is the most recent and versatile radar technology for level measurement of liquids and solids. Over an identical distance, it presents a highly focused beam with a smaller diameter compared to lower frequency radars, ideal for dusty atmospheres or low reflective media. The small dead zone and narrow beam angle allow for use in both small and tall vessels.

Multiphase measurement

Multiphase measurement allows for the simultaneous measurement of flow rates of oil, water and gas in multiphase mixtures, without the need of separation. This saves time, costs, space and installation efforts compared to conventional test separators. Our magnetic resonance based multiphase flowmeter M-PHASE 5000 offers a full bore, non-radioactive solution for measuring multiphase flow.

E-RTTM pipeline leak detection

E-RTTM is a leading mathematical model for continuous internal monitoring of pipelines. Integrated in our PipePatrol system, it compares measurement data from the actual pipeline with those of a simulated “virtual pipeline” in real time. If the model detects a discrepancy, a leak signature analysis using leak pattern recognition determines whether it is a leak or safe, with outstanding accuracy.
OPTIWAVE 1010 C
6 GHz FMCW radar for liquids in bypass chambers

OPTIWAVE 1400 C
24 GHz FMCW radar for water and wastewater applications

OPTIWAVE 3500 C
80 GHz FMCW radar for liquids with hygienic requirements

OPTIWAVE 5200 C/F
10 GHz FMCW radar for liquids in storage and process applications

OPTIWAVE 5400 C
24 GHz FMCW radar for liquids in basic process applications

OPTIWAVE 7400 C
24 GHz FMCW radar for agitated and corrosive liquids

OPTIWAVE 7500 C
80 GHz FMCW radar for liquids in narrow tanks with internal obstructions

OPTIWAVE-M 7400
24 GHz FMCW radar for marine applications
Radar (FMCW) level transmitters

For solids

OPTIWAVE 6400 C
24 GHz FMCW radar for solids from granulates to rocks

OPTIWAVE 6500 C
80 GHz FMCW radar for powders and dusty atmospheres

Accessories

OPTICHECK
Service tool for in-situ verification of field devices

Radar (FMCW) level transmitters
Industries:

- Chemical
- Oil & Gas
- Power Generation
- Metal & Mining
- Environment
- Food & Beverage
- Pharmaceutical
- Agriculture
- Pulp & Paper
- Water & Wastewater

Non-contact level measurement

FMCW radar transmitters allow for the continuous, contactless level measurement of liquids, pastes, granulates, powders and other solids in a wide variety of industries.

With the OPTIWAVE 1010 (6 GHz), the OPTIWAVE 5200 (10 GHz) and now the OPTIWAVE series of 24 and 80 GHz radars, KROHNE offers the appropriate frequency for each application. The OPTIWAVE 5400 / 6400 / 7400 (24 GHz) and OPTIWAVE 3500 / 6500 / 7500 (80 GHz) radars are each designed for specific industry needs. They improve our portfolio for reliable and accurate level measurement of liquids and solids, even in most difficult applications.

KROHNE has more than 28 years’ experience in providing superior FMCW radar devices to its customers.

1865
Continuous level measurement via radar is based on the theory of the propagation of electromagnetic waves, put forth by the British physicist James C. Maxwell in 1865. Maxwell postulated that the field lines of a changing magnetic field are surrounded by annular electrical field lines, even in the absence of electrical conductors.

1904
Inspired by this theory, German physicist Christian Hälsmeier developed and patented the telemobiloscope, the first radar device of this type in Düsseldorf in 1904. For this innovation, he is rightly known as the inventor of the „original radar.“

1989
In 1989, KROHNE introduced the first radar level transmitter for process tanks.
Radar (FMCW)

The measuring principle

The radar principle used is FMCW (Frequency Modulated Continuous Wave). The FMCW radar emits a high frequency signal whose frequency increases linearly during the measurement phase (called the frequency sweep). The signal is emitted via an antenna, reflected off the product surface and received with a time delay, t. Time delay, $t=\frac{2d}{c}$, where d is the distance to the product surface and c is the speed of light in the gas above the product. For further signal processing the difference Δf is calculated from the actual transmitted frequency and the received frequency. The difference is directly proportional to the distance. A large frequency difference corresponds to a large distance and vice versa. The frequency difference Δf is transformed via a Fast Fourier Transformation (FFT) into a frequency spectrum and then the distance is calculated from the spectrum. The level results from the difference between the tank height and the measured distance.

FMCW: Frequency Modulated Continuous Wave – example 80 GHz

1. Radar wave sweep emitted from 78 to 82 GHz
2. Radar wave received
3. Time delay linked to wave propagation
4. Difference in frequency between emitted and received wave
5. Digital signal processing
6. Level is calculated
Empty tank spectrum for radar devices

All interference reflections, which are caused by fixed or moving tank internals and the tank bottom, can be detected and saved by recording an empty spectrum. The surface reflections are reliably detected, distinguished from interference reflections and analyzed by comparing the empty spectrum to the reflections in the filled state. For applications with tanks that cannot be emptied before device setup, the radar transmitter offers the capability of recording a partially empty spectrum.
• A first-class design that is the result of 28 years of experience in FMCW radar measurement

• Radar devices for liquid, hygienic and solid applications

• Accuracy from ±2 mm/±0.08”

• Lens, Drop and Horn antennas for measuring up to 100 m/328 ft

• Measurement in processes with fast changing levels (<60 m/min/≤196.85 ft/min)

• Extensive choice of process connections starting from ¾”

• Can measure products with dielectric constants as low as 1.4

• Quick setup assistant for easy commissioning

• Measurement through tank roofs made of non-conductive materials

• Empty tank spectrum function eliminates interference reflections caused by tank internals

• Large backlit LCD display with 4-button keypad

• Text displayed in 12 languages
<table>
<thead>
<tr>
<th>Frequency range</th>
<th>C-band/6 GHz</th>
<th>K-band/24 GHz</th>
<th>X-band/10 GHz</th>
<th>K-band/24 GHz</th>
<th>K-band/24 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant, (\varepsilon_r)</td>
<td>NA (with float), (\varepsilon_r > 3) (without float)</td>
<td>2</td>
<td>(\pm 1.8) (TFB 1.1)</td>
<td>(\pm 1.4) (TFB 1.1)</td>
<td>(\pm 1.4) (TFB 1.1)</td>
</tr>
<tr>
<td>Measuring range</td>
<td>-40 to 26.2°C</td>
<td>-40 to 65.5°C</td>
<td>0 to 98°C</td>
<td>0 to 328°F</td>
<td>0 to 328°F</td>
</tr>
<tr>
<td>Accuracy</td>
<td>(\pm 5) mm/(\pm 0.2^\circ)</td>
<td>(\pm 2) mm/(\pm 0.08^\circ)</td>
<td>(\pm 5) mm/(\pm 0.2^\circ)</td>
<td>(\pm 2) mm/(\pm 0.08^\circ)</td>
<td>(\pm 2) mm/(\pm 0.08^\circ)</td>
</tr>
<tr>
<td>Repeatability</td>
<td>(\pm 2) mm/(\pm 0.08^\circ)</td>
<td>(\pm 1) mm/(\pm 0.04^\circ)</td>
</tr>
<tr>
<td>Converter</td>
<td>C (compact)</td>
<td>C (compact)</td>
<td>C (compact)</td>
<td>C (compact)</td>
<td>C (compact)</td>
</tr>
<tr>
<td>Housing material</td>
<td>Aluminum, stainless steel</td>
<td>Stainless steel</td>
<td>Aluminum, stainless steel</td>
<td>Aluminum, stainless steel</td>
<td>Aluminum, stainless steel</td>
</tr>
<tr>
<td>Ingress protection</td>
<td>IP66, 67</td>
<td>IP48, NEMA 4P (0.2 barg/2.9 psig for 2 weeks)</td>
<td>IP 66, 67, NEMA 4X</td>
<td>IP66, 68; 0.1 barg/1.45 psig</td>
<td>IP66, 68; 0.1 barg/1.45 psig</td>
</tr>
</tbody>
</table>

Antenna installation

Antenna type (material, size, beam angle)

- **Optiwave 7500**: Metallic Horn [316L] B42.4 mm (1.67")
- **Optiwave 3500**: Metallic Horn [316L] DN50/2.0", (for BM26 W1010)
- **Optiwave 6400**: Metallic Horn [316L] DN80/3.0", (9")
- **Optiwave 6500**: Metallic Horn [316L] DN100/4.0", (10")
- **Optiwave-M 7400**: Metallic Horn [316L] DN40/1.5", (7")

Process connection

- Welded to bypass chamber or Magnetic Level Indicator (MLI)
- Thread: G1", G1 1/2", G2, 1 NPT, 1 1/2 NPT, 2 NPT, 3 NPT, 3 1/2 NPT, 4 NPT
- Flange: DN50/2", DN100/4" (50...200A)
- Flange: DN80/3", DN100/4" (50...300A)
- Flange: DN150/6", DN200/8" (50...500A)
- Flange: DN250/10", DN300/12", DN400/16" (50...750A)

Gasket

- FKM/EPDM, Kalrez® 6375

Ambient temperature

- -40 to 26°C
- -40 to 65°C
- 0 to 98°C
- 0 to 328°F
- 0 to 328°F

Process temperature

- -40 to 150°C
- -40 to 250°C
- -40 to 250°C
- -40 to 250°C
- 50 to 250°C

Process pressure

- -1...40 barg/14.5...580 psig
- -1...40 barg/14.5...43.5 psig (higher on request)
- -1...40 barg/14.5...580 psig (higher on request)
- -1...40 barg/14.5...328 psig (higher on request)
- -1...100 barg/14.5...1640 psig (higher on request)

Power supply

- 14.5...30 V DC
- 14.5...30 V DC
- 11.5...30 V DC
- 11.5...30 V DC
- 11.5...30 V DC

Output

- 4...20 mA [HART® 6]
- 4...20 mA [HART® 7]

Accessories

- Weather protection
- Flange, mounting bracket, rear connection nut, cable clamp
- Flange, mounting bracket, rear connection nut, cable clamp
- Flange, mounting bracket, rear connection nut, cable clamp
- Flange, mounting bracket, rear connection nut, cable clamp

Approvals

- ATEX, IECEx, NEPSI, NACE
- cGPSus general purpose, EAC, CRN, FDA, EU 1934/2004
- ATEX, IECEx, cFMus, NEPSI, INMETRO, PESO, EAC, WHG, CRN, NACE
- ATEX, IECEx, cQPSus, NEPSI, NACE, EAC**, WHG, PESO, ASME B31.3**, PESO**
- ATEX, IECEx, cQPSus, NEPSI, NACE, EAC**, WHG, PESO, ASME B31.3**, PESO**

SIL approval

- SIL2
- SIL2
- SIL2
- SIL2
- SIL2

* Antenna installation, ** Available by the end of 2018, *** Available by 2019

LPR (Level Probing Radar): The antenna can be installed in a closed tank as well as outside. The antenna needs to point downwards and location restrictions apply (Radio Astronomy Station). TLPR (Tank Level Probing Radar): The antenna must be installed in a closed tank.
Radar (FMCW) level transmitters

<table>
<thead>
<tr>
<th>For liquids in narrow tanks with internal obstructions</th>
<th>For liquids with hygienic requirements</th>
<th>For solids from g ranulates to rocks</th>
<th>For powders and dusty atmosphere</th>
<th>For liquids in the marine industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIWAVE 7500</td>
<td>OPTIWAVE 3500</td>
<td>OPTIWAVE 6400</td>
<td>OPTIWAVE 6500</td>
<td>OPTIWAVE-M 7400</td>
</tr>
</tbody>
</table>

Frequency range
- W-band/80 GHz
- W-band/80 GHz
- K-band/24 GHz
- W-band/80 GHz
- K-band/24 GHz

