5-Beam ultrasonic flow meter for custody transfer of LNG

- The successor to shore tank and ship tank inventory measurement.
- Provides guaranteed 0.3% OIML-approved accuracy for true custody transfer independent of external influences such as tank geometry, strapping tables, or ambient conditions.
- Automatic LNG flow detection for accurate flow measurement of billable product
- Cryogenic design for highest available accuracy
It’s time to consider a good and reliable custody transfer metering system for LNG ...

Now you can rely on an LNG metering system from the inventor of multi-beam custody transfer metering that offers the highest and consistently available accuracy that is independent of unknown and uncorrected variables such tank geometry and ambient temperatures.

- **Accurate**
 Reduces give-away though accurate and correct measurement
 (10 times more accurate than existing tank inventory systems)

- **Universal multi-product**
 Multi-beam means you can use one off-loading meter to discharge various ships with varying product of different calorific values from various origins When used at loading origin and off-loading destination it can reliably measure boil off and loss in transit

- **Reliable**
 Multi-beams not only provide product differentiation, they also provide multiple built-in redundancy ensuring no drop in metering availability

- **Cost-conscious**
 The straight tube internal design causes no pressure drop and therefore lowest discharging costs. Auto detection of LNG as opposed to boil off, with automatic start of measurement for true discharge quantities.

- **Safe**
 No chance of flash gasification in meter causing increased gas in receiving tanks.

No other system available provides as many advantages as

ALTOSONIC V LNG
The design ensures better accuracy

ALTOSONIC V LNG

- Custody-transfer ultrasonic flow meter

KROHNE is the company with the longest experience in multi-beam ultrasonic flow measurement. Our cryogenic measurement experience goes back many years. This led to the development of the ALTOSONIC V LNG as more accurate replacement for tank inventory measurement.

- The internal design makes the difference

Regular ultrasonic liquid flow meters can measure LNG. But our customers wanted more accuracy, more reliability, more trustability. Features they are accustomed to from KROHNE.

- Full bore measuring tube to avoid gasification or density changes
- Specially isolated transducers to prevent crosstalk and maximise signal strength
- Special transducer windows to maximize contact with product and reception of transmitted beam, again for better signal quality
- Experience-based algorithms for perfect determination of flow from signals and therefore maximum accuracy
- Redundant beams ensure permanent availability throughout the tanker discharge

Award-winning technology

At the 2009 Expogaz exhibition in Lyon, France, ALTOSONIC V LNG was awarded the First Prize in the category of technological advancement. The judges found that the unique transducer construction with its anti-crosstalk feature went further than ever before to ensuring the best possible measurement under cryogenic conditions.
Fully tested by NIST, Germany’s PTB and the NMi in the Netherlands.

ALTOSONIC V LNG is certified to -200°C
Design features for better accuracy and reliability.

Straight body - full-bore metering tube

Tankers are discharged as quickly as possibly, since time is money. The full-bore design of the ALTOSONIC V LNG ensures absolutely no change in flow conditions from the pipeline through the meter and beyond. There is no pressure loss nor flow rate deviations. The result is consistently accurate metering, without any risk of in-line gasification.

Anti-crosstalk transducers - higher accuracy

Under severe cryogenic conditions a normal transducer would leak the signal around the meter body to the opposite transducer. This would result in a much higher noise, and make measurement less sensitive.

ALTOSONIC V LNG overcomes this by a unique acoustic shielding that prevents acoustic leakage outside the transducer.

Ultracontact window - maximum signal

Contact between the LNG and the piezo-generated signal would fall at cryogenic temperatures if you use a normal transducer. The ALTOSONIC V LNG transducers have specially researched laminar window materials whose Young’s modulus and conductivity properties are optimized for LNG at -163°C. There is no signal deterioration, no drop-outs, and no noise.

The better the signal, the better the measurement.
ALTOSONIC V LNG
From liquefaction to de-gasification

ALTOSONIC V LNG ultrasonic custody-transfer flow meter can be used along the entire chain:

- Liquefaction plant
- LNG Tanker loading
- LNG Tanker off-loading
- De-gasification
- Also as part of a Leak Detection and localisation system

Values obtained at one site are comparable 1:1 with values obtained with any ALTOSONIC V LNG anywhere in the world.

