General advice on safety

The device will normally weigh between approx. 11 kg / 25 lb and 35kg / 77 lb. Carry the device using two people, lifting it by the flange holes and supporting the probe. Lifting gear may also be used but no attempt should be made to lift the device by the probe.

Range of applications

The BM 100 A TDR Level gauge measures the level and volume of liquids and liquid gases. It can also measure the level and volume of pastes, powders, slurries and granular products.

The BM 100 A also permits continuous and simultaneous measurement of liquid level and interface of two liquids.

For the storage of volatile products, such as water and carbon disulphide tanks, the BM 100 A can also be equipped with a probe (type G) to measure the interface with a top mounted probe: this avoids the resultant safety issues of installing a gauge under the tank.
Principal gauge components

1. Cable entry (output)
2. Cable entry (power supply)
3. Local user interface (display screen, buttons and magnetically-actuated hall sensors)
4. Nameplate (see diagram on the following page)
5. Flange
6. Single cable probe
7. Counterweight
8. Twin cable probe
9. Spacer
10. Short-circuit
11. Equipotential bonding system connection (Ex)
12. Isolating chamber – separates electronics housing from hazardous products
13. Pressure release plug (1 bar or 14.5 psi limit) and vent
Items supplied
- signal converter connected to a cable, coaxial or rod signal guidance probe
 Optional: remote extension with wall support, sunshade (with fastening material in each case)
- bar magnet for operator control / parameter assignment (only in version with local display)
- wrench for the covers

Documentation supplied
- approval documents, unless reproduced in the installation and operating instructions.

Product liability and warranty
The BM 100 A TDR level gauge is designed solely for measuring the distance, level, interface and volume of liquids, pastes, slurries, solids and particulate materials.
The BM 100 A TDR level gauge does not form part of an overfill protection system as defined in WHG nor is it concerned by the Pressure Equipment Directive (PED) 97/23/EC.
Special codes and regulations apply to its use in hazardous areas.
Responsibility as to suitability and intended use of these level gauges rests solely with the user.
Improper installation and operation of our level gauges may lead to loss of warranty.
In addition, the "General conditions of sale", found on the back of the invoice and forming the basis of the purchasing contract, are applicable.
If you need to return the device to the manufacturer or supplier, please refer to the information given at the end of this manual.
1 Mechanical installation

1.1 Handling and storage

Caution:
The probe is a critical gauge component. Do not damage—Handle with care!!!

1.1.1 Avoiding blows

Avoid hard blows, impacts and jolts when handling the BM 100 A.

Caution: fragile electronics

1.1.2 Avoiding bending

Rod/ Coaxial probes: support the probe to avoid bending.

Support probe here

1.1.3 Avoiding cable kinks or fraying

Do not coil the cable less than 400mm / 16” in diameter. Cable kinks or fraying will cause measurement errors.
1.2 Installation restrictions

Hazardous-duty systems (Ex, FM...):
- refer to the supplementary instructions for gauges approved for use in hazardous locations before installation.
- check that the flange, gasket and probe materials are compatible with the product. Read the information given on the converter nameplate, the flange markings and specifications in the approval certificates.

1.3 Mounting on a tank

1.3.1 Installation instructions: General notes
The fitter should give some thought to tank fittings and shape:
- nozzle position in relation to the tank walls and other objects inside the tanks
 (Warning: this free area will depend on the probe type selected, refer to section 1.3.2)
- type of tank roof, i.e. floating, concrete, integral, etc; and base, i.e. conical, etc.

1.3.2 Installation instructions: Nozzle
Nozzle height

Recommendation (especially for single probes and powder applications):
Do not fit a nozzle longer than its diameter.

\[h \leq \varnothing d \]

, where \(h \) = nozzle height and \(d \) = nozzle diameter.

Contact KROHNE if this relationship cannot be respected.
Nozzles extending into tank

Caution:
Do not use nozzles that extend into the tank. This will block the emitted pulse.

Process connection
For the gauge to make accurate measurements:
- the tank process connection must be level.
- ensure a good fit with the gauge process connection
- the tank roof should not deform under the weight of the gauge

Discontinuities that influence the probe’s EM (electromagnetic) field

1 Agitator
2 Support beam perpendicular to the pulse direction
3 Abrupt changes in tank cross section
4 Heating tubes
5 Alternative solution: reference chamber - electromagnetic field is contained within chamber. See also notes in section.
6 Gauge electromagnetic field:
 Any intruding metallic object will be detected in this zone if perpendicular to the emitted pulse direction.

\(\times\) = Do not fit the process connection near to these objects.
<table>
<thead>
<tr>
<th>Probe Type</th>
<th>Recommended minimum distance of probe from objects inside the tank in millimetres / inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single (types F, H and K)</td>
<td>300 / 12</td>
</tr>
<tr>
<td>Twin (types A, B, G and L)</td>
<td>100 / 4</td>
</tr>
<tr>
<td>Coaxial (type D)</td>
<td>0 / 0</td>
</tr>
</tbody>
</table>

Electromagnetic field shape around probe, by type (not to scale)

<table>
<thead>
<tr>
<th>Single (types F, H and K)</th>
<th>Twin (types A, B, G and L)</th>
<th>Coaxial (type D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø600 mm / Ø24 in</td>
<td>200 mm / 8 in</td>
<td>Ø28 mm / Ø2.4 in</td>
</tr>
</tbody>
</table>

No beam angle for any probe type.