Dielectric constant εr
- >1.4 (TFB 1.1)

Measuring range
- 0…100 m/0…328 ft
- 0…100 m/0…328 ft
- 0…100 m/0…328 ft
- 0…100 m/0…328 ft
- 0…50 m/0…164 ft

Accuracy
- ±2 mm/±0.08”

Repeatability
- ±1 mm/±0.04”

Converter version
- ±2 mm/±0.08”
- ±1 mm/±0.04”
- ±1 mm/±0.04”
- ±1 mm/±0.04”
- ±1 mm/±0.04”

Gasket
- FKM/FPM, Kalrez® 6375

Antenna type
- Tri-Clamp®; 1½”, 2” DIN 11851 or DIN 11864-1 Form A: DN40, DN50
- Metalic Horn (316L) DN80…200; 3…8” [9…3”]; Drop (PP) DN80; 3” [9”]; DN100; 4” [10”]; Drop (PTFE) DN80; 3” [8”]; DN100; 4” [10”]; DN150 6” [14”]
- Metalic Horn (316L) DN80…200; 3…8” [9…3”]; Drop (PP) DN80; 3” [9”]; DN100; 4” [10”]; Drop (PTFE) DN80; 3” [8”]; DN100; 4” [10”]
- Metalic Horn (316L) DN80…200; 3…8” [9…3”]; Drop (PP) DN80; 3” [9”]; DN100; 4” [10”]; Drop (PTFE) DN80; 3” [8”]; DN100; 4” [10”]
- Metalic Horn (316L) DN80…200; 3…8” [9…3”]; Drop (PP) DN80; 3” [9”]; DN100; 4” [10”]; Drop (PTFE) DN80; 3” [8”]; DN100; 4” [10”]

Antenna installation* LPR and TLP
- LPR
- LPR
- LPR
- LPR* LPR
- LPR*

Antenna extensions of (higher on request)
- 10 m/32.8 ft
- 2 ≥1.8 (TBF 1.1)
- 2 ≥1.4 (TBF 1.1)
- 2 ≥1.4 (TBF 1.1)
- 2 ≥1.4 (TBF 1.1)

Accuracy
- ±1 mm/±0.04”

Process pressure
- -50…+150°C/-40…+302°F
- -50…+130°C/-58…+266°F
- -50…+150°C/-58…+302°F
- -50…+150°C/-58…+302°F
- -50…+200°C/-58…+392°F

Power supply
- 12…30 V DC (Exi), 16…36 V DC (Exdi)
- 12…30 V DC (Exi), 16…36 V DC (Exdi)
- 4…20 mA [HART® 7], FOUNDATION™ fieldbus®, PROFIBUS PA**
- 4…20 mA [HART® 7], FOUNDATION™ fieldbus®, PROFIBUS PA**
- 4…20 mA [HART® 7], FOUNDATION™ fieldbus®, PROFIBUS PA**

Accessories
- Antenna extensions in metal, purging system, flange plate protection made of PEEK, weather protection, wall mounted or hanging brackets, low pressure flange disc
- Weather protection
- Antenna extensions, orientation system, slanted flange, purging system, weather protection, OPTIWAVE 6300 process connection adapter, wall mounted or hanging brackets, low pressure flange disc
- Antenna extensions, orientation system, slanted flange, purging system, weather protection, wall mounted or hanging brackets, low pressure flange disc
- Antenna extensions, purging system 1/8 NPT (for metallic horn antenna only), OPTIWAVE 8300 process connection adaptor

Approvals
- ATEX, IECEx, cQPSus, NEPSI, NACE, cQPSus, EAC**, DIN-GL**, CRN - ASME B31.3**, PSSE**
- ATEX, IECEx, cQPSus (IS), NEPSI, EAC**, CRN - ASME B31.3**, PESO**
- ATEX, IECEx, cQPSus, NEPSI, EAC**, CRN - ASME B31.3**, PESO**
- ATEX, IECEx

SIL approval
- Developed acc. to SIL2/3, IEC 61508 – 2010. The SIL approval is in the process of validation by TÜV Süd, Germany.***
- Developed acc. to SIL2/3, IEC 61508 – 2010. The SIL approval is in the process of validation by TÜV Süd, Germany.***
- Developed acc. to SIL2/3, IEC 61508 – 2010. The SIL approval is in the process of validation by TÜV Süd, Germany.***
- Developed acc. to SIL2/3, IEC 61508 – 2010. The SIL approval is in the process of validation by TÜV Süd, Germany.***
- Developed acc. to SIL2/3, IEC 61508 – 2010. The SIL approval is in the process of validation by TÜV Süd, Germany.***
OPTIFLEX 1100
For basic applications with liquids

OPTIFLEX 3200
For liquids with hygienic requirements

OPTIFLEX 6200
For solids from granulates to powders
Guided radar (TDR) level transmitters

OPTIFLEX 7200
For liquids in storage and process applications

OPTIFLEX 8200
For liquids at high temperature and pressure

POWERFLEX 2200
For liquids in the nuclear industry
Highlights:

• More than 20 years of experience in TDR technology – first TDR on the market (1996)
• SIL 2/3-compliant according to IEC 61508 for safety-related systems (pending)
• 2-wire 4...20 mA (HART® 7) with second output (current or switch/relay)
• Accuracy from ±2 mm/±0.08"
• Interface measurement starting at 50 mm/1.97"
• Large choice of probes to cover all applications
• Double ceramic seal system for dangerous products
• Various converter and electronic versions to facilitate access to the device
• Reversed interface measurement
• FF/PA & HART® communication
• Specific algorithm for low-reflective media
• CIP/SIP-suitable hygienic design for level and interface measurement in small vessels

Contact level measurement

TDR guided radar transmitters allow for continuous level measurement of liquids, pastes, granulates, powders and liquid interface in various industries.

With the new OPTIFLEX series, KROHNE offers the appropriate guided radar (TDR) transmitter for each application: The OPTIFLEX 3200 is aimed at hygienic liquid applications in the food, beverage and pharmaceutical markets. The OPTIFLEX 6200 measures solids from granulates to powders. The OPTIFLEX 7200 covers all general liquid applications and the OPTIFLEX 8200 is designed for liquids at high temperature and pressure.

KROHNE has more than 20 years’ experience in providing superior TDR level transmitters to its customers.

Industries:

• Chemical
• Power Generation
• Water & Wastewater
• Oil & Gas
• Metal & Mining
• Environment
• Food & Beverage
• Pharmaceutical
• Agriculture
• Pulp & Paper
The measuring principle

The guided radar (TDR) level transmitter has been developed from a tried and tested technology called Time Domain Reflectometry (TDR).

The device emits low-intensity electromagnetic pulses of approximately one nanosecond width which are guided along a rigid or flexible conductor. These pulses move at the speed of light. When the pulses reach the surface of the product to be measured, they are reflected with an intensity that depends on the dielectric constant, ε_r of the product (e.g., water has a high dielectric constant and the pulse is reflected back to the transmitter at 80% of its original intensity).

The device measures the time from when the pulse is transmitted to when it is received: half of this time is equivalent to the distance from the reference point of the device (the flange facing) to the surface of the product. The time value is converted into a current output of 4 to 20 mA and/or a digital signal. Dust, foam, vapor, agitated or boiling surfaces, changes in pressure, temperature and density do not have an effect on device performance.
Guided radar (TDR) level transmitters

<table>
<thead>
<tr>
<th>Model</th>
<th>For basic liquid applications</th>
<th>For liquids in storage and process applications</th>
<th>For liquids at high temperature and pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIFLEX 1100 C</td>
<td>![Image](176x541 to 219x656)</td>
<td>![Image](289x541 to 402x655)</td>
<td>![Image](457x545 to 513x657)</td>
</tr>
<tr>
<td>OPTIFLEX 7200 C/F/S/D</td>
<td>![Image](176x541 to 219x656)</td>
<td>![Image](289x541 to 402x655)</td>
<td>![Image](457x545 to 513x657)</td>
</tr>
<tr>
<td>OPTIFLEX 8200 C/F/S</td>
<td>![Image](176x541 to 219x656)</td>
<td>![Image](289x541 to 402x655)</td>
<td>![Image](457x545 to 513x657)</td>
</tr>
</tbody>
</table>

Dielectric constant \(\varepsilon_r\)
- **OPTIFLEX 1100 C**: \(\geq 1.6\)
- **OPTIFLEX 7200 C/F/S/D**: \(\geq 1.3\) [TBF 1.1]
- **OPTIFLEX 8200 C/F/S**: \(\geq 1.3\) [TBF 1.1]

Measuring range
- **OPTIFLEX 1100 C**: 0.73…20 m/2.4…65.62 ft
- **OPTIFLEX 7200 C/F/S/D**: 0.3…60 m/0.98…196.85 ft
- **OPTIFLEX 8200 C/F/S**: 0.6…60 m/1.97…196.85 ft

Accuracy
- **OPTIFLEX 1100 C**: ±10 mm/±0.4”
- **OPTIFLEX 7200 C/F/S/D**: ±2 mm/±0.08”
- **OPTIFLEX 8200 C/F/S**: ±2 mm/±0.08”

Repeatability
- **OPTIFLEX 1100 C**: ±1 mm/±0.04”
- **OPTIFLEX 7200 C/F/S/D**: ±1 mm/±0.04”
- **OPTIFLEX 8200 C/F/S**: ±1 mm/±0.04”

Converter version
- **OPTIFLEX 1100 C**: yes
- **OPTIFLEX 7200 C/F/S/D**: yes
- **OPTIFLEX 8200 C/F/S**: no

Housing material
- **OPTIFLEX 1100 C**: Aluminum, stainless steel
- **OPTIFLEX 7200 C/F/S/D**: Aluminum, stainless steel
- **OPTIFLEX 8200 C/F/S**: Stainless steel

Ingress protection
- **OPTIFLEX 1100 C**: IP66, 68; NEMA 4X/6P
- **OPTIFLEX 7200 C/F/S/D**: IP66, 68; NEMA 4X/6P
- **OPTIFLEX 8200 C/F/S**: IP66, 68; NEMA 4X/6P

Process connection
- **OPTIFLEX 1100 C**: Thread G ½, G 1, ½ NPT, 1 NPT
- **OPTIFLEX 7200 C/F/S/D**: Thread: G ½, 1 NPT, 1½ NPT
- **OPTIFLEX 8200 C/F/S**: Flange: DN25...200/1...8"/40...200A

Gasket
- **OPTIFLEX 1100 C**: EPDM
- **OPTIFLEX 7200 C/F/S/D**: FKM/FPM, EPDM, Kalrez® 6375, Kalrez® 7075 [HT version]
- **OPTIFLEX 8200 C/F/S**: FKM/FPM, EPDM, Kalrez® 7075

Ambient temperature
- **OPTIFLEX 1100 C**: –40…+80°C/-40…+176°F
- **OPTIFLEX 7200 C/F/S/D**: –40…+80°C/-40…+176°F
- **OPTIFLEX 8200 C/F/S**: –40…+80°C/-40…+176°F

Process temperature
- **OPTIFLEX 1100 C**: –50…+100°C/-58…+212°F
- **OPTIFLEX 7200 C/F/S/D**: –50…+250°C/-58…+482°F
- **OPTIFLEX 8200 C/F/S**: –50…+315°C/-58…+599°F

Process pressure
- **OPTIFLEX 1100 C**: –1…100 barg/-15.5…1450 psig
- **OPTIFLEX 7200 C/F/S/D**: –1…320 barg/-14.5…4641 psig
- **OPTIFLEX 8200 C/F/S**: –1…320 barg/-14.5…4641 psig