Thus you can obtain an accurate measurement of plant output, accurate boil-off figures, accurate off-loading to intermediate storage and accurate feed to the de-gasification plant - therefore maximum plant efficiency.

There is no variables such as tank geometry, strapping tables, environmental or geographic issues.
ALTOSONIC V LNG
Performance that pays off

Numerous authorities have attested the excellent accuracy of ALTOSONIC V LNG. It is more accurate than all currently available standards and a factor of min. 8 times more accurate than standard inventory procedures.

The pay-off is less give-away, more accurate billing, standardised measurement throughout the world from the liquefaction plant to de-gasification.

Years of experience confirm the quality of the ALTOSONIC V and the consistent accuracy that remains stable for decades. [Vigdis field unmanned metering station in the North Sea, data between 1998 and 2009]

<table>
<thead>
<tr>
<th>ALTOSONIC V LNG Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate number</td>
</tr>
<tr>
<td>MID directive</td>
</tr>
<tr>
<td>Diameter range</td>
</tr>
<tr>
<td>Flow range</td>
</tr>
<tr>
<td>Minimum velocity</td>
</tr>
<tr>
<td>Viscosity range</td>
</tr>
<tr>
<td>Minimum temperature</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
</tbody>
</table>

Tank inventory versus custody-transfer flow measurement

A typical tanker has a capacity of 125,000 m³.
A typical voyage tanker lasts 20 days.
A tanker can do around 10 round-trips per year including the time for waiting and discharge.

Each tanker transports 1.25 million m³ per year.

Flow accuracy is 8 times more accurate than inventory accuracy.

Tank inventory 2.5%
ALTOSONIC V LNG 0.3%

The difference is 27,500 m³ per tanker per year
US $ 3 million at current spot prices!
Technical data

Approvals

<table>
<thead>
<tr>
<th>MID approval</th>
<th>Measuring Instrument Directive, MID 005, 2004/22/EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIML</td>
<td>R-117-1 Class 0.3</td>
</tr>
<tr>
<td>API</td>
<td>Chapter 5.8 Section 8</td>
</tr>
</tbody>
</table>

National approvals

- i.e. ONML (Algeria), BEV (Austria), ANP (Brazil), INMETRO (Brazil), LNE (France), JJG 1030 (China), PTB (Germany), Legal Metrology Dept. (India), Migas (Indonesia), UTIF (Italy), SIRIM (Malaysia), CENAM (Mexico), Justervesne (Norway), DTI (United Kingdom), NMI (Netherlands), DPR (Nigeria), NDC (Libya):

GOST

- Gosstandart approval for Russia

ATEX

- PTB 01 ATEX 2012 X (part of the UFS 500 approval)
 - II 2 G EEx ib IIC T6 ... T4
- KEMA 02 ATEX 2168
 - II 2 G EEx (ib) IIB T5