For clean applications only:
Coaxial (type D) probes may be used close to or touching objects or walls as the EM field generated by the probe is contained within the probe’s outer sheath.
Process connection and entry pipe

Caution:
Do not put the nozzle close to the entry pipe. Pouring the product directly onto the probe will give false readings. Install deflector plate if impossible to distance gauge from entry pipe.

Stilling wells
Tanks with floating roofs for petrochemical applications: see also section 1.3.4.

1 Stilling well
2 Tank
3 Floating roof
4 Product (petroleum applications)
5 Well fixed to tank base (no roof deformation)
6 Sediment
1.3.3 Installation instructions: Gauge - all applications
BM100 A gauges are designed to be mounted on a suitable process connection on a tank or sump. Install the gauge using two people to avoid damaging the probe. Support the housing and the probe.

Gauge installation: Cable probe types: B, H, K & L

1 Caution:
 Do not over-bend probe!

2 Inserting the probe:
 hold more than one metre above the opening to avoid cable bending.

Outdoor sites
Fit a sunshade on the gauge for open-air installations: this is supplied on demand. The ambient temperature limits are given below.
Cable probes: entanglement and straightness
The cable must be straight once inserted into the tank. The cable counterweight should not touch
the bottom of the tank. The cable must be far from objects (e.g. agitators) to avoid entanglement.

Rigid length of single and twin cable probes

<table>
<thead>
<tr>
<th>Cable diameter</th>
<th>Rigid length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single cable</td>
<td></td>
</tr>
<tr>
<td>Ø4mm or 0.15”</td>
<td>145mm or 5¾”</td>
</tr>
<tr>
<td>Ø6mm or 0.3”</td>
<td>200mm or 8”</td>
</tr>
<tr>
<td>Twin cable</td>
<td></td>
</tr>
<tr>
<td>Ø4mm or 0.15”</td>
<td>145mm or 5¾”</td>
</tr>
<tr>
<td>Ø6mm or 0.24”</td>
<td>145mm or 5¾”</td>
</tr>
</tbody>
</table>

1.3.4 Installation instructions: Gauge - liquid applications

This sub-section covers the installation of each probe type and recommendations for liquid
applications.
Special attention should be paid to probe bending in agitated products (tanks with agitators, ships’
tanks and eddy currents) in liquid applications. See also diagram on the following page.

Probe bending in agitated products: recommended solutions

<table>
<thead>
<tr>
<th>Probe (Type)</th>
<th>Supports and fastenings</th>
<th>Stilling well installation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twin rod (A)</td>
<td>Weld a 45mm / 1.8” internal diameter tube on the bottom of the vessel.</td>
<td>Possible. On-site calibration may be required to maintain accuracy. Repeatability is unaffected. Centring the probe is recommended. Contact KROHNE for more information***.</td>
</tr>
<tr>
<td>Twin cable (L)</td>
<td>Fit an anchor with an M10 x 1thread e.g. spring ring or hook underneath the counterweight. A turnbuckle may also be selected when ordering the cable. CAUTION: 6 Nm / 4.4 lbf.ft maximum torque.</td>
<td>Possible: 50 mm / 2” minimum diameter chamber. Contact KROHNE for assistance***.</td>
</tr>
<tr>
<td>Single rod (F)</td>
<td>Weld a 12mm / 0.5” internal diameter tube on the bottom of the vessel, insert the rod**.</td>
<td>Possible: 50 mm / 2” minimum diameter chamber. Contact KROHNE for assistance***.</td>
</tr>
<tr>
<td>Single cable (H)</td>
<td>Fit an anchor M10x1 (Ø4mm cable) thread e.g. spring ring or hook. A chuck or turnbuckle may also be selected when ordering the cable. CAUTION: 4 Nm / 2.9 lbf.ft maximum torque.</td>
<td>Possible: 50 mm / 2” diameter minimum. Contact KROHNE for assistance**.</td>
</tr>
<tr>
<td>Coaxial (D)</td>
<td>Weld a 30-32mm / 1.2” internal diameter tube on the bottom of the vessel, insert the tube. A probe may be fixed with braces.</td>
<td>Unnecessary: probe unaffected by nearby objects.</td>
</tr>
</tbody>
</table>

* Reference (bypass) chamber or stilling well.
** Contact KROHNE. A factory menu function may need to be changed.
*** A list of KROHNE offices are supplied on the last page of these instructions.
1.3.5 Installation instructions: Gauge - solid applications

False readings:

1. Do not let probe touch the side of the nozzle

Conical silo nozzles, False readings and traction on the cable probes

Caution

2. **High traction forces**: We recommend that the probe should not be anchored to avoid excessive traction loads on the cable.

3. **Bending and traction**: Position the connection on the roof at $\frac{1}{2}$ radius of the tank and with minimum nozzle height. This will avoid damage due to bending and traction during emptying.
Traction forces during emptying cycles for powder applications

Traction load is dependent upon the height and shape of the tank, product particle size & density, and the rate at which the tank is emptied. The table below gives the load at which cable probes will break.