Power supply
- **OPTIFLEX 1100 C**: 14…30 VDC
- **OPTIFLEX 7200 C/F/S/D**: 11.5…30 VDC (Exi), 13.5…34 VDC (Exd)
- **OPTIFLEX 8200 C/F/S**: 11.5…30 VDC (Exi), 13.5…34 VDC (Exd)

Output (2-wire)
- **OPTIFLEX 1100 C**: 4…20 mA passive [HART® 7]
- **OPTIFLEX 7200 C/F/S/D**: 4…20 mA passive [HART® 7] + Second output (4…20 mA or relay, MODBUS RTU*)
- **OPTIFLEX 8200 C/F/S**: 4…20 mA passive [HART® 7] + Second output (4…20 mA or relay, MODBUS RTU*)

Options and accessories
- **OPTIFLEX 1100 C**: Dynamic Gas-phase Compensation (DGC), adaptors for previous TDR models, weather protection
- **OPTIFLEX 7200 C/F/S/D**: Dynamic Gas-phase Compensation (DGC), double ceramic process seal system, leak detection (pending), adaptors for previous TDR models, weather protection
- **OPTIFLEX 8200 C/F/S**: Dynamic Gas-phase Compensation (DGC), double ceramic process seal system, leak detection (pending), adaptors for previous TDR models, weather protection

Approvals
- **OPTIFLEX 1100 C**: CE, EAC
- **OPTIFLEX 7200 C/F/S/D**: ATEX, IECEx, cQPSus, NEPSI (pending), ASME B31.3, CE, EAC (pending), NACE, NAMUR, SIL (pending)
- **OPTIFLEX 8200 C/F/S**: ATEX, IECEx, cQPSus, NEPSI (pending), ASME B31.3, CE, EAC (pending), NACE, NAMUR, SIL (pending), Steam boiler (pending)

* Available End 2018
<table>
<thead>
<tr>
<th>For liquids with hygienic requirements</th>
<th>For solids from granulates to powders</th>
<th>For liquids in the nuclear industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIFLEX 3200 C/F</td>
<td>OPTIFLEX 6200 C/F</td>
<td>POWERFLEX 2200 C/F/S/D</td>
</tr>
<tr>
<td>Dielectric constant e_r</td>
<td>≥ 1.4 [TBF 1.1]</td>
<td>≥ 1.4</td>
</tr>
<tr>
<td>Measuring range</td>
<td>$0.6...40$ m/$1.97...131.23$ ft</td>
<td>$0.6...40$ m/$1.97...131.23$ ft</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 2 mm/40.08°</td>
<td>± 3 mm/40.12°</td>
</tr>
<tr>
<td>Repeatability</td>
<td>± 1 mm/40.04°</td>
<td>± 1 mm/40.04°</td>
</tr>
<tr>
<td>Interface detection</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Housing material</td>
<td>Aluminum, stainless steel</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Ingress protection</td>
<td>IP66, 68; NEMA 4X/6P</td>
<td>IP66, 68; NEMA 4X/6P</td>
</tr>
<tr>
<td>Probe type (material), size</td>
<td>Single cable (316/316L) [fully TFM-T62 PTFE-coated] Ø10 mm/0.39" Single rod (316L) Ø16 mm/0.63"</td>
<td>Single cable (316/316L) Ø4 mm/0.16" Single rod (316L) Ø8 mm/0.32" Double cable (316L) Ø8 mm/0.32" Double cable (316L) Ø4 mm/0.16" Coaxial (316L) Ø22 mm/0.9"</td>
</tr>
<tr>
<td>Process connection</td>
<td>1" Tri-Clamp ISO 2852 DN25 1½/2 Tri-Clamp ISO 2852 DN38 2" Tri-Clamp ISO 2852 DIN51 DN38 SMS 1145, DN51 SMS 1145 DN25 DIN 11851, DN40 DIN 11851, DN50 DIN 11851</td>
<td>Thread: G 1½, 1½ NPT Flange: DN40...200/1½...8"/40...200A</td>
</tr>
<tr>
<td>Gasket</td>
<td>FKM/FPM, EPDM, Kalrez® 6221 Single process seal system (PTFE)</td>
<td>FKM/FPM, EPDM, Kalrez® 6375 Single process seal system (PTFE)</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-40...+80°C/-40...+176°F</td>
<td>-40...+80°C/-40...+176°F</td>
</tr>
<tr>
<td>Process temperature</td>
<td>-50...+150°C/-58...+302°F</td>
<td>-50...+150°C/-58...+302°F</td>
</tr>
<tr>
<td>Process pressure</td>
<td>-1...40 barg$/14.5...580$ psig</td>
<td>-1...100 barg$/14.5...1450 psig (higher on request)</td>
</tr>
<tr>
<td>Power supply</td>
<td>11.5...30 VDC [Exil], 13.5...34 VDC [Exd]</td>
<td>11.5...30 VDC [Exil], 13.5...34 VDC [Exd]</td>
</tr>
<tr>
<td>Output (2-wire)</td>
<td>4...20 mA passive [HART® 7], 4...20 mA passive [HART® 7] + Second output (4...20 mA or relay), MODBUS RTU*</td>
<td>4...20 mA passive [HART® 7], 4...20 mA passive [HART® 7] + Second output (4...20 mA or relay), MODBUS RTU*</td>
</tr>
<tr>
<td>Options and accessories</td>
<td>Weather protection Adaptors for previous TDR models, weather protection</td>
<td>Weather protection</td>
</tr>
<tr>
<td>Approvals</td>
<td>ATEX, IECEx, cQPSus, NEPSI (pending), CE, EAC (pending), FDA, EC, EHEDG, 3A (pending), SIL (pending)</td>
<td>ATEX, IECEx, cQPSus, NEPSI (pending), ASME B31.3, CE, EAC (pending), NACE, NAMUR, SIL (pending)</td>
</tr>
</tbody>
</table>
BM26A-1000
MLI for basic liquid applications, optional with 6 GHz radar

BM26A-3000
MLI for corrosive liquids

BM26A-5000
Bypass chamber for combination e.g. with radar (FMCW) or guided radar (TDR) level transmitters

BM26A-6000
MLI for liquefied gas

BM26A-7000
MLI for liquids in storage and process applications

BM26A-8000
MLI for liquids at high temperature and pressure
Accessories

Magnetic level indicators (MLI)

- LT40
 - Reed chain

- MS15
 - Level switch for MLI

- MS40
 - Level switch for MLI
Float

The measuring principle

The magnetic level indicator (MLI) operates on the principle of communicating vessels. The measuring chamber is connected adjacent to the tank so that the same conditions are obtained in the chamber as those in the tank. The float is equipped with a system of permanent magnets to transmit measured values to the local indicator. The magnet system of the float activates either the magnetic flaps according to the liquid level, or a movable follower magnet in the indicating section of the indicator depending on the method of indication chosen. The column of reversed yellow magnetic flaps, or the vertical position of the follower magnet, indicates the liquid level.

Industries:

• Water & Wastewater
• Chemical
• Metal & Mining
• Power Generation
• Pulp & Paper
• Oil & Gas
• Automotive

Highlights:

• Proven technology with more than 60 years of experience in manufacturing
• Rugged stainless-steel design – low or no maintenance
• Flaps housed in a hermetically sealed glass tube (IP68)
• Highly visible level indication works without power supply
• Large variety of accessories and options: special materials, valves, high and low temperature insulation, hazardous area approvals, limit switches, reed chain, analogue and radar transmitters, interface measurement etc.
• Design for high pressure up to 400 barg/5802 psig design for high temperature up to +450°C/+842°F
• Measuring ranges from 0.3 m/1 ft up to 5.5 m/18 ft (longer on request)
• Bypass chambers which can be equipped with independent transmitters
• Totally redundant measurement by technology and predictive maintenance monitoring possible when equipped with two independent transmitters
• Easy to install, safe and no commissioning
• Accuracy from ±5 mm/±0.19” with reed chain
BM26A-1000 & 3000 – Applications up to 40 barg/580 psig & corrosive applications

These magnetic level indicators (MLI) offer the best price/performance ratio within the new range. Their optimal design keeps weight to a minimum. The BM26A-1000 version is ideal for measuring liquids in low-pressure storage and process tanks up to 40 barg/580 psig. The BM26A-3000 uses plastic materials and is ideal for liquids in harsh environments such as tanks containing corrosives with pressures up to 6 barg/87 psig.

BM26A-5000 – Bypass chamber

This series of bypass chambers offers the opportunity to select between 3 different technologies – Radar, TDR and Displacer – to measure level in a variety of difficult conditions: foam, agitated product surfaces and tanks with internal obstructions.

BM26A-6000 & 7000 – General use, liquefied gases & boiler applications

BM26A-6000 & 7000 use the same proven technology as other MLI in the BM 26 range. They are designed for general use but can also reach high temperatures and pressures that make it suitable for boiler applications.

BM26A-8000 – Redundant Measurement

BM26A-8000 combines a standard MLI with an OPTIWAVE 7400 radar (FMCW) or OPTIFLEX 7200 guided radar (TDR) level transmitter and permits totally redundant measurement where the measuring results of the radar transmitter can be checked against those from the magnetic level indicator (MLI). Both technologies operate independently and are not influenced by each other.

By adding an externally-mounted analogue transmitter to these device combinations, equipment condition can be monitored, and a predictive maintenance strategy is possible: maintenance can be planned sufficiently in advance, and at DCS (Distributed Control System) level, by comparing the measuring results of the analogue transmitter with those of the radar transmitter.
Magnetic level indicators (MLI)

<table>
<thead>
<tr>
<th>MLI for basic liquid applications</th>
<th>MLI for basic liquid applications with OPTIWAVE 1010 (6 GHz)</th>
<th>MLI for corrosive liquids</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM26A-1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product characteristics
- **Density**: 0.58...2 kg/l
- **Dielectric constant**: \(\varepsilon \): ≥2
- **Level/interface**: +/+-/+
- **Measuring range**: 0.3...5.3 m/1...17.4 ft
- **Accuracy**: ±10 mm/0.39" (flappers)
- **Power supply**: LT40: 12...35 V DC
- **Output (2-wire)**: LT40: mA (HART® 6), PROFIBUS® PA, FOUNDATION™ fieldbus
- **Housing material**: LT40: aluminum, stainless steel
- **Ambient temperature**: -50...+80°C/-58...+176°F
- **Protection Category**: IP68
- **Thread**: G 1/2, G 3/4
- **Pressure range**: -1...40 barg/-14.5...580 psig
- **Materials**: Wetted parts
- **Approvals**: Ex
- **Construction code**: PED according to EN13445
- **Miscellaneous**: NACE
- **SIL**: –

MLI for basic liquid applications
- **Density**: 0.58...2 kg/l
- **Dielectric constant**: \(\varepsilon \): ≥1.4
- **Level/interface**: +/-+
- **Measuring range**: 0.3...5.5 m/1...18 ft
- **Accuracy**: ±5 mm/0.2" (LT40 transmitter)
- **Power supply**: OPTIWAVE: 14.5...30 V DC
- **Output (2-wire)**: OPTIWAVE: mA (HART® 6), PROFIBUS® PA, FOUNDATION™ fieldbus
- **Housing material**: OPTIWAVE: aluminum, stainless steel
- **Ambient temperature**: -40...+85°C/-40...+185°F
- **Protection Category**: IP66, 67
- **Thread**: G 1/2, G 3/4, G 1
- **Pressure range**: -1...40 barg/-1...580 psig
- **Materials**: Wetted parts
- **Approvals**: Ex
- **Construction code**: PED according to EN13445
- **Miscellaneous**: NACE
- **SIL**: –