Performance

<table>
<thead>
<tr>
<th>Measurement parameters</th>
<th>Actual volume flow rate and totalised volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum measuring range</td>
<td>-10 m/s < velocity < +10 m/s (-66 ft/s < velocity < +66 ft/s)</td>
</tr>
<tr>
<td>Minimum measuring range</td>
<td>0.2 m/s</td>
</tr>
<tr>
<td>Diameter range</td>
<td>4 ... 40 inch</td>
</tr>
<tr>
<td>Viscosity range</td>
<td>0.1 ... 400 cSt (higher viscosities on request)</td>
</tr>
<tr>
<td>Density range</td>
<td>200 ... 1200 kg/m3</td>
</tr>
<tr>
<td>Zero stability</td>
<td>< 0.2 mm/s</td>
</tr>
<tr>
<td>Accuracy</td>
<td>< 0.2 % of measured value for 1 m/s to 10 m/s</td>
</tr>
<tr>
<td>Repeatability</td>
<td>OIML ± 0.06 %</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>± 0.027 % (95 % confidence level)</td>
</tr>
</tbody>
</table>
Installation requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Process conditions are always required and must be forwarded and discussed with KROHNE specialists.</td>
</tr>
<tr>
<td>Position</td>
<td>The flow meter can be installed in a horizontal or vertical position. In a horizontal pipeline the transducers need to be installed in a horizontal plane.</td>
</tr>
<tr>
<td>Completely filled sensor</td>
<td>The UFS-V sensor needs to be installed at a location in which a completely filled pipeline is guaranteed.</td>
</tr>
<tr>
<td>Flow conditioning</td>
<td>Inlet: Minimum standard requirements are 10D straight inlet pipe section with integrated ISO pipe bundle or if no presence of swirl 20D inlet is sufficient. Outlet: On the outlet a minimum of 3D straight pipe section is required.</td>
</tr>
<tr>
<td>Bush guides</td>
<td>The UFS-V sensor and inlet pipe section are provided with “bush guides” to guarantee optimum installation on site.</td>
</tr>
<tr>
<td>Zero checking</td>
<td>Zero setting is NOT required with KROHNE ultrasonic flow meters.</td>
</tr>
<tr>
<td>Cavitation</td>
<td>Sufficient back pressure is required to avoid cavitation.</td>
</tr>
<tr>
<td>Water in oil (well mixed)</td>
<td>6 % I3 > 1 m/s</td>
</tr>
<tr>
<td>Maximum air/gas content</td>
<td>Standard < 2% (Vol.), for higher content < 15% consult KROHNE</td>
</tr>
<tr>
<td>Maximum solid content</td>
<td>Standard < 5% (Vol.), for higher content consult KROHNE</td>
</tr>
<tr>
<td>Humidity</td>
<td>Maximum 95 % humidity for all components</td>
</tr>
</tbody>
</table>

Materials

UFS
- **Flanges**: Stainless steel AISI 316 L (1.4404)
- **Measuring tube**: Stainless steel AISI 316 L (1.4404)
- **Housing**: Stainless steel AISI 316 L (1.4404)
- **Connection box**: Stainless steel AISI 316 L (1.4404)

UFC
- **Ex-d housing**: Copper free aluminium, AISI 12 according to ISO 3522 – 81 (other materials on request)
- **Inlet & Outlet section**
 - **Flanges/pipe**: Carbon steel ASTM A105 / Carbon steel ASTM A106 (other materials on request)
 - **Flow conditioner**: Stainless steel

Finish UFS, UFC and in/outlet sections
- **Standard**: KROHNE silver
- **Optional**: KROHNE offshore paint

Protection category
- **UFP**: IP 67 equal to NEMA 4/4X/6 to IEC 529
- **UFC**: IP 67 equal to NEMA 4/4X/6 to IEC 529

Sizes
- **UFS-V sizes**: up to 40”

Pressure class
- **Standard**: 150 lbs, 300 lbs, 600 lbs [higher pressure ratings on request]

Sensor cable
- **Connection**: M20 x 1,5 or ½” NPT or PF ½

Length [UFS to UFC]
- 5, 10, 15, 20, 25 or 30 metres
ALTOSONIC V LNG skid-mounted

KROHNE Oil & Gas provide solutions to LNG measurement, from concept to completion. From metering to supervisory for both gas and liquid.
Ask for our comprehensive Corporate brochure and details on Total systems and solutions for the LNG industry.
Dimensions (metric)

<table>
<thead>
<tr>
<th>Size (inch)</th>
<th>Length (inch)</th>
<th>ID (inch)</th>
<th>Height (inch)</th>
<th>Width (inch)</th>
<th>Weight [lbs]</th>
<th>Weight [lbs]</th>
<th>Weight [lbs]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 D inlet</td>
<td>5 D outlet</td>
<td>7 D outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1300</td>
<td>388</td>
<td>623</td>
<td>650</td>
<td>600</td>
<td>574</td>
<td>292</td>
</tr>
<tr>
<td>18</td>
<td>1400</td>
<td>438</td>
<td>668</td>
<td>700</td>
<td>860</td>
<td>759</td>
<td>357</td>
</tr>
<tr>
<td>20</td>
<td>1500</td>
<td>483</td>
<td>729</td>
<td>750</td>
<td>960</td>
<td>1123</td>
<td>438</td>
</tr>
<tr>
<td>24</td>
<td>1800</td>
<td>575</td>
<td>813</td>
<td>813</td>
<td>1050</td>
<td>1335</td>
<td>623</td>
</tr>
</tbody>
</table>

Dimensions (imperial)

<table>
<thead>
<tr>
<th>Size (inch)</th>
<th>Length (inch)</th>
<th>ID (inch)</th>
<th>Height (inch)</th>
<th>Width (inch)</th>
<th>Weight [lbs]</th>
<th>Weight [lbs]</th>
<th>Weight [lbs]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 D inlet</td>
<td>5 D outlet</td>
<td>7 D outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>512</td>
<td>153</td>
<td>245</td>
<td>256</td>
<td>1320</td>
<td>1263</td>
<td>642</td>
</tr>
<tr>
<td>18</td>
<td>551</td>
<td>172</td>
<td>263</td>
<td>276</td>
<td>1892</td>
<td>1670</td>
<td>785</td>
</tr>
<tr>
<td>20</td>
<td>591</td>
<td>190</td>
<td>287</td>
<td>295</td>
<td>2112</td>
<td>2471</td>
<td>964</td>
</tr>
<tr>
<td>24</td>
<td>709</td>
<td>226</td>
<td>320</td>
<td>320</td>
<td>2310</td>
<td>2937</td>
<td>1371</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size (inch)</th>
<th>Length (inch)</th>
<th>ID (inch)</th>
<th>Height (inch)</th>
<th>Width (inch)</th>
<th>Weight [lbs]</th>
<th>Weight [lbs]</th>
<th>Weight [lbs]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 D inlet</td>
<td>5 D outlet</td>
<td>7 D outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>512</td>
<td>150</td>
<td>255</td>
<td>256</td>
<td>1518</td>
<td>1470</td>
<td>847</td>
</tr>
<tr>
<td>18</td>
<td>551</td>
<td>171</td>
<td>280</td>
<td>276</td>
<td>1980</td>
<td>1943</td>
<td>1058</td>
</tr>
<tr>
<td>20</td>
<td>591</td>
<td>190</td>
<td>305</td>
<td>295</td>
<td>2464</td>
<td>2805</td>
<td>1296</td>
</tr>
<tr>
<td>24</td>
<td>709</td>
<td>226</td>
<td>360</td>
<td>295</td>
<td>2860</td>
<td>3546</td>
<td>1982</td>
</tr>
</tbody>
</table>

Other sizes on request
Systems
- Electromagnetic flowmeters
- Variable area flowmeters
- Ultrasonic flowmeters
- Mass flowmeters
- Vortex flowmeters
- Flow controllers
- Level measuring instruments
- Temperature measuring instruments
- Pressure measuring instruments
- Analysis

Products
- Gas Ultrasonic Flow Meters for Custody Transfer
- Liquid Ultrasonic Flow Meters for Custody Transfer
- Mass Flow Meters for Custody Transfer
- Venturis for Wet Gas Metering
- Prover sphere detectors
- Flow Computers
- Supervisory Systems
- Meter Validation Software Packages
- Electromagnetic Flow Meters
- Level Measuring Instruments
- Variable Area Flow Meters
- Temperature Measuring Instruments
- Pressure Measuring Instruments
- Analyzers
- Vortex Flow Meters
- Flow Controllers

KROHNE Oil & Gas
Minervum 7441
4817 ZG Breda
The Netherlands
Tel.: +31-76.711.2000
Fax.: +31-76.711.2001
koginfo@krohne-oilandgas.com

KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
D-47058 Duisburg
Germany
Tel.:+49 (0)203 301 0
Fax:+49 (0)203 301 10389
info@krohne.de

www.krohne-oilandgas.com