Cable maximum design loads (traction)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Maximum Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type K : Single cable Ø8 mm / Ø 0.3"</td>
<td>3.5 T / 7700 lb</td>
</tr>
<tr>
<td>Type B : Twin cable Ø6 mm / Ø 0.2"</td>
<td>3.6 T / 7900 lb (1.8 T per cable)</td>
</tr>
</tbody>
</table>

Traction on cable according to product (approximate value in metric tons & pounds)

<table>
<thead>
<tr>
<th>Material</th>
<th>Probe used</th>
<th>Probe Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 m / 32.8 ft.</td>
</tr>
<tr>
<td>Cement</td>
<td>Single cable Ø8 / Ø 0.3"</td>
<td>1.0 T / 2200 lbs</td>
</tr>
<tr>
<td>Flyash</td>
<td>Single cable Ø8 / Ø 0.3"</td>
<td>0.5 T / 1100 lbs</td>
</tr>
<tr>
<td>Wheat</td>
<td>Single cable Ø8 / Ø 0.3"</td>
<td>0.3 T / 660 lbs</td>
</tr>
<tr>
<td>PE granules</td>
<td>Twin cable Ø6 / Ø 0.2"</td>
<td>0.2 T / 440 lbs</td>
</tr>
</tbody>
</table>

Electro static discharge (E.S.D.)

BM100 Standard and Ex gauge electronics are normally shielded up to 16KV against E.S.D.*.
*For non-Ex powder applications, BM100A probes are protected up to 32 kV.

Note:

E.S.D. cannot be solved by BM100A E.S.D. protection. It is the customer’s responsibility to avoid E.S.D. by connecting the tank, product and probe installation to ground.

![Diagram of warning sign]

1. **Danger of injury**

The probe may become electro statically charged during operation; earth the probe by pushing it against tank wall with a suitably isolated tool just before touching it to avoid receiving a shock.

2. Earth the entry pipe and product.

Product deposits on the nozzle and probe

Product build-up can occur under the nozzle: this may weaken the pulse. Avoid cavities that permit the build-up of deposits.

Tank roof deformation

Tank roofs should support loads of at least 3.5 tonnes / 7700lb for gauge installations using type K single cable probes and 3.6 tonnes / 7900 lb for gauge installations using type B twin cable probes without deformation.
2 Electrical Connections

2.1 Insulation rating
The gauge transmitter electrical insulation conforms to IEC 1010-1. Please note the information below concerning each rating category.

<table>
<thead>
<tr>
<th>Category</th>
<th>Rating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>overvoltage category III</td>
<td>The gauge does not have an integrated switch or circuit-breakers. These elements must be installed in conformance to local regulations and EU Low Voltage Guidelines and to properly isolate the equipment when necessary. Note that this is not obligatory for instruments with 24 V power supply boards. 4 to 6.3A time lag fuses are recommended for external installation. Fuses must be installed on every electrical conductor for the system to conform to current regulations. Note that the active phase conductor, L, is protected by an internal fuse: the neutral conductor, N, is not.</td>
</tr>
<tr>
<td>Insulation</td>
<td>contamination level 2</td>
<td>The contamination level refers to the protection of internal elements of the signal converter. Rated IP67 (equivalent to NEMA 6-6P) against ingress of water and other foreign bodies. Note that the gauge can operate in contamination level 4 conditions if installed correctly.</td>
</tr>
<tr>
<td>Protection</td>
<td>class 1</td>
<td></td>
</tr>
</tbody>
</table>

Galvanic isolation of terminals
The gauge conforms to the following standard and E.U. Directive:

<table>
<thead>
<tr>
<th>Standard/Directive</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN (IEC) 61010-1</td>
<td>Safety requirements for electrical equipment for measurement, control and laboratory use (low tension)</td>
</tr>
</tbody>
</table>

The BM100 A gauge outputs are isolated from the power supply and ground in accordance with the regulations given above. An external barrier is unnecessary.
2.2 Electrical installation instructions

2.2.1 Wiring general notes

Read these instructions carefully

Wiring must comply with any existing local regulations. Use appropriate wiring methods, conduits and fittings to maintain a NEMA 6-6P / IP67 rating.
1. Always disconnect the mains power supply before opening the housing,
2. unscrew the terminal compartment using the special wrench provided,
3. use the top cable entry port for the power supply (see “Principal gauge components”),
4. use a metal cable gland for input power leads to minimise RFI (radio frequency interference) / EMI (electromagnetic interference) effects,
5. use a reinforced cable for the outputs,
6. do not cross or loop wires in the signal converter wiring box,
7. do not kink cables close to the glands. Cover with a metallic sheath at this point if necessary,
8. make U-bends in the cable to provide water with run-off points,
9. earthing the device shall be done according to the local applicable installation standards (EN 60079.14 in Europe),
10. and make sure that the cover thread in the housing is well greased and the O-ring is in good condition before replacing the cover.

Shutting off the power supply: non-hazardous zones
Remember to disconnect the power supply before opening the housing.

Shutting off the power supply: hazardous zones
Wait before opening the housing cover. Refer to Supplementary Installation and Operating Instructions for the BM 100 A/Ai KEMA 01 ATEX 1078X Gauge for the time required.
2.2.2 Wiring connections

Open the signal converter housing rear cover, using the plastic wrench supplied. The terminal connections are labelled. The standard connections are shown below:

Before starting to wire:

- check that the power supply corresponds to the power board installed and
- check which output option you have selected.

This information will be indicated on the underside of the rear housing cover and on the gauge nameplate.