MLI for corrosive liquids
- **Density**: 0.85...2 kg/l
- **Dielectric constant**: \(\varepsilon \): ≥1.4
- **Level/interface**: +/-+
- **Measuring range**: 0.3...5.5 m/1...18 ft
- **Accuracy**: ±3 mm/0.12" ±2 mm/0.08 mm 1.5 % of full scale range
- **Power supply**: OPTIWAVE: 11.5...30 V DC
- **Output (2-wire)**: OPTIWAVE: mA (HART® 7), PROFIBUS® PA, FOUNDATION™ fieldbus
- **Housing material**: OPTIWAVE: aluminum, stainless steel
- **Ambient temperature**: -50...+80°C/-58...+176°F
- **Protection Category**: IP66, 68
- **Thread**: G 1/2, G 3/4, G 1
- **Pressure range**: -1...100 barg/-1...1450 psig
- **Materials**: Wetted parts
- **Approvals**: Ex
- **Construction code**: PED according to EN13445
- **Miscellaneous**: NACE
- **SIL**: –

BM26A-1000
- **Housing material**: BM26A-1000
- **Ambient temperature**: 0...+80°C/+32...+176°F
- **Protection Category**: IP68
- **Thread**: G 1/2, G 3/4
- **Materials**: Wetted parts
- **Approvals**: Ex
- **Construction code**: PED according to EN13445
- **Miscellaneous**: NACE
- **SIL**: –

BM26A-3000
- **Housing material**: BM26A-3000
- **Ambient temperature**: -40...+80°C; -40…+176°F
- **Protection Category**: IP66, 67
- **Thread**: G 1/2, G 3/4, G 1
- **Materials**: Wetted parts
- **Approvals**: Ex
- **Construction code**: PED according to EN13445
- **Miscellaneous**: NACE
- **SIL**: –
<table>
<thead>
<tr>
<th>Product characteristics</th>
<th>Bypass chamber for OPTIWAVE 5200 (15 GHz)</th>
<th>Bypass chamber for OPTIWAVE 7400 (24 GHz)</th>
<th>Bypass chamber for OPTIFLEX 7200 / 8200</th>
<th>Bypass chamber for BW 25 displacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant ε_r: ≥ 2</td>
<td>Dielectric constant ε_r: ≥ 1.4</td>
<td>Dielectric constant ε_r: ≥ 1.4</td>
<td>Density 0.45...2 kg/l</td>
<td></td>
</tr>
<tr>
<td>Level/interface</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Measuring range</td>
<td>0.3...5.5 m/1...18 ft</td>
<td>0.3...5.5 m/1...18 ft</td>
<td>0.3...5.5 m/1...18 ft</td>
<td>0.3...5.5 m/1...18 ft</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 0.5 mm/0.02"</td>
<td>± 0.5 mm/0.12"</td>
<td>± 0.5 mm/0.08 mm</td>
<td>1.5 % of full scale range</td>
</tr>
<tr>
<td>Power supply</td>
<td>OPTIWAVE: 11.5...30 V DC (Exi), 13.5...36 V DC (Exd)</td>
<td>OPTIWAVE: 12...30 V DC (Exi), 16...36 V DC (Exd)</td>
<td>OPTIFLEX: 11.5...30 V DC (Exi), 13.5...34 V DC (Exi-Modbus), 9...34 V DC (Ex-Modbus)</td>
<td>BW: 12...30 V DC</td>
</tr>
<tr>
<td>Output (2-wire)</td>
<td>OPTIWAVE: mA (HART® 6), PROFIBUS® PA, FOUNDATION™ fieldbus</td>
<td>OPTIWAVE: mA (HART® 6), PROFIBUS® PA, FOUNDATION™ fieldbus</td>
<td>OPTIFLEX: mA (HART® 7), PROFIBUS® PA, FOUNDATION™ fieldbus</td>
<td>BW: mA (HART® 7), PROFIBUS PA, FOUNDATION™ fieldbus</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-50...+80°C/-58...+176°F</td>
<td>-50...+80°C/-58...+176°F</td>
<td>-40...+80°C/-40...+176°F</td>
<td>-40...+80°C/-40...+176°F</td>
</tr>
<tr>
<td>Protection Category</td>
<td>IP66, 67</td>
<td>IP66, 67</td>
<td>IP67</td>
<td>– – – –</td>
</tr>
<tr>
<td>Thread</td>
<td>G 1/2, G 3/4, G 1 1/2 NPT, 3/4 NPT, 1 NPT</td>
<td>G 1/2, G 3/4, G 1 1/2 NPT, 3/4 NPT, 1 NPT</td>
<td>G 1/2, G 3/4, G 1 1/2 NPT, 3/4 NPT, 1 NPT</td>
<td>G 1/2, G 3/4, G 1 1/2 NPT, 3/4 NPT, 1 NPT</td>
</tr>
<tr>
<td>Pressure range</td>
<td>1/2...2" 150...2500 lb</td>
<td>1/2...2" 150...2500 lb</td>
<td>1/2...2" 150...2500 lb</td>
<td>1/2...2" 150...2500 lb</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-1...-40 barg/-14.5...580 psig</td>
<td>-1...-100 barg/-1...1450 psig</td>
<td>-1...-320 barg/-14.5...4641 psig</td>
<td>-1...-400 barg/-14.5...5801 psig</td>
</tr>
<tr>
<td>Process</td>
<td>-50...+250°C/-58...+482°F</td>
<td>-50...+200°C/-58...+392°F</td>
<td>-50...+315°C/-58...+599°F</td>
<td>-40...+400°C/-40...+752°F</td>
</tr>
<tr>
<td>Gaskets</td>
<td>Aramid, PTFE, Graphite, Ring joint</td>
</tr>
<tr>
<td>Approvals</td>
<td>Ex</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Construction code</td>
<td>PED according to EN13445</td>
<td>PED according to EN13445</td>
<td>PED according to EN13445</td>
<td>PED according to EN13445</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>NACE</td>
<td>NACE</td>
<td>NACE</td>
<td>NACE</td>
</tr>
<tr>
<td>SIL</td>
<td>SIL2</td>
<td>SIL2/3</td>
<td>SIL2/3</td>
<td>SIL2</td>
</tr>
</tbody>
</table>
Magnetic level indicators (MLI)

<table>
<thead>
<tr>
<th>MLI for liquefied gas</th>
<th>MLI for liquids in storage and process applications</th>
<th>MLI for liquids at high temperature and pressure</th>
<th>MLI for liquids at high temperature and pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM26A-6000</td>
<td>BM26A-7000</td>
<td>BM26A-8000-BI</td>
<td>BM26A-8000-TWIN</td>
</tr>
<tr>
<td>Product characteristics</td>
<td>Density 0.62…1.2 kg/l</td>
<td>Density 0.37…2.0 kg/l</td>
<td>Density 0.58…1.2 kg/l</td>
</tr>
<tr>
<td>Level/interface</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Measuring range</td>
<td>0.3…5.5 m/1…18 ft</td>
<td>0.3…5.5 m/1…18 ft</td>
<td>0.3…5.5 m/1…18 ft</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±10 mm/0.39” (flappers) ±5 mm/0.2” (LT40 transmitter)</td>
<td>±10 mm/0.39” (flappers) ±5 mm/0.2” (LT40 transmitter)</td>
<td>±10 mm/0.39” (flappers) ±5 mm/0.2” (LT40 transmitter)</td>
</tr>
<tr>
<td>Power supply</td>
<td>LT40: 12…35 V DC</td>
<td>LT40: 12…35 V DC</td>
<td>LT40: 12…35 V DC</td>
</tr>
<tr>
<td>Output (2-wire)</td>
<td>LT40: mA (HART®, 6), PROFIBUS®, FOUNDATION™ fieldbus</td>
<td>LT40: mA (HART®, 6), PROFIBUS®, FOUNDATION™ fieldbus</td>
<td>LT40, OPTIFLEX: mA (HART®), PROFIBUS®, FOUNDATION™ fieldbus</td>
</tr>
<tr>
<td>Housing material</td>
<td>LT40: aluminium, stainless steel</td>
<td>LT40: aluminium, stainless steel</td>
<td>LT40, OPTIFLEX: aluminium, stainless steel</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-50…+80°C/-58…+176°F</td>
<td>-50…+80°C/-58…+176°F</td>
<td>-50…+80°C/-58…+176°F</td>
</tr>
<tr>
<td>Thread</td>
<td>G 1/2, G 3/4, G 1 1/2 NPT, 3/4 NPT, 1 NPT</td>
<td>G 1/2, G 3/4, G 1 1/2 NPT, 3/4 NPT, 1 NPT</td>
<td>G 1/2, G 3/4, G 1 1/2 NPT, 3/4 NPT, 1 NPT</td>
</tr>
<tr>
<td>EN</td>
<td>DN15…50 PN16…250</td>
<td>DN15…50 PN16…250</td>
<td>DN15…50 PN16…250</td>
</tr>
<tr>
<td>ASME</td>
<td>1/2…2" 150…2500 lb</td>
<td>1/2…2" 150…2500 lb</td>
<td>1/2…2" 150…2500 lb</td>
</tr>
<tr>
<td>Pressure range</td>
<td>-1…40 barg/-14.5…580 psig</td>
<td>-1…40 barg/-14.5…580 psig</td>
<td>-1…40 barg/-14.5…580 psig</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-60…+300°C/-76…+572°F</td>
<td>-196…+400°C/-321…+752°F</td>
<td>-50…+315°C/-58…+599°F</td>
</tr>
<tr>
<td>Materials</td>
<td>316L, 304L Hastelloy® C276, Inconel 625</td>
<td>316L, 304L Hastelloy® C276, Inconel 625 PTFE lining</td>
<td>316L, 304L Hastelloy® C276, Inconel 625, PTFE, PEEK</td>
</tr>
<tr>
<td>Gaskets</td>
<td>Aramid, PTFE, Graphite, Ring joint</td>
<td>Aramid, PTFE, Graphite, Ring joint</td>
<td>Aramid, PTFE, Graphite, Ring joint</td>
</tr>
<tr>
<td>Approvals</td>
<td>ATEX, IECEx, EAC, NEPSI, cQPUs</td>
<td>ATEX, IECEx, EAC, NEPSI, cQPUs</td>
<td>ATEX, IECEx, EAC, NEPSI, cQPUs</td>
</tr>
<tr>
<td>Construction code</td>
<td>PED according to EN13445 ASME B31.3 ASME VIII div 1</td>
<td>PED according to EN13445 ASME B31.3 ASME VIII div 1</td>
<td>PED according to EN13445 ASME B31.3 ASME VIII div 1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>NACE</td>
<td>NACE</td>
<td>NACE</td>
</tr>
<tr>
<td>SIL</td>
<td>SIL1</td>
<td>SIL1</td>
<td>SIL2/3</td>
</tr>
</tbody>
</table>
Accessories for magnetic level indicators (MLI)

<table>
<thead>
<tr>
<th>Reed chain</th>
<th>Level switch</th>
<th>Level switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT40</td>
<td>MS15</td>
<td>MS40</td>
</tr>
</tbody>
</table>

- **Product characteristics**
 - Level/interface: According BM26A limits
 - Measuring range:
 -LT40: 0.3...5.5 m/1...18 ft
 -MS15: -
 -MS40: -
 - Accuracy:
 -LT40: ±5 mm/0.2”
 -LT40: ±10 mm/0.39”
 -MS15: -
 - Power supply:
 -LT40: 12...35 V DC
 -MS15: 60VA/1A/250 V AC
 -MS40: 60VA/1A/250 V AC
 - Output (2-wire):
 -LT40: mA (HART®, PROFIBUS® PA, FOUNDATION™ fieldbus)
 -MS15: Relay, SPDT 3-wire output, NAMUR
 -MS40: Relay, SPDT 3-wire output, NAMUR
 - Housing material:
 -LT40: Aluminum, stainless steel
 -MS15: Aluminum, stainless steel
 -MS40: Aluminum
 - Ambient temperature:
 -LT40: -50...+80°C/-58…+176°F
 -MS15: -60...+125°C/-76…+257°F
 -MS40: -50...+125°C/-58…+257°F
 - Thread:
 -LT40: -
 -MS15: -
 -MS40: -
 - EN:
 -LT40: -
 -MS15: -
 -MS40: -
 - ASME:
 -LT40: -
 -MS15: -
 -MS40: -