Terminal layout: non – Ex version

![Diagram of terminal layout]

X = Terminal not used
(X) = Terminal not used except for RS485 outputs

Ensuring a good contact and protection of wire strands
Local regulations concerning electrical wiring must be followed and obeyed. If no details are given, we recommend:
- crimped metal sheaths over the wire strands
- power supply cables should be rated for 500 V at least, with a cable diameter of 0.5 to 1.5 mm / 0.02" to 0.06" (non-Ex applications only).
- the output current cable diameter should be from 0.5 to 0.75 mm / 0.02" to 0.03"

PE Ground Terminal notes
The internal earth connection shall be used according to local applicable installation standards, in Europe the Low voltage Standard prescribes the connection of the yellow/green cable in case of 230VAC.
Terminal layout: Ex version

(X) = Terminal not used except for RS485 outputs

Wiring the gauge for use in hazardous areas (Ex & FM)
Use the correct wires and spade tags for terminal connections as specified in the Supplementary Installation and Operating Instructions for the BM100 A/Ai KEMA 01 ATEX 1078X Gauge.

PE Ground Terminal notes
The internal earth connection shall be used according local applicable installation standards, in Europe the Low voltage Standard prescribes the connection of the yellow/green cable in case of 230VAC.

Options, power supply
The type of power supply to be used will be indicated on the gauge nameplate.

1. 100 – 240V AC -15%/+10% ; Power output : 9VA
2. 24 V AC/DC -15%/+10% ; Power output : 9VA
Options, output
The output wires should be wired to the gauge terminals according to the type of output selected when the order was placed. The type of output supplied will be indicated on the gauge nameplate and a sticker on the inside of the housing rear cover. The principle output options are shown below:

- 1 passive output (passive = external power source used for measurement output)

![Diagram of 1 passive output]

\[U_{\text{max.}} = 30 \, \text{VDC} \]
\[\text{Max. load, } R_L = \frac{U - 8}{22 \times 10^{-3}} \, \Omega \]

- 1 active output (active = internal power source used for measurement output)

![Diagram of 1 active output]

\[U_{\text{max.}} = 30 \, \text{VDC} \]
\[\text{Max. load, } R_L = 350 \, \Omega \]

- 2 passive outputs

![Diagram of 2 passive outputs]

\[U_{2 \text{ max.}} = 30 \, \text{VDC} \]
\[\text{Max. load, } R_{L2} = \frac{U - 8}{22 \times 10^{-3}} \, \Omega \]
\[U_{1 \text{ max.}} = 30 \, \text{VDC} \]
\[\text{Max. load, } R_{L1} = \frac{U - 8}{22 \times 10^{-3}} \, \Omega \]
• 1 RS 485 output
 with / without optional passive analogue current output for direct readings**

 analogue output current only

 5 6 4 4.1 X 4.2

 4 - 20 mA

 U max. = 30 VDC
 Max. load, \(R_L = \frac{U - 8}{22 \times 10^{-3}} \)

• PROFIBUS PA output & optional*
 with / without optional passive analogue current output for direct readings**

 analogue output current only

 I1 I1 D D (4.1) X

 housing

 PROFIBUS PA

 4 - 20 mA

 U max. = 30 VDC
 Max. load, \(R_L = \frac{U - 8}{22 \times 10^{-3}} \)

 * BM 100 A device management: a GSD file providing a device communication features list is delivered with PROFIBUS PA-output devices
 ** must be specified in customer order
3 User Interface

The BM 100 A may be configured and operated using a user interface set into the signal converter housing or a remote link.

3.1 Power On and self-test mode

The BM 100 A automatically self-tests once connected to a power source. The screen readout shown on the left will be displayed. This test takes from 20 seconds to 1 ½ minutes to complete. The local display will then switch over to the operation mode display shown below.

Firmware release programmed into the EPROM (Electrically Programmable Read Only Memory)

3.2 Local user interface

The BM100A Local user interface is simple to use. It has three push-buttons, three magnetically-keyed sensors for configuring the gauge without removing the front cover in hazardous zones and a three-line LCD (Liquid Crystal Display) screen at the front of the signal converter housing.

1. **ENTER Hall Sensor:**
 - Keyed using a bar magnet. As item 6.

2. **First Display Line:**
 - Operating mode - measurement value
 - Configuration mode - function number

3. **Second Display Line:**
 - Operating mode - item measured and units
 - Configuration mode - function definition

4. **UP Hall Sensor:**
 - Keyed using a bar magnet. As item 5.

5. **Press the UP push-button:**
 - To increase the value of a selected digit
 - For password definition: code U or ↑

6. **Press the ENTER push-button:**
 - To go back a step in the menu
 - To validate data entered
 - For password definition: code E or ↓

7. **Press the RIGHT push-button:**
 - To enter configuration mode
 - To move cursor right in configuration mode
 - For password definition: code R or →

8. **RIGHT Hall Sensor:**
 - Keyed using a bar magnet. As item 7.

9. **Status Markers:**
 - See the next page for details.

10. **Key register symbol:**
 - Enter pressed
 - Up pressed
 - Right pressed

Note: the display screen will go blank below −20°C / −4°F but data can still be displayed if the instrument is connected to a computer with PC STAR or other remote link.
3.3 Status Markers

This line of numbers identifies six types of errors by means of a triangular indicator over the number concerned - see item 9 on the preceding page.

<table>
<thead>
<tr>
<th>Status marker number</th>
<th>Error / Status message</th>
<th>Result and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼1</td>
<td>No initial pulse detected</td>
<td>See section 3.4: Fault clearing.</td>
</tr>
<tr>
<td>▼2</td>
<td>No level reflection detected</td>
<td>See section 3.4: Fault clearing.</td>
</tr>
<tr>
<td>▼3</td>
<td>Level measurement frozen</td>
<td>Output and indication frozen; search initiated to redetect level: if no reflection is registered then Status marker 2 is activated.</td>
</tr>
<tr>
<td>▼4</td>
<td>No interface reflection found</td>
<td>See section 3.4: Fault clearing.</td>
</tr>
<tr>
<td>▼5</td>
<td>Interface measurement frozen</td>
<td>Output and indication frozen; search initiated to redetect interface. If no reflection is found, Status marker 4 is activated.</td>
</tr>
<tr>
<td>▼6</td>
<td>Output communication failure</td>
<td>Contact your local KROHNE Service Department.</td>
</tr>
</tbody>
</table>

3.4 Fault clearing

<table>
<thead>
<tr>
<th>Event</th>
<th>Fault</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Display: Status Marker 1 displayed</td>
<td>The High Frequency board is not sending a pulse. Reason: it may have been damaged by electrostatic discharge.</td>
<td>Contact a KROHNE-authorised service centre*. The electronics package may need to be replaced.</td>
</tr>
<tr>
<td>Local Display: Status Markers 2 or 4 displayed</td>
<td>The instrument has lost the level (marker 2) or interface (marker 4) signal, has searched in a pre-defined zone and has not yet found the return pulse. Reason: The product may have risen into the dead zone and has dropped below the threshold due to readings from the flange.</td>
<td>Empty tank below dead zone and check the measurement.</td>
</tr>
<tr>
<td></td>
<td>Reason: The product level may be at zero (tank empty).</td>
<td>Refill tank above minimum level and check the measurement.</td>
</tr>
<tr>
<td>Local Display: Status Markers 3 and/ or 5 displayed</td>
<td>The display is frozen. Reason: The pulse has dropped below the threshold, whereupon the gauge opens a search window / zone. If no reflection is found, Status Marker 2 (or 4 for interface) will be displayed. Marker 3 is also displayed if PC-STAR is connected and the F7 graphics function has been selected.</td>
<td>Empty tank below dead zone and check the measurement. If the signal is not detected then modify the threshold as shown in section 3.4.6 of the BM 100 A Handbook.</td>
</tr>
</tbody>
</table>

Electrical Connections and Communication Output

<table>
<thead>
<tr>
<th>Event</th>
<th>Fault</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The display does not work.</td>
<td>Instrument is wired to the wrong voltage: fuses have blown.</td>
<td>Replace the power supply fuse, F1, as shown in section 4.2.2 of the BM 100 A Handbook.</td>
</tr>
<tr>
<td></td>
<td>If the ambient temperature is below –20°C/-4°F, LCD does not work</td>
<td>Consider using a PC-equipped with KROHNE PC-STAR software if operating in a general purpose area.</td>
</tr>
</tbody>
</table>

* Refer to the list of KROHNE offices on the last page of these instructions.
4 BM 100 A technical data

4.1 Technical data

<table>
<thead>
<tr>
<th>Input</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured variable</td>
<td>Distance, level, liquid interface and volume</td>
</tr>
<tr>
<td>Measurement range</td>
<td>Variable according to probe type, see Equipment architecture, section 4.2</td>
</tr>
<tr>
<td>Blocking Distance</td>
<td>Variable according to probe type, see Probe measurement limits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analogue</td>
<td>4 … 20 mA (3.8 … 20.5 mA according to NAMUR 043), 1 passive output (as standard)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Active outputs</td>
<td>350 ohms maximum</td>
</tr>
<tr>
<td>Passive outputs</td>
<td>(U-8)/22.10-3 ohms</td>
</tr>
</tbody>
</table>

| **Temperature drift** | <100 ppm / K |

| **Resolution** | ± 3 µA |

| **Digital** | HART® & KROHNE SMART protocols (as standard). PROFIBUS-PA output also available on demand. |

| **Error signal** | Status markers and text messages via local display or remote interface. NAMUR 043-compliant (output current values at 3.6 mA or 22mA according to value configured in fct. 1.3.2). |

Performance Characteristics

Accuracy

| Level measurement | Liquids when probe length, L < 6 m / 20 ft.*
| | ± 5 mm / ± 0.2”
| | Optimised with appropriate on-site calibration
| | ± 3 mm / ± 0.12”
| | Liquids when probe length, L >6 m / 20 ft.*
| | Additional error above 6m: ±0.02% of distance measured
| | Solids (powders / granulates)**
| | ± 20 mm / 0.79”

| Interface measurement | Liquids (with minimum layer of 100 mm / 4”****
| | ± 10 mm / 0.4” with configured and stable εᵣ value

| Repeatability | ± 1 mm / ± 0.04”

| Resolution | ± 0.3 mm / ± 0.012”

| Warm-up time | 20 seconds to 1½ minutes (self-test before first reading)

| * test medium: water (εᵣ=80) ** test medium: cement (εᵣ=3) *** test medium: oil (εᵣ=2.4) |

Test conditions

| Ambient temperature | +20°C ±5°C (+70°F ±10°F)

| Ambient air pressure | 1013 mbar abs. ±20 mbar / 14.69 psig ±0.29 psi

| Relative air humidity | 60% ±15%

| Reference target | coaxial probe: water surface
| | single probe: Ø0.8m / Ø31.5” metal plate
| | twin probe: metal block “short circuit”

| Distance from wall | > 300 mm / 11.81” (not for coaxial probe)

| Distance to obstruction | > 1 m / 3.28”

Environment

| Ambient temperature | -20 … + 50°C / -4 … 120°F

| Storage temperature | -40 … + 85°C / -40 … 185°F

| Protection | IP 67 (US equivalent: NEMA 6 – 6P)