Additional Specifications

- **Pressure range**
 - Process:
 -LT40: -
 -MS15: -
 -MS40: -
- **Temperature range**
 - Process:
 -LT40: -
 -MS15: -
 -MS40: -
- **Materials**
 - Wetted parts:
 -LT40: 316L, 304L Hastelloy® C276, Inconel 625
 -MS15: 316L, 304L Hastelloy® C276, Inconel 625, PTFE, PEEK
 - Gaskets:
 -LT40: Aramide, PTFE, Graphite, Ring joint
 -MS15: Aramide, PTFE, Graphite, Ring joint
 -MS40: Aramide, PTFE, Graphite, Ring joint

Approvals

- **Ex**
 -LT40: ATEX, IECEx, NEPSI, cQPs
 -MS15: ATEX, IECEx, NEPSI, cQPs
 -MS40: ATEX, IECEx, EAC, NEPSI, cQPs
- **Construction code**
 -LT40: PED according to EN13445, ASME B31.3, ASME VIII div 1
 -MS15: PED according to EN13445, ASME B31.3, ASME VIII div 1
 -MS40: PED according to EN13445, ASME B31.3, ASME VIII div 1
- **Miscellaneous**
 -LT40: NAMUR
 -MS15: NAMUR
 -MS40: NAMUR

SIL

- LT40: SIL1
- MS15: -
- MS40: -
OPTISOUND 3010 C
For small vessels

OPTISOUND 3020 C
For small and medium-sized vessels

OPTISOUND 3030 C
For medium-sized vessels

Ultrasonic level transmitters
Displacer and Potentiometric level transmitters

BW 25
Displacer level transmitter for high pressures and temperatures

BM 500
Potentiometric level transmitter for hygienic applications
Ultrasonic

The measuring principle

Short ultrasonic pulses in the range of 18 to 70 kHz are sent from the signal transducer to the product to be measured. They are reflected off the product surface and received again by the transducer. The pulses propagate at the speed of sound, where the time between the sending and receiving of the signals depends on the level in the tank. The latest microprocessor technology and the tried and tested analysis software ensure that you will be able to reliably determine the level echo even when interference reflections are present and to calculate the exact distance to the surface of the fill goods. To compensate for the duration of the acoustic signal, an integrated sensor detects the temperature in the tank.

A level-proportional signal is formed from the distance by simply inputting the tank dimensions. It is not necessary to fill the tank for the adjustment.
OPTISOUND –
The ultrasonic for liquids and solids

The OPTISOUND ultrasonic level transmitters are used for continuous level measurement of liquids and solids in nearly all sectors of industry.

They are ideal for non-contact flow measurement and detection in open channels. OPTISOUND are also used for continuous level measurement in process and storage tanks, in basins, wastewater tanks or on conveyor belts.

OPTISOUND 3020 C

Being able to detect a certain percentage of solids in liquids, these transmitters are also suitable for rain- and wastewater with low or high degrees of contamination (e.g. silting).

Bulk solids naturally pose different challenges to a transmitter than do liquids. The surface of solids is not smooth, but generally forms a cone.

Many products cause a heavy dust build-up. In addition, most solid silos are taller than the tanks for liquids. In this case too, OPTISOUND provides reliable measuring values.

By means of differently adjusted transmitting frequencies, the device can measure levels from 0.25 to 15 m/0.82 to 49.2 ft for liquids, from 0.25 to 7 m/0.82 to 23 ft for solids.

Highly resistant materials for the acoustic signal transducers and process connections guarantee the use of OPTISOUND even with caustic media. An optional mounting bracket enables easy alignment of the sensor.

Industries:
• Water & Wastewater
• Chemical
• Metal & Mining
• Power Generation
• Pulp & Paper
The measuring principle

The BW 25 level indicator works according to the displacer principle. In this principle, the length of the displacement element rod corresponds to the measuring range. The body, which is suspended on a measuring spring, is immersed in the liquid where it determines the lifting force that is proportional to the displaced mass of the liquid (Archimedean principle). Any change to the weight of the rod corresponds to a change in the length of the spring and is therefore a measure of the level. The extension of the length of the spring, and thereby the measuring stroke, are transmitted to the display.
Industries:
- Petrochemical
- Chemical
- Power Generation

BW 25 – Sovereign even under extreme process conditions

The BW 25 is a true all-rounder for measuring level or interface of various liquids under extreme process conditions.

It can deal with corrosive media, high temperatures (up to +400°C/+752°F) and high pressures (up to 400 barg/5800 psig). Retrofitting the converter and adding switches to the device is possible without interrupting the process. The BW 25 can also be installed in a bypass chamber e.g. applications with agitators.
The measuring principle

The BM 500 level transmitter works according to the potentiometric measuring principle and can only be used with a minimum conductivity of 50 µS/cm for all electrically conductive media (e.g. pure water).

The level probe (sensor) consists of a low-resistance measuring tube, which is immersed in an electrically conductive liquid. An AC generator runs a higher frequency current through the measuring tube. A voltage is taken from between the probe and the tank wall and sent to an amplifier. In homogeneous conditions in the medium, this is proportional to the level.

The potentiometric measuring method is particularly suitable for measuring levels in small vessels containing viscous, pasty or strongly adhesive media. The electronic evaluation unit is integrated in the signal converter and supplies a level-proportional output signal of 4 to 20 mA.

Highlights:

- Measurement independent of media properties
- Not sensitive to adhesives and foam
- Up to 3 m/9.8 ft probe length
- Defined empty reporting function
- Potted design
- Quick response time
- Automatic position detection
- Level measurement beyond 50 mm/97"
- High temperature resistance (+140°C/+284°F)
- Remote version available
BM 500 – The hygienic transmitter for conductive media

Whether you are dealing with fruit juice, ketchup, beer, toothpaste or mustard: for viscous, pasty or highly adhesive media, the BM 500 level transmitter is the first choice.

Especially in small tanks, the potentiometric measuring technology makes full use of its advantages. Thus, the BM 500 already measures starting at a level of 50 mm/1.97” and wins you over with its fast response time.

A large choice of hygienic process connections and high temperature resistance [Clean-in-Place and Sterilization-in-Place processes] make it the ideal potentiometric level transmitter for the food, beverage and pharmaceutical industry.

Industries:
- Food & Beverage
- Pharmaceutical
Ultrasonic level transmitters

<table>
<thead>
<tr>
<th>For small vessels</th>
<th>For small and medium-sized vessels</th>
<th>For medium-sized vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTISOUND 3010 C</td>
<td>OPTISOUND 3020 C</td>
<td>OPTISOUND 3030 C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>70 kHz</th>
<th>55 kHz</th>
<th>35 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurable products</td>
<td>Liquids and solids</td>
<td>Liquids and solids</td>
<td>Liquids and solids</td>
</tr>
<tr>
<td>Level/interface</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Measuring range</td>
<td>Liquids: 0.25…5 m/0.82…16.4 ft Solids: 0.25…2 m/0.82…6.6 ft</td>
<td>Liquids: 0.4…8 m/3…26.2 ft Solids: 0.4…3.5 m/1.3…11.5 ft</td>
<td>Liquids: 0.6…15 m/2…49 ft Solids: 0.6…7 m/2…23 ft</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±4 mm/±0.16”</td>
<td>±6 mm/±0.24”</td>
<td>±6 mm/±0.24”</td>
</tr>
<tr>
<td>Outputs</td>
<td>mA (HART®)</td>
<td>mA (HART®)</td>
<td>mA (HART®)</td>
</tr>
<tr>
<td>Housing material</td>
<td>Plastic, aluminum, stainless steel</td>
<td>Plastic, aluminum, stainless steel</td>
<td>Plastic, aluminum, stainless steel</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-40…+80°C/-40…+176°F</td>
<td>-40…+80°C/-40…+176°F</td>
<td>-40…+80°C/-40…+176°F</td>
</tr>
<tr>
<td>Protection category</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
</tr>
<tr>
<td>Flange system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread</td>
<td>G 1½; 1½ NPT others on request</td>
<td>G2; 2 NPT others on request</td>
<td>–</td>
</tr>
<tr>
<td>EN</td>
<td>On request</td>
<td>On request</td>
<td>Compression flange DN100, others on request</td>
</tr>
<tr>
<td>ASME</td>
<td>On request</td>
<td>On request</td>
<td>Compression flange 4” 150 lbs</td>
</tr>
<tr>
<td>Pressure range</td>
<td>-0.2…2 barg/-2.9…29 psig</td>
<td>-0.2…2 barg/-2.9…29 psig</td>
<td>-0.2…1 barg/-2.9…14.5 psig</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40…+80°C/-40…+176°F</td>
<td>-40…+80°C/-40…+176°F</td>
<td>-40…+80°C/-40…+176°F</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts</td>
<td>PVDF</td>
<td>PVDF</td>
<td>1.4301, UP, 1.4571 (316 Ti)</td>
</tr>
<tr>
<td>Gaskets</td>
<td>EPDM</td>
<td>EPDM</td>
<td>EPDM</td>
</tr>
<tr>
<td>Approvals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex</td>
<td>ATEX, EAC</td>
<td>ATEX, EAC</td>
<td>–</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td>EAC</td>
</tr>
</tbody>
</table>
Displacer and Potentiometric level transmitters

<table>
<thead>
<tr>
<th></th>
<th>Displacer level transmitter for high pressures and temperatures</th>
<th>Potentiometric level transmitter for hygienic applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measuring principle</th>
<th>Displacer</th>
<th>Potentiometric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurable products</td>
<td>Liquids</td>
<td>Liquids and pastes</td>
</tr>
<tr>
<td>Level/Interface</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Measuring range</td>
<td>0.3…5.5 m/1…18 ft, longer devices on request</td>
<td>0.2…3 m/0.7…10 ft</td>
</tr>
<tr>
<td>Product characteristics</td>
<td>Density: ≥0.45 kg/l/≥28.09 lb/ft³</td>
<td>Electrical conductivity: ≥50 µs/cm</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.5% full scale value</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Outputs</td>
<td>mA (HART®), switching outputs</td>
<td>mA</td>
</tr>
<tr>
<td>Power supply</td>
<td>12…30 V DC</td>
<td>4-wire: 18…36 V DC (non-Ex)</td>
</tr>
<tr>
<td>Housing material</td>
<td>Aluminum, stainless steel</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-40…+60°C/-40…+140°F</td>
<td>-20…-60°C/-4…+140°F (compact)</td>
</tr>
<tr>
<td></td>
<td>-20…-100°C/-4…+212°F (remote)</td>
<td></td>
</tr>
<tr>
<td>Protection category</td>
<td>IP67; NEMA4X</td>
<td>IP67; NEMA4X</td>
</tr>
<tr>
<td>Flange system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread</td>
<td>On request</td>
<td>G1 hygienic via adapter system</td>
</tr>
<tr>
<td>EN</td>
<td>DN50…100 in PN16…400</td>
<td></td>
</tr>
<tr>
<td>ASME</td>
<td>2…4” in 150…2500 lb</td>
<td></td>
</tr>
<tr>
<td>Pressure range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>-1…400 barg/-14.5…8000 psig, others on request</td>
<td>-1…16 barg/-14.5…232 psig</td>
</tr>
<tr>
<td>Temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>-40…+400°C/-40…+752°F</td>
<td>-20…+140°C/-4…+284°F</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts</td>
<td>Stainless steel 1.4404 (316L), others on request</td>
<td>Stainless steel 1.4404 (316L)</td>
</tr>
<tr>
<td>Gaskets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approvals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex</td>
<td>ATEX, EAC</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>NACE</td>
<td>3A / FDA, EAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pressure transmitters

OPTIBAR P 2010
For hygienic applications, with flush metallic diaphragm

OPTIBAR PM 3050
For standard applications, with recessed stainless steel diaphragm and optional display module

OPTIBAR PC 5060
For advanced applications, with corrosion and abrasion resistant ceramic diaphragm

OPTIBAR PM 5060
With fully welded metallic diaphragm for high pressure ranges and hygienic requirements

OPTIBAR DP 7060
Differential pressure transmitter for hydrostatic level measurement with integrated absolute pressure measurement

Submersible probes

OPTIBAR LC 1010
Submersible level probe with ceramic diaphragm 22 mm /1” diameter
Diaphragm seals

OPTIBAR D5 series
Diaphragm seals for temperatures up to +400 °C /752 °F for corrosive mediums

OPTIBAR DSD 3100
Direct attachment to OPTIBAR DP 7060

OPTIBAR DSD 3110
Capillary tube attachment to OPTIBAR DP 7060

OPTIBAR DSD 3210
Direct and capillary tube attachment to OPTIBAR DP 7060

OPTIBAR DSD 3220
2x Direct and capillary tube attachment to OPTIBAR DP 7060

OPTIBAR DSP 2000
Diaphragm seals for special applications with threaded or open connection for OPTIBAR PM series

OPTIBAR DSP 3000
Flangetype diaphragm seals for OPTIBAR PM series

Hydrostatic level measurement
Pressure transmitters are commonly used for liquid level measurement applications. The reason for their wide spread application lies especially in the ease to install and use, their robustness in the application and their wide range of application conditions.

For level measurements in open or vented vessels, a gauge pressure or differential pressure transmitter can be used. In closed and pressurized vessels, a differential pressure measurement by a classical DP transmitter or an electronic DP system is required to compensate for the gas pressure.

Besides basic level measurements, differential pressure transmitters can be also used to measure the density or interface positions of fluids.

The OPTIBAR pressure instrumentation series offer pressure and differential pressure transmitter with metallic or ceramic diaphragms for all industry segments. Advanced diagnostics and communication protocols, easy to use software and if required engineered combinations with our OPTIBAR DS diaphragm seal series assure a perfect application fit.

In addition to the pressure transmitter series, our OPTIBAR submersible level probes are suitable for basic hydrostatic level applications in wells or tanks in water and wastewater applications.

- **Applicable for nearly any liquid or slurry**
- **Process temperatures up to 400 °C/752 °F**
- **Process pressure up to 400 bar/5801 psi**
- **Not affected by process conditions: dust, foam, vapor, agitation, boiling or bubbles**
- **Process connections for all applications – also 3A and EHEDG approved hygienic connections**
- **Hydrostatic level measurement with automatic density compensation**
- **Thermal shock compensation**

Technology Icon “Ceramic durability”
- Most robust diaphragm material on the market
- Extremely high overload and vacuum resistance
- Diaphragm breakage detection

Technology Icon “3D-Lineairisation”
- Integrated absolute pressure sensor (DP + Pabs)
- Fully compensated in three dimensions (DP + Pabs + T)
- Predicable robust under all process conditions
The measuring principle

In an open or vented vessel, the inside pressure is equal to the actual atmospheric pressure at its location. A column of liquid exerts a certain force on the base of the vessel by its own weight. A change in liquid column height causes a proportional change of force, also called hydrostatic pressure.

Using Pascal's law, the height of the liquid level can be calculated from the hydrostatic pressure \(P \), the gravity acceleration \(g \) and the liquid density \(\rho \).

\[
P = \rho \times g \times h
\]

There are several OPTIBAR gauge pressure transmitters for open or vented vessels applications available:

- **Entry level ultra-compact series OPTIBAR P 2010** with metallic front flush diaphragm
- **Compact OPTIBAR PM 3050** and advanced process OPTIBAR PM 5060 with fully welded metallic diaphragms, also for aseptic processes.
- **Process pressure transmitter OPTIBAR PC 5060** with “ceramic durability” in demanding applications for measuring ranges down to 0.25 m/10” water column.
- **Differential pressure transmitter OPTIBAR DP 7060** one-sided connected with impulse piping or OPTIBAR DS series diaphragm seals.
Hydrostatic level measurement in closed or pressurised vessels

The measuring principle

Contrary to open or vented vessels, a gauge pressure transmitter will not perform in a closed or pressurised vessel application, since it cannot distinguish between a change of liquid level or of the pressure inside the vessel by itself.

In order to handle this type of application, a differential pressure measurement is necessary. The high pressure tap is usually located at the bottom of the vessel to measure the liquid level column plus the gas pressure on top of it. The low pressure tap is connected on the very top of the vessel to measure the gas pressure alone. The resulting pressure difference between the two taps is the hydrostatic pressure of the liquid level column inside.

The following formula is based on Pascal’s Law of hydrostatic pressure, extended by the different densities of the gas phase and the fluid inside the depicted capillaries.

\[P_{\text{level}} = P_2 - P_1 \]

A differential pressure measurement can be made by a single DP transmitter which is connected by impulse piping or by diaphragm seals to the vessel. Alternatively, a so called electronic DP transmitter uses two discrete gauge pressure transmitters to calculate the difference electronically.

Differential pressure transmitters for closed or pressurised vessels:

- OPTIBAR DP 7060 differential pressure transmitter for pressurised vessels up to 400 bar/5800 psi – predictable robust measurements with 3D-linearization technology.
- OPTIBAR DS series – full series of diaphragm seals with more than 10+ wetted materials to choose from.
- OPTIBAR 5060 series – advanced electronic differential pressure with metallic or ceramic technology up to 150°C

Industries:

- Oil & Gas
- Chemical
- Power Generation
- Food & Beverage
- Metal & Mining
Electronic Differential Pressure

Electronic differential pressure presents in some applications a great alternative to the use of classical differential pressure transmitters.

The measuring principle is based on two discrete gauge pressure transmitters, which are mounted in the same way as a classical differential pressure transmitter on the vessel. One transmitter, usually the one on the top, acts as so called SLAVE transmitter to measure the gas pressure in the tank. This SLAVE is electro-nically connected to the MASTER transmitter. This MASTER measures now the gauge pressure on the very bottom of the vessel and performs the calculation of the pressure difference in between.

\[
P_{\text{slave}} = P_g \\
P_{\text{master}} = \rho FL \times g \times h + P_g \\
P_{\text{level}} = P_{\text{master}} - P_{\text{slave}}
\]

In this electronic DP configuration of the OPTIBAR 5060 series, the SLAVE sensor provides fast and synchronous measurement values to the MASTER, which acts and behaves like a classical DP transmitter in terms of setup and commissioning.

The advantages of an eDP lies especially in the efficient connection with the vessel. Smaller process connections without capillaries with a maximum distance of up to 25 m/75 ft between the top and the bottom tap, save cost and installation time. The electronic DP loses its edge in applications with higher gas pressures over a classical DP.

Density Compensation

Hydrostatic level applications are require generally stable density values to maintain the overall accuracy. An electronic DP configuration in combination with an open or vented vessel allows to perform an automatic density compensation. In that function, the slave transmitter will be placed on purpose in a position, where it is being covered by at least 1 m / 3ft of liquid. The converter electronics will then perform all necessary calculations internally.

Highlights:

- Small process connections
- Mounting distance up to 25 m/75 ft with response times <125 ms
- Almost no influence by ambient temperature changes
- Up to 400 °C process temperature in combination with OPTIBAR DS series
- with SIL 2/3 certification
- available with 4..20 mA/HART®; FF and PROFIBUS® PA
- Automatic density compensation (open vessels only)
Elevated process temperatures, heavy vibration, corrosive fluids or aseptic requirements make the number of use cases for the OPTIBAR DS series uncountable.

A diaphragm seal transmits the applied pressure hydraulically via a fill fluid to the pressure sensor. The OPTIBAR DSP program is specifically designed for KROHNE pressure transmitters OPTIBAR PM 3050 and OPTIBAR PM 5060, whereas the differential pressure transmitters OPTIBAR DP 7060 perfectly harmonize with the OPTIBAR DSD program. Only a specifically engineered and optimized system guarantees low temperature effects and fast response times.

The OPTIBAR DS series offers the following wetted materials as standard for many process connection standards:

- 316L
- Duplex Steel
- Tantalum
- Titanium
- Hastelloy® C-276
- Monel 400

Coated:
- Gold
- PFA
- PTFE (up to 200 °C full vacuum rated)
- ECTFE (HALAR)
- Rubber

Diaphragm Materials:

- Gold
- PFA
- PTFE (up to 200 °C full vacuum rated)
- ECTFE (HALAR)
- Rubber

The fill fluid is next to the right material selection a crucial component for a diaphragm seal. The OPTIBAR DS series can always offer the right choice for the application. Vacuum conditions can have a severe effect on the diaphragm seal system over time. KROHNE offers for every fill fluid a chart that determines the minimal process pressure at a given process temperature.

- Silicon oil
- Silicon free oil with FDA approval
- Halocarbon oil for Oxygen applications
- Water / Alcohol
- Water / Glycol
OPTIBAR Submersible Level Probes

Submersible level probes are ideally suited for hydrostatic level applications of open wells and underground basins.

The measuring principle

In an open vessel, the inside pressure is equal to the actual atmospheric pressure at its location. A column of liquid exerts a certain force on the base of the vessel by its own weight. A change in liquid column height causes a proportional change of force, also called hydrostatic pressure.

Using Pascal’s law, the height of the liquid level can be calculated from the hydrostatic pressure \(P \), the gravity acceleration \(g \) and the liquid density \(\rho \).

\[
P = \rho \times g \times a
\]

The ceramic measuring cell of the OPTIBAR LC 1010 offers a high overload and corrosion resistance and the ability to be cleaned frequently, if the application demands for it.

OPTIBAR LC Connect

An optional temperature transmitter, lighting protection, a HART® connection terminal, as well as the Gore-Tex vent makes this OPTIBAR LC Connect junction box perfectly suited for outside or remote location installation.
Pressure transmitters

<table>
<thead>
<tr>
<th>OPTIBAR P 2010</th>
<th>OPTIBAR PM 3050</th>
<th>OPTIBAR PC 5060</th>
</tr>
</thead>
<tbody>
<tr>
<td>For hygienic applications, with flush metallic diaphragm</td>
<td>For standard applications, with recessed stainless steel diaphragm and optional display module</td>
<td>For advanced applications, with corrosion and abrasion resistant ceramic diaphragm</td>
</tr>
</tbody>
</table>

Accuracy (of calibrated span)

- **Reference accuracy**: +/- 0.25% FSO
- **Long-term stability**: +/- 0.1% within 1 Year
- **Max. turn down**: 10:1

Pressure range

- **Sensor**: Piezoresistive
- **Measuring range (Level, water column)**: 1.0...400m
- **Nominal range (Pressure)**: 0.1...40bar/1.45...580psi
- **Pressure rating**: n/a
- **Overload resistance**: 5x1bar, 4x10bar, 2.5x40bar/5x1.45 psi, 4x14.5psi, 2.5x580 psi

Process connection

- **Thread**: > G1/2” front flush
- **Flange**: n/a
- **Hygienic**: Clamp > 3/4” ISO2852, DIN32676 > DN25 acc. DIN11851 SMS 1145 DIN32676
- **Other**: n/a
- **Temperature range**
 - **Process**: -40...+125°C/-40...257 °F
 - **Ambient**: -40...+85°C/-40...185 °F

Configuration

- **PC tool**: with OPTIBAR DS series
- **Software / HHT**: n/a
- **Local**: with optional display and adjustment module
- **Material**: 316L
- **Diaphragm material**: 316L
- **Communication**: 4...20mA, 0-10V, PNP/NPN switching output*, IO-link*, 4...20 mA HART® 7, FOUNDATION™ fieldbus, PROFIBUS® PA
- **Approvals**
 - **Ex**: ATEX / IECEx Ex ia I O / 1D
 - **Functional safety**: n/a
 - **Hygienic**: 3-A sanitary standard
- **Other**: cULus*
<table>
<thead>
<tr>
<th>Sensor</th>
<th>Piezoresistive, Thinfilm</th>
<th>Piezoresistive</th>
<th>Capacitive Ceramic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range (Level, water column)</td>
<td>4...10000m</td>
<td>0.1...160m</td>
<td>1...100m</td>
</tr>
<tr>
<td>Nominal range (Pressure)</td>
<td>0.4...1000bar/5.8...14500psi</td>
<td>10, 30, 100, 500mbar; 3, 16bar/0.15, 0.4, 1.4, 7.2, 44, 232 psi</td>
<td>1.0...10bar/1.45...145psi</td>
</tr>
<tr>
<td>Pressure rating</td>
<td>n/a</td>
<td>40bar, 160bar, 400bar/580, 2320, 5800 psi</td>
<td>n/a</td>
</tr>
<tr>
<td>Overload resistance</td>
<td>3x1bar, 3x10bar, 3x40bar/3x1.45psi, 3x14.5psi, 3x580psi</td>
<td>n/a</td>
<td>7x1bar, 2x10bar/7x1.45psi, 2x14.5psi</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40...+105 °C/-40...+221 °F</td>
<td>-40 ... +85°C/-40 ... +185 °F</td>
<td>-25 ... +85°C/-13 ... +185 °F</td>
</tr>
<tr>
<td>Configuration</td>
<td>Free DTM, also USB-Interface</td>
<td>Free DTM, also USB-Interface</td>
<td>n/a</td>
</tr>
<tr>
<td>Local</td>
<td>with optional display and adjustment module</td>
<td>with optional display and adjustment module</td>
<td>none</td>
</tr>
<tr>
<td>Material</td>
<td>DIN Housing in 1- or 2-chamber configuration: 316L, Aluminum, 316L (electropolished), Plastic [PBT]</td>
<td>DIN Housing in 1- or 2-chamber configuration: 316L, Aluminum, 316L (electropolished), Plastic [PBT]</td>
<td>316L, Titanium Gr.2*</td>
</tr>
<tr>
<td>Diaphragm material</td>
<td>316L, Egløy</td>
<td>316L, Hastelloy C-276,</td>
<td>99.99% Al2O3 Ceramic</td>
</tr>
<tr>
<td>Communication</td>
<td>4...20 mA HART®, 7, FOUNDATION™ fieldbus, PROFIBUS® PA</td>
<td>4...20 mA HART®, 7, FOUNDATION™ fieldbus, PROFIBUS® PA</td>
<td>4...20mA with optional HART®, 3-wire Pt100</td>
</tr>
<tr>
<td>Approvals</td>
<td>ATEX / IECEx Ex ia, Ex d ; Ex t</td>
<td>ATEX / IECEx Ex ia, Ex d ; Ex t</td>
<td>ATEX / IECEx Ex ia 1G*</td>
</tr>
</tbody>
</table>
Diaphragm seals

<table>
<thead>
<tr>
<th></th>
<th>OPTIBAR DSD 3100</th>
<th>OPTIBAR DSD 3110</th>
<th>OPTIBAR DSD 3210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Connection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange acc. EN 1092-1</td>
<td>DN50…100</td>
<td>DN50…100</td>
<td>DN50…100</td>
</tr>
<tr>
<td></td>
<td>PN10…100</td>
<td>PN10…100</td>
<td>PN10…100</td>
</tr>
<tr>
<td>Flange acc. ASME B16.5</td>
<td>2”…4” Class 150…1500</td>
<td>2”…4” Class 150…1500</td>
<td>2”…4” Class 150…1500</td>
</tr>
<tr>
<td>Flange acc. JIS B2220</td>
<td>DN50…100 10K</td>
<td>DN50…100 10K</td>
<td>DN50…100 10K</td>
</tr>
<tr>
<td>Thread</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragm</td>
<td>Front flush or extended</td>
<td>Front flush or extended</td>
<td>Front flush or extended</td>
</tr>
<tr>
<td>Flushing holes</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Attachment specifications</td>
<td>Direct up to 150°C/302°F</td>
<td>Direct/ Capillary up to 150°C/302°F</td>
<td>Direct/ Capillary up to 150°C/302°F</td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic body</td>
<td>Stainless steel 316L</td>
<td>Stainless steel 316L</td>
<td>Stainless steel 316L</td>
</tr>
<tr>
<td>Diaphragm and Sealing face</td>
<td>- Stainless steel 316L - Tantalum - Hastelloy C-276 - Titanium Grade 2 - Monel 400 - Duplex - Gold coating - PTFE foil - PFA coating</td>
<td>- Stainless steel 316L - Tantalum - Hastelloy C-276 - Titanium Grade 2 - Monel 400 - Duplex - Gold coating - PTFE foil - PFA coating</td>
<td>- Stainless steel 316L - Tantalum - Hastelloy C-276 - Titanium Grade 2 - Monel 400 - Duplex - Gold coating - PTFE foil - PFA coating</td>
</tr>
<tr>
<td>Lower body</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Sealing</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Fill fluid</td>
<td>- Silicone oil - Silicon free synthetic oil - Vacuum- and high temperature oil - Halocarbon oil - Glycerin/Water</td>
<td>- Silicone oil - Silicon free synthetic oil - Vacuum- and high temperature oil - Halocarbon oil - Glycerin/Water</td>
<td>- Silicone oil - Silicon free synthetic oil - Vacuum- and high temperature oil - Halocarbon oil - Glycerin/Water</td>
</tr>
<tr>
<td>Spiral tube (Capillary)</td>
<td>n/a</td>
<td>Stainless steel 316L or PVC coated</td>
<td>Stainless steel 316L or PVC coated</td>
</tr>
<tr>
<td>Distance tube</td>
<td>Stainless steel 316L</td>
<td>n/a</td>
<td>Stainless steel 316L</td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>50…200 mm for 316L, PFA, Hastelloy C-276 and Tantalum 50…500 mm for 316L</td>
<td>50…200 mm for 316L, PFA, Hastelloy C-276 and Tantalum 50…500 mm for 316L</td>
<td>50…200 mm for 316L, PFA, Hastelloy C-276 and Tantalum 50…500 mm for 316L</td>
</tr>
<tr>
<td>Capillary</td>
<td>n/a</td>
<td>1,6…10 m/5.25…32.8ft</td>
<td>1,6…10 m/5.25…32.8ft</td>
</tr>
</tbody>
</table>
Hydrostatic level measurement

<table>
<thead>
<tr>
<th></th>
<th>OPTIBAR DSD 3220</th>
<th>OPTIBAR DSP 2000</th>
<th>OPTIBAR DSP 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Connection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange acc. EN 1092-1</td>
<td>DN50...100 PN10...100</td>
<td>Open measuring flange DN25...50 PN10...40</td>
<td>DN50...100 PN10...100</td>
</tr>
<tr>
<td>Flange acc. ASME B16.5</td>
<td>2"...4" Class 150...1500</td>
<td>Open measuring flange 1"...2" Class 150...300</td>
<td>2"...4" Class 150...1500</td>
</tr>
<tr>
<td>Flange acc. JIS B2220</td>
<td>DN50...100 10K</td>
<td>n/a</td>
<td>DN50...100 10K</td>
</tr>
<tr>
<td>Thread</td>
<td>n/a</td>
<td>G ½B EN 837-1, ½ NPT-M/F ANSI</td>
<td>n/a</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragm</td>
<td>Front flush or extended</td>
<td>Recessed</td>
<td>Front flush or extended</td>
</tr>
<tr>
<td>Flushing holes</td>
<td>n/a</td>
<td>2x ¼ NPT incl. Blind plugs</td>
<td>n/a</td>
</tr>
<tr>
<td>Attachment specifications</td>
<td>Capillary/ Capillary up to 400°C/752°F</td>
<td>Direct up to 150°C/302°F Direct with cooling fins up to 250°C/482°F Capillary up to 400°C/752°F</td>
<td>Direct up to 150°C/302°F Direct with cooling fins up to 250°C/482°F Capillary up to 400°C/752°F</td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic body</td>
<td>Stainless steel 316L</td>
<td>Stainless steel 316L</td>
<td>Stainless steel 316L</td>
</tr>
<tr>
<td>Diaphragm and Sealing face</td>
<td>- Stainless steel 316L - Tantalum - Hastelloy C-276 - Titanium Grade 2 - Monel 400 - Duplex - Gold coating - PTFE foil - PFA coating</td>
<td>- Stainless steel 316L - Hastelloy C-276 - Tantalum - PFA coating</td>
<td>- Stainless steel 316L - Tantalum - Hastelloy C-276 - Titanium Grade 2 - Monel 400 - Duplex - Gold coating - PTFE foil - PFA coating</td>
</tr>
<tr>
<td>Lower body</td>
<td>n/a</td>
<td>Stainless steel 316L or PVDF</td>
<td>n/a</td>
</tr>
<tr>
<td>Sealing</td>
<td>n/a</td>
<td>NBR, FKM or PTFE</td>
<td>n/a</td>
</tr>
<tr>
<td>Fill fluid</td>
<td>- Silicone oil - Silicon free synthetic oil - Vacuum- and high temperature oil - Halocarbon oil - Glycerin/Water</td>
<td>- Silicone oil - Silicon free synthetic oil - Vacuum- and high temperature oil - Halocarbon oil - Glycerin/Water</td>
<td>- Silicone oil - Silicone free synthetic oil - Vacuum- and high temperature oil - Halocarbon oil - Glycerin/Water</td>
</tr>
<tr>
<td>Spiral tube (Capillary)</td>
<td>Stainless steel 316L or PVC coated</td>
<td>Stainless steel 316L or PVC coated</td>
<td>Stainless steel 316L or PVC coated</td>
</tr>
<tr>
<td>Distance tube</td>
<td>n/a</td>
<td>Stainless steel 316L</td>
<td>Stainless steel 316L</td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>50...200 mm for 316L, PFA, Hastelloy C-276 and Tantalum 50...500 mm for 316L</td>
<td>n/a</td>
<td>50...200 mm for 316L, PFA, Hastelloy C-276 and Tantalum 50...500 mm for 316L</td>
</tr>
<tr>
<td>Capillary</td>
<td>2x 1.6...10 m</td>
<td>1.6...10 m/5.25...32.8ft</td>
<td>1.6...10 m/5.25...32.8ft</td>
</tr>
</tbody>
</table>
OPTISWITCH 4000 C
Vibrating level switch for basic liquid applications

OPTISWITCH 3X00 C
Vibrating level switches for solids

OPTISWITCH 5X00 C
Vibrating level switches for liquids in process and high temperature / high pressure applications
Level switches

OPTISWITCH 6500
Capacitance level switch
for advanced hygienic applications

OPTISWITCH 6600
Capacitance level switch
for standard hygienic applications
The measuring principle

The oscillating element of the OPTISWITCH consists of two paddle-shaped oscillating rods (1), coupled by a membrane (2). Together with the piezo ceramics (3), the rods and the membrane form an electromechanical resonator, which oscillates in the air at its own resonant frequency. The piezos are mechanically mounted and therefore unaffected by sudden temperature variations. When the oscillating rods are covered with fill goods, the oscillating frequency and amplitude change. This results in a frequency reduction of the spring-mass-system.

The frequency change depends on the density of the fill goods and the immersion depth of the oscillating rods. The oscillating frequency of the resonator is detected by a built-in transducer and converted into a switching command when a preset threshold value is exceeded. When the frequency changes only slightly, which is often the case on solids, the switch detects the change in amplitude instead. For solids, the fork is also considerably larger, making the device more sensitive to changes.

Some typical applications are over-fill and dry-run protection. Thanks to its very simple and rugged design, the OPTISWITCH can be used independently of the essential physical and chemical product characteristics in nearly all applications.

The Piezo effect

Piezo ceramics can be operated in two directions of effect. When an electrical voltage (U) is applied to piezo ceramics, they become physically deformed (F – actuator effect). Conversely, piezo ceramics convert mechanical deformation into an electrical voltage (sensor direction of effect). Both directions of effect are used for vibrating level switches.
OPTISWITCH – The rugged solution for solids and liquids

In the construction materials industry, heavy dust build-up and mechanical stresses are a challenge for any level switch. This is not a problem for OPTISWITCH: The rugged unit detects the limit in the silo independently of the medium properties and reliably warns against overfilling. OPTISWITCH even masters tall, narrow silos due to the product-independent switching point. This is especially beneficial for rapid or recurring changes of media. Even AEROSIL® and other very light solids can be reliably and safely detected using OPTISWITCH.

Thanks to the exact reproducibility of the switching point and the integrated function monitoring, the OPTISWITCH is often used as overfill protection (§19 WHG) or dry-run protection for pumps. Neither adhesions on the oscillating fork nor container vibrations have an impact on the measurement.

In high temperature and high pressure applications such as steam boilers, the new OPTISWITCH 5300 applies.
Capacitance

The measuring principle

The capacitance switch operates by emitting an electromagnetic wave which penetrates the medium. Depending on the respective relative permittivity, a phase shift occurs which is then evaluated. This measuring process allows for universal use even when the medium changes.

![Electromagnetic field](image)

OPTISWITCH 6500/6600 C –

The hygienic switches

The capacitance level switches of the OPTISWITCH 6500/6600 series handle various media in industries such as food, beverage and pharmaceutical: whether you are dealing with dairy products, toothpaste or cooking oil, the hygienic switches safely and reliably detect the level or serve as dry-run protection for pumps. They can also detect liquid/liquid interfaces or even identify the presence of a specific medium. The measurement remains unaffected by foam, condensate or build-up of deposits. Another advantage of this switch family is the very fast response time of the devices and their high immunity to vibrations.
<table>
<thead>
<tr>
<th>OPTISWITCH 3X00 C</th>
<th>OPTISWITCH 4000 C</th>
<th>OPTISWITCH 5X00 C</th>
<th>OPTISWITCH 6500/6600 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring principle</td>
<td>Vibration</td>
<td>Vibration</td>
<td>Vibration</td>
</tr>
<tr>
<td>Measurable products</td>
<td>Solids and solids in water</td>
<td>Liquids</td>
<td>Liquids</td>
</tr>
<tr>
<td>Level/interface</td>
<td>+/- [solids in water]</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Standard length</td>
<td>220 mm/8.7"</td>
<td>66 mm/2.6"</td>
<td>66 mm/2.6"</td>
</tr>
<tr>
<td>Measuring range</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Length with tube extension</td>
<td>0.3…6 m/11.8"...20 ft</td>
<td>–</td>
<td>0.08…6 m/0.26…20 ft</td>
</tr>
<tr>
<td>Length with cable extension</td>
<td>0.3…80 m/11.8"...262.4 ft</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Product characteristics</td>
<td>Density: ≥0.008 kg/l/≥0.5 lb/ft³</td>
<td>Density: ≥0.7 kg/l/≥43.7 lb/ft³</td>
<td>Density: ≥0.5 kg/l/≥31.2 lb/ft³</td>
</tr>
<tr>
<td>Accuracy</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Outputs</td>
<td>Relay, transistor, contactless switch, 2-wire output</td>
<td>Transistor, contactless switch</td>
<td>Relay, transistor, contactless switch, 2-wire output, NAMUR</td>
</tr>
<tr>
<td>Power supply</td>
<td>Relay and contactless switch: 20…253 V AC/DC, transistor output: 10…55 V DC</td>
<td>Contactless switch: 20…253 V AC/DC</td>
<td>Relay and contactless switch: 20…253 V AC/DC, transistor output: 10…55 V DC</td>
</tr>
<tr>
<td>Housing material</td>
<td>Plastic, aluminum, stainless steel</td>
<td>Plastic, stainless steel</td>
<td>Plastic, aluminum, stainless steel</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-40…+70°C/-40…+158°F</td>
<td>-40…+70°C/-40…+158°F</td>
<td>-40…+85°C/-40…+185°F</td>
</tr>
<tr>
<td>Protection category</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
<td>IP65, 67; NEMA4, 4X, 6</td>
<td>IP66, 67; NEMA4, 4X, 6</td>
</tr>
<tr>
<td>Flange system</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Process connection</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Thread</td>
<td>G 1½; 1½ NPT</td>
<td>G ½, ¾, 1; ½, ¾, 1 NPT</td>
<td>G ½, ¾, 1; ½, ¾, 1 NPT</td>
</tr>
<tr>
<td>EN 1092-1</td>
<td>On request</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ASME B 16.5</td>
<td>On request</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pressure range</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Process</td>
<td>-1…16 barg/-14.5…232 psig</td>
<td>-1…64 barg/-14.5…920 psig</td>
<td>-1…160 barg/-14.5…2320 psig</td>
</tr>
<tr>
<td>Temperature range</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Process</td>
<td>-50…+250°C/-58…+482°F</td>
<td>-40…+150°C/-40…+302°F</td>
<td>-196…+450°C/-321…+842°F</td>
</tr>
<tr>
<td>Materials</td>
<td>Wetted parts</td>
<td>Stainless steel 1.4435/1.4404 (316L), others on request</td>
<td>Stainless steel 1.4435/1.4404 (316L), others on request</td>
</tr>
<tr>
<td>Approvals</td>
<td>Ex</td>
<td>ATEX, FM, CSA, EAC</td>
<td>–</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>SIL</td>
<td>§19 WHG, EAC</td>
<td>§19 WHG, shipping approvals, SIL</td>
</tr>
</tbody>
</table>
KROHNE is committed to making communication convenient. Which is why our field devices communicate reliably with controllers, control systems and PCs, and can also be used for a variety of control and regulating tasks.

Protocols and interfaces
We support proven and established protocols as well as new ones for certain industries, e.g. EtherNet/IP™ for the food and beverage industries, or PROFINET® for the water and wastewater sector.

Device integration
KROHNE meets all of the prerequisites for integration into modern plant asset management systems, based on integration technologies such as DD/EDD and FDT/DTM.

We are a longstanding member of PACTware™ and the FDT Group®. Since 2003, we provide DTMs and EDDs for our field devices with HART®, PROFIBUS® or FOUNDATION™ fieldbus interfaces.
Configuration and diagnostics via DTM's

Easy navigation, device status available anytime

Simple parameterisation supported by graphic elements

Detailed diagnostics overview with recommendations to resolve actual events

Advanced monitoring functions with optional recording of events

Fast and convenient access to process and device data from any level
Configure It
From engineering and planning to commissioning, training and documentation: our services cover all project stages, and can be offered for all enterprise sizes:

- Complete project management for instrumentation projects
- Engineering
- Commissioning
- On-site start-up
- Product training (on-site)
- Calibration, (in-situ) verification and documentation
- Maintenance services
- Seminars and trainings on various topics

Please see right page for more details on selected services.

Beyond the highest requirements

From engineering and planning to commissioning, training and documentation: our services cover all project stages, and can be offered for all enterprise sizes:

- Complete project management for instrumentation projects
- Engineering
- Commissioning
- On-site start-up
- Product training (on-site)
- Calibration, (in-situ) verification and documentation
- Maintenance services
- Seminars and trainings on various topics

Please see right page for more details on selected services.

Online tools:

PICK
Enter the serial number and get device specific documents, e.g. manuals, handbooks, calibration certificates, etc.: pick.krohnegroup.com

Configure It
Configure flow and level devices and get free 2D/3D CAD data: www.krohne-direct.com

Commissioning of flowmeters
Maintenance services

Choose from maintenance and service contracts tailored to suit all business sizes and needs:

- Spare parts and consumables
- Field service and on-site repair
- Returns
- Workshop repair
- Helpdesk

Metrological accreditation of custody transfer applications

We offer special services for metrological accreditation of measuring and loading systems for liquids and gases, according to local fiscal regulations:

- Project management from planning to commissioning, training and documentation
- For mobile and stationary measuring systems

Seminars: KROHNE Academy & KROHNE Academy online

KROHNE Academy is a series of seminars in collaboration with leading automation companies. Taking place in various countries, it addresses key operating issues, from plant safety to ways of increasing efficiency and controlling costs, and shows possible solutions. Should your interest be more towards working “hands-on” with our devices, then our service academy is what you are looking for. Learn more about KROHNE Academy at www.krohne.com

KROHNE Academy online is an online eLearning platform, focusing on industrial process instrumentation. It comprises electronic learning content with full audio, explaining measuring technology without relation to specific manufacturers. Register now for free and start your training at academy-online.krohne.com

In-situ verification

OPTICHECK is the essential tool to assure that your process measuring devices are performing according to specification. When connected to an installed meter (in-situ), it gathers data to ensure that the meter is performing within 1% of the factory calibration.

- Printed individual verification certificate
- Preventive maintenance and service features
- Storage of verification data
- Download factory calibration settings from KROHNE manufacturing database
Calibration is one of KROHNE’s core areas of expertise. If you buy a KROHNE product, you will get a measuring device that performs most accurate with low uncertainty under real process conditions.

To achieve this, we operate more than 140 calibration facilities for volume flow, mass flow, level, temperature, density and pressure to (wet-)calibrate any device we manufacture. For example, every flowmeter is wet-calibrated using water or air as standard before leaving our facilities.

We can also provide customer specific calibration such as:

- Carry out multipoint calibrations
- Vary different parameters such as temperatures, viscosities, pressures etc.
- Use the actual medium or similar
- Build or emulate customer-specific flow geometries
- Use piping provided by the customer

For calibration we only use direct comparison of measurands (e.g. we calibrate our Coriolis mass flowmeters with a gravimetric weighing system).

Our calibration rigs are the most accurate used in measuring device production worldwide: the accuracy of the reference is usually 5 to 10 times better than that of the meter under test.
This goes for small as well as for very large sizes: KROHNE operates the world’s most precise volumetric calibration rig for flowmeters up to DN3000/120” with a certified accuracy of 0.013 %. The reference vessel is a 44 m/144 ft high tank containing almost 0.5 million litres/132,000 gal (US) of water which allows for a maximum flow rate of 30,000 m³/h/7,925,000 gal (US)/h.

Certified technology for fiscal & custody transfer applications

Our meters can be calibrated and certified according to various standards such as OIML, API, Measuring Instruments Directive (MI-001, 002, 004, 005), GOST, etc. The standards we use for calibration are ISO/IEC 17025 accredited and traceable to international or national standards. Regular inspections by national metrology institutes, round robin tests and alignments with national and international metrological standards according to ISO 9000 and EN 45000 guarantee the quality and comparability of our calibration rigs. Staff performing the calibrations are trained and given regular re-trainings to ensure quality and continuity.
KROHNE – Products, Solutions and Services

- Complete product portfolio: flow, level, temperature, pressure, process analytics
- Application-specific system solutions for various industries
- Services for instrumentation projects

Contact

Head office:
KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg
Germany
Tel.: +49 203 301 0
Fax: +49 203 301 103 89
info@krohne.com

Global companies and representatives
The current list of all KROHNE contacts and addresses can be found at:
www.krohne.com