KROHNE

Installation and operating instructions BM 100 A 23
Power supply

<table>
<thead>
<tr>
<th>Option</th>
<th>Specification</th>
<th>Power used: 9W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td>24 V DC / AC, +10%/-15%</td>
<td></td>
</tr>
<tr>
<td>Option 2</td>
<td>100 – 240 V AC, +10%/-15%</td>
<td></td>
</tr>
</tbody>
</table>

Process

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process temperature, flange</td>
<td>-30 to +150°C / -22°F to 298°F, option 200°C / 392°F</td>
</tr>
<tr>
<td>Process pressure, standard</td>
<td>-1 to +40 bar / -14.5 to +580 psig (higher on request)*</td>
</tr>
</tbody>
</table>

Process pressure subject to the process temperature and the mechanical properties of process connection

Dielectric constant \(\varepsilon_r \): Measurement mode and probe type limits

<table>
<thead>
<tr>
<th>Mode</th>
<th>Measurement</th>
<th>(\varepsilon_r) limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct mode</td>
<td>Level measurement</td>
<td></td>
</tr>
<tr>
<td>Coaxial (D)</td>
<td>(\varepsilon_r \geq 1.4)</td>
<td></td>
</tr>
<tr>
<td>twin probes (A,B,G&L)</td>
<td>(\varepsilon_r \geq 1.8)</td>
<td></td>
</tr>
<tr>
<td>single probes (F,H&K)</td>
<td>(\varepsilon_r \geq 2.1)</td>
<td></td>
</tr>
<tr>
<td>Level & interface measurement</td>
<td>Twin rod, coaxial & twin cable</td>
<td>(\varepsilon_r) (interface) >> (\varepsilon_r) (level)(^2)**</td>
</tr>
</tbody>
</table>

TBF mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Level measurement</th>
<th>(\varepsilon_r) limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level measurement</td>
<td>All except D & G</td>
<td>(\varepsilon_r \geq 1.05)</td>
</tr>
</tbody>
</table>

Human interface

<table>
<thead>
<tr>
<th>Communication, standard</th>
<th>KROHNE SMART and HART® protocols installed on first output. Information displayed via local display (integral or remote), PC or HART® handheld communicator (HHC).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-point</td>
<td>1 gauge connected to PC or HHC</td>
</tr>
<tr>
<td>Multi-drop</td>
<td>up to 15 gauges connected to PC or HHC</td>
</tr>
<tr>
<td>Fieldbus</td>
<td>RS 485 (SMART): up to 255 per junction box with PC link (\text{PROFIBUS-PA: GSD file supplied with gauge.})</td>
</tr>
</tbody>
</table>

Weight

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Ex/FM Housing</td>
<td>8 kg / 18 lb with DN50 PN10/16 flange</td>
</tr>
<tr>
<td>Ex/FM Housing</td>
<td>9 kg / 20.25 lb with DN50 PN10/16 flange</td>
</tr>
<tr>
<td>Single rod Ø10mm</td>
<td>0.62 kg/m / 0.83 lb/ft (twin rod or reverse: 1.24 kg/m / 0.83 lb/ft)</td>
</tr>
<tr>
<td>Single cable Ø4mm</td>
<td>0.12 kg/m / 0.08 lb/ft (twin cable Ø4mm : 0.24 kg/m /0.16 lb/ft)</td>
</tr>
<tr>
<td>Twin cable Ø6mm</td>
<td>0.28 kg/m / 0.19 lb/ft</td>
</tr>
<tr>
<td>Single cable Ø8mm</td>
<td>0.41 kg/m / 0.28 lb/ft</td>
</tr>
<tr>
<td>Coaxial Ø28mm</td>
<td>1.61 kg/m / 1.08 lb/ft</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Electromagnetic Compatibility and other protection directives followed for EU countries</th>
<th>Electromagnetic Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directive 89/336/EEC in conjunction with EN 61326-1(A1&A2). EMC emissions shielding with the exception of BM 100 A with coaxial probes is only guaranteed in metal tanks. Class A-shielded as standard, class B shielding is available on demand. Electrical equipment (low voltage)</td>
<td>Directive 73/23/CEE in conjunction with EN 61010-1. ATEX Refer to BM 100A/BM 100 Ai KEMA 01ATEX1078X Supplementary Installation and Operating Instructions.</td>
</tr>
</tbody>
</table>
4.2 BM100A Equipment Architecture

Single cable Ø8mm (K)
- **Powder applications**
 - Single 316 stainless steel flexible cable with long counterweight.

Single 316 stainless steel flexible cable with long counterweight.
- **≤30 m / 98.5ft***
- **DN40 PN25/40**
- **1½" ANSI 150lbs**
- **1½" G / 1½" NPT**
- **SS316/316L HC276 HC22**
- **PVDF-coated PVDF-coated**

Liquid / Liquid Gas applications
- **Granulate / solid applications**
 - Two flexible 316 SS cables with spacers interspersed along its length, with short-circuit and counterweight.

- **CoaxialØ28 (D)**
- **Two flexible 316 SS cables with spacers interspersed along its length, with counterweight.**

- **Reverse Ø10mm (G)**
 - One inner conductor in protective tube and one reference rod connected by a short circuit.

- **≤3 m / 10ft***
- **≤60 m / 197ft***
- **DN50 PN10/16**
- **2" ANSI 150lbs**
- **2½" G / 2½" NPT**
- **SS316L HC276 HB2/HB3**

Liquid / Liquid Gas only
- **Minimum process connection**
 - DN50 PN10/16
 - 2½" ANSI 150lbs
 - 1½" NPT

- **Probe material**
 - SS316/316L
 - HC276
 - HB2/HB3**

- **Probes Type Code**
 - Twin cable Ø6mm (B)
 - Twin rod Ø10mm (A)
 - Coaxial Ø28 (D)
 - Twin cable Ø4mm (H)
 - Reverse Ø10mm (G)

- **Level Interface**
 - ***

- **Level and Interface**
 - (Liquid only)

- **Range, min.**
 - ≤30 m / 98.5ft*

- **Minimum direct mode**
 - 1.8

- **Minimum process connection**
 - DN50 PN10/16
 - 2½" ANSI 150lbs

- **Probe material**
 - SS316/316L
 - HC276

- **Probe**
 - **SS316/316L HC276 HC22 SS316 + FEP coating**

- **εₑ = dielectric constant of measured product**
 - Liquid / Liquid Gas only
 - * Higher on request
 - ** On request
 - *** No air gap
<table>
<thead>
<tr>
<th>Powder applications</th>
<th>Liquid / Liquid Gas applications</th>
<th>Granulate / Solid applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single cable</td>
<td>Coaxial</td>
<td>Probe</td>
</tr>
<tr>
<td>Ø8mm (K)</td>
<td>Ø28 (D)</td>
<td>(Type code)</td>
</tr>
<tr>
<td>No spacer</td>
<td>None</td>
<td>Spacer material</td>
</tr>
<tr>
<td>D45x245(316L), D12x1500(316L), Turnbuckle (316L)</td>
<td>D45x245(316L)</td>
<td>Counterweight</td>
</tr>
<tr>
<td>Without**</td>
<td>ETFE (Tefzel) if L > 0.7m</td>
<td>Free area (diameter)</td>
</tr>
<tr>
<td>D25x100 (316L), D25x100 (HC22), D25x100 (HC276), Chuck(316L), Turnbuckle (316L)</td>
<td>ETFE (Tefzel) if L > 1.5m</td>
<td>Gauge illustration</td>
</tr>
<tr>
<td>Single rod</td>
<td>Twin rod</td>
<td>Twin cable</td>
</tr>
<tr>
<td>Ø10mm (F)</td>
<td>Ø10mm (A)</td>
<td>Ø6mm (B)</td>
</tr>
<tr>
<td>No spacer</td>
<td>None</td>
<td>FEP molded onto cable</td>
</tr>
<tr>
<td>None</td>
<td>ETFE (Tefzel) if L > 1.5m</td>
<td>FEP molded onto cable</td>
</tr>
<tr>
<td>D45x245(316L), D12x1500(316L), Turnbuckle (316L)</td>
<td>D45x245(316L)</td>
<td>FEP molded onto cable</td>
</tr>
<tr>
<td>Without**</td>
<td>ETFE (Tefzel) if L > 1.5m</td>
<td>FEP molded onto cable</td>
</tr>
<tr>
<td>D25x100 (316L), D25x100 (HC22), D25x100 (HC276), Chuck(316L), Turnbuckle (316L)</td>
<td>D45x245(316L)</td>
<td>FEP molded onto cable</td>
</tr>
<tr>
<td>Reverse</td>
<td>Coaxial</td>
<td>Probe</td>
</tr>
<tr>
<td>Ø10mm (G)</td>
<td>Ø28 (D)</td>
<td>(Type code)</td>
</tr>
<tr>
<td>ETFE (Tefzel) if L > 0.7m</td>
<td>None</td>
<td>Spacer material</td>
</tr>
<tr>
<td>None</td>
<td>ETFE (Tefzel) if L > 1.5m</td>
<td>Counterweight</td>
</tr>
<tr>
<td>D45x245(316L), D12x1500(316L), Turnbuckle (316L)</td>
<td>D45x245(316L)</td>
<td>Free area (diameter)</td>
</tr>
<tr>
<td>Without**</td>
<td>ETFE (Tefzel) if L > 1.5m</td>
<td>Gauge illustration</td>
</tr>
<tr>
<td>D25x100 (316L), D25x100 (HC22), D25x100 (HC276), Chuck(316L), Turnbuckle (316L)</td>
<td>D45x245(316L)</td>
<td>Gauge illustration</td>
</tr>
</tbody>
</table>

Notes:
- **Single cable** and **Single rod** are used for single applications.
- **Reverse** and **Coaxial** are used for reverse applications.
- **Twin cable** and **Twin rod** are used for twin applications.
- **Probe** is used for liquid / liquid gas applications.
- **Granulate / Solid** applications use specific materials and dimensions.
- **Granulate / Solid** applications include **Free area** and **Gauge illustration**.
4.3 Probe measurement limits

<table>
<thead>
<tr>
<th>Probe type</th>
<th>Top dead zone, A1 $\varepsilon_r = 80^*$</th>
<th>Bottom dead zone, A2 $\varepsilon_r = 80^*$</th>
<th>Top dead zone, A1 $\varepsilon_r = 2.4^*$</th>
<th>Bottom dead zone, A2 $\varepsilon_r = 2.4^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twin rod Ø10 mm or 0.4" (type A)</td>
<td>250 mm / 9.8"</td>
<td>20 mm / 0.8"</td>
<td>330 mm / 13"</td>
<td>100 mm / 3.9"</td>
</tr>
<tr>
<td>Twin cable Ø6 mm or Ø0.24" (type B)</td>
<td>250 mm / 9.8"</td>
<td>20 mm / 0.8"</td>
<td>330 mm / 13"</td>
<td>100 mm / 3.9"</td>
</tr>
<tr>
<td>Twin cable Ø4 mm or Ø0.16" (type L)</td>
<td>250 mm / 9.8"</td>
<td>20 mm / 0.8"</td>
<td>330 mm / 13"</td>
<td>100 mm / 3.9"</td>
</tr>
<tr>
<td>Coaxial Ø28 mm or Ø1.1" (type D)</td>
<td>0 mm / 0" (***)</td>
<td>10 mm / 0.4"</td>
<td>0 mm / 0" (***)</td>
<td>100 mm / 3.9"</td>
</tr>
<tr>
<td>Single rod Ø10 mm or Ø0.4" (type F)</td>
<td>400 mm / 15¾"</td>
<td>20 mm / 0.8"</td>
<td>500 mm / 19.7"</td>
<td>100 mm / 3.9"</td>
</tr>
<tr>
<td>Reverse Ø10 mm or Ø0.4" (type G)</td>
<td>50 mm / 2"</td>
<td>250 mm / 9.8"</td>
<td>N/a</td>
<td>N/a</td>
</tr>
<tr>
<td>Single cable Ø4 mm or Ø0.16" (type H)</td>
<td>400 mm / 15¾"</td>
<td>20 mm / 0.8"</td>
<td>500 mm / 19.7"</td>
<td>100 mm / 3.9"</td>
</tr>
<tr>
<td>Single cable Ø8 mm or Ø0.31" (type K)</td>
<td>400 mm / 15¾"</td>
<td>20 mm / 0.8"</td>
<td>500 mm / 19.7"</td>
<td>100 mm / 3.9"</td>
</tr>
</tbody>
</table>

* The dielectric constant, ε_r, of water is 80. The dielectric constant, ε_r, of oil is 2.4.
** 20 mm / 0.8" for Ex version.
*** 50mm / 2" for Ex version.
4.4 Gauge dimensions

The drawing below illustrates the complete set of standard gauge configurations and overall dimensions.

Housing

Non-Ex version

- 2 x M20
- Housing
 - Ø122 (4.8)
 - 208 (8.2)
 - 258 (10.2)

Ex version

- 2 x M20
- Housing
 - Ø122 (4.8)
 - 234 (9.2)
 - 343 (13.5)

Probe

- **A**
 - Twin Rod
 - Ø10 (0.4)
- **B**
 - Twin Cable
 - Ø6 (0.24)
- **L**
 - Twin Cable
 - Ø4 (0.16)
- **D**
 - Coaxial
 - Ø28 (1.1)
- **H**
 - Single Cable
 - Ø4 (0.16)
- **K**
 - Single Cable
 - Ø8 (0.31)
- **F**
 - Single Rod
 - Ø10 (0.4)
- **G**
 - Reverse
 - Ø10 (0.4)

Standard counterweight

<table>
<thead>
<tr>
<th></th>
<th>Non-Ex</th>
<th>Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/a Ø45x245</td>
<td>Ø45x245</td>
<td>N/a</td>
</tr>
<tr>
<td>(Ø1¾x9½)</td>
<td>(Ø1¾x2½)</td>
<td></td>
</tr>
<tr>
<td>N/a Ø45x60</td>
<td>N/a</td>
<td>Ø25x100</td>
</tr>
<tr>
<td>(Ø1½x4)</td>
<td>N/a</td>
<td>Ø12x100</td>
</tr>
<tr>
<td>N/a Ø25x100</td>
<td>N/a</td>
<td>N/a</td>
</tr>
<tr>
<td>(Ø1½x4)</td>
<td>N/a</td>
<td>N/a</td>
</tr>
</tbody>
</table>

Dimensions in mm (inches)

L is ordered probe length
If you need to return a device for testing or repair to KROHNE

Your instrument has been carefully manufactured and tested. If installed and operated in accordance with these operating instructions, it will rarely present any problems. Should you nevertheless need to return an instrument for servicing or repair, please pay strict attention to the following points:

• Due to statutory regulations on environmental protection and safeguarding the health and safety of our personnel, KROHNE may only handle, test and repair returned instruments that have been in contact with liquids if it is possible to do so without risk to personnel and environment.
• This means that KROHNE can only service your instrument if accompanied by the following certificate confirming that the instrument is safe to handle. If the instrument has been operated with toxic, caustic, flammable or water-endangering liquids, you are kindly requested:
 • to check and ensure, if necessary by rinsing or neutralising, that all cavities in the instrument are free from such dangerous substances. (Directions on how you can find out whether the primary head has to be opened and flushed out or neutralised are obtainable from KROHNE on request.)
 • to attach a certificate to the instrument confirming that the instrument is safe to handle and stating the liquid used.

We cannot service your instrument unless accompanied by such a certificate.

Specimen certificate
Company: Address:
Department: Name:
Tel. No.: Fax No.:

The enclosed instrument

Type:
KROHNE Order No. or Series No

has been operated with the following process liquid

Because this process liquid is

☐ water-hazardous ☐ toxic ☐ caustic ☐ flammable

we have

☐ checked that all cavities in the instrument are free from such substances
☐ flushed out and neutralised all cavities in the instrument

We confirm that there is no risk to humans or environment through any residual liquid contained in the instrument.

Date: Signature:

Company stamp: