Sähkömagneettisten virtausmittarien signaalimuunnin

Sähköinen versio:
ER 3.3.xx
(SW.REV. 3.3x)

Dokumentaatio on täydellinen vasta, kun sitä käytetään yhdessä virtausmittarin asiakirjojen kanssa.

© KROHNE 02/2016 - 4004998401 - MA IFC 300 R04 fi
Kaikki oikeudet pidätetään. Tämän asiakirjan tai sen osan jäljentäminen on kiellettyä ilman KROHNE Messtechnik GmbH:n kirjallista lupaa.

Voi muuttua ilman ilmoitusta.

Copyright 2016 by
KROHNE Messtechnik GmbH - Ludwig-Krohne-Str. 5 - 47058 Duisburg (Saksa)
SISÄLTÖ

4.4.3 Signaalikaapelin A pituus

4.4.4 Signaalikaapeli B (tyyppi BTS 300), rakenne

4.4.5 Signaalikaapelin B valmistelu, liitäntä signaalimuunteimeen

4.4.6 Signaalikaapelin B pituus

4.4.7 Signaalikaapelin B valmistelu, liitäntä signaalinmuuntimen, 19" telineeseen asennettava kenttäkotelo

4.4.8 Signaalikaapelin C valmistelu, liitäntä signaalinmuuntimen

4.4.9 Signaalikaapelin B valmistelu, liitäntä virtausanturiin

4.4.10 Signaalikaapelin C valmistelu, liitäntä virtausanturiin

4.5 Signaali- ja magnetointivirtakaapeliaisten kytkentä

4.5.1 Signaali- ja magnetointivirtakaapeliaisten kytkeminen, kenttäkotelo

4.5.2 Signaali- ja magnetointivirtakaapeliaisten kytkeminen, seinäkiinnitteinen kenttäkotelo

4.5.3 Signaali- ja magnetointivirtakaapeliaisten kytkeminen, 19" telineeseen asennettava kenttäkotelo

4.5.4 Signaali- ja magnetointivirtakaapeliaisten kytkeminen, 19" telineeseen asennettava kenttäkotelo

4.5.5 Virtausanturin kytkentäkaavio, 19" telineeseen asennettava kenttäkotelo

4.5.6 Virtausanturin kytkentäkaavio, seinäkiinnitteinen kenttäkotelo

4.5.7 Virtausanturin kytkentäkaavio, 19" telineeseen asennettava kotelot (28 TE)

4.5.8 Virtausanturin kytkentäkaavio, 19" telineeseen asennettava kotelot (21 TE)

4.5.9 Signaali- ja magnetointivirtakaapeliaisten kytkeminen, 19" telineeseen asennettava kenttäkotelo

4.5.10 Signaali- ja magnetointivirtakaapeliaisten kytkeminen, 19" telineeseen asennettava kenttäkotelo

4.6 Signaali- ja magnetointivirtakaapeliaisten valmistelu ja kytkeminen

4.6.1 Johtopituudet

4.6.2 Signaalikaapeli A (tyyppi DS 300), rakenne

4.6.3 Signaalikaapelin A valmistelu, liitäntä signaalimuunteimeen

4.6.4 Signaalikaapelin A valmistelu, liitäntä mittausanturiin

4.6.5 Signaalikaapeli B (tyyppi BTS 300), rakenne

4.6.6 Signaalikaapelin B valmistelu, liitäntä signaalinmuuntimen

4.6.7 Signaalikaapelin A valmistelu, liitäntä mittausanturiin

4.6.8 Magnetointivirtakaapelin C valmistelu, liitäntä signaalinmuuntimen

4.6.9 Magnetointivirtakaapelin C valmistelu, liitäntä signaalinmuuntimen

4.6.10 Liitäntäkaapelien

4.6.11 Kaapelien kytkentä

4.7 Virtausanturin maadoitus

4.7.1 Klassinen tapa

4.7.2 Virtuaalireferenssi (ei koske versiota TIDALFLUX 4000 & OPTIFLUX 7300 C)

4.8 Virtalähteen kytkentä

4.9 Tulot ja lähdot, yleiskatsaus

4.9.1 Tulojen/lähtöjen yhdistelmät (I/Os)

4.9.2 CG-numeron kuvaus

4.9.3 Kiinteät, ei-vaihdettavissa olevat tulo-/lähtöversiot

4.9.4 Vaihdettavissa olevat tulo-/lähtöversiot

4.10 Tulojen ja lähtöjen kuvaus

4.10.1 mA-ulostulo

4.10.2 Pulssi- ja taajuusulostulo

4.10.3 Tilaalähtö ja rajakytkin

4.10.4 sisännulostulo

4.10.5 mA-sisäänulostulo

4.11 Lähtöjen ja tulojen sähkökytkentä

4.11.1 Kenttäkotelot, lähajen ja tulojen sähkökytkentä

4.11.2 Seinäkiinnitteinen kotelot, lähajen ja tulojen sähkökytkentä

4.11.3 19" telinekiinnitteinen kotelot (28 TE), tulojen ja lähtöjen sähkökytkentä

4.11.3 19" telinekiinnitteinen kotelot (21 TE), tulojen ja lähtöjen sähkökytkentä

4.11.4 Sähkökaapeleiden asettaminen oikein

4.12 Tulojen ja lähtöjen kytkentäkaavio

4.12.1 Tärkeitä huomautuksia

4.12.2 Sähkösymbolien kuvaus
4.12.3 Perustulot ja -lähdot .. 86
4.12.4 Modulaariset tulot ja lähdot ja väyläjärjestelmät .. 89
4.12.5 Ex i tulot ja lähdot ... 98
4.12.6 HART®-liitin ... 103

5 Käyttöönotto .. 105

5.1 Virran kytkeminen .. 105
5.2 Signaalimuuntimen käynnistäminen .. 105

6 Käyttö .. 106

6.1 Näyttö ja käyttöelementit ... 106
 6.1.1 Mittausalan näyttö 2 tai 3 mitatulla arvolla .. 108
 6.1.2 Alivalikon ja toimintojen valinnan näyttö, 3 riviä .. 108
 6.1.3 Parametrien asetusnäyttö, 4 riviä .. 109
 6.1.4 Näyttö esikatseltavasta parametrejä, 4 riviä .. 109
 6.1.5 IR-liitännän näyttö (asetus) ... 110

6.2 Valikkorakenne .. 111

6.3 Toimintotaulukot .. 114
 6.3.1 Valikko A, pika-asetukset .. 114
 6.3.2 Valikko B, testi ... 116
 6.3.3 Valikko C, asetus .. 118
 6.3.4 Aseta vapaat yksiköt .. 135

6.4 Toimintojen kuvaus .. 136
 6.4.1 Nollaa laskuri ”pika-asetuksessa” ? ... 136
 6.4.2 Virheviestien poistaminen ”pika-asetus”-valikossa ... 136

6.5 Tilaviestit ja vianmääritystiedot ... 137

7 Huolto .. 143

7.1 Varaosien saatavuus .. 143
7.2 Palvelujen käytettävyys .. 143
7.3 Korjaukset .. 143
7.4 Laitteen palauttaminen valmistajalle .. 143
 7.4.1 Yleistiedot .. 143
 7.4.2 Palautettavan laitteen mukana lähetettävä lomake (kopiointia varten) 144
7.5 Hävittäminen .. 144

8 Tekniset tiedot ... 145

8.1 Mittausperiaate .. 145
8.2 Tekniset tiedot ... 146
8.3 Mitat ja painot ... 158
 8.3.1 Kotelo .. 158
 8.3.2 Asennuslevy, kenttäkotelo ... 159
 8.3.3 Asennuslevy, seinäkiinnitteinen kotelo ... 160

8.4 Virtaustaulukot .. 161
8.5 Mittausarkkuus (luukun ottamatta TIDALFLUX) .. 163
8.6 Mittausarkkuus (vain TIDALFLUX) .. 164
9 HART-liitännän kuvaus

9.1 Yleinen kuvaus .. 166
9.2 Ohjelmistoversio .. 166
9.3 Kytentävähtoehdot ... 167
 9.3.1 Point-to-Point-liitännä - analoginen ja digitaalinen tila ... 168
 9.3.2 Multi-Drop-liitännä (2 johdon liitännällä) ... 169
 9.3.3 Multi-Drop-liitännä (3 johdon liitännällä) ... 170
9.4 Tulot/lähdöt ja dynaamiset HART®-muuttujat ja laitemuuttujat 171
9.5 Peruskokooponpan parametrit ... 172
9.6 Field Communicator 375/475 (FC 375/475) .. 173
 9.6.1 Asennus .. 173
 9.6.2 Käyttö ... 173
 9.6.3 Peruskokooponpan parametrit ... 173
9.7 Asset Management Solutions (AMS®) ... 174
 9.7.1 Asennus .. 174
 9.7.2 Käyttö ... 174
 9.7.3 Peruskokooponpan parametrit ... 174
9.8 Field Device Manager (FDM) ... 175
 9.8.1 Asennus .. 175
 9.8.2 Käyttö ... 175
9.9 Process Device Manager (PDM) ... 175
 9.9.1 Asennus .. 175
 9.9.2 Käyttö ... 176
 9.9.3 Peruskokooponpan parametrit ... 176
9.10 Field Device Tool / Device Type Manager (FDT / DTM) ... 177
 9.10.1 Asennus ... 177
 9.10.2 Käyttö ... 177
9.11 Liite A: HART® Basic-DD valikkopuu .. 177
 9.11.1 Yleiskuvaus, perus-DD valikkopuu (sijainnit valikkopuussa) ... 178
 9.11.2 Basic-DD valikkopuu (asetusten tiedot) ... 179
9.12 Liite B: HART® AMS® -valikkopuu ... 183
 9.12.1 Yleiskuvaus, AMS®-valikkopuu (sijainnit valikkopuussa) .. 183
 9.12.2 AMS®-valikkopuu (asetusten tiedot) .. 184
9.13 Liite C: HART® valikkopuu PDM:lle ... 188
 9.13.1 Yleiskuvaus, PDM-valikkopuu (sijainnit valikkopuussa) ... 188
 9.13.2 PDM valikkopuu (asetusten tiedot) .. 190

10 Huomautuksia .. 194
1.1 Ohjelmistoversio

"Sähköiseen versioon" (ER) dokumentoidaan elektroniikkalaitteiston tila kaikille GDC-laitteille NE 53:n mukaan. ER:stä on helppo nähdä onko elektroniikkalaitteille tehty vianmääritystä tai suurempia muutoksia ja miten se on vaikuttanut yhteensopivuuteen.

Muutokset ja vaikutus yhteensopivuuteen

<table>
<thead>
<tr>
<th></th>
<th>Aiempien versioiden kanssa yhteensopivat muutokset ja viankorjaus, jotka eivät vaikuta toimintaan (esim. kirjoitusvirheet näytössä)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-</td>
<td>Aiempien versioiden kanssa yhteensopiva laitteisto ja/ tai käyttöliittymien ohjelmistomuutokset:</td>
</tr>
<tr>
<td>H</td>
<td>HART®</td>
</tr>
<tr>
<td>P</td>
<td>PROFIBUS</td>
</tr>
<tr>
<td>F</td>
<td>Foundation Fieldbus</td>
</tr>
<tr>
<td>M</td>
<td>Modbus</td>
</tr>
<tr>
<td>X</td>
<td>kaikki käyttöliittymät</td>
</tr>
<tr>
<td>3-</td>
<td>Aiempien versioiden kanssa yhteensopiva laitteisto ja/ tai tulojen ja lähtöjen ohjelmistomuutokset:</td>
</tr>
<tr>
<td>I</td>
<td>mA-uloistulo</td>
</tr>
<tr>
<td>F, P</td>
<td>Taajuus ulostulo / pulssi ulostulo</td>
</tr>
<tr>
<td>S</td>
<td>Tila ulostulo</td>
</tr>
<tr>
<td>C</td>
<td>Sisääntulo</td>
</tr>
<tr>
<td>CI</td>
<td>mA-sisääntulo</td>
</tr>
<tr>
<td>X</td>
<td>kaikki tulet ja lähdot</td>
</tr>
<tr>
<td>4</td>
<td>Aiempien versioiden kanssa yhteensopivat muutokset uusilla toiminnoilla</td>
</tr>
<tr>
<td>5</td>
<td>Yhteensopimattomat muutokset, eli elektroniikkalaitteet pitää muuttaa.</td>
</tr>
</tbody>
</table>
TIETOJA!

Alla olevassa taulukossa "X" on paikkamerkki mahdollisille aakkosnumeerisille yhdistelmille, riippuen saatavilla olevasta versiosta. Alla olevassa taulukossa "X" on paikkamerkki mahdollisille aakkosnumeerisille yhdistelmille, riippuen saatavilla olevasta versiosta.

<table>
<thead>
<tr>
<th>Julkaisupäivä</th>
<th>Sähköinen versio</th>
<th>Muutokset ja yhteensopivuus</th>
<th>Asiakirjat</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12.2006</td>
<td>ER 3.1.0x [SW.REV. 3.10 (2.21)]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.2.2007</td>
<td>ER 3.1.1x [SW.REV. 3.10 (2.21)]</td>
<td>1; 2</td>
<td>MA IFC 300 R02</td>
</tr>
<tr>
<td>12.3.2007</td>
<td>ER 3.1.2x [SW.REV. 3.10 (2.21)]</td>
<td>1; 2-H; 3-I</td>
<td>MA IFC 300 R02</td>
</tr>
<tr>
<td>25.5.2007</td>
<td>ER 3.1.3x [SW.REV. 3.10 (2.21)]</td>
<td>1; 3-I</td>
<td>MA IFC 300 R02</td>
</tr>
<tr>
<td>13.5.2008</td>
<td>ER 3.2.0x [SW.REV. 3.20 (3.00)]</td>
<td>1; 2-X; 3-X; 4</td>
<td>MA IFC 300 R03</td>
</tr>
<tr>
<td>25.7.2008</td>
<td>ER 3.2.1x [SW.REV. 3.20 (3.03)]</td>
<td>1</td>
<td>MA IFC 300 R03</td>
</tr>
<tr>
<td>29.8.2008</td>
<td>ER 3.2.2x [SW.REV. 3.20 (3.03)]</td>
<td>1</td>
<td>MA IFC 300 R03</td>
</tr>
<tr>
<td>30.10.2008</td>
<td>ER 3.2.4x [SW.REV. 3.20 (3.03)]</td>
<td>1</td>
<td>MA IFC 300 R03</td>
</tr>
<tr>
<td>15.5.2009</td>
<td>ER 3.2.5x [SW.REV. 3.20 (3.03)]</td>
<td>2-F</td>
<td>MA IFC 300 R03</td>
</tr>
<tr>
<td>7.12.2009</td>
<td>ER 3.2.6x [SW.REV. 3.20 (3.03)]</td>
<td>1</td>
<td>MA IFC 300 R03</td>
</tr>
<tr>
<td>2.11.2009</td>
<td>ER 3.2.7x [SW.REV. 3.20 (3.03)]</td>
<td>1</td>
<td>MA IFC 300 R03</td>
</tr>
<tr>
<td>7.12.2009</td>
<td>ER 3.2.8x [SW.REV. 3.20 (3.03)]</td>
<td>1</td>
<td>MA IFC 300 R03</td>
</tr>
<tr>
<td>2010</td>
<td>ER 3.3.0x [SW.REV. 3.30 (3.04)]</td>
<td>1; 2-H; 2-F; 3-X; 4</td>
<td>MA IFC 300 R04</td>
</tr>
</tbody>
</table>

TIETOJA!

TIDALFLUX 4000- OPTIFLUX 7000 -virtausantureille sopii vain ohjelmistoversio ER 3.3.0x tai uudempi versio (SW.REV. 3.30 (3.04))!
1.2 Käyttötarkoitus

Sähkömagneettiset virtausmittarit ovat suunniteltu mittaamaan sähköä johtavien nestemäisten aineiden virtausmäärää ja johtokykyä.

VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

VAROITUS!
Jos laitetta ei käytetä kääyttöolosuhteiden mukaisesti (katso luku "Tekniset tiedot"), vaadittu suojaus voi heikentyä.

TIETOJA!

1.3 Sertifiointi

CE-merkintä

Laitte täyttää seuraavien EU-direktiivien vaatimukset:
• Pienjännitedirektiivi 2006/95/EC
• EMC-direktiivi 2004/108/EC

sekä

• EN 61010
• EMC-erittely EN 61326/A1:n mukaan
• NAMUR-suositukset NE 21 ja NE 43

Valmistaja varmentaa onnistuneen tuotteen testauksen käytätmällä CE-merkintää.

VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.
1.4 Valmistajan turvallisuusohjeet

1.4.1 Tekijänoikeus ja tietosuoja

Tämän ohjekirja on kirjoitettu huolella. Siitä huolimatta emme takaa sisällön paikkansapitävyyttä, täydellisyyttä tai ajanmukaisuutta.

Valmistaja yrittää aina noudattaa muiden osapuolten tekijänoikeuksia ja turvautua yrityksen sisäisiin teoksiin tai teoksiin joiden tekijänoikeussointoja on rauennut.

Valmistajan asiakirjoissa kerättävien henkilökohtaisten tietojen (kuten nimet, katuosoitteet tai sähköpostiosoitteet) kerääminen on vapaaehtoista aina kun mahdollista. Tarjouksia ja palveluja on mahdollista käyttää antamatta henkilökohtaisia tietoja aina kun mahdollista.

Ota huomioon, että tiedonsiirto Internetissä (esim. sähköpostit) ei ole täysin suojattua. Tietoja ei ole mahdollista suojata kokonaan kolmansilta osapuolilta. Kieltämme nimenomaisesti julkaisujen yhteystietojen käyttämisen mainos- tai tiedotemateriaalin lähettämistä varten, ellei näitä ole erikseen pyydetty lähettämään.

1.4.2 Vastuuvapaussanom

Valmistaja ei ole velvollinen maksamaan mitään vahingenkorvauksia (mukaan lukien surrot, epäsuurut, satunnaiset ja välilliset vahingot), jotka aiheutuvat tuotteen käyttöstä.

Tämä vastuuvapaussanom ei koske valmistajan mahdollista tahallista tai törkeää huolimattomuutta. Jos sovelletut lait eivät salli tällaisia oletettuja takuiden rajoituksia tai tiettyjen vaurioiden poissulkemista tai rajoitusta, vastuuvapaussanom (osiittain tai kokonaan), poissulkemiset tai rajoitukset eivät koskaan lain niin sallisessa.

Valmistaja antaa takuu myyvilleen tuotteille tuotteen ohjeiden ja myyntiehtojen mukaisesti.

Valmistaja pidättää oikeuden muuttaa asiakirjojen, mukaan lukien tämä vastuuvapaussanom, sisältöä, ajankohdasta ja syistä riippumatta ilman erillistä ilmoitusta. Valmistaja ei ole millään tavoin velvollinen tällaisten muutosten mahdollisista seuraamuksista.
1.4.3 Tuotevastuu ja takuu

Käyttäjä on vastuussa laitteen soveltuvuudesta tiettyyn käyttötarkoituukseen. Valmistaja ei ota vastuuta käyttäjän väärinkäytön aiheuttamista seuraamuksista. Laitteiden (järjestelmät) väärä asennus ja käyttö mitätöivät takuun. Kauppasopimuksen pohjana toimivia ehtoja ja määräyksiä sovelletaan myös.

1.4.4 Ohjekirjaan liittyvät tiedot

Lue tämän ohjekirjan tiedot ja noudata maakohtaisia standardeja, turvallisuusmääräyksiä ja tapaturmantorjuntamääräyksiä estääksesi henkilövahinkoja ja laitevaurioita.

Jos tämä ohjekirja ei ole kirjoitettu omalla kielelläsi ja sinulla on vaikeuksia sen sisällön ymmärtämisessä, ota yhteyttä paikallisen edustajasi puoleen. Valmistaja ei ole vatsuussa tämän ohjekirjan tietojen värinymääräyksestä aihetuneista vahingoista tai vauroista.

Tämä ohjekirja auttaa perustamaan käyttöolosuhteet, joissa laitteen käyttö on turvallista ja tehokasta. Käyttöohjeissa on myös kuvattu kuvakkeiden alla esiintyvät erikoishuomiot ja turvatoimenpiteet.
1.4.5 Käytetyn varoitukset ja symbolit

Turvallisuusvaroitukset on merkitty seuraavilla symboleilla.

VAARA!
Tämä tieto viittaa välittömään vaaran työskenneltäessä sähkön kanssa.

VAARA!
Tämä varoitus koskee kuumuuden tai kuumien pintojen aiheuttamaa palovammavaaraa.

VAARA!
Tämä varoitus koskee välitöntä vaaraa käytettäessä laitetta vaarallisessa ympäristössä.

VAARA!
Näitä varoituksia on noudatettava ehdottomasti. Tämän varoituksen osittainen sivuuttaminen voi aiheuttaa vakavia terveysongelmia ja jopa kuoleman. Myös laite tai laitoksen osat saattavat vaurioitua vakavasti.

VAROITUS!
Tämän varoituksen osittainen sivuuttaminen voi aiheuttaa vakavia terveysongelmia. Myös laite tai laitoksen osat saattavat vaurioitua.

HUOMIO!
Näiden ohjeiden sivuuttaminen voi johtaa laitenvaurioihin tai laitoksen osien vaurioihin.

TIETOJA!
Näissä ohjeissa on laitteen käsittelyyn liittyviä tärkeitä tietoja.

OIKEUDELLINEN HUOMAUTUS!
Tässä ilmoituksessa on lakisääteisten direktiivien ja standardien tiedot.

• KÄSITTELY
Tämä symboli osoittaa käyttäjän määrittyssä järjestyksessä suoritettavien toimenpiteiden ohjeet.

TULOS
Tämä symboli osoittaa edellisten toimenpiteiden kaikki tärkeät seuraamukset.

1.5 Turvallisuusohjeet

VAROITUS!
Vain oikein koulutettu ja valtuutettu henkilöstö voi asentaa, ottaa käyttöön, käyttää ja huoltaa valmistajan laitteita.
Tämä ohjekirja auttaa perustamaan käyttöoloisuhteet, joissa laitteen käyttö on turvallista ja tehokasta.
2.1 Toimituksen sisältö

TIETOJA!
Tarkasta pakkaus huolellisesti vaurioiden tai kovakouraisesta käsittelystä johtuvien jälkipäätä. Raportoi mahdollisista vaurioista kuljetusyhtiölle ja valmistajan paikalliselle edustajalle.

TIETOJA!
Varmista pakkausluettelosta, että kaikki tilatut osat on toimitettu.

TIETOJA!
Tarkista laitteen tyypikilvestä, että toimitettu laite vastaa tilaustasi. Tarkista tyypikilveen painettu oikea jännite.

Kuva 2-1: Toimituksen sisältö

1. Tilatun version laite
2. Asiakirjat (kalibrointiraportti, Quick Start, CD-ROM-levy, jossa on virtausanturin ja signaalinmuuntimen tuoteasiakirjat)
3. Signaalikaapeli (vain etäversio)
Signaalimuuntimen/virtausanturin mahdollinen toimituksen laajuus

<table>
<thead>
<tr>
<th>Virtausanturi</th>
<th>Virtausanturi + signaalimuunnin IFC 300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kompakti</td>
</tr>
<tr>
<td>OPTIFLUX 1000</td>
<td>OPTIFLUX 1300 C</td>
</tr>
<tr>
<td>OPTIFLUX 2000</td>
<td>OPTIFLUX 2300 C</td>
</tr>
<tr>
<td>OPTIFLUX 4000</td>
<td>OPTIFLUX 4300 C</td>
</tr>
<tr>
<td>OPTIFLUX 5000</td>
<td>OPTIFLUX 5300 C</td>
</tr>
<tr>
<td>OPTIFLUX 6000</td>
<td>OPTIFLUX 6300 C</td>
</tr>
<tr>
<td>OPTIFLUX 7000</td>
<td>OPTIFLUX 7300 C</td>
</tr>
<tr>
<td>WATERFLUX 3000</td>
<td>WATERFLUX 3300 C</td>
</tr>
<tr>
<td>TIDALFLUX 4000</td>
<td>-</td>
</tr>
</tbody>
</table>
2.2 Laitteen kuvaus

Sähkömagneettiset virtausmittarit ovat suunniteltu mittaamaan sähköä johtavien nestemäisten aineiden virtausmäärää ja johtokykyä.

Mittalaite toimitetaan käyttövalmiina. Käyttötietojen tehdasasetukset on tehty tilausvaatimusten mukaisesti.

Seuraavat versiot ovat saatavilla:
- Kompakti versio (signaalimuunnin on kiinnitetty suoraan virtausanturiin)
- Etäversio (sähköliitäntä virtausanturiin magnetointivirran ja signaalikaapelin kautta)

![Kuva 2-2: Laiteversiot](image)

Kuva 2-2: Laiteversiot

1. Kompakti versio
2. Virtausanturi ja liitäntäkotelo
3. Kenttäkotelo
4. Seinäkiinnitteenen kenttäkotelo
5. 19" telineeseen asennettava kenttäkotelo
2.2.1 Kenttäkotelo

HUOMIO!

TIETOJA!
Aina kun kotelon kansi avataan, kierre tulee puhdistaa ja rasvata. Käytä vain hartsitonta ja hapotonta rasvaa.
Varmista, että kotelon tiiviste on oikein asennettu, puhdas ja ehjä.
2.2.2 Seinäkiinnitteinen kenttäkotelo

Kuva 2-4: Seinäkiinnitteisen kenttäkotelon rakenne

1. Kytentätilojen kansi
2. Mittausanturin kytentätila
3. Tulojen ja lähtöjen kytentätila
4. Suojakannella varustettu virransyötmön kytentätila (iskusuojaus)
5. Signaalikaapelin läpivienti
6. Magnetointivirtakaapelin läpivienti
7. Ulostulo ja sisäänmeno kaapelin läpivienti
8. Virtalähteen kaapelin läpivienti

1. Käännä lukkoa oikealle ja ava kansi.
2.3 Tyypkilvet

TIETOJA!
Tarkista laitteen tyypkilvestä, että toimitettu laite vastaa tilaustasi. Tarkista tyypkilven painettu oikea jännite.

2.3.1 Kompaktiversio (esimerkki)

Kuva 2-5: Esimerkki kompaktiversion valmistekilvestä

1. Hyväksyntöihin liittyvää tietoa: Ex-hyväksyntä, EY-tyyppitestitodistus, hygieeniset hyväksynnät jne.
2. Approvals-related thresholds
3. Hyväksyntöihin liittyvät syöttöjen ja tulojen liitäntätiedot; $V_m = \text{suurin tehon syötö}$
4. Hyväksyntöihin liittyvät tiedot (esim. tarkkuusluokka, mittausalue, lämpötilan rajat, paineen rajat ja viskositeetin rajat)
5. Hyväksyntöihin liittyvät paineen ja lämpötilan rajat
6. Virtalähde, suojautuokka, kosteiden osien materiaalit
7. GK- / GKL-arvot (mittausanturin vakiot), koko (mm / tuumaa); kenttätaajuus
8. Tuotteen nimi, sarjanumero ja valmistuspäivämäärä
2.3.2 Etäkäyttöinen versio (esimerkki)

Kuva 2-6: Esimerkki etäkäyttöisen version valmistekilvestä

1. Valmistaja
2. Tuotteen nimi, sarjanumero ja valmistuspäivämäärä
3. GK- / GKL-arvot (virtausanturin vakiot), koko (mm / tuumaa); kenttätaajuus
4. Virtalähde
5. Nesteen kanssa kosketuksessa olevat materiaalit
6. Magnetointikäämin vastus
7. Hyväksyntöihin liittyvät tiedot (esim. tarkkuusluokka, mittausalue, lämpötilan rajat, paineen rajat ja viskositeetin rajat)
2.3.3 Tulojen/lähtöjen sähköliitäntöjen tiedot (perusversion esimerkki)

- **A** = aktiivinen tila, signaalinmuunnin toimittaa virtaa seuraavien laitteiden liitäntää varten
- **P** = passiivinen tila; ulkoinen virtalähde tarvitaan seuraavien laitteiden käyttöä varten
- **N/C** = liittimiä ei kytke}

Kuva 2-7: Esimerkki valmistekilvestä, jossa on tulojen/lähtöjen sähköliitäntöjen tiedot

1. Virtalähde (AC: L ja N; DC: L+ ja L-; PE ≥ 24 VAC; FE ≤ 24 VAC ja DC)
2. Riviliihtimen D/D- liitäntätiedot
3. Riviliihtimen C/C- liitäntätiedot
4. Riviliihtimen B/B- liitäntätiedot
5. Riviliihtimen A/A- liitäntätiedot; A+ käytettävissä vain perusversiossa

Taulukko:

<table>
<thead>
<tr>
<th>#</th>
<th>PE (FE)</th>
<th>L(L+)</th>
<th>N(L-)</th>
<th>CG 3xxxxxx S/N: XXXxxxxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>A = Active P = Passive NC = Not connected</td>
</tr>
<tr>
<td>2</td>
<td>D - D</td>
<td>P</td>
<td></td>
<td>PULSE OUT / STATUS OUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_{max} = 100 mA; I_{off} = 10 Hz; V_{o} = 1.5 V @ 10 mA; U_{max} = 32 VDC</td>
</tr>
<tr>
<td>3</td>
<td>C - C</td>
<td>P</td>
<td></td>
<td>STATUS OUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_{max} = 100 mA; V_{max} = 32 VDC</td>
</tr>
<tr>
<td>4</td>
<td>B - B</td>
<td>P</td>
<td></td>
<td>STATUS OUT / CONTROL IN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_{max} = 100 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_{on} > 19 VDC; V_{off} < 2.5 VDC; V_{max} = 32 VDC</td>
</tr>
<tr>
<td>5</td>
<td>A+ A- A</td>
<td>A</td>
<td></td>
<td>CURRENT OUT (HART)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Active (Terminals A & A+): R_{L_{max}} = 1 kohm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Passive (Terminals A & A-): V_{max} = 32 VDC</td>
</tr>
</tbody>
</table>
3.1 Yleisiä asennukseen liittyviä huomautuksia

TIETOJA!
Tarkasta pakkaus huolellisesti vaurioiden tai kovakouraisesta käsitteistä johtuvien jälkien varalta. Raportoi mahdollisista vaurioista kuljetusyhtölle ja valmistajan paikalliselle edustajalle.

TIETOJA!
Varmista pakkausluettelosta, että kaikki tilatut osat on toimitettu.

TIETOJA!
Tarkista laitteen typpikilvestä, että toimitettu laite vastaa tilaustasi. Tarkista typpikilpeen painettu oikea jännite.

3.2 Varastointi

- Säilytä laite kuivassa ja pölyttömässä paikassa.
- Vältä jatkuvaa suoraa auringonvaloa.
- Säilytä laite alkuperäisessä pakkaussosa.
- Varastointilämpötila: -50...+70°C / -58...+158°F

3.3 Kuljetus

Signaalimuunnin
- Ei erityisvaatimuksia.

Kompakti versio
- Älä nosta laitetta signaalimuunnimen kotelosta.
- Älä käytä nostoketjuja.
- Käytä nostohihnoja laippalaitteiden kuljettamiseen. Kääri nämä molempien prosessiliitimien ympärille.

3.4 Asennustiedot

TIETOJA!
Seuraavat varotoimenpiteet on suoritettava luotettavan asennuksen varmistamiseksi.
- Varmista, että sivuilla on riittävästi tilaa.
- Suojaa signaalimuunninta suoralta auringonvalolta ja asenna aurinkosuoja tarvittaessa.
- Kytkenäkaappeihin asennetut signaalimuunimet tarvitsevat riittävän jäähdytynksen kuten tuulettimen tai lämmönvaihtimen.

3.5 Kompaktin version asennus

TIETOJA!
Signaalimuunnin on asennettu suoraan virtausanturiin. Noudata toimitetun tuoteasiakirjan ohjeita asentaessasi virtausanturia.
3.6 Kenttäkotelon asennus, etäversio

HUOMIO!
Saniteettiasennuksia koskevia huomautuksia
- Jotta asennuslevyn taakse ei keräänty likaa ja likajäämiä, seinän ja asennuslevyn väliin pitää asentaa peitetulppa.
- **Putkikiinnitys ei sovellu saniteettiasennuksiin!**

TIEOTJA!

3.6.1 Putkikiinnitys

Kuva 3-1: Pipe mounting of the field housing

1. Kiinnitä signaalinmuunnin putkeen.
2. Kiinnitä signaalinmuunnin tavallisilla U-pulteilla ja aluslevyllä.
3.6.2 Seinäkiinnitys

1. Merkitse reiät asennuslevyn avulla. Lisätietoja katso Asennuslevy, kenttäkotelo sivulla 159.

Useiden laitteiden asennus vierekkäin

\[a \geq 600 \text{ mm} / 23,6" \]
\[b \geq 250 \text{ mm} / 9,8" \]
3.6.3 Kenttäkoteloversion näytön kääntäminen

Kuva 3-3: Kenttäkoteloversion näytön kääntäminen

Kenttäkoteloversion näyttöä voidaan kääntää 90° lisäyksin

1. Ruuvaa kansi näytöstä ja ohjausyksiköstä.
2. Vedä näyttöä ulospäin kahdella sopivalla työkalulla asettamalla ne näytön vasemmalle ja oikealle puolelle.
4. Työnnä näyttö takaisin koteloon.
5. Asenna kansi ja kiristä se käsin.

HUOMIO!
Näytön nauhakaapelia ei saa taittaa tai kiertää toistuvasti.

TIETOJA!
3.7 Seinäkiinnitteisen kotelon asennus, etäversio

TIETOJA!

3.7.1 Putkikiinnitys

2. Kiinnitä signaalinmuunnin asennuslevyn muttereilla ja aluslevyllä.

Kuva 3-4: Seinäkiinnitteisen kotelon putkikiinnitys
3.7.2 Seinäkiinnitys

2. Kiinnitä asennuslevy tukevasti seinään.

Useiden laitteiden asennus vierekkäin

\[a \geq 240 \text{ mm} / 9.4" \]
4.1 Turvallisuusohjeet

VAARA!
Sähköliitäntöjen parissa voidaan työskennellä vain kun virta on kytetty pois päältä. Huomioi tyypikilven jännitetiedot.

VAARA!
Nouda maakohtaisia sähköasennusohjeita.

VAARA!
Vaarallisilla alueilla käyttettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

VAROITUS!
Nouda tarkasti paikallisia työsuojelusäännöksiä. Vain asianmukaisesti koulutetut asiantuntijat voivat suorittaa mittauslaitteen sähköosien töitä.

TIEHOJA!
Tarkista laitteen tyypikilvestä, että toimitettu laite vastaa tilaustasi. Tarkista tyypikilveen painettu oikea jännite.

4.2 Sähköliitäntän liittyviä tärkeitä tietoja

VAARA!
Sähköliitäntät tehdään direktiivin VDE 0100 "Enintään 1 000 V verkkojännitteen sähköasennukset" tai vastaavien kansallisten määräysten mukaan.

HUOMIO!
• Käytä sopivia kaapelin läpivientejä eri sähkökaapeleille.
• Virtausanturi ja signaalimuunnin konfiguroidaan yhdessä tehtaalla. Liitä laitteet pareittain tästä syystä. Varmista, että virtausanturivakiot GK/GKL (katso tyypikilvet) vastaavat toisiin.
• Jos laitteet toimitetaan erikseen tai jos asennat laitteita, joita ei ole konfiguroitu yhdessä, määritä signaalimunnnin DN-koon ja virtausanturin GK/GKL-vakion mukaan. katso Toimintotaulukot sivulla 114.
4.3 Etälaitteversioiden sähkökaapelit, huomautuksia

4.3.1 Signaalikaapelien A ja B huomautuksia

TIETOJA!
Signaalikaapelit A (tyyppi DS 300) kaksoissuojauksella ja B (tyyppi BTS 300) kolminkertaisella suojauksella varmistavat mitattujen arvojen oikean siirron.

Noudata seuraavia ohjeita:
- Aseta signaalikaapeli kiinnittimillä.
- Signaalikaapeli voidaan asettaa veteen tai maahan.
- Kovamuovista valmistetut signaalikaapelit eivät sisällä halogeeneja ja ne pysyvät joustavina alhaisissa lämpötiloissa.
- Sisemmän suojavaipan (10) liitäntä tehdään monisäikeisen suojajohtimen (1) kautta.
- Ulommän suojavaipan liitäntä tehdään suojavaipan (60) tai monisäikeisen suojaohitoimen (6) kautta riippuen koteloversiosta. Noudata seuraavia ohjeita.
- Signaalikaapelityyppiä B ei voi käyttää vaihtoehdoilla, joissa on "virtuaalireferenssi"!

4.3.2 Magnetointivirtakaapelin C huomautuksia

VAARA!
Kaikki versiot paitsi TIDAFLUX: Suojamaaton kolmejohtiminen kuparikaapeli on riittävä magnetointivirtakaapeliksi. Jos kuitenkin käytät suojattuja kaapeleita, suojausta EI saa kytkeä signaalimuuntimen koteloon.

Vain TIDALFLUX: Suojattua kaksijohtimista kuparikaapelia käytetään magnetointivirtakaapelina. Suojaus PITÄÄ kytkeä virtausanturin ja signaalimuuntimen koteloon.

TIETOJA!
Magnetointivirtakaapelit ei toimiteta laitteen mukana.
4.3.3 Asiakkaan signaalikaapelien vaatimukset

TIETOJA!
Asiakkaan pitää hankkia signaalikaapeli, jos sitä ei ole tilattu. Signaalikaapelin sähköisiä arvoja koskevat vaatimukset:

Sähköturvallisuus
- EN 60811 [pienjännitedirektiivi] tai vastaavat kansalliset säännökset.

Eristettyjen johtimien kapasitanssi
- Eristetty johdin / eristetty johdin < 50 pF/m
- Eristetty johdin / suojus < 150 pF/m

Eristysvastus
- \[R_{iso} > 100 \Omega \times \text{km} \]
- \[U_{maks.} < 24 \text{ V} \]
- \[I_{maks.} < 100 \text{ mA} \]

Testijännitteet
- Eristetty johdin / sisäsuojus 500 V
- Eristetty johdin / eristetty johdin 1000 V
- Eristetty johdin / ulkosuojus 1000 V

Eristettyjen johtimien kiertyminen
- Vähintään 10 kierretä per metri, tärkeää magneettikenttien tutkimiseksi.
4.4 Signaalit- ja magnetointivirtakaapelien valmistelu (paitsi TIDALFLUX)

TIETOJA!

Ulomman suojuksen sähköliitäntä on kotelokohtainen. Noudata asiaankuuluvia ohjeita.

4.4.1 Signaalikaapeli A (tyyppi DS 300), rakenne

- Signaalikaapeli A on kaksoissuojattu kaapeli signaalin välittämiseen virtausanturin ja signaalinmuuntimen välillä.
- Taivutussäde: ≥ 50 mm / 2"

Kuva 4-1: Signaalikaapelin A rakenne

1. Monisäikeinen suojajohdin (1) sisemmälle suojavaipalle (10), 1,0 mm² Cu / AWG 17 (eristämätön, paljas)
2. Eristetty johdin (2), 0,5 mm² Cu / AWG 20
3. Eristetty johdin (3), 0,5 mm² Cu / AWG 20
4. Ulkokuori
5. Eristekerrokset
6. Monisäikeinen suojajohdin (6) ulompi suojavaippa (60)
4.4.2 Signaalikaapelin A valmistelu, liitäntä signaalinmuuntimeen

Kenttäkotelo

TIETOJA!

- Ulompi suojavaippa (60) kytetään kenttäkoteloon monisäikeisellä suojajohtimella ja liittimellä.
- Taivutussäde: ≥ 50 mm / 2"

Vaaditut materiaalit:
- PVC-kutistesukka, Ø2,5 mm / 0,1"
- Kutistesukka
- Eristetyt päätyholkit DIN 46 228: E 1.5-8 monisäikeiselle suojajohtimelle (1)
- 2x eristettyä päätehylsyä DIN 46 228: E 0.5-8, eristetyille johtimille

![Diagram of signaalikaapeli A, kuorinta kenttäkoteloa varten](image)

Kuva 4-2: Signaalikaapeli A, kuorinta kenttäkoteloa varten

- **a** = 80 mm / 3,15"
- **b** = 10 mm / 0,39"

1. Kuori eriste mittaan a.
 Leikkaa ulompi suojavaippa mittaan b ja vedä se yli ulkosuojuksen.
2. Leikkaa sisempi suojavaippa ja monisäikeinen suojajohdin (6). Älä vaurioita monisäikeistä suojajohdinta (1).
3. Työnnä kutistesukka monisäikeisen suojajohtimen (1) yli.
4. Purista eristetyt päätyholkit johtimien ja monisäikeisten suojajohtimen (1) päälle.
5. Vedä kutistesukka esivalmistellun signaalikaapelin yli.
Seinäkiinnitteinen kenttäkotelo

TIETOJA!

- Ulomman suojavaipan liittäminen tehdään seinäkiinnitteissä kotelossa monisäikeisen suojajohtimen (6) kautta.
- Taivutussäde: ≥ 50 mm / 2”

Vaaditut materiaalit
- Abicoliitin 6,3 mm / 0,25”, eristys DIN 46245 johtimelle Ø = 0,5...1 mm² / AWG 20...17
- PVC-kutistesukka, Ø2,5 mm / 0,1”
- Kutistesukka
- Eristetyt päätiholkit DIN 46 228: E 1.5-8 monisäikeiselle suojajohtimelle (1)
- 2x eristettyä päätihylsyä DIN 46 228: E 0.5-8, eristetyille johtimille

Kuva 4-3: Signaaliapeli A, kuorinta seinäkiinnitteistä kenttäkoteloa varten
a = 80 mm / 3,15”

1) Kuori eriste mittaan a.
2) Leikkaa sisä- ja ulkovaippa. Älä vaurioita monisäikeisiä suojajohtimia (1) ja (6).
3) Työnä kutistesukka monisäikeisten suojajohtimien yli.
4) Purista abicoliitin monisäikeisen suojajohtimen (6) päälle.
5) Purista eristettyä päätihylsyä johtimien ja monisäikeisten suojajohtimen (1) päälle.
6) Vedä kutistesukka esivalmistellun signaaliapelin yli.
4.4.3 Signaalikaapelin A pituus

TIETOJA!
Väliaineen lämpötiloille, jotka ovat yli 150 °C / 300 °F, vaaditaan erikoissignaalikaapeli ja ZD-väli-istukka. Nämä ja muuttuneet sähkökytkentäkaaviot ovat saatavilla.

<table>
<thead>
<tr>
<th>Virtausanturi</th>
<th>Nimelliskoko</th>
<th>Min. johtokyky [μS/cm]</th>
<th>Signaalikaapelin A käyrä</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIFLUX 1000 F</td>
<td>10...150</td>
<td>3/8...6</td>
<td>5</td>
</tr>
<tr>
<td>OPTIFLUX 2000 F</td>
<td>25...150</td>
<td>1...6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>200...2000</td>
<td>8...80</td>
<td>20</td>
</tr>
<tr>
<td>OPTIFLUX 4000 F</td>
<td>2,5...150</td>
<td>1/10...6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200...2000</td>
<td>8...80</td>
<td>1</td>
</tr>
<tr>
<td>OPTIFLUX 5000 F</td>
<td>2,5...100</td>
<td>1/10...4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>150...250</td>
<td>6...10</td>
<td>1</td>
</tr>
<tr>
<td>OPTIFLUX 6000 F</td>
<td>2,5...150</td>
<td>1/10...6</td>
<td>1</td>
</tr>
<tr>
<td>WATERFLUX 3000 F</td>
<td>25...600</td>
<td>1...24</td>
<td>20</td>
</tr>
</tbody>
</table>

Kuva 4-4: Signaalikaapelin A maksimipituus

1. Virtausanturin ja signaalinmuuntimen välissä olevan signaalikaapelin A enimmäispituus [m]
2. Virtausanturin ja signaalinmuuntimen välissä olevan signaalikaapelin A enimmäispituus [ft]
3. Mitattavan nesteen väliaineen johtokyky [μS/cm]
4.4.4 Signaalikaapeli B (tyyppi BTS 300), rakenne

- Signaalikaapeli B on kolmoissuojattu kaapeli signaalin välittämiseen virtausanturin ja signaalimuuntimen välillä.
- Taivutussäde: ≥ 50 mm / 2"

![Signaalikaapelin B rakenne](image)

1. Monisäikeinen suojajohdin sisemmälle suojavaipalle (10), 1,0 mm² Cu / AWG 17 (ei eristetty, paljas)
2. Eristetty johdin (2), 0,5 mm² Cu / AWG 20 monisäikeisellä suojajohdimella (20)
3. Eristetty johdin (3), 0,5 mm² Cu / AWG 20 monisäikeisellä suojajohdimella (30)
4. Ulkokuori
5. Eristekerrokset
6. Monisäikeinen suojajohdin (6) ulomalle suojavaipalle (60), 0,5 mm² Cu / AWG 20 (ei eristetty, paljas)

TIETOJA!

- Ulompi suojavaippa (60) kytetään kenttäkoteloon monisäikeisellä suojajohdimella ja liittimellä.
- Taivutussäde: ≥ 50 mm / 2"

Vaaditut materiaalit
- PVC-kutistesukka, Ø2,0...2,5 mm / 0,08...0,1"
- Kutistesukka
- Eristetyt päätyholkit DIN 46 228: E 1.5-8 monisäikeiselle suojajohdimelle [1]
- 4 eristettyä päätetyhlyä DIN 46 228: E 0.5-8 eristetyille johtimille 2 ja 3 monisäikeisille suojajohdimille [20, 30]
1. Kuori eriste mittaan a.
2. Leikkaa ulompi suojavaippa mittaan b ja vedä se yli ulkosuojuksen.
3. Leikkaa sisempi suojavaippa, monisäikeinen suojajohdin (6) sekä eristettyjen johtimien suojavaipat. Älä vaurioita monisäikeisiä suojajohtimia (1, 20, 30).
4. Työnnä kutistesukka monisäikeisten suojajohtinten (1, 20, 30) yli.
5. Purista eristetyt päätyholkit johtimien ja monisäikeisten suojajohtimien päälle.
6. Vedä kutistesukka esivalmistellun signaalikaapelin yli.

Kuva 4–6: Signaalikaapeli B, kuorinta kentäkoteloa varten

a = 80 mm / 3,15”
b = 10 mm / 0,39”
Seinäkiinnitteinen kenttäkotelo

TIETOJA!

- Ulomman suojavaipan liittäminen tehdään seinäkiinnitteisessä kotelossa monisäikeisen suojajohtimen (6) kautta.
- Taivutussäde: ≥ 50 mm / 2”

Vaaditut materiaalit:
- Abicoliitin 6,3 mm / 0,25”, eristys DIN 46245 johtimelle Ø = 0,5...1 mm² / AWG 20...17
- PVC-kutistesukka, Ø2,5 mm / 0,1”
- Kutistesukka
- Eristetyt päätyholkit DIN 46 228: E 1.5-8 monisäikeiselle suojajohtimelle (1)
- 4 eristettyä päätehylsyä DIN 46 228: E 0.5-8 eristetyille johtimille 2 ja 3 ja monisäikeisille suojajohtimille (20, 30)

1. Kuori eriste mittaan a.
2. Leikkaa sisä- ja ulkosuojavaipat sekä johtimien (2, 3) sisäsuojavaipat. Älä vaurioita monisäikeisiä suojajohtimia (1, 6, 20, 30).
3. Työnnä kutistesukka monisäikeisten suojajohtinten yli.
4. Purista abicoliitin monisäikeisen suojajohtimen (6) päälle.
5. Purista eristetyt päätyholkit johtimien ja monisäikeisten suojajohtimien (1, 20, 30) päälle.
6. Vedä kutistesukka esivalmistellun signaalikaapelin yli.
4.4.6 Signaalikaapelin B pituus

TIETOJA!
Väläaineen lämpötiloille, jotka ovat yli 150 °C / 300 °F, vaaditaan erikoissignaalikaapeli ja ZD-välistukka. Nämä ja muuttuneet sähkökytkentäkaaviot ovat saatavilla.

<table>
<thead>
<tr>
<th>Virtausanturi</th>
<th>Nimelliskoko</th>
<th>Min. johtokyky [μS/cm]</th>
<th>Signaalikaapelin B käyrä</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIFLUX 1000 F</td>
<td>10...150</td>
<td>3/8...6</td>
<td>5</td>
</tr>
<tr>
<td>OPTIFLUX 2000 F</td>
<td>25...150</td>
<td>1...6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>200...2000</td>
<td>8...80</td>
<td>20</td>
</tr>
<tr>
<td>OPTIFLUX 4000 F</td>
<td>2,5...6,8</td>
<td>1/10...1/6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10...150</td>
<td>3/8...6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200...2000</td>
<td>8...80</td>
<td>1</td>
</tr>
<tr>
<td>OPTIFLUX 5000 F</td>
<td>2,5</td>
<td>1/10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4...15</td>
<td>1/6...1/2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>25...100</td>
<td>1...4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>150...250</td>
<td>6...10</td>
<td>1</td>
</tr>
<tr>
<td>OPTIFLUX 6000 F</td>
<td>2,5...15</td>
<td>1/10...1/2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>25...150</td>
<td>1...6</td>
<td>1</td>
</tr>
<tr>
<td>WATERFLUX 3000 F</td>
<td>25...600</td>
<td>1...24</td>
<td>20</td>
</tr>
</tbody>
</table>

Kuva 4-8: Signaalikaapelin B maksimipituus

1. Mittausanturin ja signaalimuuntimen välissä olevan signaalikaapelin B enimmäispituus [m]
2. Mittausanturin ja signaalimuuntimen välissä olevan signaalikaapelin B enimmäispituus [ft]
3. Mitattavan nesteen väläaineen johtokyky [μS/cm]
4.4.7 Magnetointivirtakaapelin C valmistelu, liitäntä signaalimuuntimeen

VAARA!
Suojamaton kolmajohtiminen kuparikaapeli on riittävä magnetointivirtakaapeliksi. Jos kuitenkin käytät suojattuja kaapeleita, suojausta EI saa kytkeä signaalimuuntimen koteloon.

TIETOJA!

- Magnetointivirtakaapelia C ei toimiteta laitteen mukana.
- Taivutussäde: ≥ 50 mm / 2"

Vaaditut materiaalit:
- Suojattu 3johdin kuparikaapeli sekä kutistesukka
- DIN 46 228 -standardin mukaiset eristetyt päätehylsy työterveyttä ja -turvallisuutta koskevien direktiivien mukaisesti

Magnetointivirtakaapelin C pituus ja poikkileikkaukset

<table>
<thead>
<tr>
<th>Pituus</th>
<th>Poikkileikkaus A_F (Cu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>[ft]</td>
</tr>
<tr>
<td>0...150</td>
<td>0...492</td>
</tr>
<tr>
<td>150...300</td>
<td>492...984</td>
</tr>
<tr>
<td>300...600</td>
<td>984...1968</td>
</tr>
</tbody>
</table>

(1) Cu = kuparin poikkipinta-ala
Seinäkiinnitteisessä versiossa liittimet on suunniteltu seuraaville kaapelin poikkipinta-aloille:

- Joustava kaapeli \(\leq 1,5 \text{ mm}^2 / \text{AWG 14} \)
- Kiinteä kaapeli \(\leq 2,5 \text{ mm}^2 / \text{AWG 12} \)

1. Kuori eriste mittaan \(a \).
2. Poista kaikki suojavaipat.
3. Vedä kutistesukka esivalmistellun kaapelin yli.
4. Purista eristetyt päättyholkit johtimien 7, 8, ja 9 päihin.
4.4.8 Signaalikaapelin A valmistelu, liitäntä virtausanturiiin

TIETOJA!

- Ulompi suojavaippa (60) on liitetty virtausanturin kytkentätilaan suoraan suojavaipan ja liittimen avulla.
- Taivutussäde: ≥ 50 mm / 2"

Vaaditut materiaalit
- PVC-kutistesukka, Ø2,0...2,5 mm / 0,08...0,1"
- Kutistesukka
- Eristetyt päättyholkit DIN 46 228: E 1.5-8 monisäikeiselle suojajohtimelle [1]
- 2 eristetyä päätehylsyä DIN 46 228: E 0.5-8 eristetyille johtimille [2, 3]

1. Kuori eriste mittaan a.
2. Leikkaa ulompi suojavaippa (60) mittaan b ja vedä se eristeen yli
3. Irrota monisäikeinen suojajohtin (6) ulommasta ja sisemmästä suojavaipasta. Älä vaurioita sisemman suojavaipan monisäikeistä suojajohdinta [1].
4. Työnnä kutistesukka monisäikeisen suojajohtimen (1) yli.
5. Purista eristetyt päättyholkit johtimien 2 ja 3 sekä monisäikeisen suojajohtimen (1) päälle.
6. Vedä kutistesukka esivalmistellun signaalikaapelin yli.

Kuva 4-10: Signaalikaapelin A valmistelu, liitäntä virtausanturiiin

a = 50 mm / 2"
b = 10 mm / 0,39"
4.4.9 Signaalikaapelin B valmistelu, liitäntä virtausanturiin

TIETOJA!

- Ulompi suojavaippa (60) on liitetty virtausanturin kytkentäläila suoraan suojavaipan ja liittimen avulla.
- Taivutussäde: ≥ 50 mm / 2"

Vaaditut materiaalit
- PVC-kutistesukka, Ø2,0...2,5 mm / 0,08...0,1"
- Kutistesukka
- Eristetyt päätyholkit DIN 46 228: E 1.5-8 monisäikeiselle suojajohtimelle [1]
- 2x eristettyä päätehylsyä DIN 46 228: E 0.5-8, eristetyille johtimille [2, 3]

1 Kuori eriste mittaan a.
2 Leikkaa ulompi suojavaippa (60) mittaan b ja vedä se eristeen yli
3 Poista monisäikeinen ulkovaipan suojajohdin (6) ja eristettyjen johtimien (2, 3) suojukset ja säikeiset suojajohdot. Irrota sisäsuojus. Älä vaurioita monisäikeistä suojajohtimaa (1).
4 Työnnä kutistesukka monisäikeisen suojajohtimen (1) yli.
5 Purista eristetyt päätyholkit johtimien 2 ja 3 sekä monisäikeisen suojajohtimen (1) päälle.
6 Vedä kutistesukka esivalmistellun signaalikaapelin yli.
4.4.10 Magnetointivirtakaapelin C valmistelu, liitäntä virtausanturiin

TIETOJA!

- Magnetointivirtakaapelia C ei toimiteta laitteen mukana.
- Magnetointivirtakaapelin C suojus voidaan kytkeä virtausanturiin.
- Taivutussäde: ≥ 50 mm / 2"

Vaaditut materiaalit
- Kutistesukka
- 3 eristettyä päähylsyä DIN 46 228: koko määräytyy käytettävän kaapelin mukaan

![Diagram of Magnetointivirtakaapeli C, virtausanturin valmistelu](image)

Kuva 4-12: Magnetointivirtakaapeli C, virtausanturin valmistelu

1. Kuori eriste mittaan a.
2. Poista kaikki suojavaipat.
3. Vedä kutistesukka esivalmistellun kaapelin yli.
4. Purista eristetyt päätynkkit johtimien 7, 8, ja 9 päihin.
4.5 Signaali- ja magnetointivirtakaapelien kytentä (paitsi TIDALFLUX)

VAARA!
Kaapelit voidaan kytkeä vain, kun virta on kytetty pois päältä.

VAARA!
Laite on maadoitettava sääntöjen mukaisesti henkilökunnan suojelemiseksi sähköiskuilta.

VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

VAROITUS!
Noudata tarkasti paikallisia työsuojelusäädöksiä. Vain asianmukaisesti koulutut asiantuntijat voivat suorittaa mitauslaitteen sähköosien töitä.
4.5.1 Signaali- ja magnetointivirtakaapelien kytkeminen, kenttäkotelo

- Signaalikaapelin A ja/tai B ulompi suojus on kytetty sähköisesti kotelon kanssa jännityksen poiston kiinnikkeen kautta.
- Jos suojattua magnetointivirtakaapelia käytetään, suojausta EI pidä kytkeä signaalimuuntimen koteloon.
- Taivutussäde: ≥ 50 mm / 2"

1. Irrota lukitusruuvi ja avaa kotelon kansi.
2. Ohjaa valmistellut signaali- ja magnetointivirtakaapelit kaapelin läpivientien kautta ja liitä vastaavat monisäikeiset suojajohdot ja johtimet.
5. Sulje kotelon kansi ja kiinnitä se lukitusruuvilla.

TIETOJA!
4.5.2 Signaali- ja magnetointivirtakaapelien kytkenminen, seinäkiinnitteinen kenttäkotelo

- Signaalkaapelin A ja tai B ulompi suojus on kytetty säikeisellä suojaajohdolla.
- Jos suojattua magnetointivirtakaapelia käytetään, suojausta EI pidä kytkea signaalimuunnimen koteloon.
- Taivutussäde: ≥ 50 mm / 2"

1. Avaa kotelon kansi.
2. Ohjaa valmistettu signaalkaapelit kaapelin läpivientien kautta ja liitä vastaavat monisäikeiset suojaajohdot ja johtimet.
3. Liitä ulkosuojuksen säikeinen suojaajohto.
5. Kinnitä kaapelin läpiviennin ruuviliitäntät ja sulje kotelon kansi.

TIETOJA!
Varmista, että kotelon tiiviste on oikein asennettu, puhdas ja ehjä.
4.5.3 Signaali- ja magnetointivirtakaapelien kytkenminen, 19” telineeseen asennettava kenttäkotelo (28 TE)

Kuva 4-15: Signaalikaapelin A ja magnetointivirtakaapelin liitäntä

1. Signaalikaapeli A
2. Suojus ja eristetyt johtimet 2 ja 3
3. Magnetointivirtakaapeli

Kuva 4-16: Signaalikaapelin B ja magnetointivirtakaapelin liitäntä

1. Signaalikaapeli B
2. Suojus ja eristetyt johtimet 2 ja 3
3. Magnetointivirtakaapeli
4.5.4 Signaali- ja magnetointivirtakaapelin kytkeminen, 19" telineeseen asennettava kenttäkotelo (21 TE)

Kuva 4-17: Signaalikaapelin A ja magnetointivirtakaapelin liitäntä
1. Signaalikaapeli A
2. Suojus ja eristetyt johtimet 2 ja 3
3. Magnetointivirtakaapeli

Kuva 4-18: Signaalikaapelin B ja magnetointivirtakaapelin liitäntä
1. Signaalikaapeli B
2. Suojus ja eristetyt johtimet 2 ja 3
3. Magnetointivirtakaapeli
4.5.5 Virtausanturin kytkentäkaavio, kenttäkotelo

VAARA!
Laite on maadoitettava sääntöjen mukaisesti henkilökunnan suojelemiseksi sähköiskuilta.

- Jos suojattua magnetointivirtakaapelia käytetään, suojasta EI pidä kytkeä signaalimuuntimen koteloon.
- Signaalikaapelin A tai B ulompi suojus on kytetty jännityksen poistoliittimen kautta.
- Signaali- ja magnetointivirtakaapelin taivutussäde: ≥ 50 mm / 2".
- Seuraava kuva on kaaviomainen. Sähköliittimien sijainnit saattavat vaihdella koteloversion mukaan.

Kuva 4-19: Virtausanturin kytkentäkaavio, kenttäkotelo
① Sähkökotelo signaalimuuntimen kotelossa signaali- ja magnetointivirtakaapelille
② Signaalikaapeli A
③ Signaalikaapeli B
④ Magnetointivirtakaapeli C
⑤ Virtausanturin liitäntäkotelo
⑥ Toiminnallinen maa FE
4.5.6 Virtausanturin kytentäkaavio, seinäkiinnitteinen kotelo

VAARA!
Laite on maadoitettava sääntöjen mukaisesti henkilökunnan suojelmiseksi sähköiskuista.

- Jos suojattua magnetointivirtakaapelia käytetään, suojausta EI pidä kytkeä signaalimuuntimen koteloon.
- Signaalikaapelin ulompi suojaus on kytetty signaalimuuntimen kotelossa säikeisellä suoajohdolla.
- Signaali- ja magnetointivirtakaapelin taivutussäde: ≥ 50 mm / 2"
- Seuraava kuva on kaaviomainen. Sähköliittimien sijainnit saattavat vaihdella koteloversion mukaan.

Kuva 4-20: Virtausanturin kytentäkaavio, seinäkiinnitteinen kotelo

1. Sähkökotelo signaalimuuntimen kotelossa signaali- ja magnetointivirtakaapelille
2. Signaalikaapeli A
3. Signaalikaapeli B
4. Magnetointivirtakaapeli C
5. Virtausanturin liitäntäkotelo
6. Toiminnallinen maa FE
4.5.7 Virtausanturin kytkentäkaavio, 19” telineeseen asennettava kotelo (28 TE)

VAARA!
Laite on maadoitettava sääntöjen mukaisesti henkilökunnan suojelemiseksi sähköiskuilta.

- Jos suojattua magnetointivirtakaapelia käytetään, suojasta EI pidä kytkeä signaalimuuntimen koteloon.
- Signaalikaapelin ulompi suojus on kytetty signaalimuuntimen kotelossa säikeisellä suojajohdolla.
- Signaali- ja magnetointivirtakaapelin taivutussäde: ≥ 50 mm / 2"
- Seuraava kuva on kaaviomainen. Sähköliittimien sijainnit saattavat vaihdella koteloversion mukaan.

Kuva 4-21: Virtausanturin kytkentäkaavio, 19” telineeseen asennettava kotelo (28 TE)

1. Sähkökotelo signaalimuuntimen kotelossa signaali- ja magnetointivirtakaapelille
2. Signaalikaapeli A
3. Signaalikaapeli B
4. Magnetointivirtakaapeli C
5. Virtausanturin liitäntäkutelo
6. Toiminnallinen maa FE
4.5.8 Virtausanturin kytkentäkaavio, 19” telineeseen asennettava kotelo (21 TE)

VAARA!
Laite on maadoitettava sääntöjen mukaisesti henkilökunnan suojelemiseksi sähköiskuilta.

- Jos suojattua magnetointivirtakaapelia käytetään, suojausta EI pidä kytkää signaalimuuntimen koteloon.
- Signaalikaapelin ulompi suojuus on kytketty signaalimuuntimen kotelossa säikeisellä suojajohdolla.
- Signaali- ja magnetointivirtakaapelin taivutussäde: ≥ 50 mm / 2"
- Seuraava kuva on kaaviomainen. Sähköliittimien sijainnit saattavat vaihdella koteloversion mukaan.

Kuva 4-22: Virtausanturin kytkentäkaavio, 19” telineeseen asennettava kotelo (21 TE)

1 Sähkökotelo signaalimuuntimen kotelossa signaali- ja magnetointivirtakaapeli
2 Signaalikaapeli A
3 Signaalikaapeli B
4 Magnetointivirtakaapeli C
5 Virtausanturin liitäntäkotelo
6 Toiminnallinen maa FE
4.6 Signaali- ja magnetointivirtakaapelien valmistelu ja kytkeminen (vain TIDALFLUX)

VAARA!
Kaapelit voidaan kytkeä vain, kun virta on kytketty pois päältä.

VAARA!
Laite on maadoitettava sääntöjen mukaisesti henkilökunnan suojelemiseksi sähköiskuilta.

VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

VAROITUS!
Noudata tarkasti paikallisia työsuojelusäännöksiä. Vain asianmukaisesti koulutetut asiantuntijat voivat suorittaa mitauslaitteen sähköosien töitä.

4.6.1 Johtopituudet

HUOMIO!
Mittausanturin ja signaalimuuntuimen välissä oleva suurin etäisyys määräytyy lyhyimmän kaapelin pituuden mukaan

Liitäntäkaapeli: enimmäispituus on 600 m / 1968 ft.

Tyypin B (BTS) signaalikaapeli: maksimipituus on 600 m / 1968 ft.

Tyypin A (DS) signaalikaapeli: maksimipituus riippuu nesteen johtokyvystä:

<table>
<thead>
<tr>
<th>Johtokyky</th>
<th>Maksimipituus</th>
</tr>
</thead>
<tbody>
<tr>
<td>[µS/cm]</td>
<td>[m]</td>
</tr>
<tr>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>≥400</td>
<td>600</td>
</tr>
</tbody>
</table>

Magnetointivirtakaapeli: Kaapelin poikkileikkaus määrittää maksimipituuden:

<table>
<thead>
<tr>
<th>Poikkileikkaus</th>
<th>Maksimipituus</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm²]</td>
<td>[AWG]</td>
</tr>
<tr>
<td>2 x 0,75</td>
<td>2 x 18</td>
</tr>
<tr>
<td>2 x 1,5</td>
<td>2 x 16</td>
</tr>
<tr>
<td>2 x 2,5</td>
<td>2 x 14</td>
</tr>
</tbody>
</table>
4.6.2 Signaalikaapeli A (tyyppi DS 300), rakenne

- Signaalikaapeli A on kaksoissuojattu kaapeli signaalin välittämiseen virtausanturin ja signaalinmuuntimen välillä.
- Taivutussäde: ≥ 50 mm / 2”

Kuva 4-23: Signaalikaapelin A rakenne

1. Monisäikeinen suojajohdin (1) sisemmälle suojavaipalle (10), 1,0 mm² Cu / AWG 17 (eristämätön, paljas)
2. Eristetty johdin (2), 0,5 mm² Cu / AWG 20
3. Eristetty johdin (3), 0,5 mm² Cu / AWG 20
4. Ulkokuori
5. Eristekerrokset
6. Monisäikeinen suojajohdin (6) ulompi suojavaippa [60]
4.6.3 Signaalikaapelin A valmistelu, liitäntä signaalinmuuntimeen

Kenttäkotelo

TIETOJA!

- Ulompi suojavaippa [60] kytetään kenttäkoteloon monisäikeisellä suojajohtimella ja liittimellä.
- Taivutussäde: ≥ 50 mm / 2”

Vaaditut materiaalit:
- PVC-kutistesukka, Ø2,5 mm / 0,1”
- Kutistesukka
- Eristetyt päättyholkit DIN 46 228: E 1.5-8 monisäikeiselle suojajohtimelle [1]
- 2 eristettyä päättehylsyä DIN 46 228: E 0,5-8 eristetyille johtimille [2, 3]

Kuva 4-24: Signaalikaapeli A, kuorinta kenttäkoteloa varten

a = 80 mm / 3,15”
b = 10 mm / 0,39”

1. Kuori eriste mittaan a.
 Leikkaa ulompi suojavaippa mittaan b ja vedä se yli ulkosuojuksen.
5. Veda kutistesukka esivalmistellun signaalikaapelin yli.
4.6.4 Signaalikaapelin A valmistelu, liitäntä mittausanturiin

TIETOJA!

Vaatitut materiaalit
- PVC-kutistesukka, Ø2,0...2,5 mm / 0,08...0,1"
- Kutistesukka
- Eristety tätäholkit DIN 46 228: E 1.5-8 kiertyneet monisäikeiset suojajohtimet (1) ja (6)
- 2x eristettyä päätethylsyä DIN 46 228: E 0.5-8, eristetyille johtimille (2, 3)

Kuva 4-25: Signaalikaapelin A valmistelu, liitäntä mittausanturiin

a = 50 mm / 2"

1. Kuori eriste mittaan a.
2. Leikkaa ulkosuojukset (60) ja (10). Älä vaurioita monisäikeisiä suojajohtimia (1) ja (6).
3. Kiertä monisäikeiset ulkovaipan suojajohtimet (6) ja sisävaipan (10) suojajohdin (1).
4. Työnnä kutistesukka monisäikeisen suojajohtimen (1) ja (6) yli.
6. Vedä kutistesukka esivalmistellun signaalikaapelin yli.
4.6.5 Signaalikaapeli B (tyyppi BTS 300), rakenne

- Signaalikaapeli B on kolmoissuojattu kaapeli signaalin välittämiseen virtausanturin ja signaalinmuuntimen välillä.
- Taivutussäde: ≥ 50 mm / 2”

Kuva 4-26: Signaalikaapelin B rakenne

1. Monisäikeinen suojajohdin sisemmälle suojavaipalle [10], 1,0 mm² Cu / AWG 17 (ei eristetty, paljas)
2. Eristetty johdin (2), 0,5 mm² Cu / AWG 20 monisäikeisellä suojajohtimella (20)
3. Eristetty johdin (3), 0,5 mm² Cu / AWG 20 monisäikeisellä suojajohtimella (30)
4. Ulokkuori
5. Eristekerrokset
6. Monisäikeinen suojajohdin (6) ulomalle suojavaipalle [60], 0,5 mm² Cu / AWG 20 (ei eristetty, paljas)

4.6.6 Signaalikaapelin B valmistelu, liitäntä signaalinmuuntimeen

Kenttäkotelo

TIETOJA!

- Ulompi suojavaippa (60) kytetään kenttäkoteloon monisäikeisellä suojajohtimella ja liittimellä.
- Taivutussäde: ≥ 50 mm / 2”

Vaaditut materiaalit
- PVC-kutistesukka, Ø2,0...2,5 mm / 0,08...0,1”
- Kutistesukka
- Eristetyt päätyholkit DIN 46 228: E 1.5-8 monisäikeiselle suojajohtimelle [1]
- 4 eristettyä päätäylsyä DIN 46 228: E 0.5-8 eristetyille johtimille 2 ja 3 ja monisäikeisille suojajohtimille [20, 30]
Kuori eriste mittaan a.
2 Leikkaa ulotön suojavaippa mittaan b ja vedä se yli ulkosuojuksen.
3 Leikkaa sisempi suojavaippa (10), monisäikeinen suojajohdin (6) sekä eristettyjen johtimien suojavaipat. Älä vaurioita monisäikeisiä suojajohtimia (1, 20, 30).
4 Työnnä kutistesukka monisäikeisten suojajohdinten (1, 20, 30) yli.
5 Purista eristetyt päättyholkit johtimien ja monisäikeisten suojajohtimien päälle.
6 Vedä kutistesukka esivalmistellun signaalikaapelin yli.

Kuva 4-27: Signaalikaapeli B, kuorinta kenttäkoteloa varten

- a = 80 mm / 3,15”
- b = 10 mm / 0,39”
4.6.7 Signaalikaapelin B valmistelu, liitäntä mittausanturiin

TIETOJA!

Vaaditut materiaalit
- PVC-kutistesukka, Ø2,0...2,5 mm / 0,08...0,1”
- Kutistesukka
- Eristetyt päätyholkit DIN 46 228: E 1.5-8 kiertyneet monisäikeiset suojajohtimet (1) ja (6)
- 2x eristettyä päätähylsyä DIN 46 228: E 0.5-8, eristetyille johtimille (2, 3)

1. Kuori eriste mittaan a.
2. Leikkaa ulkosuojukset (60), (10), eristettyjen johtimien (2, 3) suojukset ja säikeiset suojajohdot (20, 30). Älä vaurioita monisäikeisiä suojajohtimia (1) ja (6).
3. Kierrä monisäikeiset ulkovaipan suojajohtimet (6) ja sisävaipan (10) suojajohdin (1).
4. Työnnä kutistesukka monisäikeisen suojajohtimen (1) ja (6) yli.
5. Purista eristetyt päätäholkit johtimien (2) ja (3) ja monisäikeisten suojajohtimien (1) ja (6) päälle.
6. Vedä kutistesukka esivalmistellun signaalikaapelin yli.
4.6.8 Magnetointivirtakaapelin C valmistelu, liitintä signaalimuuntimenee

VAARA!
Suojamatonta kaksijohtimista kuparikaapelia käytetään magnetointivirtakaapelina. Suojaus **PITÄÄ** kytkeä mittausanturin ja signaalimuuntimen koteloon.

TIETOJA!
Kokoamismateriaalit ja -välineitä sovelletaan johtimien ja -valvontavälineitä koskevien direktiivien mukaisesti.

- Magnetointivirtakaapelia C ei toimiteta laitteen mukana.
- Taivotuksa: ≥ 50 mm / 2"

Vaaditut materiaalit:
- Suojattu kaksijohtiminen kuparikaapeli, jossa kutistesukka
- DIN 46 228 eristetyt päättyholkit: koko määräytyy käytettävän kaapelin mukaan

Kuva 4-29: Magnetointivirtakaapelin C valmistelu

\[a = 80 \text{ mm} / 3,15" \\
\[b = 10 \text{ mm} / 0,4" \\

1. Kuori eriste mittaan a.
2. Leikkaa ulompi suojaviaippa mittaan b ja vedä se yli ulkosuojuksen.
3. Purista eristetyt päättyholkit molempiin johtimiin.
4. Vedä kutistesukka esivalmistellun kaapelin yli.
4.6.9 Magnetointivirtakaapelin C valmistelu, liitäntä mitataansanturiin

TIETOJA!

- Magnetointivirtakaapelia ei toimiteta laitteen mukana.
- Suojavaippa on liitetty muuntimen kytkentätilassa suoraan suojavaipan ja liittimen avulla.
- Suojus on kytetty anturiin erityisellä kaapelliläpiviennillä.
- Taivutussäde: ≥ 50 mm / 2"

Vaaditut materiaalit
- Suojattu kaksijohtiminen, eristetty kuparikaapeli
- Kutistesukkaa, koko määräytyy käytettävän kaapelin mukaan
- Kutistesukka
- DIN 46 228 eristetyt päätyholkit: koko määräytyy käytettävän kaapelin mukaan

![Image](4-30: Magnetointivirtakaapeli C valmistelu)

\[
a = 125 \text{ mm} / 5"
\]
\[
b = 10 \text{ mm} / 0,4"
\]

① Kuori eriste mittaan a.
② Leikkaa ulompi suojavaippa mittaan b ja vedä se yli ulkosuojukseen.
③ Purista eristetyt päätymhollkit molempien johtimiin.
4.6.10 Liitäntäkaapeli

Tietoliitäntäkaapeli on suojattu 3 x 1,5 mm² LIYCY-kaapeli.

Liitäntäkaapelin valmistelu

Kuva 4-31: Liitäntäkaapelin valmistelu

- **a** = 100 mm / 4”
- **b** = 10 mm / 0,4”

1. Kuori eriste mittaan a.
2. Leikkaa ulompi suojavaippa mittaan b ja vedä se yli ulkosuojukuksen.
3. Purista eristetyt pätyholkit johtimien 1, 2, ja 3 päihin.

Kytke suojus kaapelin molemmin puolin erityisellä kaapeliläpiennillä.
Virtausmuuntimen puoli:
Suojuksen kytkimen muuntimen liitäntäkoteloon

Kuva 4-32: Suojusten kiinnittäminen

1. Magnetointivirtakaapeli
2. Signaalikaapeli

Virtausanturin puoli:
Suojusten kiinnittäminen erityisellä kaapeliläpiviennillä

Kuva 4-33: Suojusen kiinnittäminen kaapeliläpiviennissä

1. Johdot
2. Eristys
3. Suojus
4. Eristys
5. Syötä kaapeli kupumutterin ja kiinnitysholkin läpi ja taita suojus kiinnitysholkin yli. Varmista, että punottu suojus on 2 mm / 3/32" limittäin O-renkaan kanssa.
6. Työnnä kiinnitysholkkii runkoon.
4.6.11 Kaapelin kytkentä

Kuvassa esitettäen eri liitännät ja kaapeliläpiviennit. Näkymässä "b" esitetään (yksityiskohtaisesti) signaali- ja magnetointivirtakaapelien pohjaläpiviennit signaalinmuuntimen liitäntäkoteloon.

TIETOJA!

Lisätietoja on sähkökaavioissa ja TIDALFLUX 2300-laitteen käyttöoppaan kuvissa.

Kuva 4-34: Sähköliitännä

1. Ruuvaa kansi auki päästäksesi käsiksi liittimiin
2. Ruuvaa kansi auki päästäksesi käsiksi liittimiin
3. Magnetointivirtakaapeli
4. Liitäntäkaapeli
5. Signaalikaapeli (DS tai BTS)
Kuva 4-35: Kytentäkaavio

1. Susjamaadoituskytkentä (PE)
2. Verkkovirta nollajohdin [N]
3. Verkkovirta jännitteinen kaapeli [L]
4. Magnetointivirtakaapeli
5. Liitäntäkaapeli
7. Kytke kotelo PE:hen

Kuva 4-35: Kytentäkaavio

1. Susjamaadoituskytkentä (PE)
2. Verkkovirta nollajohdin [N]
3. Verkkovirta jännitteinen kaapeli [L]
4. Magnetointivirtakaapeli
5. Liitäntäkaapeli
7. Kytke kotelo PE:hen
IP 68 -suojaluokan virtausantureita ei voi enää avata. Kaapelit on kytetty tehtaalla ja merkitty seuraavasti.

Kuva 4-36: IP 68 -versioiden merkitty kaapelit

1. Verkkovirta (10 = tyhjä, 11 = sininen, 12 = ruskea)
2. Kenttävirta (7 = valkoinen, 8 = vihreä, ruskeaa ei käytetä)
3. Dataliitäntä [mustat johdot, C = merkitty "1", D = merkitty "2", E = merkitty "3"]
4. Elektrodit (1 = tyhjä, 2 = valkoinen, 3 = punainen)
4.7 Virtausanturin maadoitus

4.7.1 Klassinen tapa

HUOMIO!

Virtausanturin ja kotelon tai signaalimuuntimen suojamaadoituksen väillä ei saa olla jännitteen eroa!

- Virtausanturin pitää olla oikein maadoitettu.
- Maadoituskaapelia ei saa välittää häiriöjännitettä.
- Maadoitusjohdinta ei saa käyttää minkään muiden sähkölaitteiden maadoitukseen samanaikaisesti.
- Vaarallisilla alueilla maadoitusta käytetään yhtä aikaa potentialintasausta varten. Muita maadoitusohjeita on erillisessä Ex-asiakirjassa, joita toimitetaan vain vaarallisten alueiden laitteille.
- Virtausanturit maadoitetaan FE-maadoitusjohdolla.
- Eri virtausantureiden erityiset maadoitusohjeet on esitetty erillisissä virtausanturin asiakirjoissa.
- Mittaanturin asiakirjat sisältävät myös kuvauksia siitä, miten maadoitusrunko käytetään ja kuinka virtausanturi asennetaan metalli- tai muoviputkiin tai putkiin, jotka on päästetty sisäpuolelta.
4.7.2 Virtuaalireferenssi (ei koske versiota TIDALFLUX 4000 & OPTIFLUX 7300 C)

Putkistoissa, jotka ovat sähköeristetyt sisäpuolella (esim. olla sisävuori tai valmistettu kokonaan muovista), on myös mahdollista mitata ilman ylimääräisiä maadoitusrenkaita tai elektrodeja. Signaalimuunnimen syöttövahvistin kirjaa molempien mittauselektroden jännitteen ja patentoidulla menetelmällä luodaan jännite, joka vastaa maadoittumattoman väliaineen jännitettä. Tämä jännite on signaalinlähtövieljellyn viitejännite. Tämä tarkoittaa, että häiritseviä jännite-eroja ei ole viitejännitteen ja mittauselektroden välillä signaalinkäsittelystä aikana. Maadoittamaton käyttö on mahdollista myös järjestelmien kanssa, joissa on jännitte ja virta putkistoissa esim. elektrolyysit ja galvaaniset järjestelmät.

TIETOJA!

Jos seinäkotelossa on virtuaaliviite, jännite on sallittu signaalinmuuntimen anturien PE/FE ja virtausanturin välillä!

Toiminnon mittauksen kynnysarvot virtuaaliviitteellä

<table>
<thead>
<tr>
<th>Koko</th>
<th>≥ DN10 / ≥ 3/8”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johtokyky</td>
<td>≥200 μS/cm</td>
</tr>
<tr>
<td>Signaalikaapeli</td>
<td>käytä vain A:ta (tyyppi DS 300)</td>
</tr>
<tr>
<td>Signaalikaapelin pituus</td>
<td>≤ 50 m / ≤ 150 ft</td>
</tr>
</tbody>
</table>

4.8 Virtalähteen kytKentä

VAARA!

Laitte on maadoitettava sääntöjen mukaisesti henkilökunnan suojelemiseksi sähköiskuilta.

VAARA!

Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

- Suojausluokka riippuu kotelooversioista (IP65...67 - IEC 529 / EN 60529 tai NEMA4/4X/6).
- Sähkölaitteita pölyltä ja kosteudelta suojaamaan suunnitellut laitteiden kotelo täytyy pitää aina hyvin suljettuna. Pintavuotoetäisyys ja -välyset on määrätty VDE 0110:n ja IEC 664:n saastumislukuon 2 mukaan. Syöttöpinnat on suunniteltu ylijännitetuloalue III ja lähtöpiirit ylijännitetuloalue II.
- Varokkeet (I_N ≤ 16 A) syöttövirtapiirille sekä erotin (kytkin, virtakytkin) eristämään signaalimuunnin on pidettävä lähellä laitetta. Erottimen on noudatettava standardia IEC 60947-1 ja IEC 60947-3, ja se on merkittävä tämän laitteen erottimeksi.
100...230 VAC (toleranssialue: -15% / +10%)

- Huomioi tyyppikilven syöttöjännite ja taajuus (50...60 Hz).
- Virtalähteen suojamaadoitusliitin PEPE on kytkettävä erilliseen U-kiinnikkeen liittimeen signaalinmuuntimen liitinkotelossa.
 Katso kytentäkaavioit 19” telinekiinitteisille koteloille.

TIETOJA!
240 VAC + 5% sisältyy toleranssialueeseen.

12...24 VDC (toleranssialue: -55% / +30%)

- Huomioi tyyppikilven tiedot.
- Toiminnallisiin pienjännitteisiin kytkeminen edellyttää suojaavan erotuksen (PELV) [sääösten VDE 0100 / VDE 0106 ja/tai IEC 364 / IEC 536 tai paikallisten sääösten mukaan].

TIETOJA!
12 VDC - 10% sisältyy toleranssialueeseen.

24 VAC/DC (toleranssialue: AC: -15% / +10%; DC: -25% / +30%)

- AC: Huomioi tyyppikilven syöttöjännite ja taajuus (50...60 Hz).
- DC: Toiminnallisiin pienjännitteisiin kytkeminen edellyttää suojaavan erotuksen (PELV) [sääösten VDE 0100 / VDE 0106 ja/tai IEC 364 / IEC 536 tai paikallisten sääösten mukaan].

TIETOJA!
12 Ve ei sisälly toleranssialueeseen.
Virtalähteen kytkentä (19" telineeseen asennettavaa koteloa lukuun ottamatta)

1. PE
2. L
3. N

100...230 VAC (-15% / +10%), 22 VA
24 VDC (-55% / +30%), 12 W
24 VAC/DC (AC: -15% / +10%; DC: -25% / +30%), 22 VA tai 12 W

Virtalähteen kytkentä 19" seinäkiinnitteiselle kotelolle (28 TE)

Virtalähteen kytkentä 19" seinäkiinnitteiselle kotelolle (21 TE)

TIETOJA!
Turvalisuussystä valmistaja on kytkenyt 28d-liittimet sisäisesti 28z-, 30z- ja 32z-liittimiin. On suositeltavaa myös liittää liittimet 28z, 30z ja 32z ulkoiseen suojajohtimeen.

HUOMIO!
Suojajohtimen liittimiä ei pidä kytkeä PE-liitännän kautta.
4.9 Tulot ja lähdöt, yleiskatsaus

4.9.1 Tulojen/lähtöjen yhdistelmät (I/Os)

Signalinmuunnin on saatavilla eri tulo- / lähtöyhdistelmillä.

Perusversio
- 1 jännitelähtö, 1 pulssilähtö ja 2 tilalähtöä / rajakytkintä
- Pulssilähtöä voidaan käyttää myös tilaulostulona/rajakytkimenä ja yhtä tilaulostuloista voidaan käyttää sisääntulona.

Ex i -versio
- Tarpeesta riippuen laite voidaan varustaa eri ulostulomoduuleilla.
- Jännitelähtö voi olla aktiivinen tai passiivinen.
- Saatavilla myös Foundation Fieldbus- ja Profibus PA -vaihtoehtoilla.

Modulaariversio
- Tarpeesta riippuen laite voidaan varustaa eri ulostulomoduuleilla.

Väyläjärjestelmät
- Laite mahdollistaa luonnostaan vaarattomat ja luonnostaan ei-vaarattomat väyläliitännät yhdessä lisämoduulien kanssa.
- Lue erillinen asiakirja liittyen väyläjärjestelmien kytkentään ja käyttöön.

Ex-vaihtoehto
- Vaarallisiin tiloihin voidaan toimittaa kaikki tulo- / lähtövaihtoehdot koteloratkaisuille C ja F, joilla on kytentätila Ex d:ssä [paineenkestävä kotelo] tai Ex e:ssä [parannettu suojaus].
- Lue erilliset ohjeet liittyen Ex-laitteen kytkentään ja käyttöön.
4.9.2 CG-numeron kuvaus

CG 3

Kuva 4-37: Elektroniikkamoduulien ja tulo-/lähtövaihtoehtojen merkintä (CG-numero)
1. ID-numero: 0
2. ID-numero: 0 = tavallinen; 9 = erikois
3. Virtalähdevaihtoehto / virtausanturiasetus
4. Näyttö (kieliversiot)
5. Tulo-/lähtöversio (I/O)
6. 1. valinnainen moduuli liittimille A
7. 2. valinnainen moduuli liittimille B

CG-numeron 3 viimeistä numeroa (5, 6 ja 7) osoittavat riviiliittimien sijainnin. Katso seuraavat esimerkit.

Esimerkkejä CG-numeroista

<table>
<thead>
<tr>
<th>CG-numero</th>
<th>Kuvaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG 300 11 100</td>
<td>100...230 VAC & vakionäyttö; perus I/O: I_a tai I_p & S_p/C_P & S_p & P_p/S_p</td>
</tr>
<tr>
<td>CG 300 11 7FK</td>
<td>100...230 VAC & vakionäyttö; modulaarinen I/O: I_a & P_N/S_N ja valinnainen moduuli P_N/S_N & C_N</td>
</tr>
<tr>
<td>CG 300 81 4EB</td>
<td>24 VDC & vakionäyttö; modulaarinen I/O: I_a & P_p/S_a ja valinnainen moduuli P_p/S_p & I_p</td>
</tr>
</tbody>
</table>

Lyhennysten ja CG-tunnistimen kuvaus mahdollisille valinnaisille moduuleille liittimissä A ja B

<table>
<thead>
<tr>
<th>Lyhenne</th>
<th>CG-numeron tunniste</th>
<th>Kuvaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_a</td>
<td>A</td>
<td>Aktiivinen mA-ulostulo</td>
</tr>
<tr>
<td>I_p</td>
<td>B</td>
<td>Passiivinen mA-ulostulo</td>
</tr>
<tr>
<td>P_a / S_a</td>
<td>C</td>
<td>Aktiivinen pulssiulostulo, taajuusulostulo, tilaulostulo tai rajakytkin (vaihdettavissa)</td>
</tr>
<tr>
<td>P_p / S_p</td>
<td>E</td>
<td>Passiivinen pulssiulostulo, taajuusulostulo, tilaulostulo tai rajakytkin (vaihdettavissa)</td>
</tr>
<tr>
<td>P_N / S_N</td>
<td>F</td>
<td>Passiivinen pulssiulostulo, taajuusulostulo, tilaulostulo tai NAMUR-rajakytkin (vaihdettavissa)</td>
</tr>
<tr>
<td>C_a</td>
<td>G</td>
<td>Aktiivinen sisääntulo</td>
</tr>
<tr>
<td>C_p</td>
<td>K</td>
<td>Passiivinen sisääntulo</td>
</tr>
<tr>
<td>Iln_a</td>
<td>P</td>
<td>Aktiivinen sisäänmenovirta</td>
</tr>
<tr>
<td>Iln_p</td>
<td>R</td>
<td>Passiivinen sisäänmenovirta</td>
</tr>
<tr>
<td>-</td>
<td>B</td>
<td>Ei lisämoduuleja asennettu</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>Lisämoduulit eivät ole mahdollisia</td>
</tr>
</tbody>
</table>
4.9.3 Kiinteät, ei-vaihdettavissa olevat tulo- / lähtöversiot

Signaalimuunnin on saatavilla eri tulo- / lähtöyhistelmitä.

- Taulukon harmaat laitikot ilmaisevat määrittämättömät tai käyttämättömät liittimet.
- Taulukossa kuvataan vain CG-numeron viimeiset numerot.
- Liitäntä A+ on käytettävissä vain perus tulo/lähtö versiossa.

<table>
<thead>
<tr>
<th>CG nro</th>
<th>Rivilüttimet</th>
<th>A+</th>
<th>A</th>
<th>A-</th>
<th>B</th>
<th>B-</th>
<th>C</th>
<th>C-</th>
<th>D</th>
<th>D-</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Ia + HART® aktiivinen</td>
<td>S_p / C_p passiivinen</td>
<td>S_p passiivinen</td>
<td>P_p / S_p passiivinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Ip + HART® passiivinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Ia aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td>C_p passiivinen</td>
<td>Ia + HART® aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>Ia aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td>C_p passiivinen</td>
<td>Ia + HART® aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Ip passiivinen</td>
<td>P_N / S_N NAMUR</td>
<td>C_p passiivinen</td>
<td>Ia + HART® aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>Ip passiivinen</td>
<td>P_N / S_N NAMUR</td>
<td>C_p passiivinen</td>
<td>Ia + HART® aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>IIna aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td>C_p passiivinen</td>
<td>Ia + HART® aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>IIna aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td>C_p passiivinen</td>
<td>Ia + HART® aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>IInp passiivinen</td>
<td>P_N / S_N NAMUR</td>
<td>C_p passiivinen</td>
<td>Ia + HART® aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>IInp passiivinen</td>
<td>P_N / S_N NAMUR</td>
<td>C_p passiivinen</td>
<td>Ia + HART® aktiivinen</td>
<td>P_N / S_N NAMUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG nro</td>
<td>Riviliittimet</td>
<td>A+</td>
<td>A</td>
<td>A-</td>
<td>B</td>
<td>B-</td>
<td>C</td>
<td>C-</td>
<td>D</td>
<td>D-</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>----</td>
</tr>
</tbody>
</table>

PROFIBUS PA (Ex i) (optio)

D 0 0										
D 1 0	I_a aktiivinen	P_N / S_N NAMUR	PA+	PA-	PA+	PA-				
		C_p passiivinen	FISCO-laite	FISCO-laite						
D 2 0	I_p passiivinen	P_N / S_N NAMUR	PA+	PA-	PA+	PA-				
		C_p passiivinen	FISCO-laite	FISCO-laite						
D 3 0	I_{ln}_a aktiivinen	P_N / S_N NAMUR	PA+	PA-	PA+	PA-				
		C_p passiivinen	FISCO-laite	FISCO-laite						
D 4 0	I_{ln}_p passiivinen	P_N / S_N NAMUR	PA+	PA-	PA+	PA-				
		C_p passiivinen	FISCO-laite	FISCO-laite						

FOUNDATION Fieldbus (Ex i) (optio)

E 0 0										
E 1 0	I_a aktiivinen	P_N / S_N NAMUR	V/D+	V/D-	V/D+	V/D-				
		C_p passiivinen	FISCO-laite	FISCO-laite						
E 2 0	I_p passiivinen	P_N / S_N NAMUR	V/D+	V/D-	V/D+	V/D-				
		C_p passiivinen	FISCO-laite	FISCO-laite						
E 3 0	I_{ln}_a aktiivinen	P_N / S_N NAMUR	V/D+	V/D-	V/D+	V/D-				
		C_p passiivinen	FISCO-laite	FISCO-laite						
E 4 0	I_{ln}_p passiivinen	P_N / S_N NAMUR	V/D+	V/D-	V/D+	V/D-				
		C_p passiivinen	FISCO-laite	FISCO-laite						

1. Toiminto muutettu uudelleenkytkennällä
2. Vaihdettavissa
4.9.4 Vaihdettavissa olevat tulo-/lähtöversiot

Signaalimuunnin on saatavilla eri tulo- / lähtöyhdistelmillä.

- Taulukon harmaat laatikot ilmaisevat määrittämättömät tai käyttämättömät liittimet.
- Taulukossa kuvataan vain CG-numeron viimeiset numerot.
- Term. = (liitäntä) terminaali

<table>
<thead>
<tr>
<th>Modulaarinen I/Os (valinnainen)</th>
<th>CG nro</th>
<th>Riviliiitimot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A+</td>
<td>A</td>
</tr>
<tr>
<td>4 _ _</td>
<td>enint. 2 valinnaista moduulia liittimelle A + B</td>
<td>I_a + HART® aktiivinen</td>
</tr>
<tr>
<td>8 _ _</td>
<td>enint. 2 valinnaista moduulia liittimelle A + B</td>
<td>I_p + HART® passiivinen</td>
</tr>
<tr>
<td>6 _ _</td>
<td>enint. 2 valinnaista moduulia liittimelle A + B</td>
<td>I_a + HART® aktiivinen</td>
</tr>
<tr>
<td>B _ _</td>
<td>enint. 2 valinnaista moduulia liittimelle A + B</td>
<td>I_p + HART® passiivinen</td>
</tr>
<tr>
<td>7 _ _</td>
<td>enint. 2 valinnaista moduulia liittimelle A + B</td>
<td>I_a + HART® aktiivinen</td>
</tr>
<tr>
<td>C _ _</td>
<td>enint. 2 valinnaista moduulia liittimelle A + B</td>
<td>I_p + HART® passiivinen</td>
</tr>
</tbody>
</table>

1. Vaihdettavissa
2. Ei aktivoitu päättevastus
3. Aktivoitu päättevastus
4.10 Tulojen ja lähtöjen kuvaus

4.10.1 mA-ulostulo

TIETOJA!

Virtalähdot on liitettyä versiosta riippuen! Liitinkotelon tarrassa on merkitty mitkä I/O-versiot ja tulot/lähdot on asennettu signaalinmuuntimen.

- Kaikki lähdöt on sähköisesti eristetty toisistaan ja muista piireistä.
- Kaikkia käyttötietoja ja toimintoja voidaan säätää.
- Passiivinen tila:
 - Ulkoinen virtalähde U_{ext} ≤ 32 VDC, I ≤ 22 mA
- Aktiivinen tila:
 - kuormitusimpedanssi R_L ≤ 1 kΩ, I ≤ 22 mA;
 - R_L ≤ 450 Ω, I ≤ 22 mA Ex i-lähdölle
- Itsevalvonta: keskeytys tai kuormitusimpedanssi liian suuri lähtövirtasilmukassa
- Virheilmoitus mahdollinen tilalähden kautta, virheilmoitus näytöllä.
- Virta-arvon virheentunnistusta voidaan säätää.
- Automaattinen alueen muuntaminen kynnysarvon tai ohjaustalon kautta. Kynnysarvon asetusarvo on 5-80 %, Q_{100%} ± 0...5% hysteresistä (vastaava arvo pienemmästä suurempana alueeseen 1:20 -1:25).
 - Aktiivisen alueen signalointi mahdollinen tilalähden kautta (säädetävä).
- Virtausmittaus eteen / taakse (F/R-tila) on mahdollinen.

TIETOJA!

Lisätietoa on kohdissa katso Tulojen ja lähtöjen kytentäkaaviot sivulla 84, katso Tekniset tiedot sivulla 146.

VAARA!

Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.
4.10.2 Pulssi- ja taajuusulostulo

TIETOJA!

Versiosta riippuen pulssi- ja taajuuslähdot on kytettävä passiivisesti tai aktiivisesti NAMUR EN 60947-5-6:n mukaan! Liitinkotelon tarrassa on merkitty mitkä I/O-versiot ja tulot/lähdot on asennettu signaalinmuuntimen.

- Kaikki lähdot on sähköisesti eristetty toisistaan ja muista piireistä.
- Kaikkia käyttötietoja ja toimintoja voidaan säättää.
- Passiivinen tila:
 Ulkoinen virtalähde vaaditaan: \(U_{\text{ext}} \leq 32 \text{ VDC} \)
 \(I \leq 20 \text{ mA}, f \leq 10 \text{ kHz} \) (ylialueen enintään \(f_{\text{max}} \leq 12 \text{ kHz} \))
 \(I \leq 100 \text{ mA}, f \leq 100 \text{ Hz} \)
- Aktiivinen tila:
 Sisäisen virtalähteen käyttö: \(U_{\text{nom}} = 24 \text{ VDC} \)
 \(I \leq 20 \text{ mA}, f \leq 10 \text{ kHz} \) (ylialueen enintään \(f_{\text{max}} \leq 12 \text{ kHz} \))
 \(I \leq 20 \text{ mA}, f \leq 100 \text{ Hz} \)
- NAMUR-tila: passiivinen standardin EN 60947-5-6 mukaan, \(f \leq 10 \text{ kHz} \), ylialueen enintään \(f_{\text{max}} \leq 12 \text{ kHz} \)
- Skaalaus:
 Taajuuslähtö: pulsseja/aikayksikkö (esim. 1000 pulssia/s, \(Q_{100\%} \)); Pulssilähtö: määrä per pulssi.
- Pulssin leveys:
 symmetrinen (pulssin toimintakerroin 1:1, riippumaton lähtötaajuus)
 automaattinen (kiinteällä pulssinleveydellä, toimintakerroin n. 1:1, \(Q_{100\%} \)) tai
 kiinteä (säädettävä pulssinleveys, tarpeen mukaan 0,05 ms...2 s)
- Virtausmittaus eteen / taakse (F/R-tila) on mahdollinen.
- Kaikkia pulssi- ja taajuuslähtöjä ja voidaan käyttää myös tilalähtöä /rajakytkimenä.

TIETOJA!

Lisätietoa on kohdissa katso Tulojen ja lähtöjen kytentäkaavioit sivulla 84, katso Tekniset tiedot sivulla 146.

VAARA!

Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.
4.10.3 Tilalähtö ja rajakytkin

TIETOJA!
Versiosta riippuen tilalähdot ja rajakytkimet on kytkettävä passiivisesti tai aktiivisesti NAMUR EN 60947-5-6:n mukaan! Liitinkotelon tarrassa on merkitty mitkä I/O-versiot ja tulot/lähdot on asennettu signaalimuuntimeen.

- Tilalähdot / rajakytkimet on sähköisesti eristetty toisistaan ja muista piireistä.
- Lähtöjen / rajakytkinten lähtövaiheet yksinkertaisen aktiivisen tai passiivisen toiminnan aikana käyttävät relekoskettimien tavoin ja ne voidaan liittää minkä tahansa napaisuuden kanssa.
- Kaikkia käyttötietoja ja toimintoja voidaan säätää.
- Passiivinen tila:
 Ulkoinen virtalähde vaaditaan: $U_{\text{ext}} \leq 32$ VDC; $I \leq 100$ mA
- **Ex i I/O-signaalimuuntimelle:**
 - NAMUR-ominaisuus 4,7 mA / 0,77 mA
 - Aktiivinen tila:
 Sisäisen virtalähteen käyttö: $U_{\text{nom}} = 24$ VDC; $I \leq 20$ mA
 - NAMUR-tila:
 passiivinen EN 60947-5-6 - standardin mukaisesti
 - Tietoa säädetävistä käyttötiloista katso *Toimintotaulukot* sivulla 114.

TIETOJA!
Lisätietoa on kohdissa katso Tulojen ja lähtöjen kytkentäkaaviot sivulla 84, katso Tekniset tiedot sivulla 146.

VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.
4.10.4 Sisääntulo

TIETOJA!
Versiosta riippuen ohjaustulot on kytettävä passiivisesti tai aktiivisesti NAMUR EN 60947-5-6:n mukaan! Liitinkotelon tarrassa on merkitty mitkä I/O-VERSiot ja tulot/lähdöt on asennettu signaalinmuuntimeen.

- Kaikki ohjauslähdot on sähköisesti eristetty toisistaan ja muista piireistä.
- Kaikkia käyttötietoja ja toimintoja voidaan säätää.
- Passiivinen tila: ulkoinen virtalähde vaaditaan:
 \[U_{ext} \leq 32 \text{ VDC} \]
- Aktiivinen tila: sisäisen virtalähden käyttö:
 \[U_{\text{nom}} = 24 \text{ VDC} \]
- NAMUR-tila: standardin EN 60947-5-6 mukaan
(Aktiivinen sisääntulo standardin NAMUR EN 60947-5-6 mukaan: signaalinmuunnin seuraa kaapelikatkoksia ka oikosulkuja standardin EN 60947-5-6 mukaan. Virheet näytetään nestekidenäytöllä. Virheitä lähetetään tilaulostulan kautta mahdollista.)
- Tietoa säädetettävistä käyttötiloista katso Toimintotaulukot sivulla 114.

TIETOJA!
Lisätietoa on kohdissa katso Tulojen ja lähtöjen kytentäkaaviot sivulla 84, katso Tekniset tiedot sivulla 146.

VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.
4.10.5 mA-sisääntulo

TIETOJA!
Versiosta riippuen virtatulot on kytettävä passiivisesti tai aktiivisesti. Liitinkotelon tarrassa on merkitty, mitkä I/O-versiot ja tulot/lähdöt on asennettu signaalimuuuntimeen.

- Kaikki virtatulot on sähköisesti eristetty toisistaan ja muista piireistä.
- Kaikkia käyttötietoja ja toimintoja voidaan säättää.
- Passiivinen tila: ulkoinen virtualähde vaaditaan:
 \[U_{\text{ext}} \leq 32 \text{ VDC} \]
- Aktiivinen tila: sisäisen virtualähdeen käyttö:
 \[U_{\text{int, nom}} = 24 \text{ VDC} \]
- Tietoa säädettyä käyttötiloista katso Toimintotaulukot sivulla 114.

TIETOJA!
Lisätietoa on kohdissa katso Tulojen ja lähtöjen kytkentäkaaviot sivulla 84 ja katso Tekniset tiedot sivulla 146.

VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.
4.11 Lähtöjen ja tulojen sähkökytkentä

TIETOJA!

4.11.1 Kenttäkotelo, lähtöjen ja tulojen sähkökytkentä

VAARA!
Sähköliitäntöjen parissa voidaan työskennellä vain kun virta on kytetty pois päältä. Huomioi tyypikilven jännitetiedot.

- Liitännät A+ on käytettävissä vain perusversiossa.

Kuva 4-38: Tulojen ja lähtöjen kytkentätila kenttäkotelossa

1. Avaa kotelon kansi.
2. Työnnä valmisteltu kaapeli kaapelin läpivientien kautta ja liitä tarvittavat johtimet.

- Sulje liitännätilan kansi
- Sulje kotelon kansi.

TIETOJA!
4.11.2 Seinäkiinnitteenen kotelo, lähtöjen ja tulojen sähkökytkentä

VAARA!
Sähköliitäntöjen parissa voidaan työskennellä vain kun virta on kytketty pois päältä. Huomioi tyyppikilven jännitetiedot.

- Suojus on kytkettävä sähköisesti 6,3 mm / 0,25” työntöliittimillä (eristys standardin DIN 46245 mukaan) I/O-kytkentätilassa.
- Liitäntä A+ on käytettävissä vain perusversiossa.

1. Avaa kotelon kansi.
2. Työnnä valmisteltu kaapelit kaapelin läpi viinissä ja liitä ne toimitettuihin liittimiin 4.
4. Ohjaa liittimet kiinnitettyillä johtimilla asiaankuuluvan pidikkeisiin.
5. Sulje kotelon kansi.

TIETOJA!
Varmista, että kotelon tiiviste on oikein asennettu, puhdas ja ehjä.
4.11.3 19” telinekiinnitteinen kotelo (28 TE), tulojen ja lähtöjen sähkökytkentä

VAARA!
Sähköliitäntöjen parissa voidaan työskennellä vain kun virta on kytetty pois päältä. Huomioi tyypikilven jännitetiedot.

- Liitäntä A+ on käytettävissä vain perusversiossa.

Kuva 4-40: Tulojen ja lähtöjen kytentättila telinekiinnitteisessä kotelossa

1. Suojus

- Kytke johdin moninapaiseen pistokkeeseen kuvan mukaisesti.
- Signaalikaapelin suojus on kytetty nastaan S.
- Paina pistoke liittimeen.
4.11.4 19” telinekiinnitteinen kotelo (21 TE), tulojen ja lähtöjen sähkökytkentä

VAARA!
Sähköliitäntöjen parissa voidaan työskennellä vain kun virta on kytetty pois päältä. Huomioi työppävien jännitetiedot.

• Liitäntä A+ on käytettävissä vain perusversiossa.

4.11.5 Sähkökaapeleiden asettaminen oikein

Jätä kaapeli silmakka juuri ennen koteloa.
Kiiristä kaapelin ruuviliitäntä.
Alä koskaan asenna koteloa kaapeliläpiviennit ylöspäin.
Sulje tulpalla kaapeliläpiviennit, joita ei tarvita.
4.12 Tulojen ja lähtöjen kytentäkaaviot

4.12.1 Tärkeitä huomautuksia

TIETOJA!

Versiosta riippuen tulot/lähdöt on kytettävä passiivisesti tai aktiivisesti tai NAMUR EN 60947-5-6:n mukaan! Liitinkotelon tarrassa on merkitty mitkä I/O-versiot ja tulot/lähdöt on asennettu signaalinmuuntimeen.

- Kaikki ryhmät on sähköisesti eristetty toisistaan ja muista tulo- ja lähtöpiireistä.
- Passiivinen käyttötila: ulkoinen virtalähde vaaditaan laitteiden käyttämistä (aktivointia) varten \(U_{\text{ext}} \).
- Aktiivinen käyttötila: signaalinmuunnin syöttää virtaa laitteiden käyttöä (aktivointia) varten, katso maksimikäyttötiedot.
- Liittimien, joita ei käytetä, ei pitäisi olla johtavassa yhteydessä muihin sähköä johtaviin osiin.

VAARA!

Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

Käytettyjen lyhenteiden kuvaus

<table>
<thead>
<tr>
<th>(I_a)</th>
<th>(I_p)</th>
<th>mA-ulostulo, aktiivinen tai passiivinen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_a)</td>
<td>(P_p)</td>
<td>Pulssi-/taajuuslähtö, aktiivinen tai passiivinen</td>
</tr>
<tr>
<td>(P_N)</td>
<td>Pulssi-/taajuuslähtö passiivinen standardin NAMUR EN 60947-5-6 mukaan</td>
<td></td>
</tr>
<tr>
<td>(S_a)</td>
<td>(S_p)</td>
<td>Tilalähtö tai rajakytkin aktiivinen tai passiivinen</td>
</tr>
<tr>
<td>(S_N)</td>
<td>Tilalähtö tai rajakytkin passiivinen standardin NAMUR EN 60947-5-6 mukaan</td>
<td></td>
</tr>
<tr>
<td>(C_a)</td>
<td>(C_p)</td>
<td>Ohjaustulo aktiivinen tai passiivinen</td>
</tr>
<tr>
<td>(C_N)</td>
<td>Aktiivinen sisääntulo NAMUR EN 60947-5-6-standardin mukaisesti: Signaalinmuunnin seuraa kaapelikatkoksia ja oikosulkuja EN 60947-5-6-standardin mukaisesti. Virheet näytetään nestekidenäytöllä. Virheviestien lähetyt tilaulostulon kautta mahdollista.</td>
<td></td>
</tr>
<tr>
<td>(I_{ln_a})</td>
<td>(I_{ln_p})</td>
<td>Sisäänmenovirta aktiivinen tai passiivinen</td>
</tr>
</tbody>
</table>
4.12.2 Sähkösymbolien kuvaus

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Kuvauksen kuvaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA+R_L</td>
<td>mA-mittari 0...20 mA tai 4...20 mA ja muu. R_L on mittauspisteen sisäinen resistanssi mukaan lukien kaapelin resistanssi.</td>
</tr>
<tr>
<td>U_{ext}</td>
<td>Tasajännitelähde (U_{ext}), ulkoinen virtualähde, kytkennän napaisuudet</td>
</tr>
<tr>
<td>U_{int}</td>
<td>Tasajännitelähde (U_{ext}), noudata kytkentäkaavioiden mukaista kytkennän napaisuutta</td>
</tr>
<tr>
<td>U_{int}</td>
<td>Sisäinen tasajännitelähde</td>
</tr>
<tr>
<td></td>
<td>Ohjattu laitteen sisäinen virtualähde</td>
</tr>
<tr>
<td>000</td>
<td>Sähköinen tai sähkömagneettinen laskuri. Yli 100 Hz taajuuskiltoja on käytettävä suojattuja kaapeleja laskimien kytkemiseksi. R_i Laskimen sisäinen resistanssi.</td>
</tr>
<tr>
<td>Σ</td>
<td>Painike, EI kontaktia tai vastaavaa</td>
</tr>
</tbody>
</table>

Taulukko 4-1: Symbolien kuvaus
4.12.3 Perustulot ja -läädöt

HUOMIO!
Huomioi kytkennän napaisuus.

Virtalähtö aktiivinen (HART®), perus-I/O:t
- $U_{int, nom} = 24$ VDC nimellinen
- $I \leq 22$ mA
- $R_L \leq 1$ kΩ

Virtalähtö passiivinen (HART®), perus-I/O:t
- $U_{int, nom} = 24$ VDC nimellinen
- $U_{ext} \leq 32$ VDC
- $I \leq 22$ mA
- $U_0 \geq 1,8$ V
- $R_L \leq (U_{ext} - U_0) / I_{maks.}$
Pulssi-/taajuuslähtö passiivinen, perus-I/O:t

- $U_{\text{ext}} \leq 32 \text{ VDC}$
- f_{maks}, asetettu käyttövalikossa asetuksi $f_{\text{maks}} \leq 100 \text{ Hz}$:
 - Auki: $I \leq 0,05 \text{ mA}$, $U_{\text{ext}} = 32 \text{ VDC}$
 - Suljettu: $U_{0,\text{maks}} = 0,2 \text{ V}$, $I \leq 10 \text{ mA}$
 - $U_{0,\text{maks}} = 2 \text{ V}$, $I \leq 100 \text{ mA}$
- f_{maks}, asetettu käyttövalikossa asetuksi $100 \text{ Hz} < f_{\text{maks}} \leq 10 \text{ kHz}$:
 - Auki: $I \leq 0,05 \text{ mA}$, $U_{\text{ext}} = 32 \text{ VDC}$
 - Suljettu: $U_{0,\text{maks}} = 1,5 \text{ V}$, $I \leq 1 \text{ mA}$
 - $U_{0,\text{maks}} = 2,5 \text{ V}$, $I \leq 10 \text{ mA}$
 - $U_{0,\text{maks}} = 5,0 \text{ V}$, $I \leq 20 \text{ mA}$
- Jos seuraava suurin kuormitusvastus $R_{L,\text{maks}}$, on ylitetty, kuormitusvastusta R_L pitää vähentää rinnakkaiskytkennän R mukaan:
 - $f \leq 100 \text{ Hz}$: $R_{L,\text{maks}} = 47 \text{ k\Omega}$
 - $f \leq 1 \text{ kHz}$: $R_{L,\text{maks}} = 10 \text{ k\Omega}$
 - $f \leq 10 \text{ kHz}$: $R_{L,\text{maks}} = 1 \text{ k\Omega}$
- Pienin kuormitusvastus $R_{L,\text{min}}$ lasketaan seuraavasti:
 - $R_{L,\text{min}} = (U_{\text{ext}} - U_0) / f_{\text{maks}}$
- Voidaan asettaa myös tilalähdöksi; katso sähköliitäntää varten tilalähdon kytentäkaavio.

Kuva 4-45: Pulssi-/taajuuslähtö passiivinen P_p
TIETOJA!
- Kytkeennän napisuus.

Tilalähtö tai rajakytkin passiivinen, perus-I/O:t
- \(U_{\text{ext}} \leq 32 \text{ VDC} \)
- \(I \leq 100 \text{ mA} \)
- \(R_L, \text{maks.} = 47 \text{ k}\Omega \)
 - \(R_L, \min = \frac{U_{\text{ext}} - U_0}{I_{\text{maks.}}} \)
- auki:
 - \(I \leq 0,05 \text{ mA}, U_{\text{ext}} = 32 \text{ VDC} \)
 - suljettu:
 - \(U_0, \text{maks.} = 0,2 \text{ V}, I \leq 10 \text{ mA} \)
 - \(U_0, \text{maks.} = 2 \text{ V}, I \leq 100 \text{ mA} \)
- Lähtö on auki kun laite on jännitteeton.
- X tarkoittaa liittimiä B, C tai D. Liittimien toiminnot riippuvat asetuksista katso Toimintotaulukot sivulla 114.

Kuva 4-46: Tilalähtö tai rajakytkin passiivinen \(S_p \)

Passiivinen ohjaustulo, perus-I/O:t
- \(8 \text{ V} \leq U_{\text{ext}} \leq 32 \text{ VDC} \)
- \(I_{\text{maks.}} = 6,5 \text{ mA}, U_{\text{ext}} \leq 24 \text{ VDC} \)
 - \(I_{\text{maks.}} = 8,2 \text{ mA}, U_{\text{ext}} \leq 32 \text{ VDC} \)
- Kytkentäpiste, jolla tunnistetaan “avoin tai suljettu kontakti”:
 - Kontakti auki (pois päältä): \(U_0 \leq 2,5 \text{ V}, I_{\text{nom}} = 0,4 \text{ mA} \)
 - Kontakti suljettu (päällä): \(U_0 \geq 8 \text{ V}, I_{\text{nom}} = 2,8 \text{ mA} \)
- Voidaan asettaa myös tilalähdöksi; katso sähköliitäntää varten tilalähdon kytkentäkaavio.

Kuva 4-47: Passiivinen ohjaustulo \(C_p \)

\(\text{① Signaali} \)
4.12.4 Modulaariset tulot ja lähdöt ja väyläjärjestelmät

HUOMIO!
Huomioi kytkennän napaisuus.

TIETOJA!
- Lisätietoa sähkökytkennöistä katso Tulojen ja lähtöjen kuvaus sivulla 75.
- Katso tietoa väyläjärjestelmän sähkökytkennästä vastaavan väyläjärjestelmän erillisistä asiakirjoista.

Virtalähtö aktiivinen (vain virtalähtöliittimillä C/C- on HART® kyky), modulaarinen I/Os
- \(U_{\text{int, norm}} = 24 \text{ VDC} \)
- \(I \leq 22 \text{ mA} \)
- \(R_L \leq 1 \Omega \)
- \(X \) ilmaisee liittimet A, B tai C riippuen signaalinmuuntimen versiosta.

![Kuva 4-48: Aktiivinen mA-ulostulo I_a](image)

Virtalähtö passiivinen (vain virtalähtöliittimillä C/C- on HART® kyky), modulaarinen I/Os
- \(U_{\text{ext}} \leq 32 \text{ VDC} \)
- \(I \leq 22 \text{ mA} \)
- \(U_0 \geq 1,8 \text{ V} \)
- \(R_L, \text{ maks.} = \left| U_{\text{ext}} - U_0 \right| / I_{\text{maks.}} \)
- \(X \) ilmaisee liittimet A, B tai C riippuen signaalinmuuntimen versiosta.

![Kuva 4-49: Passiivinen mA-ulostulo I_p](image)
TIETOJA!

- **Kompakti- ja kenttäkoteloversiot:** Suojakytketty kaapelikenkien kautta kytkeytävillä.

- **Seinäkiinnitetty versio:** Suojus kytketty 6,3 mm / 0,25" työntöliittimillä [eristys standardin DIN 46245 mukaan] kytkeytävillä.

- Kytkeytynä napaisuus.

Pulssi- / taajuuslähtö aktiivinen, modulaarinen I/Os

- $U_{\text{nom}} = 24$ VDC

- f_{max}, asetettu käyttövalikossa asetukseksi $f_{\text{max}} \leq 100$ Hz:
 - auki: $I \leq 20$ mA
 - suljettu: $U_{0, \text{nom}} = 24$ V, $I = 20$ mA

- f_{max} asetettu käyttövalikossa arvoon 100 Hz < $f_{\text{max}} \leq 10$ kHz:
 - auki: $I \leq 20$ mA
 - suljettu: $U_{0, \text{nom}} = 22,5$ V, $I = 1$ mA

- $U_{0, \text{nom}} = 21,5$ V, $I = 10$ mA

- $U_{0, \text{nom}} = 19$ V, $I = 20$ mA

- Jos seuraava suurin kuormitusimpedanssi $R_{L, \text{max}}$ on ylitetty, kuormitusimpedanssia R_L pitää pienentää rinnakkaiskytkennän R mukaan:
 - $f \leq 100$ Hz: $R_{L, \text{maks.}} = 47$ kΩ
 - $f \leq 1$ kHz: $R_{L, \text{maks.}} = 10$ kΩ
 - $f \leq 10$ kHz: $R_{L, \text{maks.}} = 1$ kΩ

- Minimikuormitusimpedanssi $R_{L, \text{min}}$ lasketaan seuraavasti:
 - $R_{L, \text{min}} = U_0 / I_{\text{maks.}}$

- X ilmainee liittimet A, B tai D riippuen signaalimuuntuimen versiosta.

Kuva 4-50: Pulssi- / taajuuslähtö aktiivinen P_a
Pulssi-/taajuuslähtö passiivinen, modulaarinen I/Os

- $U_{ext} \leq 32 \text{ VDC}$
- $f_{\text{maks.}}$, asetettu käyttövalikossa asetuksiksi $f_{\text{maks.}} \leq 100 \text{ Hz}$:
 - auki: $I \leq 0.05 \text{ mA}$, $U_{ext} = 32 \text{ VDC}$
 - suljettu:
 - $U_{0, \text{maks.}} = 0.2 \text{ V}$, $I \leq 10 \text{ mA}$
 - $U_{0, \text{maks.}} = 2 \text{ V}$, $I \leq 100 \text{ mA}$
- f_{max} asetettu käyttövalikossa arvoon $100 \text{ Hz} < f_{\text{max}} \leq 10 \text{ kHz}$:
 - auki: $I \leq 0.05 \text{ mA}$, $U_{ext} = 32 \text{ VDC}$
 - suljettu:
 - $U_{0, \text{maks.}} = 1.5 \text{ V}$, $I \leq 1 \text{ mA}$
 - $U_{0, \text{maks.}} = 2.5 \text{ V}$, $I \leq 10 \text{ mA}$
 - $U_{0, \text{maks.}} = 5 \text{ V}$, $I \leq 20 \text{ mA}$
- Jos seuraava suurin kuormitusimpedanssi $R_{L, \text{max}}$ on ylitetty, kuormitusimpedanssia R_L pitää pienentää rinnakkaiskytkennän R mukaan:
 - $f \leq 100 \text{ Hz}$: $R_{L, \text{maks.}} = 47 \text{ kΩ}$
 - $f \leq 1 \text{ kHz}$: $R_{L, \text{maks.}} = 10 \text{ kΩ}$
 - $f \leq 10 \text{ kHz}$: $R_{L, \text{maks.}} = 1 \text{ kΩ}$
- Minimikuormitusimpedanssi $R_{L, \text{min}}$ lasketaan seuraavasti:
 - $R_{L, \text{min}} = (U_{ext} - U_{0}) / I_{\text{maks.}}$
- Voidaan asettaa myös tilaulostuloksi; katso tilaulostun kytkentäkaavio.
- X ilmaisee liittimet A, B tai D riippuen signaaliruunuun versiosta.

![Diagram](image.png)

Kuva 4-51: Pulssi-/taajuuslähtö passiivinen P_p
Pulssi- ja taajuuslähtö passiivinen PN NAMUR, modulaarinen I/O

- Kytentä standardin EN 60947-5-6 mukaan.
- auki:
 \[I_{\text{nom}} = 0,6 \, \text{mA} \]
 suljettu:
 \[I_{\text{nom}} = 3,8 \, \text{mA} \]
- X ilmasee liittimet A, B tai D riippuen signaalinmuuntimen versiosta.

TIETOJA!

- **Kompakti- ja kenttäkoteloversiot:** Suojakytketty kaapelikgien kautta kytentätilassa.
- **Seinäkiinnitetty versio:** Suojus kytketty 6,3 mm / 0,25" työntöliittimillä (eristys standardin DIN 46245 mukaan) kytentätilassa.
- Kytkenän napaisuus.

Kuva 4-52: Pulssi- ja taajuuslähtö passiivinen PN NAMUR EN 60947-5-6-standardin mukaisesti
Tilalähtö tai rajakytkin aktiivinen, modulaarinen I/Os

- Huomioi kytkennän napaisuus.
- $U_{\text{int}} = 24 \, \text{VDC}$
- $I \leq 20 \, \text{mA}$
- $R_L \leq 47 \, \text{k}\Omega$
- auki:
 - $I \leq 0,05 \, \text{mA}$
 - suljettu:
 - $U_{0,\text{nom}} = 24 \, \text{V}$, $I = 20 \, \text{mA}$
- X ilmaisee liittimet A, B tai D riippuen signaalinmuuntimen versiosta.

![Diagram of active terminal block](image)

Kuva 4-53: Tilalähtö tai rajakytkin aktiivinen S_a

Tilalähtö tai rajakytkin passiivinen, modulaarinen I/Os

- Kytkennän napaisuus.
- $U_{\text{ext}} = 32 \, \text{VDC}$
- $I \leq 100 \, \text{mA}$
- $R_L, \text{maks.} = 47 \, \text{k}\Omega$
 - $R_L, \text{min.} = (U_{\text{ext}} - U_0) / I_{\text{maks.}}$
- auki:
 - $I \leq 0,05 \, \text{mA}$, $U_{\text{ext}} = 32 \, \text{VDC}$
 - suljettu:
 - $U_{0,\text{maks.}} = 0,2 \, \text{V}$, $I \leq 10 \, \text{mA}$
 - $U_{0,\text{maks.}} = 2 \, \text{V}$, $I \leq 100 \, \text{mA}$
- Lähtö on auki kun laite on jännitteetön.
- X ilmaisee liittimet A, B tai D riippuen signaalinmuuntimen versiosta.

![Diagram of passive terminal block](image)

Kuva 4-54: Tilalähtö tai rajakytkin passiivinen S_p
Tilalähtö tai rajakytkin S_N NAMUR, modulaarinen I/Os

- Kytkennän napaisuus.
- Kytentä standardin EN 60947-5-6 mukaan.
- auki:
 $I_{nom} = 0,6 \, mA$
 suljettu:
 $I_{nom} = 3,8 \, mA$
- Lähtö on auki kun laite on jännitteeton.
- X ilmasee liittimet A, B tai D riippuen signaalimuuntuimen versiosta.

Kuva 4-55: Tilalähtö tai rajakytkin S_N NAMUR EN 60947-5-6 -standardin mukaisesti
HUOMIO!
Huomioi kytkennän napaisuus.

Aktiivinen ohjaustulo, modulaarinen I/Os
- \(U_{\text{int}} = 24 \, \text{VDC} \)
- Ulkoinen kontakti auki:
 \(U_0, \text{nom} = 22 \, \text{V} \)
 Ulkoinen kontakti kiinni:
 \(I_{\text{nom}} = 4 \, \text{mA} \)
- Kytkentäpiste, jolla tunnistetaan "avoin tai suljettu kontakti":
 Kontakti suljettu (päällä): \(U_0 \leq 10 \, \text{V}, \ I_{\text{nom}} = 1,9 \, \text{mA} \)
 Kontakti auki (pois päältä): \(U_0 \geq 12 \, \text{V}, \ I_{\text{nom}} = 1,9 \, \text{mA} \)
- \(X \) ilmaisee liittimet A tai B riippuen signaalimuunnimen versiosta.

![Aktiivinen ohjaustulo](image)

Passiivinen ohjaustulo, modulaarinen I/Os
- \(3 \, \text{V} \leq U_{\text{ext}} \leq 32 \, \text{VDC} \)
- \(I_{\text{maks.}} = 9,5 \, \text{mA}, \ U_{\text{ext}} \leq 24 \, \text{V} \)
 \(I_{\text{maks.}} = 9,5 \, \text{mA}, \ U_{\text{ext}} \leq 32 \, \text{V} \)
- Kytkentäpiste, jolla tunnistetaan "avoin tai suljettu kontakti":
 Kontakti auki (pois päältä): \(U_0 \leq 2,5 \, \text{V}, \ I_{\text{nom}} = 1,9 \, \text{mA} \)
 Kontakti suljettu (päällä): \(U_0 \geq 3 \, \text{V}, \ I_{\text{nom}} = 1,9 \, \text{mA} \)
- \(X \) ilmaisee liittimet A tai B riippuen signaalimuunnimen versiosta.

![Passiivinen ohjaustulo](image)
Aktiivinen ohjaustulo, CN NAMUR, modulaarinen I/Os

- Kytken tää standardin EN 60947-5-6 mukaan.
- Kytkenpiste, jolla tunnistetaan “avoin tai suljettu kontakti”:
 Kontakti auki (pois päältä): $U_{0, \text{nom}} = 6,3 \text{ V}$, $I_{\text{nom}} < 1,9 \text{ mA}$
 Kontakti suljettu (päällä): $U_{0, \text{nom}} = 6,3 \text{ V}$, $I_{\text{nom}} > 1,9 \text{ mA}$
- Rikkoutuneen kaapelin tunnistaminen:
 $U_{0} \geq 8,1 \text{ V}$, $I \leq 0,1 \text{ mA}$
- Kaapelin oikosulun tunnistaminen:
 $U_{0} \leq 1,2 \text{ V}$, $I \geq 6,7 \text{ mA}$
- X ilmaisee liittimet A tai B riippuen signaalimuuntimen versiosta.

Kuva 4-58: Aktiivinen sisääntulo CN NAMUR EN 60947-5-6 -standardin mukaisesti
Aktiivinen sisäänmenovirta, modulaarinen I/Os
- $U_{int, \text{nom}} = 24 \text{ VDC}$
- $I \leq 22 \text{ mA}$
- $I_{\text{maks.}} \leq 26 \text{ mA}$ (elektronisesti rajoitettu)
- $U_{0, \text{min}} = 19 \text{ V}$, $I \leq 22 \text{ mA}$
- ei HART®
- X ilmaisee liittimet A tai B riippuen signaalinmuuntimen versiosta.

![Diagram of active input current](image)

Passiivinen sisäänmenovirta, modulaarinen I/Os
- $U_{\text{ext}} \leq 32 \text{ VDC}$
- $I \leq 22 \text{ mA}$
- $I_{\text{maks.}} \leq 26 \text{ mA}$
- $U_{0, \text{maks.}} = 5 \text{ V}$, $I \leq 22 \text{ mA}$
- X ilmaisee liittimet A tai B riippuen signaalinmuuntimen versiosta.

![Diagram of passive input current](image)
4.12.5 Ex i tulot ja lähdöt

VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

TIETOJA!
Lisätietoa sähkökytkennöistä katso Tulojen ja lähtöjen kuvaus sivulla 75.

Virtalähtö aktiivinen (vain virtalähtöliittimillä C/C- on HART® kyky), Ex i I/Os
- Huomioi kytkennän napaisuus.
- \(U_{\text{int, norm}} = 20 \text{ VDC} \)
- \(I \leq 22 \text{ mA} \)
- \(R_L \leq 450 \Omega \)
- X ilmaisee liittimet A tai C riippuen signaalinmuuntimen versiosta.

![Kuva 4-61: Aktiivinen mA-ulostulo \(I_a \) Ex i](image)

Virtalähtö passiivinen (vain virtalähtöliittimillä C/C- on HART® kyky), Ex i I/Os
- Kytkennän napaisuus.
- \(U_{\text{ext}} \leq 32 \text{ VDC} \)
- \(I \leq 22 \text{ mA} \)
- \(U_0 \geq 4 \text{ V} \)
- \(R_L, \text{maks.} = (U_{\text{ext}} - U_0) / I_{\text{maks.}} \)
- X ilmaisee liittimet A tai C riippuen signaalinmuuntimen versiosta.

![Kuva 4-62: Passiivinen mA-ulostulo \(I_p \) Ex i](image)
VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

TIETOJA!
- Yli 100 Hz taajuuksille on käytettävä suojattuja kaapeleita sähköisten häiriöiden vaikutusten vähentämiseksi (EMC).
- **Kompakti- ja kenttäkoteloversiot:** Suojakytetty kaapelien kautta kytentätilassa.
- **Seinäkiinnitetty versio:** Suojus kytetty 6,3 mm / 0,25" työntöliittimillä (eriistys standardin DIN 46245 mukaan) kytentätilassa.
- **Kytkennän napaisuus.**

Pulssi- ja taajuuslääkö passiivinen PN NAMUR, Ex i I/0s
- Kytentä standardin EN 60947-5-6 mukaan
- auki:
 - $I_{\text{nom}} = 0,43 \text{ mA}$
- suljettu:
 - $I_{\text{nom}} = 4,5 \text{ mA}$
- X ilmaisee liittimet B tai D riippuen signaalimuunnimen versiosta.

![Diagram](image_url)
TIETOJA!
• Kytkennän napaisuus.

Tilalähtö tai rajakytkin S_N NAMUR, Ex i I/Os
• Kytkentä standardin EN 60947-5-6 mukaan.
• auki:
 $I_{nom} = 0,43 \text{ mA}$
 suljettu:
 $I_{nom} = 4,5 \text{ mA}$
• Lähtö on suljettu kun laite on jännitteetön.
• X ilmaisee liittimet B tai D riippuen signaalimuuntimen versiosta.

Kuva 4-64: Tilalähtö tai rajakytkin S_N NAMUR EN 60947-5-6 Ex i -standardin mukaisesti
VAARA!
Vaarallisilla alueilla käytettäviin laitteisiin sovelletaan lisäturvaohjeita, katso Ex-asiakirjat.

TIETOJA!
- Kytkennän napaisuus.

Passiivinen ohjaustulo, Ex i I/0s
- $5,5 \, \text{V} \leq U_{\text{ext}} \leq 32 \, \text{VDC}$
- $I_{\text{maks.}} = 6 \, \text{mA}$, $U_{\text{ext}} \leq 24 \, \text{V}$
 - $I_{\text{maks.}} = 6,5 \, \text{mA}$, $U_{\text{ext}} \leq 32 \, \text{V}$
- Kytkentäpiste, jolla tunnistetaan "avoin tai suljettu kontakti":
 - Kontakti auki (pois päältä): $U_0 \leq 3,5 \, \text{V}$, $I \leq 0,5 \, \text{mA}$
 - Kontakti suljettu (päällä): $U_0 \geq 5,5 \, \text{V}$, $I \geq 4 \, \text{mA}$
- X ilmaisee liittimet B, jos käytössä.

Kuva 4-65: Passiivinen sisääntulo C_p Ex i

1. Signaali
Aktiivinen sisäänmenovirta, Ex i I/Os
- $U_{\text{int}, \text{nom}} = 20 \, \text{VDC}$
- $I \leq 22 \, \text{mA}$
- $U_{0, \text{min}} = 14 \, \text{V}, I \leq 22 \, \text{mA}$
- Jännite katkaistaan oikosulun ilmetessä.
- X ilmasee liitimet A tai B riippuen signaalimuuntimen versiosta.

![Kuva 4-66: Aktiivinen sisäänmenovirta IIna](image1)

1. Signaali
2. 2-johtimen lähetin (esim. lämpötila)

Passiivinen sisäänmenovirta, Ex i I/Os
- $U_{\text{ext}} \leq 32 \, \text{VDC}$
- $I \leq 22 \, \text{mA}$
- $U_{0, \text{maks.}} = 4 \, \text{V}, I \leq 22 \, \text{mA}$
- X ilmasee liitimet A tai B riippuen signaalimuuntimen versiosta.

![Kuva 4-67: Passiivinen sisäänmenovirta IInp](image2)

1. Signaali
2. 2-johtimen lähetin (esim. lämpötila)
4.12.6 HART®-liitin

TIETOJA!
- Perus-I/O:ssa liittimien A+/A-/A lähtövirralla on aina HART®-valmius.
- Modulaarisessa I/O-mallissa ja Ex i I/O -mallissa vain liittimillä C/C- on HART®-ominaisuudet.

HART®-liitäntä aktiivinen (kiintojohto)

Kuva 4-68: HART®-liitin aktiivinen (Ia)

1. Perus I/O: liittimet A ja A+
2. Modulaarinen I/O: liittimet C- ja C
3. HART®-kommunikaattori

HART®-kommunikaattorin rinnakkaisvastus pitää olla R ≥ 230 Ω.
Passiivinen HART®-liitäntä (yhteiskytkentätäila)

- I: \(I_{0\%} \geq 4 \text{ mA} \)
- Multi-Drop-tila I: \(I_{\text{fix}} \geq 4 \text{ mA} = I_{0\%} \)
- \(U_{\text{ext}} \leq 32 \text{ VDC} \)
- \(R \geq 230 \Omega \)

Kuva 4-69: HART®-liitin passiivinen (\(I_p \))

① Perus I/O: liittimet A- ja A
② Modulaarinen I/O: liittimet C- ja C
③ HART®-kommunikaattori
④ Muut laitteet, joissa HART®-ominaisuudet
5.1 Virran kytkeminen

Tarkista ennen virran kytkemistä, että järjestelmä on asennettu oikein. Tarkista seuraavat:

- Laitteen pitää olla mekaanisesti turvallinen ja asennettu säännösten mukaisesti.
- Virtaliitäntöjen pitää säännösten mukaisia.
- Sähköliitäntäkoteloiden pitää olla suojattuja ja kansien pitää olla ruuvattu kiinni.
- Tarkista, että virtualähteen sähkö-käyttötiedot ovat oikein.

5.2 Signaalinmuuntimen käynnistäminen

Mittalaite koostuu virtausanturista ja signaalinmuuntimesta, ja toimitetaan käyttövalmiina. Kaikki käyttötiedot on asetettu tehtaalla tilausvaatimusten mukaisesti.

Kun virta kytketään päälle, laite suorittaa itsetestin. Laite aloittaa mittauksen välittömästi tämän jälkeen, ja näytössä näkyvät senhetkiset arvot.

Kuva 5-1: Mittaustilan näytöt (esimerkkejä 2 tai 3 mitatusta arvosta)
x, y ja z ilmaisevat näytettynämitattujen arvojen yksikötä

Kahden mitatun arvon ikkunan, trendinäytön ja tilaviestien luettelon välillä voidaan siirtyä painamalla painikkeita ↑ ja ↓. Lisätietoa mahdollisista tilaviesteistä, niiden merkityksistä ja syistä katso Tilaviestit ja vianmääritystiedot sivulla 137.
6.1 Näyttö ja käyttöelementit

Kuva 6-1: Näyttö ja käyttöelementit (Esimerkki: virtausosoitin 2 mittausarvot)

1. Osoittaa mahdollisen tilaviestin tilaluettelossa
2. Tunniste (näytetään vain, jos käyttäjä on syöttänyt tämän arvon aiemmin)
3. Näkyy, kun painiketta on painettu
4. 1. mitattu muuttuja
5. Pylväsdiagrammi
6. Painikkeet (katso toiminto ja kuvaus alla olevasta taulukosta)
7. GDC-väylän liittäntä (ei läsnä kaikissa signaalimuunninversioissa)
8. Infrapuna-anturi (ei läsnä kaikissa signaalimuunninversioissa)

HUOMIO!
Kytkentäjohtojen käyttäminen on sallittua laskutusmittauslaitteissa lukittaessa laskutusmittauslaitteen parametrien käyttöä. Tätä kytkentäjohtoa ei saa käyttää muissa kuin laskutusmittauslaitteissa (kuten prosessilaitteissa!)

TIETOJA!
- Mittaustilaan palataan automaattisesti, jos mitään toimintoa ei ole suoritettu 5 minuuttiin. Aikaisemmin muutettuja tietoja ei tallenneta.
<table>
<thead>
<tr>
<th>Painike</th>
<th>Mittaustila</th>
<th>Valikotila</th>
<th>Alivalikko tai toimintatila</th>
<th>Parametri ja datatila</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>Siirry mittaustilasta valikotilaan; paina painiketta 2,5 s ajan, "Quick Start"-valikko näkyvä näytöllä</td>
<td>Siirry valikoon, minkä jälkeen 1. alivalikko näkyy</td>
<td>Siirry alivalikkoan tai toimintatilaan</td>
<td>Siirrä numeerisia arvoja varten osoitin (korostettu sinisellä) yksi sijainti oikealle</td>
</tr>
<tr>
<td>←→</td>
<td>Näytön palauttaminen</td>
<td>Palaa mittaustilaan, mutta kysy ensin tallennetaanko tiedot</td>
<td>Tallenna tiedot ja palaa valikotilaan painamalla 1-3 kertaa</td>
<td>Tallenna tiedot ja palaa alivalikkoan tai toimintoon</td>
</tr>
<tr>
<td>↓ tai ↑</td>
<td>Siirry valikossa näyttöön valinnan valintaa; mitattu arvo 1 + 2, trendisivu ja tilasivu(t)</td>
<td>Valitse valikko</td>
<td>Valitse alivalikko tai toiminto</td>
<td>Voit muuttaa numeroa, yksikköä, asetuksa ja siirtää desimaalipilkku sinisellä korostettuna osoittimella</td>
</tr>
<tr>
<td>Esc (>, ↑)</td>
<td>-</td>
<td>-</td>
<td>Paluu valikotilaan tietojen hyväksymättä</td>
<td>Paluu alivalikkoan tai toimintoon tietojen hyväksymättä</td>
</tr>
</tbody>
</table>

Taulukko 6-1: Painikkeiden toimintojen kuvaus
6.1.1 Mittaustilan näyttö 2 tai 3 mitatulla arvolla

Kuva 6-2: Esimerkki mittaustilan näytöstä 2 tai 3 mitatulla arvolla
① Osoittaa mahdollisen tilaviestin tilaluettelossa
② Tunniste (näytetään vain, jos käyttäjä on syöttänyt tämän arvon aiemmin)
③ 1. mitattu arvo
④ Pylväsiagrammi
⑤ Kuvaus 3 mitatulla arvolla

6.1.2 Alivalikon ja toimintojen valinnan näyttö, 3 riviä

Kuva 6-3: Alivalikon ja toimintojen valinnan näyttö, 3 riviä
① Osoittaa mahdollisen tilaviestin tilaluettelossa
② Valikon, alivalikon tai toiminnon nimi
③ Kohtaan ⑥ liittyvä numero
④ Osoittaa sijainnin valikossa, alivalikossa tai toimintoluettelossa
⑤ Seuraava valikko, alivalikko tai toiminto
(_ _ _ ilmaisee tällä rivillä luettelon lopun)
⑥ Nykyinen valikko, alivalikko tai toiminto
⑦ Edellinen valikko, alivalikko tai toiminto
(_ _ _ ilmaisee tällä rivillä luettelon alun)
6.1.3 Parametrien asetusnäyttö, 4 riviä

Kuva 6-4: Parametrien asetusnäyttö, 4 riviä
1. Nykyinen valikko, alivalikko tai toiminto
2. Kohtaan 7 liittyvä numero
3. Ilmaisee tehdasasetuksen
4. Ilmaisee hyväksyttävän arvoalueen
5. Numeeristen arvojen hyväksyttävä arvoalue
6. Tällä hetkellä asetettu arvo, yksikkö tai toiminto (kun valittu, näkyy valkoisella tekstillä, sinisellä pohjalla)
 Tietoja muutetaan tässä.
7. Nykyinen parametri
8. Parametrin tehdasasetus

6.1.4 Näyttö esikatseltaessa parametrejä, 4 riviä

Kuva 6-5: Näyttö esikatseltaessa parametrejä, 4 riviä
1. Nykyinen valikko, alivalikko tai toiminto
2. Kohtaan 6 liittyvä numero
3. Ilmaisee parametrin muutoksen (helppo tarkistaa muuttuneet tiedot selattaessa luettelojen
4. Seuraava parametri
5. Tiedot asetettu parhaillaan kohdasta 6
6. Nykyinen parametri (valitse painamalla painiketta >; katso sitten edellinen kappale)
7. Parametrin tehdasasetus
6.1.5 IR-liitännän käyttö (asetus)

Optinen infrapunaliitäntä toimii sovittimena PC-pohjaisessa tiedonsiirrossa signaalinmuuntimen kanssa koteloa avaamatta.

TIETOJA!
• Tätä ei toimiteta laitteen mukana.
• Lisätietoja aktivoinnista toiminnolla A6 tai C5.6.6 katso Toimintotaulukot sivulla 114.

Aikakatkaisutoiminto
Kun IR-liitäntä on aktivoitu kohdan A6 tai C5.6.6 mukaisesti, liitäntä pitää sijoittaa oikein ja kiinnittää koteloon imukupeilla 60 sekunnin kuluessa. Jos näin ei tehdä määritetyn ajan kuluessa, laitetta voidaan käyttää optisilla painikkeilla uudelleen. LED 3 syttyy aktivoinnin aikana ja optiset painikkeet eivät enää toimi.
6.2 Valikkorakenne

TIETOJA!
Huomioi painiketoiminto sarakkeiden sisällä ja niiden välillä.

<table>
<thead>
<tr>
<th>Mittaustila</th>
<th>Valitse valikko</th>
<th>Valitse valikko ja/tai alivalikko</th>
<th>Valitse toiminto ja aseta tiedot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>← Paina > 2,5 s</td>
<td></td>
<td>A1 kieli</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2 posítio</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3 nollaus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3.1 kuitaa häiriöt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3.2 laskuri 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3.3 laskuri 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3.4 laskuri 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4 virta ulostulot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4.1 mitaus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4.2 yksikkö</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4.3 alue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4.4 pienien virtauksen katkaisu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4.5 vasteaika</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5 digitaaliset ulostulot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5.1 mitaus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5.2 pulssin yksikkö</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5.3 arvo p. pulssi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A5.4 pienien virtauksen katkaisu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A6 GDC IR -liitäntä</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7 process input</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.1 laitteen sarjanumero</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.2 nollapiste kalibrointi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.3 koko</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.4 GK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.5 GKL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.6 käämin vastus Rsp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.7 kalibroin käämin lämpötila</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.8 johtokyvyn arvo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.9 EF sähkökerroin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.10 magnetointitalajuus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A7.11 virtaussuunta</td>
<td></td>
</tr>
<tr>
<td>Mittaustila</td>
<td>Valitse valikko</td>
<td>Valitse valikko ja/tai alivalikko</td>
<td>Valitse toiminto ja aseta tiedot.</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>B testi</td>
<td>Paina > 2,5 s</td>
<td>B1 simulointi</td>
<td>B1.1 virtausnopeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1.2 tilavuusvirtaus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1._ virta ulostulo X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1._ pulssi ulostulo X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1._ taajuus ulostulo X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1._ sisääntulo X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1._ rajakytkin X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1._ tila ulostulo X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1._ virta sisääntulo X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1.7 virtausjakso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1.8 taso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2 todelliset mittausarvot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.1 käyttötunnit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.2 het. virtausnopeus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.3 het. käämin lämpötila</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.4 elektroniikan lämpötila</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.5 het. jehtokyky</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.6 het. elektroditin kohina</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.7 het. virtausprofiili</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.8 het. käämin vastus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.9 virta sisääntulo A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.10 virta sisääntulo B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.11 virtausjakso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B2.12 taso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3 tiedot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3.1 C-numero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3.2 perusasetukset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3.3 SW.REV.MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3.4 SW.REV.UIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3.6 Electronic Revision ER</td>
</tr>
<tr>
<td>Mittaustila</td>
<td>Valitse valikko</td>
<td>Valitse valikko ja/tai alivalikko</td>
<td>Valitse toiminto ja aseta tiedot.</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Paina</td>
<td>> 2,5 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C asetukset</td>
<td>></td>
<td>C1 perusasetukset</td>
<td>C1.1 kalibrointi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.2 suodatus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.3 testaus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.4 tiedot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.5 simulointi</td>
</tr>
<tr>
<td>C2 I/O (tulo/lähtö)</td>
<td>></td>
<td>C2.1 lähden toiminta</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2._ virta ulostulo X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2._ taajuus ulostulo X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2._ pulssi ulostulo X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2._ tila ulostulo X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2._ rajakytkin X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2._ sisääntulo X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2._ virta sisääntulo X</td>
<td></td>
</tr>
<tr>
<td>C3 I/O laskuri</td>
<td>></td>
<td>C3.1 laskuri 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3.2 laskuri 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3.3 laskuri 3</td>
<td></td>
</tr>
<tr>
<td>C4 I/O HART</td>
<td>></td>
<td>C4.1 PV on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4.2 SV on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4.3 TV on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4.4 4V on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4.5 HART yksiköt</td>
<td></td>
</tr>
<tr>
<td>C5 laite</td>
<td>></td>
<td>C5.1 laitteen tiedot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5.2 näyttö</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5.3 1. mittaussivu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5.4 2. mittaussivu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5.5 piirturi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5.6 erikoistoiminnot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5.7 yksikkö</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5.8 HART</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C5.9 pika-asetukset</td>
<td></td>
</tr>
</tbody>
</table>

02/2016 - 4004998601 - MA IFC 300 R04 fi
www.krohne.com
113
6 KÄYTTÖ

6.3 Toimintotaulukot

TIETOJA!
- Seuraavissa taulukoissa kuvataan toiminnot vakiomallisella laitteella, jossa on HART®, liitäntä. Modbus-, Foundation Fieldbus- ja Profibus-toiminnot kuvataan yksityiskohtaisesti niitä koskevissa lisäohjeissa.
- Kaikki toiminnot eivät ole käytettävissä riippuen laitteen versiosta.
- Taulukossa käytettävää kuvaa "PF option" viittaa TIDALFLUX 4000 -virtausanturiin / "CAP option" viittaa vain OPTIFLUX 7000 -virtausanturiin.

6.3.1 Valikko A, pika-asetukset

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>kieli</td>
<td>Kielen valinta riippuu laitteen version.</td>
</tr>
</tbody>
</table>

A2 positio

| A2 | positio | Mittauspisteen tunniste (tunnistenumero) ilmestyy näytön otsikkoon. |

A3 nollaus

<table>
<thead>
<tr>
<th>A3</th>
<th>nollaus</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3.1</td>
<td>kuitaa häiriöt</td>
<td>nolla? Valitse: ei/kyllä</td>
</tr>
<tr>
<td>A3.2</td>
<td>nollaa laskuri 1</td>
<td>nollaa laskuri? Valitse: ei / kyllä (saatavilla, jos aktivoitu kohdassa C5.9.1)</td>
</tr>
<tr>
<td>A3.3</td>
<td>nollaa laskuri 2</td>
<td>nollaa laskuri? Valitse: ei / kyllä (saatavilla, jos aktivoitu kohdassa C5.9.2)</td>
</tr>
<tr>
<td>A3.4</td>
<td>nollaa laskuri 3</td>
<td>nollaa laskuri? Valitse: ei / kyllä (saatavilla, jos aktivoitu kohdassa C5.9.3)</td>
</tr>
</tbody>
</table>

A4 analogiset tulot (vain HART®

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2) Käytä kaikissa ulostuloissa? [käytä tätä asetusta kohdalle Fct. A4.2...A4.5]! Asetus: ei (koske vain päävirran lähtöä) / kyllä (koske kaikkia analogisia lähtöjä)</td>
</tr>
<tr>
<td>A4.2</td>
<td>yksikkö</td>
<td>Yksikön valinta luettelosta riippuen mittauksesta.</td>
</tr>
<tr>
<td>A4.3</td>
<td>alue</td>
<td>1) Päävirran lähöön asetus [alue: 0...100%] Asetus: 0...x.xx (muoto ja yksikkö, riippuu mittauksesta, katso kohdat A4.1 ja A4.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Käytä kaikissa ulostuloissa? Tee asetus, katso Fct. A4.1!</td>
</tr>
<tr>
<td>A4.4</td>
<td>pienien virtauksen katkaisu</td>
<td>1) Päävirran lähöön asetus [asettaa lähtöarvoksi ’0’] Asetus: x,xxx ± x,xxx% [alue: 0,0...20%] 1. arvo = kytentäväpiste / 2. arvo = yhteessä, ehto: 2. arvo ≤ 1. arvo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Käytä kaikissa ulostuloissa? Tee asetus, katso Fct. A4.1!</td>
</tr>
<tr>
<td>A4.5</td>
<td>aikavakio</td>
<td>1) Päävirran lähöön asetus [koskee kaikkia virtausmittauksia] Asetus: xxx,x s [alue: 000,1...100 s]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Käytä kaikissa ulostuloissa? Tee asetus, katso Fct. A4.1!</td>
</tr>
</tbody>
</table>
A4 aseman osoite (only for PROFIBUS)

| A4 | aseman osoite | Laiteosoitteen asetus. |

A4 aistineinen osoite (vain MODBUS)

| A4 | aistineinen osoite | Laiteosoitteen asetus. |

A5 digitaaliset ulostulot (vain HART®)

| A5 | digitaaliset ulostulot | Voimassa kaikissa pulissi ulostuloissa (liittimet A, B ja/tai D) ja laskureissa 1. |

A5.1	mittaus	1) Valitse mittaus: tilavuusvirtaus/massavirtaus (ei koske PF:ää (osittain täytettyä))
		2) Käytä kaikissa ulostuloissa? [käytä täätä asetusta kohdalle Fct. A5.2...A5.4!]
		Asetus: ei (vain pulssi ulostulolle D) / kyllä (kaikille digitaalisille ulostuloille)

| A5.2 | pulssin yksikkö | Yksikön valinta luettelosta riippuen mittauksesta. |

A5.3	arvo p. pulssi	1) Pulssi ulostulo D:n asetus (tilavuuden tai massan arvo puussia kohtia)
		Asetus: xxx.xxx, l/s tai kg/s
		2) Käytä kaikissa ulostuloissa? Tee asetus, katso Fct. A5.1!

A5.4	pienien virtauksen katkaisu	1) Pulssi ulostulo D:n asetus (asettaa lähtöarvoksi "0")
		[1. arvo = kytkentäpiste / 2. arvo = hystereesil, ehto: 2. arvo ≤ 1. arvo]
		2) Käytä kaikissa ulostuloissa? Tee asetus, katso Fct. A5.1!

A6 GDC IR -liitäntä

| A6 | GDC IR -liitäntä | Kun tämä toiminto on aktivoitu, optinen GDC-sovitin voidaan liittää LCD-näyttöön. Jos noin 60 sekuntia kuluu ilman yhteyden muodostamista tai kun sovitin on poistettu, toiminnosta poistutaan ja optiset painikkeet ovat aktiivisia jälleen. |
| | | Valitse: lopetus (poistu toiminnosta ilman yhteyttä) / aktivoi IR-liitäntä (sovitin) ja keskeytä optiset painikkeet |

A7 perusasetukset

| A7.1 | laitteen sarjanumero | Järjestelmän sarjanumero. |

Vain seuraavat prosessin syöttöparametrit ovat käytettävissä, jos pikakäyttö on aktivoitu valikossa "asetukset / laite / pikasetukset".

A7.2	nollapiste kalibrointi	Todellisen nollapisteen kalibroinnin arvo.
		Kysely: kalibroin nollapiste?
		Asetus: lopetus (palaa painikkeella +/-) / vakio (tehdasasetukset) / manuaalin (näytä edellinen arvo, aseta uusi arvo, alue: -1,00...+1 m/s) / alue: -1,00...+1 m/s / automaattinen (näytää nykyisen arvon nollakalibrointiarvona)

| A7.3 | koko | Valitse kokotaulukokosta. |

| A7.4 | GK | Kohdassa A7.4 / A7.5 tehdyistä valinnaista riippuen näyttöön tulee kohta C1.1.0, 5 tai 6 Valmistekilven mukainen ohjearvo; alue: 0,5...12 [20] |
| | GKL | |

| A7.6 | käämin vastus Rsp | Kenttäkäämin vastus 20°C; alue: 10,00...220 Ω |
6.3.2 Valikko B, testi

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvauskset</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>simulointi</td>
<td>Näytetyt arvot simuloidaan.</td>
</tr>
<tr>
<td>B1.1</td>
<td>virtausnopeus</td>
<td>Virtausnopeuden simulointi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: lopetus [poistu toiminnosta ilman simulointia] / asetusrav [alue: -12...+12 m/s; yksikön valinta kohdassa Fct. C5.7.7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kysely: aloita simulointi?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asetukset: ei [poistu toiminnosta simuloinnassa] / kyllä (käynnistä simulointi)</td>
</tr>
<tr>
<td>B1.2</td>
<td>tilavuusvirtaus</td>
<td>Tilavuusvirran simulointi; järjestys ja asetukset ovat samanlaisia kuin kohdassa B1.1, katso yllä!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X tarkoittaa liitintä A, B, C tai D, _ tarkoittaa kohta Fct. nro B1.3...1.6</td>
</tr>
<tr>
<td>B1._</td>
<td>virta ulostulo X</td>
<td>simulointi X</td>
</tr>
<tr>
<td></td>
<td>pulssi ulostulo X</td>
<td>X tarkoittaa liitintä A, B, C tai D.</td>
</tr>
<tr>
<td></td>
<td>taajuus ulostulo X</td>
<td>Järjestys ja asetukset ovat samanlaisia kuin kohdassa B1.1, katso yllä! Pulssi ulostuloa varten lähetetään tietty määrä pulseja 1 s:ssä!</td>
</tr>
<tr>
<td>B1._</td>
<td>sisääntulo X</td>
<td></td>
</tr>
<tr>
<td>B1._</td>
<td>rajakytkin X</td>
<td></td>
</tr>
<tr>
<td>B1._</td>
<td>tila ulostulo X</td>
<td></td>
</tr>
<tr>
<td>B1._</td>
<td>virta sisääntulo X</td>
<td></td>
</tr>
</tbody>
</table>
KÄYTTÖ

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.7</td>
<td>virtausjakso</td>
<td>Vain voimassa PF-asetukselle (osittain täytetty)!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virtausjakson simulointi osittain täytetyille putkille. Tämä arvo kerrotaan normaaliilla virtauksen mittaamisella. 100% liittyy täysin täytettyihin putkiin. Järjestys ja asetukset ovat samanlaisia kuin kohdassa B1.1, katso yllä!</td>
</tr>
<tr>
<td>B1.8</td>
<td>taso</td>
<td>Vain voimassa PF-asetukselle (osittain täytetty)!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tason simulointi osittain täytetyille putkille.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Järjestys ja asetukset ovat samanlaisia kuin kohdassa B1.1, katso yllä!</td>
</tr>
</tbody>
</table>

B2 todelliset mittausarvot

<table>
<thead>
<tr>
<th>B2</th>
<th>todelliset mittausarvot</th>
<th>Näyttää nykyiset arvot; poistu näytetystä toiminnosta painikkeella.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2.1</td>
<td>käyttötunnit</td>
<td>Näyttää todelliset käyttötunnit; poistu näytetystä toiminnosta painikkeella.</td>
</tr>
<tr>
<td>B2.2</td>
<td>het. virtausnopeus</td>
<td>Näyttää todellisen virtausnopeuden; poistu näytetystä toiminnosta painikkeella.</td>
</tr>
<tr>
<td>B2.3</td>
<td>het. käämin lämpötila</td>
<td>Katso myös Fct. C1.1.7...C1.1.8</td>
</tr>
<tr>
<td>B2.4</td>
<td>elektriikan lämpötila</td>
<td>Näyttää todellisen elektriikan lämpötilan; poistu näytetystä toiminnosta painikkeella.</td>
</tr>
<tr>
<td>B2.5</td>
<td>het. johtokyky</td>
<td>Katso myös Fct. C1.3.1...C1.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAP-asetuksella (kapasitiivinen) ja PF-asetus (osittain täytetty) täät mittausta käytetään vain tyhjän putken tunnistamista varten (Fct. C1.1.10).</td>
</tr>
<tr>
<td>B2.6</td>
<td>het. elektrodin kohina</td>
<td>Katso myös Fct. C1.3.13...C1.3.15</td>
</tr>
<tr>
<td>B2.7</td>
<td>het. virtausprofiili</td>
<td>Ei voimassa PF-asetukselle (osittain täytetty)!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Katso myös Fct. C1.1.10...C1.1.12</td>
</tr>
<tr>
<td>B2.8</td>
<td>het. käämin vastus</td>
<td>Näyttää kenttäkäämien todellisen vastuksen riippuen nykyisestä käämin lämpötilasta.</td>
</tr>
<tr>
<td>B2.9</td>
<td>virta sisääntulo A</td>
<td>Näyttää aktiivisen virran arvon.</td>
</tr>
<tr>
<td>B2.10</td>
<td>virta sisääntulo B</td>
<td></td>
</tr>
<tr>
<td>B2.11</td>
<td>virtausjakso</td>
<td>Vain voimassa PF-asetukselle (osittain täytetty)!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Näyttää todellisen virtausjakson osittain täytetyille putkille. Tämä arvo kerrotaan normaaliilla virtauksen mittaamisella. 100% liittyy täysin täytettyihin putkiin.</td>
</tr>
<tr>
<td>B2.12</td>
<td>taso</td>
<td>Vain voimassa PF-asetukselle (osittain täytetty)!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Näyttää todellisen tason osittain täytetyille putkille.</td>
</tr>
</tbody>
</table>

B3 tiedot

<table>
<thead>
<tr>
<th>B3</th>
<th>tiedot</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3.1</td>
<td>C-numero</td>
<td>CG-numero, ei muutettavissa [I/O-versio]</td>
</tr>
<tr>
<td>B3.2</td>
<td>perusasetukset</td>
<td>Perusasetukset-valinta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD-näyttö:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. rivi: piirilevyn tunnus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. rivi: ohjelmistoversio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. rivi: valmistuspäivä</td>
</tr>
<tr>
<td>B3.3</td>
<td>SW.REV.MS</td>
<td>Elektriikka ja HART®-ohjelmisto.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCD-näyttö:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. rivi: piirilevyn tunnus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. rivi: ohjelmistoversio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. rivi: valmistuspäivä</td>
</tr>
</tbody>
</table>
6.3.3 Valikko C, asetus

Nro Toiminto Asetukset / kuvaukset

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3.4</td>
<td>SW.REV.UIS</td>
<td>Käyttöliittymä</td>
</tr>
</tbody>
</table>
| | | LCD-näyttö:
| | | 1. rivi: piirilevyn tunnus
| | | 2. rivi: ohjelmistoversio
| | | 3. rivi: valmistuspäivä |
| B3.5 | "väyläliitäntä" | Näkyy vain Profibusin, Modbusin ja FF:n kanssa. |
| | | LCD-näyttö:
| | | 1. rivi: piirilevyn tunnus
| | | 2. rivi: ohjelmistoversio
| | | 3. rivi: valmistuspäivä |
| B3.6 | Electronic Revision ER | Näyttää tunnuksen, elektronisen version numeron ja valmistuspäivän; Sisältää kaikki laitteisto- ja ohjelmistomuutokset. |

C1 perusasetukset

C1.1 kalibrointi

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1.1</td>
<td>kalibrointi</td>
<td>Kaikkien mitausanturin kalibrointiin liittyvien toimintojen ryhmittys.</td>
</tr>
<tr>
<td>C1.1.1</td>
<td>nollapiste kalibrointi</td>
<td>Todellisen nollapisteen kalibrointin arvo.</td>
</tr>
</tbody>
</table>
| | | Kysely: kalibroi nollapiste?
| | | Asetus: lopetus (palautus painikkeella) /
| | | vakio (tehdasasetuksella) /
| | | manuaalinen (näytä edellinen arvo, aseta uusi arvo, alue: -1,00...+1 m/s) /
| | | alue: -1,00...+1 m/s) /
| | | automaattinen (näyttää nykyisen arvon nollakalibrointiarvona) |
| C1.1.2 | koko | Valitse kokotaulukosta. |
| C1.1.3 | GK-valinta | Ei voimassa PF-asetukselle (osittain täytetty)!
| | | Valitse kenttävirta ja aktivoi GKx-arvot; valitse GK-arvo (katso mitausanturin valmistekilpi).
| | | Valitse: GK & GKL (molemmat arvot ovat mahdollisia / linearisuustesti) /
| | | GK [250 mApp] (vain GK-arvet ovat mahdollisia) /
| | | GKL [125 mApp] (vain GKL-arvot ovat mahdollisia) /
| | | GKH [250 mApp] (vain GKH-arvot ovat mahdollisia) |
| C1.1.4 | GK | Kohdassa C1.1.3 tehdystä valinnasta riippuen näyttöön tulee kohta C1.1.4.
| | | Valmistekilven mukainen ohjearvo; alue: 0,5...12 [20] |
| C1.1.5 | GKL | Ei voimassa PF-asetukselle (osittain täytetty)!
| | | Kohdassa C1.1.3 tehdystä valinnasta riippuen näyttöön tulee kohta C1.1.5.
| | | Valmistekilven mukainen ohjearvo; alue: 0,5...12 [20] |
| C1.1.6 | GKH | Ei voimassa PF-asetukselle (osittain täytetty)!
| | | Kohdassa C1.1.3 tehdystä valinnasta riippuen näyttöön tulee kohta C1.1.6.
| | | Valmistekilven mukainen ohjearvo; alue: 0,5...12 [20] |
| C1.1.7 | käämin vastus Rsp | Kenttäkäämin vastus 20 °C; alue: 10,00...220 Ω |
| Nro | Toiminto | Asetukset / kuvaukset |
C1.2 suodatus

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1.2</td>
<td>suodatus</td>
<td>Kaikkien suodattimeen tai mittasanturin elektroniikkaan liittyvien toimintojen ryhmitys.</td>
</tr>
</tbody>
</table>
| C1.2.1 | rajoitus | Kaikkien virtausarvojen rajoitus, ennen aikavakiolla tositoistoa, vaikuttaa kaikkiin lähtöihin.
 Asetelma: -xxx.x / +xxx.x m/s; ehto: 1. arvo < 2. arvo
 Alueen 1. arvo: -100,0 m/s ≤ arvo ≤ -0,001 m/s
 Range 2. arvo: +0,001 m/s ≤ arvo ≤ +100 m/s |
| C1.2.2 | virtaussuunta | Virtaussuunnan napaisuuden määrittäminen.
 eteenpäin [mittausanturin nuolen mukaan] tai taaksepäin [nuolen vastakkaiseen suuntaan] |
| C1.2.3 | aikavakio | Kaikille virtausmittauksille ja lähdöille.
 xxx.x s; alue: 0,01...100 s |
| C1.2.4 | signaalin suodatus | Vaimentaa melua kiinteiden aineiden, ilma- / kaasukuplien ja äkillisten pH-muutosten vuoksi.
 Valitse: pois (ilman signaalin suodatusta) / päällä (vanhalla signaalin suodatuksesta) / automaattinen (uudella signaalin suodatuksesta)
 Signaalin suodatus "päällä": Muutos yhdestä mitattavasta seuraukseen on rajoitettu arvolla "pulssin rajoitus" kokonaisajalle "pulssin leveys".
 Tämä suodatin mahdollistaa nopeamman signaalin seurannan virtausarvojen hidasta muuttamista varten.
 Signaalin suodatus "automaattinen": Raa'at virtausarvot kerätään puskuriin, joka kattaa kaksi kertaa "pulssin leveys" arvot. Tätä suodatinta kutsutaan "keskiarvo"-suodattimeksi.
 Tämä suodatin mahdollistaa paremman pulssimuotoisten häiriöiden vaimennuksen (hiukkasia tai ilmakuplia erittäin meluisassa ympäristössä). |
| C1.2.5 | pulssin pituus | Häiriöiden ja viiveiden pituus tukahdutetaan virtausten muuttuessa äkillisesti.
 Käytettävissä vain, jos signaalin suodatuksesta (kohta C1.2.4) asetus on "päällä" tai "automaattinen"
 xx.x s; alue: 0,01...10 s |
| C1.2.6 | pulssin rajoitus | Dynaaminen rajoitus yhdestä mitattavasta arvosta toiseen; voimassa vain, jos signaalin suodatuksesta (kohta C1.2.4) asetus on "päällä".
 xx.x s; alue: 0,01...100 m/s |
| C1.2.7 | kohinasuodatin | Vaimentaa häiriöitä alhaisella johtavuudella, suuri kiinteiden aineiden määrä, ilma- ja kaasukuplat ja kemiallisesti epähomogeeninen aine.
 Valitse: pois päältä (ilman kohinasuodatinta) / päällä (kohinasuodattimella)
 xx.xx m/s; alue: 0,01...10 m/s |
| C1.2.8 | kohinataso | Alue, jonka sisällä muutokset, kuten häiriöt, arvioidaan virtauksena (vain kun kohinasuodatin on kytketty päälle, Fct. C1.2.7).
 xx.xx m/s; alue: 0,01...10 m/s |
| C1.2.9 | kohinanvaimennus | Asetetta äänenvaimennuksen (vain kun kohinasuodatin on kytketty päälle, Fct. C1.2.7).
 Alue: 1...10, äänenvaimennuskerroin [min = 1...maks. = 10] |
| C1.2.10 | pienien virtauksen katkaisu | Asetetta kaikkien lähtöjen ulostuloarvoksi "0"
 x.xxx ± x.xxx m/s (ft/s); alue: 0,0...10 m/s
 [1. arvo = kytkentäpiste / 2. arvo = hystereesi], ehto: 2. arvo ≤ 1. arvo |
C1.3 testaus

<table>
<thead>
<tr>
<th>C1.3</th>
<th>testaus</th>
<th>Kaikkien testauksen tai mittausanturin elektroniikkaan liittyvien toimintojen ryhmittys.</th>
</tr>
</thead>
</table>
| C1.3.1 | tyhjän putken ilmaisu | **Ei voimassa** CAP-asetukselle (kapasitiivinen) ja PF-asetukselle (osittain täytetty)!
Kytkee johtavuusmittauksen pois päältä ja päälle (elektrodin vastuksen mittaus).

Valitse:
- Pois päältä (ei elektrodin vastuksen mittausta, johtavuuden mittausta tai tyhjän putken ilmaisua) /
- johtavuus (vain johtavuuden mittausta) /
- johtavuus + tyhjä putki [F] (johtavuuden mittaus ja tyhjän putken ilmaisu, virheluokan [F] sovellus);
- Virtauksen ilmaisin"= 0" kun putki on tyhjä /
- johtavuus + tyhjä putki [S] (johtavuuden mittaus ja tyhjän putken ilmaisu, virheluokan [S] mittaus määritysten ulkopuolella);
- Virtauksen ilmaisin"= 0" kun putki on tyhjä /
- tyhjä putki [I] (tyhjän putken mittaus, virheluokan [I] tiedot);
- Virtauksen ilmaisin"= 0" kun putki on tyhjä |

| C1.3.1 | tyhjän putken ilmaisu | **Vain** voimassa CAP-asetukselle (kapasitiivinen) ja PF-asetukselle (osittain täytetty)!

Valitse:
- Pois päältä (ei elektrodin vastuksen mittausta tai tyhjän putken ilmaisua) /
- tyhjä putki [F] (johtavuuden mittaus ja tyhjän putken ilmaisu, virheluokan [F] sovellus);
- Virtauksen ilmaisin"= 0" kun putki on tyhjä /
- johtavuus + tyhjä putki [S] (tyhjän putken mittaus, virheluokan [S] mittaus määritysten ulkopuolella);
- Virtauksen ilmaisin"= 0" kun putki on tyhjä /
- tyhjä putki [I] (tyhjän putken mittaus, virheluokan [I] tiedot);
- Virtauksen ilmaisin"= 0" kun putki on tyhjä |

| C1.3.2 | tyhjän putken raja-arvo | Käytettävissä vain, kun tyhjä putki on aktivoitu […] kohdassa Fct. C1.3.1.
Alue: 0,0 … 9999 μS (enint. 50 % alimmasta esiintyvästä käytössä olevasta johtavuudesta. Johtavuus alle tämän arvon = tyhjän putken signaali)
CAP-toiminto (kapasitiivinen), tämä arvo ei ilmaise nesteen johtavuutta! |

| C1.3.3 | het. johtokyky | Käytettävissä vain, kun tyhjä putki on aktivoitu […] kohdassa Fct. C1.3.1.
Todellinen johtavuus on ilmaistu. Aktivointi tapahtuu vain kun asetustilasta on poistettu!
CAP-toiminnot (kapasitiivinen) näytetään tyhjän putken tunnistuksen arvo, joka ei viittaa nesteen johtavuteen! |

| C1.3.4 | täyden putken ilmaisu | Vain mittausantureille, joissa on 3 (4) elektrodia.
Valitse: pois päältä (ei täyden putken mittausta) / päällä (täyden putken mittaus kolmannella elektrodilla) |

| C1.3.5 | limit full pipe | Vain, kun täyden putken tunnistus on aktivoitu, katso Fct. C1.3.4.
Alue: 0,0 … 9999 μS (johtavuus alle tämän arvon = täyden putken signaali) |

| C1.3.6 | lineaarisuus | **Ei voimassa** CAP-asetukselle (kapasitiivinen) ja PF-asetukselle (osittain täytetty)!
Vain, jos GK-arvot “GK+GKL” on aktivoitu kohdassa C1.1.3 (tarkastus suoritettu kahdella kenttävirralla).
Valitse: pois päältä (ei lineaarisuustarkastusta) / päällä (lineaarisuustarkastus aktivoitu) |
C1.3.7 het. lineaarisuus | Ei voimassa CAP-asetukselle (kapasitiivinen) ja PF-asetukselle (osittain täytetty)!
Käytettävissä vain kun asetus lineaarisuustesti "päällä" on otettu käyttöön kohdassa C1.3.6. Johtokyvyn mittaus pitää myös aktivoitaa, katso kohta C1.3.1.
Aktivointi tapahtuu vain kun asetustilasta on poistuttu!

C1.3.8 gain | Automaattinen testi kytketty pois päältä / päälle.
Valitse: pois päältä /päälle

C1.3.9 käämivirta

C1.3.10 virtausprofiili | Ei voimassa CAP-asetukselle (kapasitiivinen) ja PF-asetukselle (osittain täytetty)!
Automaattinen testi kytketty pois päältä / päälle.
Valitse: pois päältä /päälle

C1.3.11 virtausprofiilin rajoitus | Ei voimassa CAP-asetukselle (kapasitiivinen) ja PF-asetukselle (osittain täytetty)!
Vain kun virtausprofiili on kytketty päälle, katso Fct. C1.3.10.
Alue: 0,000...100 (absoluuttiset arvot, jotka ylittävät tämän kynnysarvon, luovat luokan [S] virheen)

C1.3.12 het. virtausprofiili | Ei voimassa CAP-asetukselle (kapasitiivinen) ja PF-asetukselle (osittain täytetty)!
Käytettävissä vain, kun asetus "virtausprofiili päällä" on valittu kohdassa C1.3.10. Aktivointi tapahtuu vain kun asetustilasta on poistuttu!

C1.3.13 electrode noise | Automaattinen testi kytketty pois päältä / päälle.
Valitse: pois päältä /päälle

C1.3.14 kohinan raja-arvo | Vain, kun elektroden kohina on aktivoitu, katso kohta C1.3.13.
Alue: 0,000...12 m/s (kohina, joka ylittää tämän kynnysarvon, tuo luokan [S] virheen)

C1.3.15 het. elektrodiin kohina | Käytettävissä vain kun elektrodiin kohina “päällä” on aktivoitu kohdassa Fct. C1.3.13. Aktivointi tapahtuu vain kun asetustilasta on poistuttu!

C1.3.16 kentän selvittäminen | Automaattinen testi kytketty pois päältä / päälle.
Valitse: pois päältä /päälle

C1.3.17 diagnoosiarvo | Ei voimassa CAP-asetukselle (kapasitiivinen) ja PF-asetukselle (osittain täytetty)!
Valitse diagnoosiarvo eri analogisten lähtöjen testaamiseen.
Valitse:
Virtausprofiili [aktiivoi kohdassa C1.3.10] / lineaarisuus [aktiivoi kohdassa C1.3.6] /
liitin 2 DC (elektrodiin tasajännite) / liitin 3 DC (elektrodiin tasajännite)

C1.3.17 diagnoosiarvo | Vain voimassa CAP-asetukselle (kapasitiivinen)!
Valitse diagnoosiarvo eri analogisten lähtöjen testaamiseen.
Valitse:
pois päältä [ei diagnoosia] / elektrodiin kohina [aktiivoi Fct. C1.3.13]

C1.3.17 diagnoosiarvo | Vain voimassa PF-asetukselle (osittain täytetty)!
Valitse diagnoosiarvo eri analogisten lähtöjen testaamiseen.
Valitse:
liitin 2 DC (elektrodiin tasajännite) / liitin 3 DC (elektrodiin tasajännite)

C1.4 tiedot

C1.4 tiedot | Kaikkien mittausanturin ja anturin elektroniikkaan liittyvien toimintojen ryhmitys.
C1.4.1 vuoraus | Näyttää vuorauksen materiaalin.
C1.4.2 elektrodimateriaali | Näyttää elektroden materiaalin.
K1.3 kalibrointipäivä
Ei käytettävissä tällä hetkellä.

K1.4 sarjanumero, anturi
Näyttää mittausanturin sarjanumeron.

K1.5 V nro. anturi
Näyttää mittausanturin tilausnumeron.

K1.6 anturin elekt. tiedot
Näyttää piirilevyn sarjanumeron, ohjelmistoversion numeron ja piirilevyn kalibrointipäivämäärän

K1.7 option PF info
Näyttää osittain täytettyjen putkien piirilevyn sarjanumeron, ohjelmistoversion numeron ja piirilevyn kalibrointipäivämäärän

C1.5 simulointi

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1.5</td>
<td>simulointi</td>
<td>Kaikkien toimintojen ryhmittäminen mittausanturin arvojen ryhmitystä varten. Nämä simulaatio vaikuttaavat kaikkiin lähtöihin, mukaan lukien laskureihin ja näytöihin.</td>
</tr>
<tr>
<td>C1.5.1</td>
<td>virtausnopeus</td>
<td>Järjestys, katso Fct. B1.1</td>
</tr>
<tr>
<td>C1.5.2</td>
<td>tilavuusvirtaus</td>
<td>Järjestys, katso Fct. B1.2</td>
</tr>
<tr>
<td>C1.5.3</td>
<td>virtausjakso</td>
<td>Vain voimassa PF-asetukselle (osittain täytetty)! Järjestys, katso Fct. B1.3</td>
</tr>
<tr>
<td>C1.5.4</td>
<td>taso</td>
<td>Vain voimassa PF-asetukselle (osittain täytetty)! Järjestys, katso Fct. B1.4</td>
</tr>
</tbody>
</table>

C2 I/O (tulot/lähdöt)

C2.1 lähdon toiminta

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2.1</td>
<td>lähdon toiminta</td>
<td>Liittimien määrittäminen riippuu signaalimuuntimen versiosta: aktiivinen / passiivinen / NAMUR.</td>
</tr>
<tr>
<td>C2.1.1</td>
<td>liitäntä A</td>
<td>Valitse: pois päältä [kytketty pois] / virta ulostulo / taajuus ulostulo / pulssi ulostulo / tila ulostulo / rajakytkin / sisääntulo / virta sisääntulo</td>
</tr>
<tr>
<td>C2.1.2</td>
<td>liitäntä B</td>
<td>Valitse: pois päältä [kytketty pois] / virta ulostulo / taajuus ulostulo / pulssi ulostulo / tila ulostulo / rajakytkin / sisääntulo / virta sisääntulo</td>
</tr>
<tr>
<td>C2.1.3</td>
<td>liitäntä C</td>
<td>Valitse: pois päältä [kytketty pois] / virta ulostulo / tila ulostulo / rajakytkin</td>
</tr>
<tr>
<td>C2.1.4</td>
<td>liitäntä D</td>
<td>Valitse: pois päältä [kytketty pois] / taajuus ulostulo / pulssi ulostulo / tila ulostulo / rajakytkin</td>
</tr>
<tr>
<td>C2._virta ulostulo X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>C2._virta ulostulo X</td>
<td>X tarkoittaa liitintä A, B tai C. _tarkoittaa kohtaa nro C2.2 [A] / C2.3 [B] / C2.4 [C]</td>
<td></td>
</tr>
<tr>
<td>C2._aluemittaus</td>
<td>Valitun mittauksen nykyinen alue, 4...20 mA, vastaa 0...100%</td>
<td></td>
</tr>
<tr>
<td>xx.x ... xx.x mA; alue: 0,00...20 mA</td>
<td>(ehto: 0 mA ≤ 1. arvo ≤ 2. arvo ≤ 20 mA)</td>
<td></td>
</tr>
<tr>
<td>C2._laajennettu alue</td>
<td>Määrittää minimi- ja maksimirajat.</td>
<td></td>
</tr>
<tr>
<td>xx.x ... xx.x mA; alue: 03,5...21,5 mA</td>
<td>(ehto: 0 mA ≤ 1. arvo ≤ 2. arvo ≤ 21,5 mA)</td>
<td></td>
</tr>
<tr>
<td>C2._virheellinen virta</td>
<td>Määritä virheellinen virta</td>
<td></td>
</tr>
<tr>
<td>xx.x ... xx.x mA; alue: 3...22 mA</td>
<td>(ehto: laajennetun ulkeen ulkopuolella)</td>
<td></td>
</tr>
<tr>
<td>C2._vikatyyppi</td>
<td>Seuraavat virhe-ehdot voidaan valita.</td>
<td></td>
</tr>
<tr>
<td>C2._mittaus</td>
<td>Valitse: tilavuusvirtaus / massavirtaus</td>
<td>eikä (kapasitiivinen) / taso (eikä CAPia) (osittain täytetty)</td>
</tr>
<tr>
<td>C2._alue</td>
<td>0...100% mittauksesta, joka on asetettu kohdassa Fct. C2._5</td>
<td></td>
</tr>
<tr>
<td>0...xx.xx _ _ _ (muoto ja yksikkö riippuvat mittauksesta, katso yllä)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2._napaisuus</td>
<td>Aseta napaisuus, huomaa virtauksen suunta kohdassa C1.2.2!</td>
<td></td>
</tr>
<tr>
<td>C2._rajoitus</td>
<td>Rajoitus ennen aikavakion käyttöä.</td>
<td></td>
</tr>
<tr>
<td>±xxx ... ±xxx%; alue: -150...+150%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hystereesin 100 % yläarvo on sitten = 0. Kynnysarvo on silloin hystereesin arvo eikä ”kynnysarvo ± hystereesi” kuten näytetty näytöllä.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alue: 5,0...80%</td>
<td>(ehto: 2. arvo ≤ 1. arvo)</td>
<td></td>
</tr>
<tr>
<td>C2._tiedot</td>
<td>I/O-piirin sarjaumero, ohjelmistoversion numero ja piirilevyn tuotantopäivämäärä</td>
<td></td>
</tr>
<tr>
<td>C2._simulointi</td>
<td>Järjestys, katso B1._virtaulostulo X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| C2._15 | 4mA viritys | Virran viritys 4 mA
Palautus 4 mA palauttaa tehdaskalibroinnin.
Käytetään HART®-asetusta varten. |
| C2._16 | 20mA viritys | Virran viritys, 20 mA
Nollaus arvoon 20 mA palauttaa tehdaskalibroinnin.
Käytetään HART®-asetusta varten. |

C2._ taajuus ulostulo X

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| C2._ | taajuus ulostulo X | X tarkoittaa liitintä A, B tai D.
__tarkoittaa kohtaa Fct. nro C2.2 (A) / C2.3 (B) / C2.5 (D) |
| C2._1 | pulssimuoto | Määritä pulssimuoto.
Valitse: symmetrinen (noin 50 % päällä ja 50 % pois päältä) / automaattinen (jatkuvu pulssi, noin 50 % päällä ja 50 % pois päältä noin 100 % pulssitaajuudella) / kiinteä (kiinteä pulssitaajuus, asetus katso alla olevan kohdan C2._3 100% pulssitaajuus) |
| C2._2 | pulssin pituus | Käytettävissä vain, jos asetus on "kiinteä" kohdassa Fct. C2._1
Alue: 0,05…2000 ms
Huom: suurin asetusarvo Tp [ms] ≤ 500 / maks. pulssitaajuus [1/s], antaa pulssin leveys = aika, jolloin lähtö aktivoituu |
| C2._3 | 100% pulssitaajuus | Pulssitaajuus 100 % mittausalue.
Alue: 0,0…10000 1/s
Rajoitus 100% pulssitaajuus ≤ 100/s: I_{max} ≤ 100 mA
Rajoitus 100% pulssitaajuus > 100/s: I_{max} ≤ 20 mA |
| C2._4 | mittaus | Mittaukset lähön aktiivintia varten.
Valitse: tilavuusvirtaus / massavirtaus (ei koske PF:ää osittain täytetty) / diagnosiovarvo / virtausnopeus / käämin lampotila / johtokyky (ei koske PF:ää osittain täytetty) eikä CAPia (kapasitiivinen) / taso (koskee vain PF:ää osittain täytetty) |
| C2._5 | alue | 0…100% mittauksesta, joka on asetettu kohdassa Fct. C2._4
0…xx.xx _ _ _ (muoto ja yksikkö riippuvat mittauksesta, katso yllä) |
| C2._6 | napaisuus | Aseta napaisuus, huomaa virtauksen suunta kohdassa C2.1.2!
| C2._7 | rajoitus | Rajoitus ennen aikavakion käyttöä.
±xxx … ±xxx%; alue: -150…+150% |
| C2._8 | pienien virtauksen katkaisu | Asettaa ulostuloarvoksi "0":
x.xxx ± x.xxx%; alue: 0,0…20%
[1. arvo = kytkentäpiste / 2. arvo = hysteresei], ehto: 2. arvo ≤ 1. arvo |
| C2._9 | aikavakio | Alue: 000,1…100 s |
| C2._10 | käänteinen signaali | Valitse:
opiski päältä [aktivoiu lähtö luo suuren virran lähään, kytkin suljettu] /
päältä [lakkitulo lähtö luo alhaisen virran lähään, kytkin auki] /
Käytettävissä vain: A- tai D-liitintä ja vain, jos lähtö B on pulssi- tai taajuus ulostulo. Jos asetus kohdassa Fct. 2.5.6 on "kaksinapaisuus", vaihesiirtymän esiasetus on määritetty symbolilla, esim. - 90° ja +90°
Valitse pois päältä (ei vaihesiirtymää) / 0° vaihesiirtymä (lähtöjen A tai D ja B välillä, inversio mahdollinen) / 90° vaihesiirtymä (lähtöjen A tai D ja B välillä, inversio mahdollinen) / 180° vaihesiirtymä (lähtöjen A tai D ja B välillä, inversio mahdollinen) |
C2.3.11 erikoistoiminnot

Tämä toiminto on käytettävissä vain liittimen B taajuus ulostulossa. Samanaikaisesti on oltava käytössä 2 taajuus ulostulossa:
1. lähtö liittimesällä A tai D / 2. lähtö liittimesällä B

Lähtöä B käytetään alisteisena lähtönä ja asetetaan käyttämällä päälähtöä A tai D

Valitse: pois päältä lei vaihesiirtymää / vaihesiirtymä w.r.t. D tai A (alisteinen lähtö on B ja pää lähtö on D tai A)

C2_.12 tiedot

I/O-piirin sarjaumero, ohjelmistoversion numero ja piirilevyn tuotantopäivämäärä

C2_.13 simulointi

Katso järjestys kohdasta B1.? taajuusulostulo X

C2_. pulssi ulostulo X

C2_ pulssi ulostulo X

X tarkoittaa liintiä A, B tai D.

_ tarkoittaa kohtaa Fct. nro C2.2 (A) / C2.3 (B) / C2.5 (D)

C2_.1 pulssimuoto

Määritä pulssimuoto.

Valitse: symmetrinen (noin 50 % päällä ja 50 % pois päältä) / automaattinen (jatkuva pulssi, noin 50 % päällä ja 50 % pois päältä noin 100 % pulssitaitajuduella) / kiinteä (kiinteä pulssitaitajuus, asetus katso alla olevan kohdan C2._.3 100 % pulssitaitajuus)

C2_.2 pulssin pituus

Käytettävissä vain, jos asetus on ”kiinteä” kohdassa Fct. C2._.1

Alue: 0,05…2000 ms

Huom: suurin asetusarvo Tp [ms] ≤ 500 / maks. pulssitaitajuus [1/s], antaa pulssin leveys = aika, jolloin lähtö aktivoituu

C2_.3 maks. pulssitaitajuus

Pulssitaitajuus 100 % mittausalue.

Alue: 0,0…10000 1/s

Rajoitus 100 % pulssitaitajuus ≤ 100/s: I_{maks.} ≤ 100 mA

Rajoitus 100 % pulssitaitajuus > 100/s: I_{maks.} ≤ 20 mA

C2_.4 mittaus

Mittaukset lähdön aktivointia varten.

Valitse tilavuusvirtaus/massavirtaus [ei voimassa PF:lle [osittain täytetty]]

C2_.5 pulssin yksikkö

Yksikön valinta luetteloista riippuen mittauksesta.

C2_.6 arvo p. pulssi

Aseta tilavuuden tai massan arvo pulssia kohti

xxx.xxx, alue [l] tai [kg] (virta ulostulo C2_.6 tilavuus tai massa)

Suurimmalla pulssitaitajuudella katso yllä C2._.3 pulssi ulostulo.

C2_.7 napaisuus

Aseta napaisuus, huomaan virtauksen suunta kohdassa C1.2.2!

Valitse: molemmat napaisuudet (plus- ja minusarvo näytetään) / positiivinen napaisuus (negatiivisten arvojen näyttö = 0) / negatiivinen napaisuus (positiivisten arvojen näyttö = 0) / absoluuttinen arvo (lähtöä varten)

C2_.8 pienien virtauksen katkaisu

Asettaa ulostuloverkoki "0"

[1. arvo = kytentäpiste / 2. arvo = hystereesisi, ehto: 2. arvo ≤ 1. arvo]

C2_.9 aikavakio

Alue: 000,1…100 s

C2_.10 käätteineen signaalit

Valitse: pois päältä (aktivoituu lähtö luo suuren virran lähtöön, kytkin suljettu) / päällä (aktivoituu lähtö luo alhaisen virran lähtöön, kytkin auki)

C2_.11 vaihesiirtymä w.r.t. B

Käytettävissä vain määritettäessä A- tai D-liitintä ja vain, jos lähtö B on pulssin-, tai taajuus ulostulo. Jos asetus kohdassa Fct. 2.5.6 on ”kaksinapaisuus”, vaihesiirtymän esiasetus on määritetty symbolilla, esim. -90° ja +90°

Valitse pois päältä (ei vaihesiirtymää) / 0° vaihesiirtymä (lähtöjen A tai D ja B välillä, inversio mahdollinen) / 90° vaihesiirtymä (lähtöjen A tai D ja B välillä, inversio mahdollinen) / 180° vaihesiirtymä (lähtöjen A tai D ja B välillä, inversio mahdollinen)
erikoistoimnot
Tämä toiminto on käytettävissä vain liittimen B pulssi ulostulossa. Samanaikaisesti on oltava käytössä 2 pulssi ulostuloa:
1. lähtö liittimessä A tai D / 2. lähtö liittimessä B

Lähtöä B käytetään alisteisena lähtöön ja asetetaan käyttämällä päälähtöä A tai D

Valitse: pois päättä levi vaihesiirtymää / vaihesiirtymä w.r.t. D tai A (alisteinen lähtö on B ja päälähtö on D tai A)

C2._12 tiedot
I/O-piirin sarjanumero, ohjelmistoversion numero ja piirilevyn tuotantopaivamäärä

C2._13 simulointi
Järjestys, katso B1._ pulssi ulostulo X

C2._ tila ulostulo X

C2._ tila ulostulo X
X (Y) tarkoittaa liintää A, B, C tai D, _ tarkoittaa kohtaa Fct. nro C2.2 [A] / C2.3 [B] / C2.4 [C] / C2.5 [D]

C2._1 tila
Lähde: näky seuraavat mittasehdot:
määrityksen ulkopuolella (ulostulo aktivoitu, ilmoittaa sovelluksen virheen tai virheen laitteessa katso *Tilaviestit ja vihanmääritystiedot* sivulla 137 / sovellusvirhe (ulostulo aktivoitu, ilmoittaa sovelluksen tai virheen laitteessa katso *Tilaviestit ja vihanmääritystiedot* sivulla 137 / virtauksen polaarisuus (virtauksen polaarisuus) / virtaus yli alueen (virtaus yli alueen) / laskuri 1 esiasetus (aktivoituu, kun laskuri X esiasetusarvo saavutetaan) / laskuri 2 esiasetus (aktivoituu, kun laskuri X esiasetusarvo saavutetaan) / laskuri 3 esiasetus (aktivoituu, kun laskuri X esiasetusarvo saavutetaan) / lähtö A (aktivoituna lähde Y tilalla, lisää lahtitietoja katso alla) / lähtö B (aktivoituna lähde Y tilalla, lisää lahtitietoja katso alla) / lähtö C (aktivoituna lähde Y tilalla, lisää lahtitietoja katso alla) / lähtö D (aktivoituna lähde Y tilalla, lisää lahtitietoja katso alla) / pois päältä (kytketty pois päältä) / tyhjä putki (lähtö aktivoidaan kun putki on tyhjä) (sisältää PF-asetuksen (osittain täytetty) alhaisen tason tunnistuksen) / laitevirhe (kun ulostulo aktivoitu)

C2._2 virta ulostulo Y
Näkyvä vain, jos lähtö A...C asetetaan kohdassa "tila (katso yllä)", ja tämä lähtö on "virta ulostulo".

Valitse:
napaisuus (viestitetään) / alue ylittynyt (viestitetään) / automaattinen alue ilmainen alemman alueen

C2._2 taajuus ulostulo Y ja pulssi ulostulo Y
Näkyvä vain, jos lähtö A, B tai D asetetaan kohdassa "tila (katso yllä)", ja tämä lähtö on "taajuus/pulssi".

Valitse:
napaisuus (viestitetään) / alue ylittynyt (viestitetään)

C2._2 tila ulostulo Y
Näkyvä vain, jos lähtö A...D asetetaan kohdassa "tila (katso yllä)", ja tämä lähtö on "tila ulostulo".

Sama signaali (muiden liitettyjen tila ulostulojen tavoin, signaali voidaan kääntää, katso alla)

C2._2 rajakytkin Y ja ohjaustulo Y
Näkyvä vain, jos lähtö A...D tulo A tai B asetetaan kohdassa "tila (katso yllä)“, ja tämä lähtö / tulo on "rajakytkin / tila ohjaustulo".

Tila pois (valitaan tässä aina, jos tila ulostulo X liitetään rajakytkimellä / ohjaustulolla Y.

C2._2 pois päältä
Näkyvä vain, jos lähtö A...D asetetaan kohdassa "tila (katso yllä)“, ja tämä lähtö on kytketty pois päältä.

C2._3 käänteinen signaali
Valitse:
pos päältä (aktivoitu lähtö toimittaa suuren virran, kytkin suljettu) / päällä (aktivoitu lähtö toimittaa alhaisen virran, kytkin auki)

C2._4 tiedot
I/O-piirin sarjanumero, ohjelmistoversion numero ja piirilevyn tuotantopaivamäärä

C2._5 simulointi
Järjestys, katso B1._ tila ulostulo X
C2._ rajakytkin X

C2._ rajakytkin X | X tarkoittaa liintää A, B, C tai D. _ tarkoittaa kohtaa Fct. nro C2.2 (A) / C2.3 (B) / C2.4 (C) / C2.5 (D)

C2._.1 mittaus | Valitse: tilavuusvirtaus / massavirtaus (ei koske PF:ää (osittain täytetty)) / diagnostiointi / virtausnopeus / käämin lämpötila / johtokyky (ei koske PF:ää (osittain täytetty)) eikä CAPia (kasvivainen) / taso (koske vat PF:ää (osittain täytetty))

C2._.2 kynnysarvo | Kytke / aseta kynnysarvo hystereesillä

C2._.3 napaisuus | Aseta napaisuus, huomaa virtauksen suunta kohdassa C1.2.2!

C2._.4 aikaväli | Alue: 0,0...100 s

C2._.5 käänteinen signaali | Valitse: pois päältä (aktivoitu lähtö luon suuren virran, kytkin suljettaa) / päällä (aktivoitu lähtö luo alhaisen virran, kytkin auki)

C2._.6 tiedot | I/O-piirin sarja numero, ohjelmistoversion numero ja piirilevyn tuotantopäivämäärä

C2._.7 simulointi | Järjestys, katso B1._ rajakytkin X

C2._ sisääntulo X

C2._ sisääntulo X | X tarkoittaa liintää A tai B _ tarkoittaa kohtaa nro C2.2 (A) / C2.3 (B)

C2._.1 tila | pois päältä (ohjaustulo kytketty pois päältä) / jäädytä kaikki ulostulot (pitää nykyiset arvot, ei näytettyä tai laskimia) / ulostulo Y (pitää nykyiset arvot) / kaikki ulostulot nollaan (nykyiset arvot = 0%, ei näyttöä tai laskimia) / ulostulo Y nollaan (nykyinen arvo = 0%) / kaikki laskurit (nollaa kaikki laskurit arvoon "0") / laskuri "Z" nollaan (asetta laskuri 1, [2 tai 3] arvoon "0") / pysäytä kaikki laskurit / pysäytä laskuri "Z" (pysäyttää laskurin 1, [2 tai 3] / lähde nollaan+pys.laskuri (kaikki ulostulot 0%, pysäytää kaikki laskurit, ei näyttöä) / ulkoinen alue Y (ohjaustulo virtaa ulostulo Y:n ulkoiselle alueelle) - tekee myös tästä asetuksesta virta ulostulo Y:n (ei tarkistusta, jos virta ulostulo Y on käytettävissä) / häiriön kuitaus (kaikki kuitattavat hälyykset poistetaan)

C2._.2 käänteinen signaali | Valitse: pois päältä (ohjaustulo aktivoidaan, kun jännite käyttää virtaa tulossa passiivisille tuloille tai alhaisen arvon vastusta aktiivisille tuloille) / päällä (ohjaustulo aktivoidaan, kun jännitetä ei käytetä tulossa, alhaista jännitetä passiivisille tuloille tai korkean arvon vastusta aktiivisille tuloille

C2._.3 tiedot | I/O-piirin sarja numero, ohjelmistoversion numero ja piirilevyn tuotantopäivämäärä

C2._.4 simulointi | Järjestys, katso B1._ sisääntulo X
C2._ virta sisääntulo X

<table>
<thead>
<tr>
<th>C2._</th>
<th>virta sisääntulo X</th>
<th>X tarkoittaa liitintä A tai B _ tarkoittaa kohtaa nro C2.2 [A] / C2.3 [B]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2._1</td>
<td>alue 0...100%</td>
<td>Kiinteä nykyinen arvo [4...20 mA] määritetyn arvon alueelle; Ilmaistua aluetta ei voi muuttaa.</td>
</tr>
<tr>
<td>C2._2</td>
<td>laajennettu alue</td>
<td>Säädettävä, laajennettu, lineaarinen alue, 3,6...21,0 mA; Virhealueet: 0,5...<3,6 mA / >21,0...23,0 mA / <0,5 mA avoin piiri / >23,0 suljettu piiri</td>
</tr>
<tr>
<td>C2._3</td>
<td>mittaus</td>
<td>Kytetty anturi toimittaa arvot virran sisääntulolle; mahdolliset arvot: lämpötila, paine tai virta</td>
</tr>
<tr>
<td>C2._4</td>
<td>alue</td>
<td>Mittausalue 0...100 % vastaavassa yksikössä.</td>
</tr>
<tr>
<td>C2._5</td>
<td>aikavakio</td>
<td>Alue: 000,1...100 s</td>
</tr>
<tr>
<td>C2._6</td>
<td>tiedot</td>
<td>I/O-piirin sarjaumero, ohjelmistoversion numero ja piirelevyn tuotantopäivämäärä</td>
</tr>
<tr>
<td>C2._7</td>
<td>simulointi</td>
<td>Järjestys, katso B1._ virta sisääntulo X</td>
</tr>
<tr>
<td>C2._8</td>
<td>4mA viritys</td>
<td>Virran viritys 4 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Palautus 4 mA palauttaa tehdaskalibroinnin.</td>
</tr>
<tr>
<td>C2._9</td>
<td>20mA viritys</td>
<td>Virran viritys 20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nollaus arvoon 20 mA palauttaa tehdaskalibroinnin.</td>
</tr>
</tbody>
</table>
C3 I/O laskuri

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3.1</td>
<td>laskuri 1</td>
<td>Aseta laskurin _ toiminto _tarkoittaa 1, 2, 3 (= laskuri 1, 2, 3) Perusversiossa (vakio) on vain 2 laskuria!</td>
</tr>
<tr>
<td>C3.2</td>
<td>laskuri 2</td>
<td>Nämä toiminnot ovat käytettävissä vain HART®-laitteissa.</td>
</tr>
<tr>
<td>C3._1</td>
<td>toiminto</td>
<td>Valitse: summalaskuri (laskee positiiviset ja negatiiviset arvot) / +laskuri (laskee vain positiiviset arvot) / -laskuri (laskee vain negatiiviset arvot) / pois päältä (laskuri on kytetty pois päältä)</td>
</tr>
<tr>
<td>C3._2</td>
<td>mittaus</td>
<td>Laskurin _ mittauksen valinta Valitse tilavuusvirtaus/massavirtaus [ei voimassa PF:lle (osittain täytetty)]</td>
</tr>
<tr>
<td>C3._3</td>
<td>pieni virtauksen katkaisu</td>
<td>Asetetta ulostuloarvoksi "0" [1. arvo = kytkenäpiste / 2. arvo = hystereesi], ehto: 2. arvo ≤ 1. arvo</td>
</tr>
<tr>
<td>C3._4</td>
<td>aikavakio</td>
<td>Alue: 000,1...100 s</td>
</tr>
<tr>
<td>C3._5</td>
<td>esiasetusarvo</td>
<td>Jos tämä arvo saavutetaan, positiivinen tai negatiivinen, luodaan signaali, jota voidaan käyttää Lähdon ulostulolle, jossa "esiasetuslaskuri X" on asetettava. Esiasetusarvo (enint. 8 merkkiä) x.xxxxx valitussa yksikössä, katso C5.7.10 + 13</td>
</tr>
<tr>
<td>C3._6</td>
<td>nolla laskuri</td>
<td>Järjestys, katso kohta A3.2, A3.3 ja A3.4</td>
</tr>
<tr>
<td>C3._8</td>
<td>pysäytä laskuri</td>
<td>Laskuri _ pysäyttää ja pitää nykyisen arvon. Valitse: ei (poistuu toiminosta pysäyttämättä laskuria) / kyllä (pysäyttää laskurin ja poistuu toiminnoista)</td>
</tr>
<tr>
<td>C3._9</td>
<td>käynnistä laskuri</td>
<td>Aloita laskuri _? jonka jälkeen laskuri pysäytetään. Valitse: ei (poistuu toiminosta käynnistämättä laskuria) / kyllä (käynnistää laskurin ja poistuu toiminnoista)</td>
</tr>
<tr>
<td>C3._10</td>
<td>tiedot</td>
<td>I/O-piirin sarjaumero, ohjelmistoversion numero ja piirilevyn tuotantopalavimäärä</td>
</tr>
</tbody>
</table>
C4 I/O HART

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaukset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HART® virta ulostulossa (liitin A perus I/Os tai liitin C modulaarinen I/Os) on aina kiinteä linkki ensisijaisiin muuttujiin (PV). Kiinteät muuttujat muihin DV-kohteisiin (1-3) ovat mahdollisia vain ylimääräisiä analogitulouja (virta ja taajuus) on käytettävissä, mikäli ei ole, mitässä voidaan valita vapaasti seuraavasta luettelosta: "mittaus" kohdassa A4.1.</td>
</tr>
<tr>
<td>C4.1</td>
<td>PV on</td>
<td>Virta ulostulo (päämuuttuja)</td>
</tr>
<tr>
<td>C4.2</td>
<td>SV on</td>
<td>[toissijainen muuttuja]</td>
</tr>
<tr>
<td>C4.3</td>
<td>TV on</td>
<td>[tertiäärinen muuttuja]</td>
</tr>
<tr>
<td>C4.4</td>
<td>4V on</td>
<td>[4. muuttuja]</td>
</tr>
<tr>
<td>C4.5</td>
<td>HART yksiköt</td>
<td>Muuttaa DV-yksiköt (dynamiset muuttujat) näytöllä</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lopetus: palautus +/– painikkeella</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HART-näyttö®: kopioi näyttöyksikköjen asetukset DV-asetuksiin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vakio: asettaa DV-yksiköiden tehdasasetukset</td>
</tr>
<tr>
<td>C4._1</td>
<td>virta ulostulo X</td>
<td>Näyttää linkitetyn virta ulostulon nykysen analogisen mitatan arvon. Mittausta ei voi muuttaa,</td>
</tr>
<tr>
<td>C4._1</td>
<td>taajuus ulostulo X</td>
<td>Näyttää linkitetyn taajuus ulostulon nykysen analogisen mitatan arvon. Mittausta ei voi muuttaa,</td>
</tr>
<tr>
<td>C4._1</td>
<td>HART dynaaminen</td>
<td>HARTin® dynaamisten muuttujien mittaukset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lineaariset mittaukset: tilavuusvirtaus / massavirtaus (ei koske PF:ää (osittain täytetty)) / diagnoosiarvo / virtausnopeus / käämin lämpötila / johtokyy (ei koske PF:ää (osittain täytetty)) eikä CAPia (kapasitiivinen) / taso (koskee vain PF:ää (osittain täytetty))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digitaaliset mittaukset: laskuri 1 / laskuri 2 / laskuri 3 / käyttötunnit</td>
</tr>
</tbody>
</table>

C5 laite

<table>
<thead>
<tr>
<th>Nro</th>
<th>Toiminto</th>
<th>Asetukset / kuvaukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5.1</td>
<td>laitteen tiedot</td>
<td>Kaikken toimintojen ryhmittely, joilla ei ole suoraa vaikutusta mittaukseen tai mihinkään lähtöön.</td>
</tr>
<tr>
<td>C5.1.1</td>
<td>posizio</td>
<td>Asetettavat merkit [enint. 8 merkkiä]: A...Z; a...z; 0...9; / - , .</td>
</tr>
<tr>
<td>C5.1.2</td>
<td>C-numero</td>
<td>CG-numero, ei-vaihettavissa oleva [tulo-/lähtöversiot]</td>
</tr>
<tr>
<td>C5.1.3</td>
<td>laitteen sarjanumero</td>
<td>Järjestelmän sarjanumero.</td>
</tr>
<tr>
<td>C5.1.4</td>
<td>piirikortin sarjanumero</td>
<td>Elektronisen kokoonpanon sarjanumeroa ei voi muuttaa.</td>
</tr>
<tr>
<td>C5.1.5</td>
<td>SW.REV.MS</td>
<td>Piirilevyn sarjaumero, pääohjelmiston version numero ja piirilevyn tuotantopäivämäärä</td>
</tr>
<tr>
<td>C5.1.6</td>
<td>Electronic Revision ER</td>
<td>Tunnistenumero, sähköinen versio ja laitteen tuotantopäivämäärä; sisältää kaikki laiteiston ja ohjelmiston muutokset</td>
</tr>
</tbody>
</table>
C5.2 näyttö

<table>
<thead>
<tr>
<th>C5.2</th>
<th>näyttö</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5.2.1</td>
<td>kieli</td>
<td>Kielen valinta riippuu laitteen version.</td>
</tr>
<tr>
<td>C5.2.2</td>
<td>kontrasti</td>
<td>Säätää näytön kontrastia äärimmäisille lämpötiloille. Asetus: -9...0...+9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tämä muutos tapahtuu heti eikä vain kun asetustilasta poistutaan!</td>
</tr>
<tr>
<td>C5.2.3</td>
<td>oletusnäyttö</td>
<td>Oletusnäyttösivun määrittäminen, johon palataan lyhyen viiven jälkeen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: ei mitään (nykyinen sivu on aina aktiivinen) / 1. mitattu (nyk. sivu) / 2. mitattu (nyk. sivu) / tilaview (nyk. sivu) / graafinen sivu (trendi näkyy 1. mitattuksessa)</td>
</tr>
<tr>
<td>C5.2.4</td>
<td>testaus</td>
<td>Ei käytettävissä tällä hetkellä.</td>
</tr>
<tr>
<td>C5.2.5</td>
<td>SW.REV.UIS</td>
<td>Piirilevyn sarjarnumero, käyttäjäohjelmiston version numero ja piirilevyn tuotantopaivämäärä</td>
</tr>
</tbody>
</table>

C5.3 ja C5.4, ensimmäinen ja toinen mitattu sivu

<table>
<thead>
<tr>
<th>C5.3</th>
<th>1. mitattu sivu</th>
<th>_ tarkoittaa 3 = mitattu sivu 1 ja 4 = mitattu sivu 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5.4</td>
<td>2. mitattu sivu</td>
<td>-----------</td>
</tr>
<tr>
<td>C5._.1</td>
<td>toiminto</td>
<td>Määritä mitattujen arvorivien määrä (fonttikoko)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: yksi rivi / kaksi riviä / kolme riviä</td>
</tr>
<tr>
<td>C5._.2</td>
<td>mitattu rivillä 1</td>
<td>Määritä 1. rivin mitattu sivu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: tilavuusvirtaus / massavirtaus [ei koskea PF:ää (osittain täytetty)] / diagnootsiarvo / virtausnopeus / käämin lämpötila / johtokyky [ei koskea PF:ää (osittain täytetty)] eikä CAP:ia (kapasitiivinen) / taso (koskee vain PF:ää (osittain täytetty))</td>
</tr>
<tr>
<td>C5._.3</td>
<td>alue</td>
<td>0...100% mitattuksesta, joka on asetettu kohdassa C5._.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...xx.xx _ _ _ (muoto ja yksikkö riippuvat mitattusta)</td>
</tr>
<tr>
<td>C5._.4</td>
<td>rajoitus</td>
<td>Rajoitus ennen aikakovion käyttöä.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxx%; alue: -120...+120%</td>
</tr>
<tr>
<td>C5._.5</td>
<td>pienien virtauksen katkaisu</td>
<td>Asettaa ulostuloarvoksi "0"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1. arvo = kytkenlämpö / 2. arvo = hysteresis] ehto: 2. arvo ≤ 1. arvo</td>
</tr>
<tr>
<td>C5._.6</td>
<td>aikakovio</td>
<td>Alue: 000,1...100 s</td>
</tr>
<tr>
<td>C5._.7</td>
<td>desimaalien määrä 1</td>
<td>Määritä kymmenyssijat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: automaattien [sopeutus tapahtuu automaattisesti] / X (= ei mitään) ...X.XXXXXXX [enint. 8 merkkiä]</td>
</tr>
<tr>
<td>C5._.8</td>
<td>mitattu rivillä 2</td>
<td>Määritä mitattu 2. rivi (käytettävissä vain, jos 2. rivi on aktivoitu)</td>
</tr>
<tr>
<td>C5._.9</td>
<td>desimaalien määrä 2</td>
<td>Määritä kymmenyssijat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: automaattien [sopeutus tapahtuu automaattisesti] / X (= ei mitään) ...X.XXXXXXX [enint. 8 merkkiä]</td>
</tr>
<tr>
<td>C5._.10</td>
<td>mitattu rivillä 3</td>
<td>Määritä mitattu 3. rivi (käytettävissä vain, jos 3. rivi on aktivoitu)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: tilavuusvirtaus / massavirtaus [ei koskea PF:ää (osittain täytetty)] / dtiagnootsiarvo / virtausnopeus / käämin lämpötila / johtokyky [ei koskea PF:ää (osittain täytetty)] ja CAP:ia (kapasitiivinen) / laskuri 1 / laskuri 2 / laskuri 3 / käytötunnit / taso (koskee vain PF:ää (osittain täytetty)) / mA-sisääntulo A / virta mA-sisääntulo B</td>
</tr>
</tbody>
</table>
C5.5 piirturi

C5.5 piirturi
Grafiikkasivulla näytetään aina 1. mittaussivun 1. rivin mittauksen trendikäyrä, katso kohta C5.3.2

C5.5.1 valitse alue
Valitse: manuaalinen (asetusalue kohdassa Fct. C5.5.2) / automaattinen (mitattuihin arvoihin perustuva automaattinen kuvaus)
Palautus vain parametrin muutoksen jälkeen tai pois- ja päällekytkemisen jälkeen.

C5.5.2 alue
Määritä Y-akselin skaalaus. Käytettävissä vain, jos kohdassa C5.5.1 on valittu asetus "manuaalinen".

C5.5.3 aikaskaala
Aseta ajan skaalaus X-akselille, trendikäyrä

C5.6 erikoistoiminnot

C5.6 erikoistoiminnot

C5.6.1 kuitaa häiriöt
kuitaa häiriöt?
Valitse: ei/kyllä

C5.6.2 tallenna asetukset
Tallenna nykyiset asetukset.
Valitse: tauko (poistu toiminnosta tallentamatta) / varmuuskopio 1 (tallenna tallennuskohteeseen 1) / varmuuskopio 2 (tallenna tallennuskohteeseen 2)

C5.6.3 lataa asetukset
Lataa tallennetut asetukset.
Valitse: tauko (poistu toiminnosta lataamatta) / tehdasasetukset (lataa toimitettuun tilaan) / varmuuskopio 1 (lataa tiedot varmuuskopikohteesta 1) / varmuuskopio 2 (lataa tiedot varmuuskopikohteesta 2)/ lataa anturin tiedot (kalibrointitietojen tehdasasetukset)

C5.6.4 salasanan pika-asetus
Salasana vaaditaan tietojen muuttamista varten pika-asetusvalikossa.
0000 (= pika-asetusvalikkoon ilman salasanaa)
xxxx (salasana vaaditaan); alue 4 merkkiä: 0001…9999

C5.6.5 salasanan asetus
Salasana vaaditaan tietojen muuttamista varten asetusvalikossa.
0000 (= pika-asetusvalikkoon ilman salasanaa)
xxxx (salasana vaaditaan); alue 4 merkkiä: 0001…9999

C5.6.6 GDC IR -liitäntä
Kun tämä toiminto on aktivoitu, optinen GDC-sovitin voidaan liittää LCD-näyttöön. Jos noin 60 sekuntia kuluu ilman yhteyden muodostamista tai kun sovitin on poistettu, toiminnosta poistutaan ja optiset painikkeet ovat aktiivisia jälleen.

Valitse: lopetus (poistu toiminnosta ilman yhteyttä) / aktivoi (IR-liitäntä (sovitin) ja keskeytä optiset painikkeet)
C5.7 yksikkö

<table>
<thead>
<tr>
<th>C5.7</th>
<th>yksikkö</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5.7.1</td>
<td>tilavuusvirtaus</td>
<td>m³/h; m³/min; m³/s; l/h; l/min; l/s (l = litraa); ft³/h; ft³/min; ft³/s; gal/h; gal/min; gal/s; IG/h; IG/min; IG/s; cl/h; cl/min; cl/s; vapaa yksikkö [aseta kerroin ja teksti seuraavassa kahdessa toiminnossa, katso järjestyksellä]</td>
</tr>
<tr>
<td>C5.7.2</td>
<td>Tekstivapaa yksikkö</td>
<td>Määritetty tekstille katso Aseta vapaat yksiköt sivulla 135:</td>
</tr>
<tr>
<td>C5.7.3</td>
<td>[m³/s]*kerroin</td>
<td>Muuntokertoimen määrittäminen, perustuen yksikköön m³/s: xxx.xxx katso Aseta vapaat yksiköt sivulla 135</td>
</tr>
<tr>
<td>C5.7.4</td>
<td>massavirtaus</td>
<td>kg/s; kg/min; kg/h; l/min; l/h; g/s; g/min; g/h; lb/s; lb/min; lb/h; ST/min; ST/h [ST = lyhyt tonni]; LT/h [LT = pitkä tonni]; vapaa yksikkö [aseta kerroin ja teksti seuraavassa kahdessa toiminnossa, katso järjestyksellä]</td>
</tr>
<tr>
<td>C5.7.5</td>
<td>Tekstivapaa yksikkö</td>
<td>Määritetty tekstille katso Aseta vapaat yksiköt sivulla 135:</td>
</tr>
<tr>
<td>C5.7.6</td>
<td>[kg/s]*kerroin</td>
<td>Muuntokertoimen määrittäminen, perustuen yksikköön kg/s: xxx.xxx katso Aseta vapaat yksiköt sivulla 135</td>
</tr>
<tr>
<td>C5.7.7</td>
<td>virtausnopeus</td>
<td>m/s; ft/s</td>
</tr>
<tr>
<td>C5.7.8</td>
<td>johtokyky</td>
<td>µS/cm; S/cm</td>
</tr>
<tr>
<td>C5.7.9</td>
<td>lämpötila</td>
<td>°C; °F; K</td>
</tr>
<tr>
<td>C5.7.10</td>
<td>tilavuus</td>
<td>m³; l (litra), hl; ml; gal; IG; in³; ft³; yd³; cf; vapaa yksikkö [aseta kerroin ja teksti seuraavassa kahdessa toiminnossa, katso järjestyksellä]</td>
</tr>
<tr>
<td>C5.7.11</td>
<td>Tekstivapaa yksikkö</td>
<td>Määritetty tekstille katso Aseta vapaat yksiköt sivulla 135:</td>
</tr>
<tr>
<td>C5.7.12</td>
<td>[m³]*kerroin</td>
<td>Muuntokertoimen määrittäminen, perustuen yksikköön m³: xxx.xxx katso Aseta vapaat yksiköt sivulla 135</td>
</tr>
<tr>
<td>C5.7.13</td>
<td>massa</td>
<td>kg; t; mg; g; lb; ST; LT; oz; vapaa yksikkö [aseta kerroin ja teksti seuraavassa kahdessa toiminnossa, katso järjestyksellä]</td>
</tr>
<tr>
<td>C5.7.14</td>
<td>Tekstivapaa yksikkö</td>
<td>Määritetty tekstille katso Aseta vapaat yksiköt sivulla 135:</td>
</tr>
<tr>
<td>C5.7.15</td>
<td>[kg]*kerroin</td>
<td>Muuntokertoimen määrittäminen, perustuen yksikköön kg: xxx.xxx katso Aseta vapaat yksiköt sivulla 135</td>
</tr>
<tr>
<td>C5.7.16</td>
<td>tiheys</td>
<td>kg/l; kg/m³; lb/cf; lb/gal; vapaa yksikkö [aseta kerroin ja teksti seuraavassa kahdessa toiminnossa, katso järjestyksellä]</td>
</tr>
<tr>
<td>C5.7.17</td>
<td>Tekstivapaa yksikkö</td>
<td>Määritetty tekstille katso Aseta vapaat yksiköt sivulla 135:</td>
</tr>
<tr>
<td>C5.7.18</td>
<td>[kg/m³]*kerroin</td>
<td>Muuntokertoimen määrittäminen, perustuen yksikköön kg/m³: xxx.xxx katso Aseta vapaat yksiköt sivulla 135</td>
</tr>
<tr>
<td>C5.7.19</td>
<td>paine</td>
<td>Pa; kPa; bar; mbar; psi [vapaat yksiköt eivät ole mahdollisia]; vain jos sisäänmenovirta on käytettävissä.</td>
</tr>
</tbody>
</table>
C5.8 HART

<table>
<thead>
<tr>
<th>C5.8</th>
<th>HART</th>
<th>Tämä toiminto on käytettävissä vain laitteissa, joissa on HART®-liittymä</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5.8.1</td>
<td>HART</td>
<td>Kytke HART®-tiedonsiirto päälle/pois päältä:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>päällä [HART® aktiivinen] virta = 4...20 mA /</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pois päältä [HART® ei aktiivinen] virta = 0...20 mA</td>
</tr>
<tr>
<td>C5.8.2</td>
<td>osoite</td>
<td>Aseta HART®-toiminnon osoite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: 00 (point-to-point-käyttö, virta ulostulon tavallinen toiminto,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>virta = 4...20 mA) / 01...15 (Multi-Drop-toiminto, virta ulostulon vakiioasetus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on 4 mA)</td>
</tr>
<tr>
<td>C5.8.3</td>
<td>viesti</td>
<td>Aseta vaadittu teksti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A...Z ; a...z ; 0...9 ; / - + .. *</td>
</tr>
<tr>
<td>C5.8.4</td>
<td>kuvaus</td>
<td>Aseta vaadittu teksti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A...Z ; a...z ; 0...9 ; / - + .. *</td>
</tr>
</tbody>
</table>

C5.9 pika-asetukset

<table>
<thead>
<tr>
<th>C5.9</th>
<th>pika-asetukset</th>
<th>Aktivoi pikakäyttö pika-asetusvalikossa; oletusasetus: pikaasetus on aktiivinen [kyllä]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Valitse: kyllä [kytketty päälle] / ei [kytketty pois päältä]</td>
</tr>
<tr>
<td>C5.9.1</td>
<td>nollaa laskuri 1</td>
<td>Nollaa laskuri 1 pika-asetusvalikossa?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: kyllä [aktivoitu] / ei [kytketty pois päältä]</td>
</tr>
<tr>
<td>C5.9.2</td>
<td>nollaa laskuri 2</td>
<td>Nollaa laskuri 2 pika-asetusvalikossa?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: kyllä [aktivoitu] / ei [kytketty pois päältä]</td>
</tr>
<tr>
<td>C5.9.3</td>
<td>nollaa laskuri 3</td>
<td>Nollaa laskuri 3 pika-asetusvalikossa?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: kyllä [aktivoitu] / ei [kytketty pois päältä]</td>
</tr>
<tr>
<td>C5.9.4</td>
<td>perusasetukset</td>
<td>Aktivoi pikakäyttö tärkeiden prosessien syöttöparametreille</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valitse: kyllä [aktivoitu] / ei [ei aktivoitu]</td>
</tr>
</tbody>
</table>

6.3.4 Aseta vapaa yksiköt

<table>
<thead>
<tr>
<th>Vapaat yksiköt</th>
<th>Jaksot teksteihin ja kertoimiin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tekstit</td>
<td></td>
</tr>
<tr>
<td>Tilavuusvirtaus, massavirtaus ja tiheys</td>
<td>3 numeroa ennen kauttaviivaa ja sen jälkeen xxx/xxx (enintään kuusi merkkiä ja "/")</td>
</tr>
<tr>
<td>Sallitut merkit</td>
<td>A...Z; a...z; 0...9; / - + .. *; @ $ % ~ () [] _</td>
</tr>
<tr>
<td>Muuntokertoimet</td>
<td></td>
</tr>
<tr>
<td>Haluttu yksikkö</td>
<td>[yksikkö katso yllä] * muuntokerroin</td>
</tr>
<tr>
<td>Muuntokerroin</td>
<td>Enint. 9 merkkiä</td>
</tr>
<tr>
<td>Siirrä desimaalipilkkua</td>
<td>↑ vasemmalle ja ↓ oikealle</td>
</tr>
</tbody>
</table>
6.4 Toimintojen kuvaus

6.4.1 Nollaa laskuri "pika-asetuksessa"?

TIETOJA!
Laskurin uudelleenasetus on ehkä aktivoitava "pika-asetus"-valikossa.

<table>
<thead>
<tr>
<th>Painike</th>
<th>Näyttö</th>
<th>Luvaus ja asetus</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>pika-asetukset</td>
<td>Pidä painiketta painettuna 2,5 s, ja vapauta se.</td>
</tr>
<tr>
<td>></td>
<td>kieli</td>
<td></td>
</tr>
<tr>
<td>2 x ↓</td>
<td>nollaus</td>
<td></td>
</tr>
<tr>
<td>></td>
<td>kuitaa häiriöt</td>
<td></td>
</tr>
<tr>
<td>↓</td>
<td>laskuri 1</td>
<td>Valitse haluttu laskuri. (Laskuri 3 on valinnainen)</td>
</tr>
<tr>
<td>↓</td>
<td>laskuri 2</td>
<td></td>
</tr>
<tr>
<td>↓</td>
<td>laskuri 3</td>
<td></td>
</tr>
<tr>
<td>></td>
<td>nollaa laskuri</td>
<td></td>
</tr>
<tr>
<td>↑ tai ↑</td>
<td>nollaa laskuri</td>
<td></td>
</tr>
<tr>
<td>⇨</td>
<td>laskuri 1, 2 {ta}l</td>
<td>Laskuri on nollattu.</td>
</tr>
<tr>
<td>3 x ⇨</td>
<td>Mittaustila</td>
<td></td>
</tr>
</tbody>
</table>

6.4.2 Virheviestien poistaminen "pika-asetus"-valikossa

TIETOJA!
Yksityiskohtainen luettelo mahdollisista virheviesteistä katso Tilaviestit ja vianmääritystiedot sivulla 137.

<table>
<thead>
<tr>
<th>Painike</th>
<th>Näyttö</th>
<th>Luvaus ja asetus</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>pika-asetukset</td>
<td>Pidä painiketta painettuna 2,5 s, ja vapauta se.</td>
</tr>
<tr>
<td>></td>
<td>kieli</td>
<td></td>
</tr>
<tr>
<td>2 x ↓</td>
<td>nollaus</td>
<td></td>
</tr>
<tr>
<td>></td>
<td>kuitaa häiriöt</td>
<td></td>
</tr>
<tr>
<td>></td>
<td>nollaa?</td>
<td></td>
</tr>
<tr>
<td>↑ tai ↑</td>
<td>nollaa?</td>
<td></td>
</tr>
<tr>
<td>⇨</td>
<td>kuitaa häiriöt</td>
<td>Virhe on nollattu.</td>
</tr>
<tr>
<td>3 x ⇨</td>
<td>Mittaustila</td>
<td></td>
</tr>
</tbody>
</table>
6.5 Tilaviestit ja vianmääritystiedot

<table>
<thead>
<tr>
<th>Näytön viestit</th>
<th>Kuvaus</th>
<th>Toiminnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>F _ _ _ _ _</td>
<td>Laitteen toiminnallinen viika, mA lähtö ≤ 3,6 mA tai asetettu vikavirta (riippuen vian vakavuudesta), tila ulostulo auki, pulssi / taajuus ulostulo: ei pulseja</td>
<td>Korjaa tarvittaessa.</td>
</tr>
<tr>
<td>F asetukset [myös vahdetettaessa moduuleja]</td>
<td>Virheellinen konfigurointi: näyttöohjelmisto, väyläparametri tai päähjelmisto ei täsmää nykyisiä asetuksia. Tämä virhe tapahtuu myös, kun moduuli on lisätty tai poistettu vahvistamatta asetusten muutosta.</td>
<td>Viallinen, vaihda elektriennikkokyksikkö.</td>
</tr>
<tr>
<td>F yleinen anturi</td>
<td>Datavirhe mittausanturin elektriennikkalaitteiston globaaleissa tiedoissa.</td>
<td>Lataa asetukset (kohta C5.6.3) (varmuuskopio 1, varmuuskopio 2 tai tehdasasetukset). Vaihda elektriennikkokyksikkö, jos tilaviesti ei häviä.</td>
</tr>
<tr>
<td>F paikallinen anturi</td>
<td>Datavirhe mittausanturin elektriennikkalaitteiston paikallisissa tiedoissa.</td>
<td>Viallinen, vaihda elektriennikkokyksikkö.</td>
</tr>
<tr>
<td>F magnetointitaajuus</td>
<td>Datavirhe kenttävirran syötön paikallisissa tiedoissa.</td>
<td>Viallinen, vaihda elektriennikkokyksikkö.</td>
</tr>
<tr>
<td>F ohjelmiston käyttöliittymä</td>
<td>Käyttöohjelmiston CRC-tarkistuksen paljastama virhe.</td>
<td>Vaihda elektriennikkokyksikkö.</td>
</tr>
<tr>
<td>F laitteiston tunnistaminen</td>
<td>Olemassaolevia laitteita ei voida tunnistaa. Viallisia tai tuntemattomia moduuleja.</td>
<td>Vaihda elektriennikkokyksikkö.</td>
</tr>
<tr>
<td>Näytön viestit</td>
<td>Kuvaus</td>
<td>Toiminnot</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Tila: F _ _ _ _ _</td>
<td>Sovellusvirhe</td>
<td>Korjaa tarvittaessa.</td>
</tr>
<tr>
<td>F RAM/ROM-virhe I01</td>
<td>RAM- tai ROM-virhe havaittu CRC-tarkastuksen aikana.</td>
<td>Viallinen, vahdita elektronikayksikkö tai syöttö-/ulostulomoduuli (I/O-moduuli).</td>
</tr>
<tr>
<td>F RAM/ROM-virhe I02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F Fieldbus</td>
<td>Fieldbus-, Profibus- tai FF-liittymän virhe.</td>
<td>-</td>
</tr>
<tr>
<td>F Fieldbus</td>
<td>Modbus- tai Ethernet-liittymän vika (voi myös ilmetä joillain Profibus- tai FF-virheillä).</td>
<td>-</td>
</tr>
<tr>
<td>F PF-anturihäiriö</td>
<td>Tasoanturin ilmoittama toimintavirhe.</td>
<td>-</td>
</tr>
<tr>
<td>F PF-anturin tiedonsiirto</td>
<td>Tasoanturin tietoliikennevirhe. Yhteys on katkennut tai mitausanturia ei ole käynnistetty.</td>
<td>-</td>
</tr>
</tbody>
</table>

Sovellusvirhe

<table>
<thead>
<tr>
<th>Näytön viestit</th>
<th>Kuvaus</th>
<th>Toiminnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tila: F _ _ _ _ _</td>
<td>Sovellusvirhe, laite OK, mutta mitatut arvot muuttuvat.</td>
<td>Sovellustesti tai käyttäjän toimenpide tarpeen.</td>
</tr>
<tr>
<td>F sovellusvirhe</td>
<td>Sovellusriippuvainen virhe, mutta laite on OK.</td>
<td>Ryhmäviesti, kun alla olevan kuvauksen mukaiiset virheet tai muut sovellusvirheet ilmenevät.</td>
</tr>
<tr>
<td>F tyhjä putki</td>
<td>1 tai 2 mittauselektrodia ei ole kosketuksissa aineeseen; mitatukset on nolla.</td>
<td>Mitausputkea ei ole täytetty; toiminto riippuu kohdasta C1.3.2.; Tarkista asennus. Elektrodit voivat myös olla kokonaan eristettyä esim. öljykalvolla. Puhdista ne!</td>
</tr>
<tr>
<td>F virtaus ylittää rajan</td>
<td>Mittausalue ylittyy, suodatusasetus rajoittaa mitattuja arvoja.</td>
<td>Rajoitus, kohta C1.2.1, suurenna arvoja.</td>
</tr>
<tr>
<td>F DC-poikkeama</td>
<td>ADC esi alueen DC-poikkeamilla. Mitausta ei voi tehdä, virtausvirhe on normaali.</td>
<td>Tarkista signaalikaapelien toiminta tai signaalimoduulin virhe.</td>
</tr>
<tr>
<td>F virtapiiri A auki</td>
<td>Virran ulostulo A/B/C kuormitus on liian korkea, tehollinen virta liian alhainen.</td>
<td>Virheellinen virta, mA ulostulokaapelilla on avoin piiri tai kuormitus on liian suuri. Tarkista kuormaa, vähennä kuormitusta (asetus < 1000 ohm).</td>
</tr>
</tbody>
</table>
Näytön viestit

<table>
<thead>
<tr>
<th>Tila: F _ _ _ _ _</th>
<th>Kuvaus</th>
<th>Toiminnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>F ulostulo yli alueen A</td>
<td>Vastaavan mitatun arvon virta on rajoitettu suodatinasetuksella.</td>
<td>Tarkista kohdassa C2.1 laitteesta tai koteloista olevasta tarrasta, mikä ulostulo on yhdistetty liitteeni. Jos se on mA-ulostulo, laajenna kohdan C2.x.6 aluetta ja kohdan C2.x.8 rajoitusta. Jos se on taajuusulostulo, laajenna arvoja kohdissa C2.x.5 ja C2.x.7.</td>
</tr>
<tr>
<td>F ulostulo yli alueen B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F ulostulo yli alueen C</td>
<td>Vastaavan mitatun arvun pulssitaajuus on rajoitettu suodatinasetuksella. Tai vaadittu pulssitaajuus on liian suuri.</td>
<td></td>
</tr>
<tr>
<td>F ulostulo yli alueen A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F ulostulo yli alueen B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F ulostulo yli alueen C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F nykyiset asetukset</td>
<td>Virhe aktiivisten asetusten CRC-tarkastuksen aikana.</td>
<td>Lataa varmuuskopion 1 tai varmuuskopion 2 asetukset, tarkista ja säädä tarvittaessa.</td>
</tr>
<tr>
<td>F tehdasasetukset</td>
<td>Virhe tehdasasetusten CRC-tarkastuksen aikana.</td>
<td>-</td>
</tr>
<tr>
<td>F varmuuskopion 1 asetukset</td>
<td>Virhe varmuuskopion 1 tai 2 asetusten CRC-tarkastuksen aikana.</td>
<td>Tallenna aktiiviset asetukset varmuuskopioon 1 tai 2.</td>
</tr>
<tr>
<td>F varmuuskopion 2 asetukset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F kytkentä B</td>
<td>Vain käytettävissä, jos käytetään aktiivisena NAMUR-tulona.</td>
<td></td>
</tr>
<tr>
<td>F kytkentä A</td>
<td>Sisääntulovirta on alle 0,5 mA tai alle rajakytäimen 23 mA.</td>
<td></td>
</tr>
<tr>
<td>F kytkentä B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mittaukset määritysten ulkopuolella

<table>
<thead>
<tr>
<th>Näytön viestit</th>
<th>Kuvaus</th>
<th>Toiminnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tila: S _ _ _ _ _</td>
<td>Määrityksen ulkopuolella, mitattu jakkuu, tarkkuus todennäköisesti vähemmän.</td>
<td>Ylläpitö vaaditaan</td>
</tr>
<tr>
<td>S epävarma mittaus</td>
<td>Huollotoimenpiteet tarpeen; mitatut arvot eivät ole ehdollisesti käyttökelpoisia.</td>
<td>Ryhmäviesti, kun alla olevan kuvauksen mukaiset virheet tai muut vaikutukset ilmenevät.</td>
</tr>
<tr>
<td>S putki ei täynnä</td>
<td>Vain virtausantureille, joissa on 3 tai 4 elektrodia. Koko putken elektrodillä ei ole kontakta väliaineeseen. Mitatut arvot toimitetaan edelleen, mutta ne ovat liian korkeat.</td>
<td>Mittausputkea ei ole täytetty, toiminto liittyy kohtaan C1.3.5. Tarkista asennus. Elektrodit voivat myös olla kokonaan eristetty eivätkä ole käytettävissä. Puhdista ne!</td>
</tr>
</tbody>
</table>

02/2016 - 4004998601 - MA IFC 300 R04 fi

www.krohne.com
<table>
<thead>
<tr>
<th>Näytön viestit</th>
<th>Kuvaus</th>
<th>Toiminnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tila: S _ _ _ _ _</td>
<td>Määrityksen ulkopuolella, mittaus jatkuu, tarkkuus todennäköisesti vähemmän.</td>
<td>Ylläpitö vaaditaan</td>
</tr>
<tr>
<td>S elektrodn kohina</td>
<td>Elektrodit erittäin likaisia; a) Johtokyky on liian alhainen, aktivoi kohina- tai pulssisuodatin kohdassa C1.2.4, C1.2.7; b) Kaasukuplia, kiinteitä aineita tai kemiallisia reaktioita väliaineessa: aktivoi kohina- tai pulssisuodatin kohdassa C1.2.4, C1.2.7; c) Elektrodi on korroosio (jos viesti tulee näkyviin myös kun virtaus on nolla): käytä anturia sopivalta elektrodimateriaalilla.</td>
<td></td>
</tr>
<tr>
<td>S vahvistusvirhe</td>
<td>Esivahvistin ei vastaa kalibroitua arvo; tarkista kalibrointi. Mitatut arvot toimitetaan edelleen.</td>
<td>Viallinen, vaihda elektroniikkayksikkö.</td>
</tr>
<tr>
<td>S elektrodn symmetria</td>
<td>Kahden mittausselektrodn impedanssit eivät ole samanarvoisia. Mitatut arvot toimitetaan edelleen.</td>
<td>Tarkista kenttääänymä kytkennät elektroniseen moduulin (etäversiolla: kenttävirran kaapeli) avoimelle piirille / oikosulku</td>
</tr>
<tr>
<td>S käämi oikosulussa</td>
<td>Käämästä liian alhainen.</td>
<td></td>
</tr>
<tr>
<td>S magnetointivirran poikkeama</td>
<td>Kahden mittausikkunan suhde ei ole yhtä kuin 1, magnetikenttä ei ole kunnollaa vakaassa tilassa. Mitatut arvot toimitetaan edelleen.</td>
<td>Tarkista magnetointiaujust (mallin kenttävirran laitteisto). Jos kohdan C1.1.14 asetuksa on "manuaalinen", suurimpiä arvoja kohdassa C1.1.15. Jos asetuksena on "vakio", aseta kenttääänymä kohdassa C1.1.13 mittausturin typipikiven mukaiseksi.</td>
</tr>
<tr>
<td>S liian suuri magnetointilaajuus</td>
<td>Kahden mittausikkunan suhde ei ole yhtä kuin 1, magnetikenttä ei ole kunnollaa vakaassa tilassa. Mitatut arvot toimitetaan edelleen.</td>
<td></td>
</tr>
<tr>
<td>S elektroniikan lämpötila</td>
<td>Sallitun elektroniikan lämpötilan ylarrakoja on ylitetty.</td>
<td>Ympäröintölämpötila on liian korkea, suora auriongöitä tai C-versiolle prosessilämpötila on liian korkea.</td>
</tr>
<tr>
<td>S laskuri 1 ylittynyt</td>
<td>Tämä on laskuri 1 tai FB2 (Profibusilla). Laskuri on ylitetty ja alkaa uudelleen nollasta.</td>
<td>-</td>
</tr>
<tr>
<td>S laskuri 2 ylittynyt</td>
<td>Tämä on laskuri 2 tai FB3 (Profibusilla). Laskuri on ylitetty ja alkaa uudelleen nollasta.</td>
<td>-</td>
</tr>
<tr>
<td>S laskuri 3 ylittynyt</td>
<td>Tämä on laskuri 3 tai FB4 (Profibusilla). Ei käytettyäissä I02:ssa. Laskuri on ylitetty ja alkaa uudelleen nollasta.</td>
<td>-</td>
</tr>
<tr>
<td>S pohjakortti viillinen</td>
<td>The data record on the backplane is invalid. CRC-tarkastus on havainnut virheen.</td>
<td>Tietoja ei voi ladata pohjakortille vaihdettaessa elektroniikkaa. Tallenna tiedot pohjakorttiin uudestaan (huolto).</td>
</tr>
<tr>
<td>S virheellinen virta A</td>
<td>Virheellinen virta virran sisäänputken sisällä.</td>
<td></td>
</tr>
<tr>
<td>S virheellinen virta B</td>
<td>Virheellinen virta virran sisäänputken sisällä.</td>
<td></td>
</tr>
<tr>
<td>S alle 10 % taso</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Näytön viestit</th>
<th>Kuvaus</th>
<th>Toiminnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tila: S _ _ _ _ _</td>
<td>Määrityksen ulkopuolella, mittaus jatkuu, tarkkuus todennäköisesti vähemmän.</td>
<td>Ylläpitö vaaditaan</td>
</tr>
<tr>
<td>S elektrodn kohina</td>
<td>Elektrodi on liian suuri. Mitatut arvot toimitetaan edelleen. Ei viestissä, jos tyhjä putki.</td>
<td>a) Elektrodit erittäin likaisia; b) Johtokyky on liian alhainen, aktivoi kohina- tai pulssisuodatin kohdassa C1.2.4, C1.2.7; c) Kaasukuplia, kiinteitä aineita tai kemiallisia reaktioita väliaineessa: aktivoi kohina- tai pulssisuodatin kohdassa C1.2.4, C1.2.7; d) Elektrodi on korroosio (jos viesti tulee näkyviin myös kun virtaus on nolla): käytä anturia sopivalta elektrodimateriaalilla.</td>
</tr>
<tr>
<td>S vahvistusvirhe</td>
<td>Esivahvistin ei vastaa kalibroitua arvo; tarkista kalibrointi. Mitatut arvot toimitetaan edelleen.</td>
<td>Viallinen, vaihda elektroniikkayksikkö.</td>
</tr>
<tr>
<td>S käämi oikosulussa</td>
<td>Käämästä liian alhainen.</td>
<td></td>
</tr>
<tr>
<td>S liian suuri magnetointilaajuus</td>
<td>Kahden mittausikkunan suhde ei ole yhtä kuin 1, magnetikenttä ei ole kunnollaa vakaassa tilassa. Mitatut arvot toimitetaan edelleen.</td>
<td></td>
</tr>
<tr>
<td>S elektroniikan lämpötila</td>
<td>Sallitun elektroniikan lämpötilan ylarrakoja on ylitetty.</td>
<td>Ympäröintölämpötila on liian korkea, suora auriongöitä tai C-versiolle prosessilämpötila on liian korkea.</td>
</tr>
<tr>
<td>S laskuri 1 ylittynyt</td>
<td>Tämä on laskuri 1 tai FB2 (Profibusilla). Laskuri on ylitetty ja alkaa uudelleen nollasta.</td>
<td>-</td>
</tr>
<tr>
<td>S laskuri 2 ylittynyt</td>
<td>Tämä on laskuri 2 tai FB3 (Profibusilla). Laskuri on ylitetty ja alkaa uudelleen nollasta.</td>
<td>-</td>
</tr>
<tr>
<td>S laskuri 3 ylittynyt</td>
<td>Tämä on laskuri 3 tai FB4 (Profibusilla). Ei käytettyäissä I02:ssä. Laskuri on ylitetty ja alkaa uudelleen nollasta.</td>
<td>-</td>
</tr>
<tr>
<td>S pohjakortti viillinen</td>
<td>The data record on the backplane is invalid. CRC-tarkastus on havainnut virheen.</td>
<td>Tietoja ei voi ladata pohjakortille vaihdettaessa elektroniikkaa. Tallenna tiedot pohjakorttiin uudestaan (huolto).</td>
</tr>
<tr>
<td>S virheellinen virta A</td>
<td>Virheellinen virta virran sisäänputken sisällä.</td>
<td></td>
</tr>
<tr>
<td>S virheellinen virta B</td>
<td>Virheellinen virta virran sisäänputken sisällä.</td>
<td></td>
</tr>
<tr>
<td>S alle 10 % taso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Näytön viestit</td>
<td>Kuvaus</td>
<td>Toiminnot</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Tila: I _ _ _ _</td>
<td>Tiedot (virranmittaus OK)</td>
<td></td>
</tr>
<tr>
<td>I laskuri 1 pysäytetty</td>
<td>Tämä on laskuri 1 tai FB2 (Profibusilla). Laskuri on pysähtynyt.</td>
<td>Jos laskuri jatkaa laskemista, valitse "kyllä" kohdassa C2.y.9 (käynnistä laskuri).</td>
</tr>
<tr>
<td>I laskuri 2 pysäytetty</td>
<td>Tämä on laskuri 2 tai FB3 (Profibusilla). Laskuri on pysähtynyt.</td>
<td></td>
</tr>
<tr>
<td>I laskuri 3 pysäytetty</td>
<td>Tämä on laskuri 3 tai FB4 (Profibusilla). Laskuri on pysähtynyt.</td>
<td></td>
</tr>
<tr>
<td>I jännitekatkos</td>
<td>Laite ei ollut käytössä tuntemattoman ajan, koska virta oli katkaistu. Tämä viesti on vain tiedoksi.</td>
<td>Tilapäinen sähkökatkos. Laskurit eivät toimeen sitä aikana.</td>
</tr>
<tr>
<td>I sisääntulo A toiminto</td>
<td>Tämä viesti tulee näkyviin, kun ohjaustulo on aktiivinen. Tämä viesti on vain tiedoksi.</td>
<td></td>
</tr>
<tr>
<td>I sisääntulo B toiminto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I näyttö 1 yli alueen</td>
<td>1. rivi suodatinasetuksen rajoittaman näytön sivulla 1 (2).</td>
<td>Valikkonäytön kohta C4.3 ja/tai C4.4, valitse 1. tai 2. mittaussivu ja suurenne arvoja toimintoalueella C4.z.3 ja/tai C4.z.4 -rajoitusta.</td>
</tr>
<tr>
<td>I näyttö 2 yli alueen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I anturin pohjakortti</td>
<td>Pohjakortin tietoja ei voi käyttää koska ne on luotu yhteensopimattomalla versiolla.</td>
<td></td>
</tr>
<tr>
<td>I pohjakortin asetukset</td>
<td>Pohjakortin yleisiä asetuksia ei voi käyttää koska ne on luotu yhteensopimattomalla versiolla.</td>
<td></td>
</tr>
<tr>
<td>I pohjakortin poikkeama</td>
<td>Pohjalevyn tiedot poikkeavat näytön tiedoista. Jos tiedot ovat käytettävissä, valintaikkuna näkyy näytössä.</td>
<td></td>
</tr>
<tr>
<td>I optinen liitäntä</td>
<td>Optista liitäntää käytettään. Paikallisen näytön näppäimet eivät ole käytettävissä.</td>
<td>Painikkeet ovat valmiina käytettäväksi uudelleen noin 60 sekunnin kuluttua optisen liittännän tiedonsiirron/ -poiston jälkeen.</td>
</tr>
<tr>
<td>I kirj.jak.yliv</td>
<td>EEPROM- tai FRAMS-kirjoitusjakson maksimimääärä Profibus DP PCB:ssä on ylitetty.</td>
<td></td>
</tr>
<tr>
<td>I siirtonopeuden haku</td>
<td>Profibus DP -liitännän siirtonopeutta etsitään.</td>
<td></td>
</tr>
<tr>
<td>I ei tiedonsiirtoa</td>
<td>Signaalimuuntuimen ja Profibusin välillä ei ole tiedonsiirtoa.</td>
<td></td>
</tr>
<tr>
<td>I tyhjä putki</td>
<td>1 tai 2 mittauselektrodia ei ole kosketuksissa aineeseen; mitatuksi arvoksi asetetaan nolla. Mittaus ei mahdollista.</td>
<td>Mittausputkea ei ole täytetty; toiminto riippuu kohdasta C1.3.2.; Tarkista asennus. Elektrodit voivat myös olla kokonaan eristetty esim. öljykalvolla. Puhdista ne!</td>
</tr>
</tbody>
</table>
Mitattujen arvojen simulaatio

<table>
<thead>
<tr>
<th>Näytön viestit</th>
<th>Kuvaus</th>
<th>Toiminnat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tila: C _______</td>
<td>Ulostuloarvo simuloitu tai kiinteä</td>
<td>Ylläpitö vaaditaan</td>
</tr>
<tr>
<td>C anturitesti</td>
<td>Virtausanturin elektroniikan testitoiminto on käytettävissä.</td>
<td>-</td>
</tr>
<tr>
<td>C fieldbus simulointi</td>
<td>Foundation Fieldbus -liittymän arvot simuloidaan.</td>
<td>-</td>
</tr>
<tr>
<td>C PF-anturiasetus</td>
<td>Virtausanturin testitoiminto osittain täytetyille putkille on aktiivinen.</td>
<td>-</td>
</tr>
</tbody>
</table>
7.1 Varaosien saatavuus

Valmistaja takaa kunkin laitteen toiminnallisten varaosien ja tärkeiden lisävarusteiden saatavuuden 3 (kolmeksi) vuodeksi kyseisen laitteen viimeisestä valmistuserästä.

Tämä asetus koskee ainoastaan varaosia, jotka kuluvat normaaleissa käyttöolosuhteissa.

7.2 Palvelujen käytettävyys

Valmistaja tarjoaa erilaisia tukipalveluja takuuajan jälkeen. Näihin kuuluvat korjaus, huolto, tekninen tuki ja koulutus.

TIETOJA!
Saat tarkempia tietoja paikalliselta edustajaltasi.

7.3 Korjaukset

Korjaukset voi tehdä ainoastaan valmistaja tai valmistajan valtuuttamat erikoistuneet yritykset.

7.4 Laitteen palauttaminen valmistajalle

7.4.1 Yleistiedot

Laite on valmistettu ja testattu huolellisesti. Laiteongelmat ovat harvinaisia, jos laite on asennettu oikein ja sitä käytetään oikein.

HUOMIO!
Ota seuraavat seikat huomioon, jos laite on palautettava tarkistusta tai korjausta varten:
- Lakimääräisten ympäristönsuojelusäädösten ja henkilöstömme työsuojelun vuoksi valmistaja voi käsitellä, testata ja korjata vain sellaisia palautettuja laitteita, jotka eivät ole olleet kosketuksissa ihmisleile ja ympäristölle vaarallisten tuotteiden tuotteiden kanssa.
- Valmistaja voi siis huoltaa tämän laitteen vain, jos sen mukana toimitetaan seuraava todistus (katso seuraava osa), jolla vahvistetaan että laite on turvallinen käsiteltäväksi.

HUOMIO!
Tärim seuraavasti, jos laitetta on käytetty myrkyllisten, syövyttävien, tulenarkojen tai vesistölle vahingollisten tuotteiden kanssa:
- tarkista ja varmista (tarvittaessa huuhdeltamalla tai neutralaimalla), ettei yhdessäkään kammiossa ole näitä vaarallisia aineita,
- liitä laitteen mukaan todistus, jolla vahvistetaan että laite on turvallinen käsiteltäväksi ja jossa mainitaan käytetty tuote.*
7.4.2 Palautettavan laitteen mukana lähetettävä lomake (kopiointia varten)

HUOMIO!
Jotta huoltohenkilöstömme voi suorittaa työnsä turvallisesti, tämän lomakkeen pitää olla näkyvillä palautetun laitteen pakkauksen ulkopuolella.

<table>
<thead>
<tr>
<th>Yritys:</th>
<th>Osoite:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osasto:</td>
<td>Nimi:</td>
</tr>
<tr>
<td>Puh:</td>
<td>Faksi ja/ta sähköpostiosoite:</td>
</tr>
</tbody>
</table>

Valmistajan tilausnumero tai sarjanumero:

Tätä laitetta on käytetty seuraavalla aineella

<table>
<thead>
<tr>
<th>Aine on:</th>
</tr>
</thead>
<tbody>
<tr>
<td>radioaktiivinen</td>
</tr>
<tr>
<td>vaarallinen vesistöle</td>
</tr>
<tr>
<td>myrkyllinen</td>
</tr>
<tr>
<td>syövyttävä</td>
</tr>
<tr>
<td>helposti syttyvä</td>
</tr>
<tr>
<td>Olemme tarkistaneet, että laitteen koloissa ei ole tällaisia aineita.</td>
</tr>
<tr>
<td>Olemme huuhdelleet ja neutraloineet kaikki laitteen kolot.</td>
</tr>
</tbody>
</table>

Vakuutamme, että laitteen mahdollisista jäännössaineista ei ole vaaraa ihmisille tai ympäristölle, kun laite palautetaan.

Päivämäärä: Allekirjoitus:

Leima:

7.5 Hävittäminen

HUOMIO!
Laite pitää hävittää maakohtaisen lainsäädännön mukaisesti.

Erillinen sähkö- ja elektroniikkajätteiden (WEEE) keräys EU-alueella:
Direktiivin 2012/19/EU mukaisesti WEEE-symbolilla merkittyjä valvonta- ja ohjauslaitteita ei saa niiden käyttöiän päättyttyä hävittää muiden jätteiden mukana.
Käyttäjän pitää viedä WEEE-jätteet asianmukaiseen sähkö- ja elektroniikkajätteiden keräyspaikkaan kierrättäväksi tai lähettää ne takaisin valmistajalle tai valmistajan paikalliselle edustajalle.
8.1 Mittausperiaate

Sähköä johtava neste sähköeristetyyn putken kautta magneettikentän läpi. Tämä magneettikenttä luodaan virralla, joka virtaa kenttäkäämien läpi. Nesteen sisällä luodaan jännite U:

$$U = v \cdot k \cdot B \cdot D$$

jossa:
- v = keskimääräinen virtausnopeus
- k = geometrian korjauskerroin
- B = magneettikentän voimakkuus
- D = virtausmittarin sisähalkaisija

Signaalijännite U poimitaan elektrodeilla ja on verrannollinen keskimääräiseen virtausnopeuteen v ja siten virtausnopeuteen q. Signaalimuuntimella vahvistetaan signaalijännite, suodatetaan se ja muunnetaan signaaliedeleiksi summaavaa, tallentavaa ja ulostulon prosessointia varten.

Kuva 8-1: Mittausperiaate
1. Kenttäkäämit
2. Magneettikenttä
3. Elektrodit
4. Indusoitunut jännite (verrannollinen virtausnopeuteen)
8.2 Tekniset tiedot

TIETOJA!
• Seuraavat tiedot toimitetaan yleisille sovelluksille. Jos tarvitset sovelluskohtaisia tiedot, ota yhteyttä meihin tai paikalliseen myyntitoimistoon.
• Voit ladata lisätietoja (sertifikaatit, erikoistyökalut, ohjelmisto jne.) ja koko tuoteasiakirjat ilmaiseksi osoitteesta (latauskeskus).

Mittausjärjestelmä

<table>
<thead>
<tr>
<th>Mittausperiaate</th>
<th>Faradayn induktiolaki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Käyttöala</td>
<td>Jatkuva tilavuusvirtauksen mittaus, virtausnopeus, johtavuus, massavirtaus (jatkuvalla tiheydellä), virtausanturin käämin lämpötila</td>
</tr>
</tbody>
</table>

Rakenne

<table>
<thead>
<tr>
<th>Modulaarinen rakenne</th>
<th>Mittausjärjestelmä koostuu virtausanturista ja signaalimuuntimesta.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtausanturi</td>
<td></td>
</tr>
<tr>
<td>OPTIFLUX 1000</td>
<td>DN10...150 / 3/8...6”</td>
</tr>
<tr>
<td>OPTIFLUX 2000</td>
<td>DN25...3000 / 1...120”</td>
</tr>
<tr>
<td>OPTIFLUX 4000</td>
<td>DN2,5...3000 / 1/10...120”</td>
</tr>
<tr>
<td>OPTIFLUX 5000</td>
<td>Laippa: DN15...300 / ½...12”</td>
</tr>
<tr>
<td></td>
<td>Kerroslevy: DN2,5...100 / 1/10...4”</td>
</tr>
<tr>
<td>OPTIFLUX 6000</td>
<td>DN2,5...150 / 1/10...6”</td>
</tr>
<tr>
<td>OPTIFLUX 7000</td>
<td>Laippa: DN25...100 / 1/4”</td>
</tr>
<tr>
<td></td>
<td>Kerroslevy: DN25...100 / 1/4”</td>
</tr>
<tr>
<td>WATERFLUX 3000</td>
<td>DN25...600 / 1...24”</td>
</tr>
<tr>
<td>TIDALFLUX 4000</td>
<td>DN200...1600 / 8...64”</td>
</tr>
<tr>
<td></td>
<td>Tämä osittain täytettyjen putkien virtausanturi on saatavana vain kompaktina versiona (OPTIFLUX 7300 C).</td>
</tr>
<tr>
<td></td>
<td>Kaikki mittausanturit ovat saatavana myös Ex-versioina, lukun ottamatta antureita OPTIFLUX 1000, TIDALFLUX 4000 ja WATERFLUX 3000</td>
</tr>
</tbody>
</table>

Signaalimuunninin

Kompakti versio [C]	OPTIFLUX x300 C {x = 1, 2, 4, 5, 6, 7} tai WATERFLUX 3300 C
Kenttäkotelo [F] - etäversio	IFC 300 F
Seinäkiinnitteenia kotelo [W] - etäversio	IFC 300 W
19” telineeseen asennettava kotelo [R] - etäversio	IFC 300 R

Kompakti- ja ketttäkoteloversiot ovat myös saatavissa Ex-versioina.
Valinnat

<table>
<thead>
<tr>
<th>Lähdot / tulot</th>
<th>mA-ulostulo (sis. HART®), pulssiulostulo, taajuus- ja/tai tilaulostulo, rajakytkin ja/tai massayksikköjen laskentaa varten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laskuri</td>
<td>2 (valinnaisesti 3) sisäästä laskuria, joissa on enintään 8 vastapaikkaa (esim. tilavuuden ja/tai massayksikköjen laskenta varten)</td>
</tr>
<tr>
<td>Vahvistus</td>
<td>Integroitu vahvistus, diagnostiikkoiminnot: mittauslaite, prosessi, mitattu arvo, tyhjän putken tunnistus, stabilointi</td>
</tr>
<tr>
<td>Tiedonsiirtoliitännät</td>
<td>Foundation Fieldbus, Profibus PA ja DP, Modbus, HART®</td>
</tr>
</tbody>
</table>

Näyttö ja käyttöliittymä

- **Graafinen näyttö**: Nestekidenäyttö, taustavalaistu valkoinen. Koko: 128 x 64 pikseliä, vastaa 59 x 31 mm = 2,32” x 1,22”
- **Käyttöelementit**: 4 optista painiketta signaalinmuuntimen käyttäjän ohjaukselle koteloa avaamatta.
- **Kauko-ohjain**: PACTware™ (sis. Device Type Manager (DTM))
- **Näyttötoimintojen käyttö**: 2 mitatun arvon sivulla, 1 tilasivulla, 1 kuvasivulla (mittausarvot ja kuvat ovat vapaasti säädettävissä)
- **Näyttökieli (kielipaketit)**: Vakio: englanti, ranska, saksa, hollanti, portugali, ruotsi, espanja, italia
- **Pre-asennetut kieliset**:
 - Itä-Eurooppa: englanti, sloveeni, tsekki, unkari
 - Pohjois-Eurooppa: englanti, saksal, puola
 - Kiina: englanti, saksa, kiina
 - Venäjä: englanti, saksa, venäjä
- **Yksiköt**: Valittavissa on metriyksiköt sekä Britannian ja USA:n yksiköt seuraaville luetteloille: tilavuus / massavirta ja laskenta, virtausnopeus, sähkönohtavuus, lämpötila, paine

Mittaustarkkuus

- **Perusolusuhdet**: Riippuu virtausanturin versiosta.
- **Katso virtausanturin tekniset tiedot.**
- **Suurin mittausvirhe**: ±0,15% mitatusta arvosta ±1 mm/s, riippuen virtausanturin versiosta
- **Virran ulostulo, elektroniikka**: ±5 µA
- **Toistettavuus**: ±0,06% OIML R117 -standardin mukaisesti;
 - Ei koske seuraavia: WATERFLUX 3000, OPTIFLUX 7000 ja TIDALFLUX 4000
Käyttöolosuhteet

<table>
<thead>
<tr>
<th>Lämpötila</th>
<th>Katso virtausanturin tekniset tiedot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Käyttölämpötila</td>
<td>Versiosta ja ulostulon yhdistelmistä riippuen.</td>
</tr>
<tr>
<td>Ympäristön lämpötila</td>
<td>On hyvä suojata muunnin ulkoisilta lämmönlähteiltä, kuten suoralta aurinkovalolta, koska korkeampi lämpötila vähentää kaikkien elektronisten komponenttien käyttöikää.</td>
</tr>
<tr>
<td></td>
<td>-40…+65°C / -40…+149°F</td>
</tr>
<tr>
<td></td>
<td>-50…+70°C / -58…+158°F</td>
</tr>
</tbody>
</table>

Paine

<table>
<thead>
<tr>
<th>Väliaine</th>
<th>Katso mittausanturin tekniset tiedot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ympäristön paine</td>
<td>Ilmakehä: korkeus jopa 2 000 m / 6561,7 ft</td>
</tr>
</tbody>
</table>

Kemialliset ominaisuudet

<table>
<thead>
<tr>
<th>Johtokyky</th>
<th>Vakio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaikki väliaineet paitsi vesi: ≥ 1 µS/cm (katso myös virtausanturin tekniset tiedot)</td>
<td>Vesi: ≥ 20 µS/cm</td>
</tr>
<tr>
<td>TIDALFLUX 4000 Kaikki väliaineet: ≥ 50 µS/cm (katso myös virtausanturin tekniset tiedot)</td>
<td></td>
</tr>
<tr>
<td>OPTIFLUX 7000 Kaikki väliaineet paitsi vesi: ≥ 0,05 µS/cm (katso myös virtausanturin tekniset tiedot)</td>
<td>Vesi: ≥ 1 µS/cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fyysinen kunto</th>
<th>Johtavuus, nestemäinen väliaine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiintoainepitoisuus (tilavuus)</td>
<td>Voidaan käyttää enintään ≤ 70% for OPTIFLUX- ja TIDALFLUX-virtausantureille</td>
</tr>
<tr>
<td>Kaasun pitoisuus (tilavuus)</td>
<td>Voidaan käyttää enintään ≤ 5% OPTIFLUX- ja TIDALFLUX-virtausantureille</td>
</tr>
<tr>
<td>Virtaus</td>
<td>Lisätietoja on luvussa ”Virtaustaulukot”.</td>
</tr>
</tbody>
</table>

Muut ehdot

Suojausluokka (IEC 529:n / EN 60529:n mukaan)

<table>
<thead>
<tr>
<th>Suojausluokka</th>
<th>C (kompakti versio) & F (kenttäkotelo):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP66/67 [NEMA 4X] -standardin mukaisesti</td>
</tr>
<tr>
<td></td>
<td>W (seinäkiinnitteen kotelo):</td>
</tr>
<tr>
<td></td>
<td>IP65/66 [NEMA 4X:n mukaan]</td>
</tr>
<tr>
<td></td>
<td>R (19” telineseen asennettava kotelo (28 TE) tai (21 TE)):</td>
</tr>
<tr>
<td></td>
<td>IP20 (NEMA 1:n mukaan);</td>
</tr>
<tr>
<td></td>
<td>Käyttö: vain sisätiloissa, saastetaso 2 ja suhteellinen kosteus < 75%</td>
</tr>
</tbody>
</table>

Asennusehdot

<table>
<thead>
<tr>
<th>Asennus</th>
<th>Lisätietoja on luvussa ”Asennusehdot”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sisään-/ ulostulot</td>
<td>Katso virtausanturin tekniset tiedot.</td>
</tr>
<tr>
<td>Mitat ja painot</td>
<td>Lisätietoja on luvussa ”Mitat ja painot”.</td>
</tr>
</tbody>
</table>
Materiaalit

<table>
<thead>
<tr>
<th>Signaalimuunninkoteloa</th>
<th>Vakio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Versiot C ja F: painevalettu alumiini (polyuretaanipinnoite)</td>
</tr>
<tr>
<td></td>
<td>Versio W: polyamidi - polykarbonaatti</td>
</tr>
<tr>
<td></td>
<td>Versio R (28 TE): alumiini, ruostumaton teräs ja alumiinilevyt, osittain polyesteripinnoitettu</td>
</tr>
<tr>
<td></td>
<td>Versio R (21 TE): alumiini ja alumiinilevyt, osittain polyesteripinnoitettu</td>
</tr>
</tbody>
</table>

Valinta

| Versiot C ja F: ruostumaton teräs 316 L (1.4408) |

Virtausanturi

Kotelomateriaalit, prosessiliitännät, vuoraukset, maadoituselektrodit ja tiivisteet: katso virtausanturin tekniset tiedot.

Sähköliitäntä

<table>
<thead>
<tr>
<th>Yleistä</th>
<th>Sähköliitäntät tehdään direktiivin VDE 0100 "Enintään 1 000 V verkkojännitteen sähköasennukset" tai vastaavien kansallisten määräysten mukaan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtalähde</td>
<td>Vakio: 100...300 VAC (-15% / +10%), 50/60 Hz 240 VAC + 5% sisältyy toleranssialueeseen.</td>
</tr>
<tr>
<td></td>
<td>Vaihtoehto 1: 12...24 VDC (-55% / +30%) 12 VDC - 10% sisältyy toleranssialueeseen.</td>
</tr>
<tr>
<td></td>
<td>Vaihtoehto 2: 24 VAC/DC (AC: -15% / +10%, 50/60 Hz; DC: -25% / +30%) 12 V ei sisälly toleranssialueeseen.</td>
</tr>
<tr>
<td>Virrankulutus</td>
<td>AC: 22 VA</td>
</tr>
<tr>
<td></td>
<td>DC: 12 W</td>
</tr>
</tbody>
</table>

Signaalikaapeli

DS 300 (tyyppi A) Maksimipituus: 600 m / 1968 ft (riippuen sähköjohtavuudesta ja virtausanturin versiosta)

BTS 300 (tyyppi B) Maksimipituus: 600 m / 1968 ft (riippuen sähköjohtavuudesta ja virtausanturin versiosta)

Typpi LIYC (vain FM, luokka 1 Div. 2) Maksimipituus: 100 m / 328 ft (riippuen sähköjohtavuudesta ja virtausanturin versiosta)

Liitäntäkaapeli (vain TIDALFLUX)

Typpi LIYC Maksimipituus: 600 m / 1968 ft (3 x 0,75 mm² suojattu kaapeli)

Kaapeliläpiviennit (paitsi TIDALFLUX)

Vakio: M20 x 1,5 (8...12 mm) C-, F- ja W-versioille; R-version riviliitin

Valinnainen: ½" NPT, PF ½ C-, F- ja W-versioille

Kaapeliläpiviennit (vain TIDALFLUX)

Vakio: Signaalimuunnin: 2 x M20 x 1,5 metalli + 1 x M20 x 1,5 EMC metalli Virtausanturi: 2 x M20 x 1,5 muovi + 1 x M16 x 1,5 EMC metalli

Valinnainen: NPT
Tulot ja lähdöt

Yleistä

Kaikki lähdöt on sähköisesti eristetty toisistaan ja muista piireistä.

Kaikkia käyttötietoja ja ulostuloarvoja voidaan säätää.

Käytettyjen lyhenteiden kuvaus

- **Uext** = ulkoinen jännite; **RL** = kuormitus + vastus;
- **Uo** = liitinjännite; **Inom** = nimellisvirta

Turvallisuusraja-arvot (Ex i):

- **Ui** = maksimi syöttöjännite;
- **Ii** = maksimi syöttövirta;
- **Pi** = maksimi syöttövirtaluokitus;
- **Ci** = maksimi syöttökapasiteetti;
- **Li** = maksimi syöttöinduktiivisuus

mA-ulostulo

Ulostulotiedot

Tilavuusvirta, massavirta, diagnostiikka-arvo, virtausnopeus, käämin lämpötila, johtavuus

Asetukset

Ilman HARTia

- Q = 0%: 0...15 mA; Q = 100%: 10...20 mA
- Virhe tunnistaminen: 3...22 mA

HARTin kanssa

- Q = 0%: 4...15 mA; Q = 100%: 10...20 mA
- Virhe tunnistaminen: 3,5...22 mA

Käyttötiedot

<table>
<thead>
<tr>
<th>Vakio I/Os</th>
<th>Modulaarinen I/Os</th>
<th>Ex i I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktiivinen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int, nom = 24 VDC</td>
<td>U_int, nom = 20 VDC</td>
<td></td>
</tr>
<tr>
<td>I ≤ 22 mA</td>
<td>I ≤ 22 mA</td>
<td></td>
</tr>
<tr>
<td>RL ≤ 1 kΩ</td>
<td>RL ≤ 450 Ω</td>
<td></td>
</tr>
<tr>
<td>Passiivinen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_ext ≤ 32 VDC</td>
<td>U_ext ≤ 32 VDC</td>
<td></td>
</tr>
<tr>
<td>I ≤ 22 mA</td>
<td>I ≤ 22 mA</td>
<td></td>
</tr>
<tr>
<td>U0 ≥ 1,8 V</td>
<td>U0 ≥ 4 V</td>
<td></td>
</tr>
<tr>
<td>RL ≤ (U_ext - U0) / I maks.</td>
<td>RL ≤ (U_ext - U0) / I maks.</td>
<td></td>
</tr>
</tbody>
</table>

Passiivinen

- **U_ext** = ulkoinen jännite; **RL** = kuormitus + vastus;
- **Uo** = liitinjännite; **Inom** = nimellisvirta

- Turvallisuusraja-arvot (Ex i):
 - **U_i** = maksimi syöttöjännite;
 - **I_i** = maksimi syöttövirta;
 - **P_i** = maksimi syöttövirtaluokitus;
 - **C_i** = maksimi syöttökapasiteetti;
 - **L_i** = maksimi syöttöinduktiivisuus

mA-ulostulo

- **Ulostulotiedot**
 - Tilavuusvirta, massavirta, diagnostiikka-arvo, virtausnopeus, käämin lämpötila, johtavuus

- **Asetukset**
 - **Ilman HARTia**
 - Q = 0%: 0...15 mA; Q = 100%: 10...20 mA
 - Virhe tunnistaminen: 3...22 mA
 - **HARTin kanssa**
 - Q = 0%: 4...15 mA; Q = 100%: 10...20 mA
 - Virhe tunnistaminen: 3,5...22 mA

- **Käyttötiedot**
 - **Vakio I/Os**
 - **Aktiivinen**
 - Int, nom = 24 VDC
 - I ≤ 22 mA
 - RL ≤ 1 kΩ
 - **Passiivinen**
 - U_ext ≤ 32 VDC
 - I ≤ 22 mA
 - U0 ≥ 1,8 V
 - RL ≤ (U_ext - U0) / I maks.
 - **Modulaarinen I/Os**
 - **Aktiivinen**
 - Int, nom = 20 VDC
 - I ≤ 22 mA
 - RL ≤ 450 Ω
 - **Passiivinen**
 - U_ext ≤ 32 VDC
 - I ≤ 22 mA
 - U0 ≥ 4 V
 - RL ≤ (U_ext - U0) / I maks.

mA-ulostulo

- **Ulostulotiedot**
 - Tilavuusvirta, massavirta, diagnostiikka-arvo, virtausnopeus, käämin lämpötila, johtavuus

- **Asetukset**
 - **Ilman HARTia**
 - Q = 0%: 0...15 mA; Q = 100%: 10...20 mA
 - Virhe tunnistaminen: 3...22 mA
 - **HARTin kanssa**
 - Q = 0%: 4...15 mA; Q = 100%: 10...20 mA
 - Virhe tunnistaminen: 3,5...22 mA

- **Käyttötiedot**
 - **Vakio I/Os**
 - **Aktiivinen**
 - Int, nom = 24 VDC
 - I ≤ 22 mA
 - RL ≤ 1 kΩ
 - **Passiivinen**
 - U_ext ≤ 32 VDC
 - I ≤ 22 mA
 - U0 ≥ 1,8 V
 - RL ≤ (U_ext - U0) / I maks.
<table>
<thead>
<tr>
<th>HART®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuvaus</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kuormitus</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Multi-Drop-käytto</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Laiteohjaimet</td>
</tr>
<tr>
<td>Rekisteröinti (HART Communication Foundation)</td>
</tr>
<tr>
<td>Pulssi- tai taajuusulostulo</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Toiminto</td>
</tr>
<tr>
<td>Taajuuslähtö / pulsilähtö</td>
</tr>
<tr>
<td>Asetukset</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Käyttötiedot</td>
</tr>
<tr>
<td>Aktiivinen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Käyttötiedot</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Passiivinen</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

NAMUR

- Passiivinen
 - EN 60947-5-6:n mukaan
 - auki: $I_{\text{nom}} = 0,6 \, \text{mA}$
 - suljettu: $I_{\text{nom}} = 3,8 \, \text{mA}$

- Passiivinen
 - EN 60947-5-6:n mukaan
 - auki: $I_{\text{nom}} = 0,43 \, \text{mA}$
 - suljettu: $I_{\text{nom}} = 4,5 \, \text{mA}$

- $U_i = 30 \, \text{V}$
- $I_i = 100 \, \text{mA}$
- $P_i = 1 \, \text{W}$
- $C_i = 10 \, \text{nF}$
- $L_i = 0 \, \text{mH}$

Alhaisen virtauksen katkaisu

Toiminto

- Kytentäpiste ja hystereesi erikseen säädettävissä jokaiselle lähöölle, laskurille ja näytölle

Kytentäpiste

- Virtalähtö, taajuuslähtö: 0...20%; asetetaan askelin 0,1
- Pulssi ulostulo: yksikkö on tilavuusvirtaus tai massavirtaus, ei rajoitettu

Hystereesi

Aikavakio

Toiminto

- Aikavakio vastaa kulunutta aikaa, kunnes 63% loppuarvosta on saavutettu vaihetoiminnon mukaan.

Asetukset

- Asetetaan 0,1 yksikön välein.
- $0...100 \, \text{s}$
Tilalähtö / rajakytkin

Toiminto ja asetukset
Säädettyävissä automaattisen mitaalueen muunnoksena, virtaussuunnan näytönä, laskuri ylivuotona, virheenä, kytkentäpisteenä tai tyhjän putken tunnistuksena.

Venttiiliohjaus aktivoidulla annostelutoiminnolla
Tila ja/tai ohjaus: PÄÄLLÄ tai POIS PÄÄLTÄ

Käyttötiedot

<table>
<thead>
<tr>
<th>Aktiivinen</th>
<th>Vakio I/Os</th>
<th>Modulaarinen I/Os</th>
<th>Ex i I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$U_{\text{int}} = 24 , \text{VDC}$</td>
<td>$U_{\text{ext}} = 32 , \text{VDC}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I \leq 20 , \text{mA}$</td>
<td>$I \leq 100 , \text{mA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>auki: $I \leq 0,05 , \text{mA}$</td>
<td>auki: $I \leq 0,05 , \text{mA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>suljettu: $U_{0,\text{nom}} = 24 , \text{V}$</td>
<td>suljettu: $U_{0,\text{ext}} = 32 , \text{VDC}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I = 20 , \text{mA}$</td>
<td>$I = 10 , \text{mA}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{0,\text{maks.}} = 0,2 , \text{V}$</td>
<td>$U_{0,\text{maks.}} = 0,2 , \text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{0,\text{max.}} = 2 , \text{V}$</td>
<td>$U_{0,\text{max.}} = 2 , \text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{0,\text{max.}} = 100 , \text{mA}$</td>
<td>$U_{0,\text{max.}} = 100 , \text{mA}$</td>
</tr>
</tbody>
</table>

Passiivinen

<table>
<thead>
<tr>
<th>$U_{\text{ext}} \leq 32 , \text{VDC}$</th>
<th>$I \leq 100 , \text{mA}$</th>
<th>$R_{L,\text{maks.}} = 47 , \text{k}\Omega$</th>
<th>$R_{L,\text{min.}} = \frac{U_{\text{ext}} - U_{0}}{I_{\text{maks.}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>auki: $I \leq 0,05 , \text{mA}$</td>
<td>$U_{0,\text{nom.}} = 24 , \text{V}$</td>
<td>$I = 20 , \text{mA}$</td>
<td>$U_{0,\text{ext}} = 32 , \text{VDC}$</td>
</tr>
<tr>
<td>suljettu: $U_{0,\text{maks.}} = 0,2 , \text{V}$</td>
<td>$I = 10 , \text{mA}$</td>
<td>$U_{0,\text{maks.}} = 2 , \text{V}$</td>
<td>$U_{0,\text{maks.}} = 100 , \text{mA}$</td>
</tr>
</tbody>
</table>

NAMUR

<table>
<thead>
<tr>
<th>Passiivinen EN 60947-5-6:n mukaan</th>
<th>Passiivinen EN 60947-5-6:n mukaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>auki: $I_{\text{nom.}} = 0,6 , \text{mA}$</td>
<td>auki: $I_{\text{nom.}} = 0,43 , \text{mA}$</td>
</tr>
<tr>
<td>suljettu: $I_{\text{nom.}} = 3,8 , \text{mA}$</td>
<td>suljettu: $I_{\text{nom.}} = 4,5 , \text{mA}$</td>
</tr>
<tr>
<td>$U_{i} = 30 , \text{V}$</td>
<td>$U_{i} = 100 , \text{mA}$</td>
</tr>
<tr>
<td>$P_{i} = 1 , \text{W}$</td>
<td>$C_{i} = 10 , \text{nF}$</td>
</tr>
<tr>
<td>$L_{i} = 0 , \text{mH}$</td>
<td></td>
</tr>
</tbody>
</table>
Sisääntulo

Toiminto

Pidä ulostulojen arvo (esim. siivoustyön), asettaa ulostulojen arvo “nollaksi”, laskuri ja virheet nollaus, alue muuttaminen. Annostelun aloittaminen kun annostelutoiminto on aktivoitun.

Käyttötiedot

<table>
<thead>
<tr>
<th>Aktiivinen</th>
<th>Vakio I/Os</th>
<th>Modulaarinen I/Os</th>
<th>Ex i I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$U_{int} = 24$ VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulkoinen kontakti auki: $U_0, nom = 22$ V</td>
<td>Ulkoinen kontakti auki: $I_{nom} = 4$ mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulkoinen kontakti kiinni: $I_{nom} = 4$ mA</td>
<td>Ulkoinen kontakti kiinni: $I_{nom} = 4$ mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontakti kiinni (päällä): $U_0 \geq 12$ V</td>
<td>Kontakti kiinni (päällä): $U_0 \geq 12$ V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kontakti auki (pois päältä): $U_0 \leq 10$ V</td>
<td>Kontakti auki (pois päältä): $U_0 \leq 10$ V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inom = 1,9 mA</td>
<td>Inom = 1,9 mA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passiivinen</th>
<th>$8 \leq U_{ext} \leq 32$ VDC</th>
<th>$3 \leq U_{ext} \leq 32$ VDC</th>
<th>$U_{ext} \leq 32$ VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{max} = 6.5$ mA</td>
<td>$I_{max} = 9.5$ mA</td>
<td>$I_{max} = 9.5$ mA</td>
<td>$l \leq 6$ mA, $U_{ext} = 24$ V</td>
</tr>
<tr>
<td>$U_{ext} \leq 24$ VDC</td>
<td>$U_{ext} \leq 24$ V</td>
<td>$U_{ext} \leq 24$ V</td>
<td>$l \leq 6.6$ mA, $U_{ext} = 32$ V</td>
</tr>
<tr>
<td>$U_{ext} \leq 32$ VDC</td>
<td>$U_{ext} \leq 32$ V</td>
<td>$U_{ext} \leq 32$ V</td>
<td>$P_{ext} = 3.5$ V, $l \leq 0.5$ mA</td>
</tr>
<tr>
<td>Kontakti kiinni (päällä): $U_0 \geq 8$ V</td>
<td>Kontakti kiinni (päällä): $U_0 \geq 3$ V</td>
<td>Kontakti auki (pois päältä): $U_0 \leq 2.5$ V</td>
<td></td>
</tr>
<tr>
<td>$I_{nom} = 2.8$ mA</td>
<td>$I_{nom} = 1.9$ mA</td>
<td>$I_{nom} = 1.9$ mA</td>
<td></td>
</tr>
<tr>
<td>Kontakti auki (pois päältä): $U_0 \leq 2.5$ V</td>
<td>Kontakti auki (pois päältä): $U_0 \leq 2.5$ V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{nom} = 0.4$ mA</td>
<td>$I_{nom} = 0.4$ mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAMUR

Aktiivinen EN 60947-5-6:n mukaan	

Liitännät auki: $U_0, nom = 8.7$ V	
Kontakti kiinni (päällä): $U_0, nom = 6.3$ V	
Kontakti auki (pois päältä): $U_0, nom = 6.3$ V	
Kontakti auki (pois päältä): $U_0, nom = 6.3$ V	
Rikkoutuneen kaapelin tunnistaminen: $U_0 \geq 8.1$ V, $l \leq 0.1$ mA	
Kaapelin oikosulun tunnistaminen: $U_0 \leq 1.2$ V, $l \geq 6.7$ mA	
mA-sisääntulo

Toiminto
Kytetty ulkoinen anturi toimittaa arvot (lämpötila, paine tai virta) virran sisääntulolle

Käyttötiedot

<table>
<thead>
<tr>
<th></th>
<th>Vakio I/Os</th>
<th>Modulaarinen I/Os</th>
<th>Ex i I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktiivinen</td>
<td>-</td>
<td>Uᵢᵣ, nom = 24 VDC</td>
<td>Uᵢᵣ, nom = 20 VDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I ≤ 22 mA</td>
<td>I ≤ 22 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iᵢₘₐₓ ≤ 26 mA</td>
<td>I₀, min = 14 V, I ≤ 22 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(elektronisesti rajoitettu)</td>
<td>Ei HART®</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U₀, min = 19 V</td>
<td>U₀ = 24,5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I ≤ 22 mA</td>
<td>I ≤ 22 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ei HART®</td>
<td>Ei HART®</td>
</tr>
<tr>
<td>Passiivinen</td>
<td>-</td>
<td>Uᵢᵢ ≤ 32 VDC</td>
<td>Uᵢᵢ ≤ 32 VDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I ≤ 22 mA</td>
<td>I ≤ 22 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iᵢₘₐₓ ≤ 26 mA</td>
<td>U₀, maks. = 4 V, I ≤ 22 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(elektronisesti rajoitettu)</td>
<td>Ei HART®</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U₀, maks. = 5 V</td>
<td>Uᵢ = 30 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I ≤ 22 mA</td>
<td>I ≤ 100 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ei HART®</td>
<td>Pᵢ = 1 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cᵢ = 10 nF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lᵢ = 0 mH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ei HART®</td>
</tr>
</tbody>
</table>
PROFIBUS DP

<table>
<thead>
<tr>
<th>Kuvaus</th>
<th>Galvaanisesti eristetty IEC 61158:n mukaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profiliversio</td>
<td>3.01</td>
</tr>
<tr>
<td>Automaatinen tiedonsiironopeuden tunnistaminen (enint. 12 MBaud)</td>
<td>Väyläosoite säädetävissä mittauslaitteen paikallisella näytöllä</td>
</tr>
<tr>
<td>Toimintolohkot</td>
<td>5 x analogiatulo, 3 x laskuri</td>
</tr>
<tr>
<td>Ulostulotiedot</td>
<td>Tilavuusvirta, massavirta, tilavuuslaskuri 1 + 2, massalaskuri, nopeus, käämin lämpötila, johtavuus</td>
</tr>
</tbody>
</table>

PROFIBUS PA

<table>
<thead>
<tr>
<th>Kuvaus</th>
<th>Galvaanisesti eristetty IEC 61158:n mukaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profiliversio</td>
<td>3.01</td>
</tr>
<tr>
<td>Virrankulutus</td>
<td>10,5 mA</td>
</tr>
<tr>
<td>Sallittu väyläjännite: 9...32 V; Ex-sovelluksessa: 9...24 V</td>
<td>Väyläliityntä integroidulla napaisuussuojauksella</td>
</tr>
<tr>
<td>Virrankulutus: 10,5 mA</td>
<td>Tyypillinen virhevirta FDE (Fault Disconnection Electronic): 4,3 mA</td>
</tr>
<tr>
<td>Väyläosoite säädetävissä mittauslaitteen paikallisella näytöllä</td>
<td>Väyläosoite säädetävissä mittauslaitteen paikallisella näytöllä</td>
</tr>
<tr>
<td>Toimintolohkot</td>
<td>5 x analogiatulo, 3 x laskuri</td>
</tr>
<tr>
<td>Ulostulotiedot</td>
<td>Tilavuusvirta, massavirta, tilavuuslaskuri 1 + 2, massalaskuri, nopeus, käämin lämpötila, johtavuus</td>
</tr>
</tbody>
</table>

FOUNDATION Fieldbus

<table>
<thead>
<tr>
<th>Kuvaus</th>
<th>Galvaanisesti eristetty IEC 61158:n mukaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virrankulutus: 10,5 mA</td>
<td>Sallittu väyläjännite: 9...32 V; Ex-sovelluksessa: 9...24 V</td>
</tr>
<tr>
<td>Väyläliityntä integroidulla napaisuussuojauksella</td>
<td>Tyypillinen virhevirta FDE (Fault Disconnection Electronic): 4,3 mA</td>
</tr>
<tr>
<td>Link Master function [LM] tuettu</td>
<td>Testattu Interoperable Test Kitillä (ITK), versio 5.1</td>
</tr>
<tr>
<td>Toimintolohkot</td>
<td>3 x analoginen tulo, 2 x integraattori, 1 x PID</td>
</tr>
<tr>
<td>Ulostulotiedot</td>
<td>Tilavuusvirta, massavirta, nopeus, käämin lämpötila, johtavuus, elektronisten osien lämpötila</td>
</tr>
</tbody>
</table>

Modbus

<table>
<thead>
<tr>
<th>Kuvaus</th>
<th>Modbus RTU, isäntä / alisteinen, RS485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osoitealue</td>
<td>1...247</td>
</tr>
<tr>
<td>Tuettujen toimintojen koodit</td>
<td>03, 04, 16</td>
</tr>
<tr>
<td>Lähetyys</td>
<td>Tuettu toimintokoodilla 16</td>
</tr>
<tr>
<td>Tuettu baudinopeus</td>
<td>1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Baud</td>
</tr>
</tbody>
</table>
Hyväksynnät ja sertifikaatit

<table>
<thead>
<tr>
<th>CE</th>
<th>Laite täyttää EU-direktiivien vaatimukset. Valmistaja todistaa, että nämä vaatimukset täyttävät käyttäjänä CE-merkintää.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähkömagneettinen yhteensopivuus [EMC]</td>
<td>2004/108/EC yhdessä EN 61326-1:n kanssa (A1, A2)</td>
</tr>
<tr>
<td>Eurooppalainen painelaitedirektiivi</td>
<td>PED 97/23 (vain kompaktiversioille)</td>
</tr>
<tr>
<td>Ei-Ex</td>
<td>Vakio</td>
</tr>
</tbody>
</table>

Vaaralliset alueet

Asetus (vain versio C)

ATEX
- II 2 GD Ex d [ia] IIC T6...T3
- II 2 GD Ex de [ia] IIC T6...T3
- II 2 GD Ex e [ia] IIC T6...T3
- II 3 G Ex nA [nL] IIC T4...T3

Asetus (vain versio F (paitsi TIDALFLUX))

ATEX
- II 2 GD Ex de [ia] IIC T6
- II 2[1] GD Ex de [ia] IIC T6

NEPSI
- Ex de [ia] IIC T6

Asetus (vain C ja F versio (paitsi TIDALFLUX))

FM / CSA
- Luokka I, Div. 2, ryhmä A, B, C ja D
- Luokka II, Div. 2, ryhmä F ja G

SAA (valmisteilla)
- Aus Ex-alue 1/2

TIIS (valmisteilla)
- Alue 1/2

Laskutusmittaus (paitsi TIDALFLUX & OPTIFLUX 7300 C)

- Ei mitään
- Vaihtoehtoinen
 - Kylmä juomavesi (OIML R 49, KIWA K618, MI-001), muut nesteet kuin vesi (OIML R 117-1, MI-005)

VdS (vain OPTIFLUX 2300 C, F ja W)

- Käytetään palo- ja turvalaitteissa
 - Voimassa vain nimellislämpimitoille DN25...250 / 1...10”

Muut standardit ja hyväksynnät

<table>
<thead>
<tr>
<th>Iskun- ja tärinänkestävä</th>
<th>IEC 68-2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAMUR</td>
<td>NE 21, NE 43, NE 53</td>
</tr>
</tbody>
</table>
8.3 Mitat ja painot

8.3.1 Kotelo

Mitat ja painot (mm ja kg)

<table>
<thead>
<tr>
<th>Versio</th>
<th>a [mm]</th>
<th>b [mm]</th>
<th>c [mm]</th>
<th>d [mm]</th>
<th>e [mm]</th>
<th>g [mm]</th>
<th>h [mm]</th>
<th>Paino [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>202</td>
<td>120</td>
<td>155</td>
<td>260</td>
<td>137</td>
<td>-</td>
<td>-</td>
<td>4,2</td>
</tr>
<tr>
<td>F</td>
<td>202</td>
<td>120</td>
<td>155</td>
<td>-</td>
<td>-</td>
<td>295,8</td>
<td>277</td>
<td>5,7</td>
</tr>
<tr>
<td>W</td>
<td>198</td>
<td>138</td>
<td>299</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,4</td>
</tr>
<tr>
<td>R</td>
<td>142 (28 TE)</td>
<td>129 (3 HE)</td>
<td>195</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>107 (21 TE)</td>
<td>129 (3 HE)</td>
<td>190</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,98</td>
</tr>
</tbody>
</table>

Mitat ja painot tuumina ja paunoina

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7,75</td>
<td>4,75</td>
<td>6,10</td>
<td>10,20</td>
<td>5,40</td>
<td>-</td>
<td>-</td>
<td>9,30</td>
</tr>
<tr>
<td>F</td>
<td>7,75</td>
<td>4,75</td>
<td>6,10</td>
<td>-</td>
<td>-</td>
<td>11,60</td>
<td>10,90</td>
<td>12,60</td>
</tr>
<tr>
<td>W</td>
<td>7,80</td>
<td>5,40</td>
<td>11,80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5,30</td>
</tr>
<tr>
<td>R</td>
<td>5,59 (28 TE)</td>
<td>5,08 (3 HE)</td>
<td>7,68</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,65</td>
</tr>
<tr>
<td></td>
<td>4,21 (21 TE)</td>
<td>5,08 (3 HE)</td>
<td>7,48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,16</td>
</tr>
</tbody>
</table>
8.3.2 Asennuslevy, kenttäkotelo

Mitat (mm ja tuumaa)

<table>
<thead>
<tr>
<th></th>
<th>[mm]</th>
<th>[tuumaa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>60</td>
<td>2,4</td>
</tr>
<tr>
<td>b</td>
<td>100</td>
<td>3,9</td>
</tr>
<tr>
<td>c</td>
<td>Ø9</td>
<td>Ø0,4</td>
</tr>
</tbody>
</table>
8.3.3 Asennuslevy, seinäkiinnitteinen kotelo

Mitat (mm ja tuumaa)

<table>
<thead>
<tr>
<th></th>
<th>[mm]</th>
<th>[tuumaa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Ø9</td>
<td>0,4</td>
</tr>
<tr>
<td>b</td>
<td>64</td>
<td>2,5</td>
</tr>
<tr>
<td>c</td>
<td>16</td>
<td>0,6</td>
</tr>
<tr>
<td>d</td>
<td>6</td>
<td>0,2</td>
</tr>
<tr>
<td>e</td>
<td>63</td>
<td>2,5</td>
</tr>
<tr>
<td>f</td>
<td>4</td>
<td>0,2</td>
</tr>
<tr>
<td>g</td>
<td>64</td>
<td>2,5</td>
</tr>
<tr>
<td>h</td>
<td>98</td>
<td>3,85</td>
</tr>
</tbody>
</table>
8.4 Virtaustaulukot

Virtausnopeus m/s ja m³/h

<table>
<thead>
<tr>
<th>DN [mm]</th>
<th>Minimivirtaus</th>
<th>Nimellisvirtaus</th>
<th>Maksimivirtaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>0,005</td>
<td>0,02</td>
<td>0,05</td>
</tr>
<tr>
<td>4</td>
<td>0,01</td>
<td>0,05</td>
<td>0,14</td>
</tr>
<tr>
<td>6</td>
<td>0,03</td>
<td>0,10</td>
<td>0,31</td>
</tr>
<tr>
<td>10</td>
<td>0,08</td>
<td>0,28</td>
<td>0,85</td>
</tr>
<tr>
<td>15</td>
<td>0,19</td>
<td>0,64</td>
<td>1,91</td>
</tr>
<tr>
<td>20</td>
<td>0,34</td>
<td>1,13</td>
<td>3,39</td>
</tr>
<tr>
<td>25</td>
<td>0,53</td>
<td>1,77</td>
<td>5,30</td>
</tr>
<tr>
<td>32</td>
<td>0,87</td>
<td>2,90</td>
<td>8,69</td>
</tr>
<tr>
<td>40</td>
<td>1,36</td>
<td>4,52</td>
<td>13,57</td>
</tr>
<tr>
<td>50</td>
<td>2,12</td>
<td>7,07</td>
<td>21,21</td>
</tr>
<tr>
<td>65</td>
<td>3,58</td>
<td>11,95</td>
<td>35,84</td>
</tr>
<tr>
<td>80</td>
<td>5,43</td>
<td>18,10</td>
<td>54,29</td>
</tr>
<tr>
<td>100</td>
<td>8,48</td>
<td>28,27</td>
<td>84,82</td>
</tr>
<tr>
<td>125</td>
<td>13,25</td>
<td>44,18</td>
<td>132,54</td>
</tr>
<tr>
<td>150</td>
<td>19,09</td>
<td>63,62</td>
<td>190,85</td>
</tr>
<tr>
<td>200</td>
<td>33,93</td>
<td>113,10</td>
<td>339,30</td>
</tr>
<tr>
<td>250</td>
<td>53,01</td>
<td>176,71</td>
<td>530,13</td>
</tr>
<tr>
<td>300</td>
<td>76,34</td>
<td>254,47</td>
<td>763,41</td>
</tr>
<tr>
<td>350</td>
<td>103,91</td>
<td>346,36</td>
<td>1039,08</td>
</tr>
<tr>
<td>400</td>
<td>135,72</td>
<td>452,39</td>
<td>1357,17</td>
</tr>
<tr>
<td>450</td>
<td>171,77</td>
<td>572,51</td>
<td>1717,65</td>
</tr>
<tr>
<td>500</td>
<td>212,06</td>
<td>706,86</td>
<td>2120,58</td>
</tr>
<tr>
<td>600</td>
<td>305,37</td>
<td>1017,90</td>
<td>3053,70</td>
</tr>
<tr>
<td>700</td>
<td>415,62</td>
<td>1385,40</td>
<td>4156,20</td>
</tr>
<tr>
<td>800</td>
<td>542,88</td>
<td>1809,60</td>
<td>5428,80</td>
</tr>
<tr>
<td>900</td>
<td>687,06</td>
<td>2290,20</td>
<td>6870,60</td>
</tr>
<tr>
<td>1000</td>
<td>848,22</td>
<td>2627,40</td>
<td>8482,20</td>
</tr>
<tr>
<td>1200</td>
<td>1221,45</td>
<td>3421,20</td>
<td>12214,50</td>
</tr>
<tr>
<td>1400</td>
<td>1433,52</td>
<td>4778,40</td>
<td>14335,20</td>
</tr>
<tr>
<td>1600</td>
<td>2171,46</td>
<td>7238,20</td>
<td>21714,60</td>
</tr>
<tr>
<td>1800</td>
<td>2748,27</td>
<td>9160,9</td>
<td>27482,70</td>
</tr>
<tr>
<td>2000</td>
<td>3393,00</td>
<td>11310,00</td>
<td>33930,00</td>
</tr>
<tr>
<td>2200</td>
<td>4105,50</td>
<td>13685,00</td>
<td>41055,00</td>
</tr>
<tr>
<td>2400</td>
<td>4885,80</td>
<td>16286,00</td>
<td>48858,00</td>
</tr>
<tr>
<td>2600</td>
<td>5733,90</td>
<td>19113,00</td>
<td>57339,00</td>
</tr>
<tr>
<td>2800</td>
<td>6650,10</td>
<td>22167,00</td>
<td>66501,00</td>
</tr>
<tr>
<td>3000</td>
<td>7634,10</td>
<td>25447,00</td>
<td>76341,00</td>
</tr>
<tr>
<td>DN [tuumaa]</td>
<td>Minimivirtaus</td>
<td>Nimellisvirtaus</td>
<td>Maksimivirtaus</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1/10</td>
<td>0,02</td>
<td>0,09</td>
<td>0,23</td>
</tr>
<tr>
<td>1/8</td>
<td>0,06</td>
<td>0,22</td>
<td>0,60</td>
</tr>
<tr>
<td>1/4</td>
<td>0,13</td>
<td>0,44</td>
<td>1,34</td>
</tr>
<tr>
<td>3/8</td>
<td>0,37</td>
<td>1,23</td>
<td>3,73</td>
</tr>
<tr>
<td>1/2</td>
<td>0,84</td>
<td>2,82</td>
<td>8,40</td>
</tr>
<tr>
<td>3/4</td>
<td>1,49</td>
<td>4,98</td>
<td>14,94</td>
</tr>
<tr>
<td>1</td>
<td>2,33</td>
<td>7,79</td>
<td>23,34</td>
</tr>
<tr>
<td>1,25</td>
<td>3,82</td>
<td>12,77</td>
<td>38,24</td>
</tr>
<tr>
<td>1,5</td>
<td>5,98</td>
<td>19,90</td>
<td>59,75</td>
</tr>
<tr>
<td>2</td>
<td>9,34</td>
<td>31,13</td>
<td>93,37</td>
</tr>
<tr>
<td>2,5</td>
<td>15,78</td>
<td>52,61</td>
<td>159,79</td>
</tr>
<tr>
<td>3</td>
<td>23,90</td>
<td>79,69</td>
<td>239,02</td>
</tr>
<tr>
<td>4</td>
<td>37,35</td>
<td>124,47</td>
<td>373,46</td>
</tr>
<tr>
<td>5</td>
<td>58,35</td>
<td>194,48</td>
<td>583,24</td>
</tr>
<tr>
<td>6</td>
<td>84,03</td>
<td>279,97</td>
<td>840,29</td>
</tr>
<tr>
<td>8</td>
<td>149,39</td>
<td>497,92</td>
<td>1493,29</td>
</tr>
<tr>
<td>10</td>
<td>233,41</td>
<td>777,96</td>
<td>2334,09</td>
</tr>
<tr>
<td>12</td>
<td>336,12</td>
<td>1120,29</td>
<td>3361,19</td>
</tr>
<tr>
<td>14</td>
<td>457,59</td>
<td>1525,15</td>
<td>4574,93</td>
</tr>
<tr>
<td>16</td>
<td>597,54</td>
<td>1991,60</td>
<td>5975,44</td>
</tr>
<tr>
<td>18</td>
<td>756,26</td>
<td>2520,61</td>
<td>7562,58</td>
</tr>
<tr>
<td>20</td>
<td>933,86</td>
<td>3112,56</td>
<td>9336,63</td>
</tr>
<tr>
<td>24</td>
<td>1344,50</td>
<td>4481,22</td>
<td>13445,04</td>
</tr>
<tr>
<td>28</td>
<td>1829,92</td>
<td>6099,12</td>
<td>18299,20</td>
</tr>
<tr>
<td>32</td>
<td>2390,23</td>
<td>7966,64</td>
<td>23902,29</td>
</tr>
<tr>
<td>36</td>
<td>3025,03</td>
<td>10082,42</td>
<td>30250,34</td>
</tr>
<tr>
<td>40</td>
<td>3734,50</td>
<td>12447,09</td>
<td>37346,00</td>
</tr>
<tr>
<td>48</td>
<td>5377,88</td>
<td>17924,47</td>
<td>53778,83</td>
</tr>
<tr>
<td>56</td>
<td>6311,60</td>
<td>21038,46</td>
<td>63115,99</td>
</tr>
<tr>
<td>64</td>
<td>9560,65</td>
<td>31868,51</td>
<td>95606,51</td>
</tr>
<tr>
<td>72</td>
<td>12100,27</td>
<td>40333,83</td>
<td>121002,69</td>
</tr>
<tr>
<td>80</td>
<td>14938,92</td>
<td>49795,90</td>
<td>149389,29</td>
</tr>
<tr>
<td>88</td>
<td>18075,97</td>
<td>60252,63</td>
<td>180759,73</td>
</tr>
<tr>
<td>96</td>
<td>21511,53</td>
<td>71704,38</td>
<td>215115,30</td>
</tr>
<tr>
<td>104</td>
<td>25245,60</td>
<td>84151,16</td>
<td>252456,02</td>
</tr>
<tr>
<td>112</td>
<td>29279,51</td>
<td>97597,39</td>
<td>292795,09</td>
</tr>
<tr>
<td>120</td>
<td>33611,93</td>
<td>112038,64</td>
<td>336119,31</td>
</tr>
</tbody>
</table>

Virtausnopeus ft/s ja US gallonaa/min

<table>
<thead>
<tr>
<th>v [ft/s]</th>
<th>Q₁₀₀ %, US gallonaa/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>0,02</td>
</tr>
<tr>
<td>1/8</td>
<td>0,06</td>
</tr>
<tr>
<td>1/4</td>
<td>0,13</td>
</tr>
<tr>
<td>3/8</td>
<td>0,37</td>
</tr>
<tr>
<td>1/2</td>
<td>0,84</td>
</tr>
<tr>
<td>3/4</td>
<td>1,49</td>
</tr>
<tr>
<td>1</td>
<td>2,33</td>
</tr>
<tr>
<td>1,25</td>
<td>3,82</td>
</tr>
<tr>
<td>1,5</td>
<td>5,98</td>
</tr>
<tr>
<td>2</td>
<td>9,34</td>
</tr>
<tr>
<td>2,5</td>
<td>15,78</td>
</tr>
<tr>
<td>3</td>
<td>23,90</td>
</tr>
<tr>
<td>4</td>
<td>37,35</td>
</tr>
<tr>
<td>5</td>
<td>58,35</td>
</tr>
<tr>
<td>6</td>
<td>84,03</td>
</tr>
<tr>
<td>8</td>
<td>149,39</td>
</tr>
<tr>
<td>10</td>
<td>233,41</td>
</tr>
<tr>
<td>12</td>
<td>336,12</td>
</tr>
<tr>
<td>14</td>
<td>457,59</td>
</tr>
<tr>
<td>16</td>
<td>597,54</td>
</tr>
<tr>
<td>18</td>
<td>756,26</td>
</tr>
<tr>
<td>20</td>
<td>933,86</td>
</tr>
<tr>
<td>24</td>
<td>1344,50</td>
</tr>
<tr>
<td>28</td>
<td>1829,92</td>
</tr>
<tr>
<td>32</td>
<td>2390,23</td>
</tr>
<tr>
<td>36</td>
<td>3025,03</td>
</tr>
<tr>
<td>40</td>
<td>3734,50</td>
</tr>
<tr>
<td>48</td>
<td>5377,88</td>
</tr>
<tr>
<td>56</td>
<td>6311,60</td>
</tr>
<tr>
<td>64</td>
<td>9560,65</td>
</tr>
<tr>
<td>72</td>
<td>12100,27</td>
</tr>
<tr>
<td>80</td>
<td>14938,92</td>
</tr>
<tr>
<td>88</td>
<td>18075,97</td>
</tr>
<tr>
<td>96</td>
<td>21511,53</td>
</tr>
<tr>
<td>104</td>
<td>25245,60</td>
</tr>
<tr>
<td>112</td>
<td>29279,51</td>
</tr>
<tr>
<td>120</td>
<td>33611,93</td>
</tr>
</tbody>
</table>
8.5 Mittaustarkkuus (lukuun ottamatta TIDALFLUX)

Perusolosuhteet
- Väliaine: vesi
- Lämpötila: +20°C / +68°F
- Paine: 1 bar / 14,5 psi
- Tulo-osa: ≥ 5 DN

<table>
<thead>
<tr>
<th>DN [mm]</th>
<th>DN [tuumaa]</th>
<th>Tarkkuus</th>
<th>Käyrä</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIFLUX 5300</td>
<td>10...100</td>
<td>0,15 % mv:stä + 1 mm/s</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>150...300</td>
<td>0,2 % mv:stä + 1 mm/s</td>
<td>2</td>
</tr>
<tr>
<td>OPTIFLUX 2300 / 4300 / 6300</td>
<td>10...1600</td>
<td>0,2 % mv:stä + 1 mm/s</td>
<td>2</td>
</tr>
<tr>
<td>OPTIFLUX 1300</td>
<td>10...150</td>
<td>0,3 % mv:stä + 2 mm/s</td>
<td>3</td>
</tr>
<tr>
<td>OPTIFLUX 2300 / 4300</td>
<td>>1600</td>
<td>0,3 % mv:stä + 2 mm/s</td>
<td>3</td>
</tr>
<tr>
<td>OPTIFLUX 4300 / 5300 / 6300</td>
<td>>10</td>
<td>0,3 % mv:stä + 2 mm/s</td>
<td>3</td>
</tr>
<tr>
<td>OPTIFLUX 7300</td>
<td>25...100</td>
<td>≥ 1 m/s / 3,3 ft/s: ±0,5 % mv:stä</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1...4</td>
<td>v < 1 m/s / 3,3 ft/s: ±0,5 % mv:stä + 5 mm/s</td>
<td></td>
</tr>
<tr>
<td>WATERFLUX 3300</td>
<td>25...600</td>
<td>0,2 % mv:stä + 1 mm/s</td>
<td>2</td>
</tr>
</tbody>
</table>

X [m/s]: virtausnopeus
Y [%]: todellisen mitatun arvon poikkeama [mv]
8.6 Mittaustarkkuus (vain TIDALFLUX)

Osittain täytettyjen putkien ja kokonaan täytettyjen putkien mittaustarkkuudet poikkeavat toisistaan. Näissä käyrissä oletetaan, että täyden asteikon arvon nopeus on vähintään 1 m/s [se on myös kalibroinnin vakioarvo, koska se johtaa tarkimpaan mittaukseen].

<table>
<thead>
<tr>
<th>Suurin mittausvirhe</th>
<th>Liittyvä tilavuusvirtaan (mv = mitattu arvo, FS = täysi ala)</th>
<th>Nämä arvot liittyvät pulssi- / taajuuslähtöön</th>
<th>Virran ulostulon tyyppilinjan poikkeama on ±10 μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osittain täytetty:</td>
<td>v ≥ 1 m/s / 3,3 ft/s koko ala: ≤ 1% FS:stä</td>
<td>Kokonaan täytetty:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v ≥ 1 m/s / 3,3 ft/s: ≤ 1% / mv</td>
<td>v < 1 m/s / 3,3 ft/s: ≤ 0,5 % mv:stä + 5 mm/s / 0,2 tuumaa/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v < 1 m/s / 3,3 ft/s: ≤ 0,5% mv:stä + 5 mm/s / 0,2 tuumaa/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimitaso: 10% sisähalkaisijasta

Kuva 8-2: Mittausarvon suurin mittausvirhe
Osittain täytetyt putket

Kuva 8-3: Mittausarvon suurin mittausvirhe (\(=Y\))

1. Ilmoitettu työskentelyalue
9.1 Yleinen kuvaus

Vapaasti käytettävä HART®-protokolla on integroitu signaalinmuuntimeen tiedonsiirtoa varten.

Laitteet, jotka tukevat HART®-protokollaa, luokitellaan joko käyttö- tai kenttälaitteiksi. Käyttölaitteissa (päälaitte) käytetään sekä manuaalisia ohjauskeskiköitä (toissijainen päälaitte) että PC-tuettuja työasemia (ensisijainen päälaitte) esimerkiksi ohjauskeskuksessa.

HART®-kenttälaitteet sisältävät mittausanturit, signaalinmuuntimet ja toimilaitteet. Kenttälaitteet ovat 2-4-johtoisia luonnosta vaarattomia versioita, jotka on tarkoitettu käytettäväksi vaarallisilla alueilla.

HART®-tiedot ovat päällekkäin analogisen 4...20 mA signaalin kanssa FSK-modeemin kautta. Näin kaikki liitetty laitteet voivat kommunikoida digitaalisesti keskenään HART®-protokollan kautta samalla kun analogisia signaaleja siirretään.

9.2 Ohjelmistoversio

TIETOJA!

Alla olevassa taulukossa ”X” on paikkamerkki mahdollisille aakkosnumeerisille yhdistelmille, riippuen saatavilla olevasta versiosta. Alla olevassa taulukossa ”X” on paikkamerkki mahdollisille aakkosnumeerisille yhdistelmille, riippuen saatavilla olevasta versiosta.

<table>
<thead>
<tr>
<th>Julkaisupäivä</th>
<th>Sähköinen versio</th>
<th>SW.REV.UI</th>
<th>SW.REV.MS</th>
<th>HART®</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.x.x</td>
<td>1.x.x</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.x.x</td>
<td>1.x.x</td>
<td>1</td>
</tr>
<tr>
<td>13.5.2008</td>
<td>3.2.0x</td>
<td>3.x.x</td>
<td>2.x.x / 3.x.x</td>
<td>2</td>
</tr>
</tbody>
</table>

HART®-tunnistuskoodit ja -versionumerot

<table>
<thead>
<tr>
<th>Valmistajan tunnus:</th>
<th>69 (0x45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laite:</td>
<td>227 (0xE3)</td>
</tr>
<tr>
<td>Laiteversio:</td>
<td>2</td>
</tr>
<tr>
<td>DD-versio:</td>
<td>1, 2</td>
</tr>
<tr>
<td>HART® yleinen versio:</td>
<td>5</td>
</tr>
<tr>
<td>FC 375/475 järjestelmä SW.Rev.:</td>
<td>≥ 1,8</td>
</tr>
<tr>
<td>AMS-versio:</td>
<td>≥ 7,0</td>
</tr>
<tr>
<td>PDM-versio:</td>
<td>≥ 6,0</td>
</tr>
<tr>
<td>FDT-versio:</td>
<td>≥ 1,2</td>
</tr>
</tbody>
</table>
9.3 Kytkentävaihtoehdot

Signaalimuunnin on 4-johtiminen laite, jossa on 4...20 mA:n mA-ulostulo ja HART®-rajan. Versiosta, asetuksista ja johdotuksesta riippuen mA-ulostuloa voidaan käyttää passiivisena tai aktiivisena ulostulona.

- **Multi-Drop-tila on tuettu**
 Multi-Drop-viestintäjärjestelmässä on kytetty yli 2 laitetta yhteiseen siirtokaapeliin.

- **Sarjatilaa ei tueta**
 Alisteisen laitteen sarjatila siirtää syklisiä ennalta määriteltyjä vastaussähkeitä nopeampaa tiedonsiirtoa varten.

TIETOJA!

Tarkempia tietoja HART®-signaalimuunnimesta on osiossa "Sähköliitäntä".

HART®-tiedonsiirtoa voidaan käyttää kahdella tavalla:

- Point-to-Point-liitäntänä ja
- Multi-Drop-liitäntänä 2 johdon liitännällä tai
 Multi-Drop-liitäntänä 3 johdon liitännällä tai
9.3.1 Point-to-Point-liitäntä - analoginen ja digitaalinen tila

Point-to-Point-liitäntä signaalimuuntimen ja HART® Masterin välillä.

Laitteen jännitelähtö voi olla aktiivinen tai passiivinen.

1. Ensisijainen päälaite
2. FSK-modeemi tai HART®-modeemi
3. HART®-signaali
4. Analoginen osoitus
5. Signaalimuuntimien liittimet A [C]
6. Signaalimuuntimien liittimet A- [C-]
7. Signaalimuunnin osoitteella = 0 ja passiivinen tai aktiivinen ulostuloteho
8. Toissijainen Master
9. Laitteiden (alisteiset) virtalähde passiivisella virtalähdöllä
10. Kuorma ≥ 250 Ω (ohmi)
9.3.2 Multi-Drop-liitännä (2 johdon liitännällä)

Multi-Drop-liitännässä voidaan asentaa rinnakkain jopa 15 laitetta (tämä signaalimuunnin ja muita HART®-laitteita).

Laitteiden virtalähtöjen pitää olla passiivisia.
9.3.3 Multi-Drop-liitäntä (3 johdon liitännällä)

1. Ensisijainen päälaite
2. HART®-modeemi
3. HART®-signaalii
4. 2 johdon ulkoiset laitteet (alisteiset laitteet) 4…20 mA, osoitteet > 0, vitasilmukan virroittama
5. Signaalimuuntimien liittimet A (C)
6. Signaalimuuntimien liittimet A- (C-)
7. Aktiivisten tai passiivisten 4 johtimen (alisteisten) laitteiden kytentä 4…20 mA, osoitteet > 0
8. Kuorma ≥ 250 Ω (ohmi)
9. Toissijainen Master
10. Virtalähde
9.4 Tulot/lähdöt ja dynaamiset HART®-muuttujat ja laitemuuttujat

Signaalinmuunnin on saatavilla eri tulo- / lähtöyhdistelmillä.

Liitäntöjen A...D kytkentä dynaamisiin HART®-muuttuihin PV, SV, TV ja 4V riippuu laiteversiosta.

PV = ensisijainen muuttuja; SV = ensisijainen muuttuja; TV = kolmas muuttuja; 4V = neljäs muuttuja

<table>
<thead>
<tr>
<th>Signaalinmuuntimen versio</th>
<th>HART® dynaamin muuttuja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perus I/O, liitännät</td>
<td>PV: A, SV: D, TV: -, 4V: -</td>
</tr>
<tr>
<td>Modulaarinen I/O and Ex i I/O, liitännät</td>
<td>PV: C, SV: D, TV: A, 4V: B</td>
</tr>
</tbody>
</table>

Koodi = laitteen muuttujan koodi

Laitteen muuttujat

<table>
<thead>
<tr>
<th>HART® laitteen muuttuja</th>
<th>Koodi</th>
<th>Tyypi</th>
<th>Selitykset</th>
</tr>
</thead>
<tbody>
<tr>
<td>virtausnopeus</td>
<td>20</td>
<td>lineaarinen</td>
<td>Koskee vain Basic I/O -asetusta.</td>
</tr>
<tr>
<td>tilavuusvirtaus</td>
<td>21</td>
<td>lineaarinen</td>
<td></td>
</tr>
<tr>
<td>massavirtaus</td>
<td>22</td>
<td>lineaarinen</td>
<td></td>
</tr>
<tr>
<td>johtokyky</td>
<td>24</td>
<td>lineaarinen</td>
<td></td>
</tr>
<tr>
<td>käämin lämpötila</td>
<td>23</td>
<td>lineaarinen</td>
<td></td>
</tr>
<tr>
<td>laskuri 1 [C]</td>
<td>6</td>
<td>laskuri</td>
<td>Koskee vain asetuksia Modular I/O ja Ex i I/O.</td>
</tr>
<tr>
<td>laskuri 1 [B]</td>
<td>13</td>
<td>laskuri</td>
<td>Koskee vain asetuksia Modular I/O ja Ex i I/O.</td>
</tr>
<tr>
<td>laskuri 2 [D]</td>
<td>14</td>
<td>laskuri</td>
<td></td>
</tr>
<tr>
<td>laskuri 3 [A]</td>
<td>12</td>
<td>laskuri</td>
<td>Koskee vain asetuksia Modular I/O ja Ex i I/O.</td>
</tr>
<tr>
<td>diagnoosiarvo</td>
<td>25</td>
<td>lineaarinen</td>
<td>Toiminta ja saatavuus riippuu diagnoosiarvon asetuksesta.</td>
</tr>
</tbody>
</table>
Virran ja/ tai taajuuden lineaarisiin analogialähtöihin kytkettyjen dynaamisten muuttujien määrittäminen tapahtuu valitsemalla lineaarinen mittaus näille lähdoille signaalimuuntimen asiaankuuluvan toiminnon alla. Tästä seuraa, että virta- tai taajuuslähtöön kytketyt dynaamiset muuttujat voidaan määrittää vain lineaarisille HART®-laitemuuttujille.

Dynaaminen HART®-muuttuja PV on aina kytketty HART®-lähtövirtaan, joka on esim. määritetty tilavuusvirtaan.

Laskurin laitemuuttujaa ei voi täten määrittää dynaamiseen muuttujaan PV koska PV on aina kytketty HART®-ulostulotehoon.

Tällaisia korrelaatioita ei ole dynaamisille muuttujille, joita ei ole liitetty lineaarisin analogilähtöihin.

Laskurin laitemuuttujat voidaan määrittää vain dynaamisille muuttujille SV, TV ja 4V, jos kytketty ulostulo ei ole virta tai taajuuslähtö.

9.5 Peruskokoonpanon parametrit

On parametreja, kuten laskuri 1...2 (valinnainen 3) ja valikoima diagnoosiarvoja, jotka vaativat laitteen lämminkäynnistysten tietojen muutoksen jälkeen, jotta esimerkiksi riippuvaisia laitteen parametreja voidaan päivittää ennen kuin muita parametreja voidaan kirjoittaa.

Riippuen HART®-isäntäjärjestelmän ominaisuuksista esim. online-/offline-tila, näitä parametreja voidaan käsitellä erilailta. Katso tarkempia tietoja seuraavasta jaksosta.
9.6 Field Communicator 375/475 (FC 375/475)

9.6.1 Asennus

Field Communicatorissa pitää olla järjestelmäkortti “Easy Upgrade Option” -valinnalla. Lisätietoja on Field Communicatorin käyttöohjeessa.

9.6.2 Käyttö

TIETOJA!
Katso tarkempia tietoja liitteestä A, Basic DD:n valikkopuu.

Signaalimuuntimen käyttäminen Field Communicatorin avulla on hyvin samankaltaista kuin manuaalisen laitteen käyttäminen näppäimistön avulla.

Rajoitus: laitteen palveluvaiheparametreja ei tueta ja simulointi on mahdollista vain virtalähdöille. Kunkin parametrin online-ohje sisältää toiminnan numeron viitteeksi paikallisen laitteen näytölle.

Laskutusmittauksen parametrisuojaus on sama kuin laitteen paikallisella näytöllä. Muita erityisiä suojaavia toimintoja, kuten pika-asetusvalikon salasanoja ja asetusvalikkoa ei tueta HARTissä®.

Field Communicator tallentaa aina koko määryyksen AMS:n vaihtoa varten, katso liite A. Field Communicator huomioi kuitenkin vain osittaisen parametriasetuksen offline-kokoonpanossa ja lähetettäessä laitteelle (kuten vanha HART® Communicator 275:n perusmääritys).

9.6.3 Peruskokoonpanon parametrit

9.7 Asset Management Solutions (AMS®)

9.7.1 Asennus

Lisätietoja asennuksesta asennussarjalla on "AMS Intelligent Device Manager Books Online" -osiossa "Basic Functionality / Device Information / Installing Device Types".

TIETOJA!
Lue "readme.txt", joka sisältyy myös asennussarjaan.

9.7.2 Käyttö

TIETOJA!
Lisätietoja on liitteen B AMS®:n valikkopuuta koskevassa kohdassa.

AMS®-vaatimuksista ja - sopimuksista johtuen signaalinmuuntimen käytössä AMS®:llä ja paikallisella näppäimistöllä on eroja. Palveluvalikkoparametreja ei tueta ja simulointi on mahdollista vain mA-ulostuloille. Kunkin parametrin online-ohje sisältää toiminnan numeron viitteeksi paikallisen laitteen näytölle.

Laskutusmittauksen parametrisuojaus on sama kuin laitteen paikallisella näytölä. Muita erityisiä suojaavia toimintoja, kuten pika-asetusvalikon salasanajoa ja asetusvalikkoa ei tueta HARTissa®.

9.7.3 Peruskokoonpanon parametrit

Online-tilassa laskurin ja diagnoosiarvon mittaukset voidaan muuttaa käytännöllä peruskokoonpanovalikon asiaankuuluvia menetelmiä. Offline-tilassa, nämä parametrit ovat vain luku -muotoisia.
9.8 Field Device Manager (FDM)

Field Device Manager (FDM) on Honeywellin tietokoneohjelma, jolla määritetään HART®, PROFIBUS ja Foundation Fieldbus -laitteet. Laitteen kuvauksilla (DD) integroidaan eri laitteita FDM:ään.

9.8.1 Asennus

Jos signaalinmuuntimen laitteen kuvausta ei ole vielä asennettu FDM-järjestelmään, laitteen kuvaus vaaditaan binäärimuodossa ja ne voidaan ladata verkkosivulta tai CD ROM-levyltä.

Katso FDM-käyttöohjeen DD.n hallintaan liittyvästä osasta tietoa laitteen kuvausten asentamisesta binäärimuodossa.

9.8.2 Käyttö

TIETOJA!
Katso tarkempia tietoja liitteestä A, Basic DD:n valikkopuu.

Signaalinmuuntimen käyttö Field Device Managerin kautta on hyvin samanlaista kuin manuaalinen laitteen ohjaus näppäimistöllä.

Rajoitus: laitteen palveluvalikkoparametreja ei tueta ja simulointi on mahdollista vain virtalähdöille. Kunkin parametrin online-ohje sisältää toiminnan numeron viitteeksi paikallisen laitteen näytölle.

Laskutusmittauksen parametrisuojaus on sama kuin laitteen paikallisella näytöllä. Muita erityisiä suojaavia toimintoja, kuten pika-asetusvalikon salasanoja ja asetusvalikkoa ei tueta HARTissa®.

9.9 Process Device Manager (PDM)

The Process Device Manager (PDM) is a Siemens PC program designed to configure HART® and PROFIBUS devices. Laitteen kuvauksilla (DD) integroidaan eri laitteita PDM:ään.

9.9.1 Asennus

Jos signaalinmuuntimen laitteen kuvausta ei ole vielä asennettu PDM-järjestelmään, HART® PDM -asennussarja vaaditaan signaalinmuuntimelle. Se on ladattavissa verkkosivuilta tai CD ROM -levyltä.

Lisätietoja asennuksesta PDM V 5.2:n kanssa on PDM-käyttöohjeen kohdassa 11.1 - Install device / Integrate device into SIMATIC PDM with Device Install.

Lisätietoja asennuksesta PDM V 6.0:n kanssa on PDM-käyttöohjeen kohdassa 13 - Integrating devices.

Lue ”readme.txt”, joka sisältyy myös asennussarjaan.
9.9.2 Käyttö

TIETOJA!
Katso tarkempia tietoja liitteestä C, PDM:n valikkopuu.

Johtuen PDM-vaatimuksista ja sopimuksista, on eroja käytettäessä signaalimuunninta PDM:ää ja paikallisella näppäimistöllä. Palveluvalikkoparametreja ei tueta ja simulointi on mahdollista vain virtalähöille. Kunkin parametrin online-ohje sisältää toiminnan numeron viitteeksi paikallisen laitteen näytölle.

Laskutusmittauksen parametrisuojaus on sama kuin laitteen paikallisella näytöllä. Muita erityisiä suojaavia toimintoja, kuten pika-asetusvalikon salasanoja ja asetusvalikkoa ei tueta HARTissa®.

9.9.3 Peruskokoanparametrik

Laskurin mittaukset ja diagnoosiarvot voidaan asettaa suoraan PDM-offlinetaulukossa. Riippuvaisen yksikön parametrit päivitetään automaattisesti. Automaattinen päivitys ei ole kuitenkaan mahdollista PDM parametritaulukon online-valintaikkunoissa.
9.10 Field Device Tool / Device Type Manager (FDT / DTM)

9.10.1 Asennus

9.10.2 Käyttö

Signaalinmuuntimen käyttö DTM:n kautta on hyvin samanlaista kuin manuaalinen laitteen ohjaus näppäimistöllä. Katso myös paikallisen laitteen näyttö.

9.11 Liite A: HART® Basic-DD valikkopuu

TIETOJA!
Seuraavan taulukon numerointi voi vaihdella signaalinmuuntimen version mukaan.

Seuraavien taulukoiden lyhenteet:

- **Opt** Valinnainen, riippuu laiteversiosta ja määryyksestä
- **Rd** Vain luku
- **Cust** Huoltajuuslukko-suojaus
- **Loc** Paikallinen, vaikuttaa vain DD-isännän näkymiin
9.11.1 Yleiskuvaus, perus-DD valikkopuu (sijainnit valikkopuussa)

<table>
<thead>
<tr>
<th>1 dynaaminen muuttuja</th>
<th>1 mitatut arvot</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 dynaaminen muuttuja</td>
<td>2 IO (tulot/lähdöt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 pika-asetukset</th>
<th>1 kieli</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 pika-asetukset</td>
<td>2 positio</td>
</tr>
<tr>
<td>3 pika-asetukset</td>
<td>3 nollaus</td>
</tr>
<tr>
<td>4 pika-asetukset</td>
<td>4 virta ulostulot</td>
</tr>
<tr>
<td>5 pika-asetukset</td>
<td>5 digitaaliset ulostulot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 testi</th>
<th>1 simulointi</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 testi</td>
<td>2 tiedot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 asetukset</th>
<th>1 perusasetukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 asetukset</td>
<td>1 kalibrointi</td>
</tr>
<tr>
<td>4 asetukset</td>
<td>2 suodatus</td>
</tr>
<tr>
<td>4 asetukset</td>
<td>3 testaus</td>
</tr>
<tr>
<td>4 asetukset</td>
<td>4 tiedot</td>
</tr>
<tr>
<td>4 asetukset</td>
<td>5 anturin rajat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 I/O</th>
<th>1 lähön toiminta</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 I/O</td>
<td>2 [liitännät] A</td>
</tr>
<tr>
<td>2 I/O</td>
<td>3 [liitännät] B</td>
</tr>
<tr>
<td>2 I/O</td>
<td>4 [liitännät] C</td>
</tr>
<tr>
<td>2 I/O</td>
<td>5 [liitännät] D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 I/O laskuri</th>
<th>1 laskuri 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 I/O laskuri</td>
<td>2 laskuri 2</td>
</tr>
<tr>
<td>3 I/O laskuri</td>
<td>3 laskuri 3 Opt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 I/O HART</th>
<th>1 PV on Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 I/O HART</td>
<td>2 SV on</td>
</tr>
<tr>
<td>4 I/O HART</td>
<td>3 TV on</td>
</tr>
<tr>
<td>4 I/O HART</td>
<td>4 4V on</td>
</tr>
<tr>
<td>4 I/O HART</td>
<td>5 D/A viritys</td>
</tr>
<tr>
<td>4 I/O HART</td>
<td>6 sovella arvoja</td>
</tr>
<tr>
<td>4 I/O HART</td>
<td>7 HART yksiköt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 laite</th>
<th>1 laitteen tiedot</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 laite</td>
<td>2 näyttö</td>
</tr>
<tr>
<td>5 laite</td>
<td>3 1. mittaussivu</td>
</tr>
<tr>
<td>5 laite</td>
<td>4 2. mittaussivu</td>
</tr>
<tr>
<td>5 laite</td>
<td>5 piirturi</td>
</tr>
<tr>
<td>5 laite</td>
<td>6 erikoistoiminnat</td>
</tr>
<tr>
<td>5 laite</td>
<td>7 yksikköä (laita)</td>
</tr>
<tr>
<td>5 laite</td>
<td>8 HART</td>
</tr>
<tr>
<td>5 laite</td>
<td>9 piirilevyn tiedot</td>
</tr>
</tbody>
</table>
9.11.2 Basic-DD valikkopuu (asetusten tiedot)

1 dynaaminen muuttuja

| 1 mitatut arvot | 1 tilavuusvirtaus / 2 massavirtaus / 3 virtausnopeus / 4 johtavuus / 5 käämin lämpötila / 6 laskuri 1 Opt / 7 laskuri 2 Opt / 8 laskuri 3 Opt / 9 diagnoosiarvo Opt |
| 2 lähdöt / tulot | 1 A Opt / 2 % alue A Opt / 3 B Opt / 4 % alue B Opt / 5 C Opt / 6 % alue C Opt / 7 D Opt / 8 % alue D Opt |

2 pika-asetukset

1 kieli	-
2 positio	-
3 nollaus	1 kuittaa häiriöt / 2 nollaa laskuri 1 Opt / 3 nollaa laskuri 2 Opt / 4 nollaa laskuri 3 Opt
4 virta ulostulot	1 mittaus A/C Cust / 2 yksikkö Cust / 3 alue min A/C Cust / 4 alue enint. A/C Cust / 5 kynysarvo Cust / 6 lfc kynnysarvo Cust / 7 vastaika Cust
5 digitaaliset ulostulot	1 mittaus D Opt, Cust / 2 pulssin yksikkö Opt, Cust / 3 arvo p. pulssi D Opt, Cust / 4 kynysarvo Cust / 5 lfc kynnysarvo Cust / 6 lfc kynnysarvo Cust

3 testi

| 1 simulointi | 1 simul. virta / taajuus A Opt / 2 simul. virta / taajuus B Opt / 3 simul. virta C Opt / 4 simul. taajuus D |
| 2 tiedot | 1 C numero / 2 prosessitulon tiedot / 3 laitteen tiedot / 4 näytön tiedot |

4 asetukset

1 perusasetukset	1 kalibrointi	1 autom. nollapisteen kalibrointi Cust / 2 nollapiste kalibrointi Cust / 3 koko Cust / 4 GK-valinta Cust / 5 GK / GKH Opt, Cust / 6 GKL Opt, Cust / 7 käämin vastus Rsp Cust / 8 tiheys Cust / 9 kohleet johtavuus Cust / 10 EF sähkökerroin Cust / 11 elektrodien määrä Cust / 12 magnetointitaajuus Cust / 13 valitse asettuminen Cust / 14 asettumisaika Opt Cust / 15 verkkotaajuus Cust
2 suodatus	1 rajoitus min Cust / 2 rajoitus enint. Cust / 3 virtaussuunta Cust / 4 vasteaika Cust / 5 signaalin suodatus Cust / 6 pulssin pituus Opt, Cust / 7 pulssin rajoitus Opt, Cust / 8 kohinasuodatin Cust / 9 kohinataso Opt, Cust / 10 kohinanvaimennus Opt, Cust / 11 lfc kynnysarvo Cust / 12 lfc kynysarvo Cust	
3 testaus	1 tyhjä putki Cust / 2 tyhjän putken raja-arvo Opt, Cust / 3 täysi putki Cust / 4 täyden putken raja Opt, Cust / 5 linearisuus Cust / 6 vahvistus Cust / 7 kääminvirta Cust / 8 virtausprofili Cust / 9 virtausprofiliin raja Opt, Cust / 10 elektrodin kohina Cust / 11 kohinan raja-arvo Opt, Cust / 12 kentän selvittäminen Cust / 13 diagnoosiarvo Rd / 14 valitse diagnoosi	
4 tiedot	1 vuoraus / 2 elektrodimateriaali / 3 sarjanumero, anturi Rd / 4 V nro. anturi Rd / 5 anturin elekt. tiedot	
5 anturin rajat	1 tilavuusvirtaus / 2 massavirtaus / 3 virtausnopeus / 4 johtokyky / 5 käänmin lämpötila	
2 i/O	1 lähdön toiminta / 1 liitännät A Cust / 2 liitännät B Cust / 3 liitännät C Cust / 4 liitännät D Cust	
virta ulostulo Opt	1 alue 0% Cust / 2 alue 100% Cust / 3 laajennettu alue min Cust / 4 laajennettu alue enint. Cust / 5 virheellinen virta Cust / 6 vikatyyppi Cust / 7 mitaus Cust / 8 alue min Cust / 9 alue enint. Cust / 10 polaarisuus Cust / 11 rajoitus min Cust / 12 rajoitus enint. Cust / 13 ifc kynnysarvo Cust / 14 ifc hystereesi Cust / 15 vasteaika Cust / 16 erityistoiminto Cust / 17 rc kynnysarvo Opt, Cust / 18 rc hystereesi Opt, Cust	
taajuus ulostulo Opt	1 pulssimuoto Cust / 2 pulssin pituus Cust / 3 maks, pulssitaajuus Cust / 4 mitaus Cust / 5 alue min Cust / 6 alue enint. Cust / 7 polaarisuus Cust / 8 raja min Cust / 9 rajoitus enint. Cust / 10 ifc kynnysarvo Cust / 11 ifc hystereesi Cust / 12 aikavakio Cust / 13 käänteinen signaali Cust / 14 erityistoiminto Cust / 15 vaihesiirtymä w.r.t. B Opt, Cust / 16 tiedot	
pulssi ulostulo Opt	1 pulssimuoto Cust / 2 pulssin pituus Cust / 3 maks, pulssitaajuus Cust / 4 mitaus Cust / 5 pulssin yksikkö / 6 arvo p. pulssi D / 7 polaarisuus Cust / 8 ifc kynnysarvo Cust / 9 ifc hystereesi Cust / 10 aikavakio Cust / 11 käänteinen signaali Cust / 12 erityistoiminto Cust / 13 vaihesiirtymä w.r.t. B Opt, Cust / 14 tiedot	
tila ulostulo Opt	1 tila / 2 ulostulo A Opt / 2 ulostulo B Opt / 2 ulostulo C Opt / 2 ulostulo D Opt / 3 käänteinen signaali / 4 tiedot	
rajakytkin Opt	1 mitaus / 2 kynnysarvo / 3 hystereesi / 4 napaisuus / 5 vasteaika / 6 käänteinen signaali / 7 tiedot	
sisääntulo Opt	1 tila Cust / 2 käänteinen signaali / 3 tiedot	
3 I/O laskuri

<table>
<thead>
<tr>
<th>Laskuri</th>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 laskuri 1</td>
<td>1 laskurin toiminto<sup>Cust</sup> / 2 mittaus<sup>Cust</sup> / 3 valitsemittaus<sup>Opt, Cust</sup> / 4 lfc kynnysarvo<sup>Cust</sup> / 5 lfc hystereesi<sup>Cust</sup> / 6 aikavakio<sup>Cust</sup> / 7 esiasetusarvo<sup>Opt, Cust</sup> / 8 nollaa laskuri<sup>Opt, Cust</sup> / 9 aseta laskuri<sup>Opt, Cust</sup> / 10 tiedot</td>
</tr>
<tr>
<td>2 laskuri 2</td>
<td>1 laskurin toiminto<sup>Cust</sup> / 2 mittaus<sup>Cust</sup> / 3 valitsemittaus<sup>Opt, Cust</sup> / 4 lfc kynnysarvo<sup>Cust</sup> / 5 lfc hystereesi<sup>Cust</sup> / 6 aikavakio<sup>Cust</sup> / 7 esiasetusarvo<sup>Opt, Cust</sup> / 8 nollaa laskuri<sup>Opt, Cust</sup> / 9 aseta laskuri<sup>Opt, Cust</sup> / 10 tiedot</td>
</tr>
<tr>
<td>3 laskuri 3<sup>Opt</sup></td>
<td>1 laskurin toiminto<sup>Cust</sup> / 2 mittaus<sup>Cust</sup> / 3 valitsemittaus<sup>Opt, Cust</sup> / 4 lfc kynnysarvo<sup>Cust</sup> / 5 lfc hystereesi<sup>Cust</sup> / 6 aikavakio<sup>Cust</sup> / 7 esiasetusarvo<sup>Opt, Cust</sup> / 8 nollaa laskuri<sup>Opt, Cust</sup> / 9 aseta laskuri<sup>Opt, Cust</sup> / 10 tiedot</td>
</tr>
</tbody>
</table>

4 I/O HART

<table>
<thead>
<tr>
<th>I/O</th>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV on<sup>Rd</sup> / 2 SV on / 3 TV on / 4 4V on / 5 D/A trim<sup>Cust</sup> / 6 käytä arvoja<sup>Cust</sup></td>
<td></td>
</tr>
</tbody>
</table>

5 laite

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 laitteen tiedot</td>
</tr>
<tr>
<td>2 näyttö</td>
</tr>
<tr>
<td>3 1. mittaussivu</td>
</tr>
<tr>
<td>4 2. mittaussivu</td>
</tr>
<tr>
<td>5 piirturi</td>
</tr>
<tr>
<td>6 erikoistoiminnot</td>
</tr>
<tr>
<td>7 yksikköä [laite]</td>
</tr>
<tr>
<td>8 HART</td>
</tr>
</tbody>
</table>

6 laitteen tiedot

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 tunniste / 2 C numero<sup>Rd</sup> / 3 laitteen sarjanumero<sup>Rd</sup> / 4 piirikortin sarjanumero<sup>Rd</sup> / 5 SW.REV.MS / 6 piirilevyn tiedot</td>
</tr>
</tbody>
</table>

7 näyttö

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kieli / 2 oletusnäyttö / 3 SW.REV.UIS</td>
</tr>
</tbody>
</table>

8 laite

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 valitse alue / 2 alueen keskus / 3 alue +/− / 4 aikakaha</td>
</tr>
</tbody>
</table>

9 1. mittaussivu

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 toiminto<sup>Cust</sup> / 2 mittaus 1.rivi<sup>Cust</sup> / 3 alue<sup>Cust</sup> / 4 alue enint.<sup>Cust</sup> / 5 rajoitus min <sup>Opt</sup> / 6 rajoitus enint. / 7 lfc kynnysarvo<sup>Cust</sup> / 8 lfc hystereesi<sup>Cust</sup> / 9 aikavakio<sup>Cust</sup> / 10 muoto 1.rivi<sup>Cust</sup> / 11 mittaus 2.rivi<sup>Cust</sup> / 12 muoto 2.rivi<sup>Cust</sup> / 13 mittaus 3.rivi<sup>Cust</sup> / 14 muoto 3.rivi<sup>Cust</sup></td>
</tr>
</tbody>
</table>

10 2. mittaussivu

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 toiminto<sup>Cust</sup> / 2 mittaus 1.rivi<sup>Cust</sup> / 3 alue<sup>Cust</sup> / 4 alue enint.<sup>Cust</sup> / 5 rajoitus min <sup>Opt</sup> / 6 rajoitus enint. / 7 lfc kynnysarvo<sup>Cust</sup> / 8 lfc hystereesi<sup>Cust</sup> / 9 aikavakio<sup>Cust</sup> / 10 muoto 1.rivi<sup>Cust</sup> / 11 mittaus 2.rivi<sup>Cust</sup> / 12 muoto 2.rivi<sup>Cust</sup> / 13 mittaus 3.rivi<sup>Cust</sup> / 14 muoto 3.rivi<sup>Cust</sup></td>
</tr>
</tbody>
</table>

11 piirturi

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 valitse alue / 2 alueen keskus / 3 alue +/− / 4 aikakaha</td>
</tr>
</tbody>
</table>

12 erikoistoiminnot

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 luettele virheet / 2 nollaa virheet / 3 lämmin käynistys</td>
</tr>
</tbody>
</table>

13 7 yksikköä [laite]

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 tilavuusvirtaus<sup>Cust</sup> / 2 massavirtaus<sup>Cust</sup> / 3 virtausnopeus<sup>Cust</sup> / 4 johtokyky<sup>Cust</sup> / 5 lämpötila<sup>Cust</sup> / 6 tilavuus<sup>Cust</sup> / 7 massa<sup>Cust</sup> / 8 tiheys<sup>Cust</sup></td>
</tr>
</tbody>
</table>

14 HART

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 osoite</td>
</tr>
<tr>
<td>2 viesti</td>
</tr>
<tr>
<td>3 kuvaus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funktio</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 yksikkö [HART]</td>
</tr>
<tr>
<td>5 muodot [HART]</td>
</tr>
<tr>
<td>6 virtausnopeus</td>
</tr>
<tr>
<td>7 johtokyky</td>
</tr>
<tr>
<td>8 lämpötila</td>
</tr>
<tr>
<td>9 laskuri 1</td>
</tr>
<tr>
<td>10 7 laskuri 2</td>
</tr>
<tr>
<td>11 8 laskuri 3<sup>Opt</sup></td>
</tr>
<tr>
<td>12 9 diagnoosiarvo</td>
</tr>
<tr>
<td>6 laitteen tiedot</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7 johdannot</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8 päänollaus</td>
</tr>
<tr>
<td>9 latauksen valmistelu</td>
</tr>
<tr>
<td>9 piirilevyn tiedot</td>
</tr>
</tbody>
</table>
9.12 Liite B: HART® AMS®-valikkopuu

Seuraavien taulukoiden lyhenteet:
- **Opt** Valinnainen, riippuu laiteversiosta ja määrityksestä
- **Rd** Vain luku
- **Cust** Huoltajuuslukko-suojaus
- **Loc** Paikallinen AMS®, koskee vain AMS®-näkymiä

9.12.1 Yleiskuvaus, AMS®-valikkopuu (sijainnit valikkopuussa)

<table>
<thead>
<tr>
<th>asetukset</th>
<th>pika-asetukset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>anturi</td>
</tr>
<tr>
<td></td>
<td>syöttökalibrointi</td>
</tr>
<tr>
<td></td>
<td>syöttösuodatin</td>
</tr>
<tr>
<td></td>
<td>testaus / tiedot</td>
</tr>
<tr>
<td>I/O-liitimet</td>
<td>mA-ulostulo</td>
</tr>
<tr>
<td>A/B/C/D</td>
<td>taajuus ulostulo</td>
</tr>
<tr>
<td></td>
<td>pulssi ulostulo</td>
</tr>
<tr>
<td></td>
<td>tila ulostulo</td>
</tr>
<tr>
<td></td>
<td>rajakytkin</td>
</tr>
<tr>
<td></td>
<td>sisääntulo</td>
</tr>
<tr>
<td>laskuri</td>
<td>laskuri 1</td>
</tr>
<tr>
<td></td>
<td>laskuri 2</td>
</tr>
<tr>
<td></td>
<td>laskuri 3</td>
</tr>
<tr>
<td>laite</td>
<td>laskuri 1</td>
</tr>
<tr>
<td></td>
<td>laskuri 2</td>
</tr>
<tr>
<td></td>
<td>laskuri 3</td>
</tr>
</tbody>
</table>

Vertaa

Tyhjennä offline

Tila
- Yleiskuvaus
- Virhe (laitte)
- Vika (sovellus)
- Määritysten ulkopuolella
- Tarkista pyyntö & tiedot

Prosessin muuttujat
- prosessiarvot
- laskuri
- ulostulot
- laite
- HART

Tarkista laite
- Kalibroinnin hallinta
- Vianmääritys ja testi
9.12.2 AMS®-valikkopuu (asetusten tiedot)

Määritä

<table>
<thead>
<tr>
<th>pika-asetukset</th>
<th>laite</th>
<th>kiel / positio</th>
</tr>
</thead>
<tbody>
<tr>
<td>virta ulostulo A/C</td>
<td>mittaus A/CCust / yksikkö A/CCust / Aikaväli A/CCust / alue enint. A/CCust / alue min A/CCust / lfc kynnysarvoCust / lfc hysteresiCust</td>
<td></td>
</tr>
<tr>
<td>pulssi ulostulo D</td>
<td>mittaus DOpt, Cust / pulssiarvon yksikköOpt, Cust / arvo p. pulssiOpt, Cust / lfc kynnysarvoOpt, Cust / lfc hysteresiOpt, Cust</td>
<td></td>
</tr>
<tr>
<td>anturi</td>
<td>rajat kohteelle...</td>
<td>tilavuusvirtaus</td>
</tr>
<tr>
<td>syöttökalibrointi</td>
<td>nollapiste kalibrointiCust / kokoCust / GK-valintaCust / GK / GKHOpt, Cust / GKLOpt, Cust / käämin vastusRsp / tiheysCust / johtokyyn arvoCust / EF sähkökerroinCust / elektrodi määräCust / magnetointitaajuusCust / valitse asettuminenCust / asettumisaikaOpt, Cust / verkkotaajuusCust</td>
<td></td>
</tr>
<tr>
<td>syöttösuodatin</td>
<td>rajoitus minCust / rajoitus maxCust / virtaussuuntaCust / aikaväliCust / pulssisuodatinCust / pulssin leveysCust / pulssin rajoitusCust / kohinasuojaCust / kohinanCust / kohinanvaimennusOpt, Cust / lfc kynnysarvoCust / lfc hysteresiCust</td>
<td></td>
</tr>
<tr>
<td>testaus / tiedot</td>
<td>testaus</td>
<td>tyhjä putkiCust / tyljän putken raja-arvoOpt, Cust / täysi putkiOpt, Cust / täydent putken rajaOpt, Cust / lineaarisuusCust / vahvistusCust / käämin lämpötilaCust / virtausprofiiliCust / virtausprofiiliin rajaOpt, Cust / elek trodin kohinaCust / kohinan raja-arvoOpt, Cust / kentän selvittäminenCust / diagnoosiarvoRd</td>
</tr>
<tr>
<td>tiedot</td>
<td>vuoraisuus / elek trodimateriaali / sarjanumero, anturiRd / V nro. anturiRd</td>
<td></td>
</tr>
</tbody>
</table>
| | rajakytkin Opt | mittaus / kynnysarvo / hystereesi / napaisuus / vasteaika / käänteinen signaali
| | sisääntulo Opt | tila Cust / käänteinen signaali /
| laskuri | laskuri 1 | toiminto Cust / mittaus Opt, Cust / lfc kynnys Opt, Cust / lfc hystereesi Opt, Cust / vasteaika Opt, Cust / esiasetusarvo Opt, Cust
| | laskuri 2 |
| | laskuri 3 Opt |
| laite | laitteen tiedot | tunnistie / C numero Rd / laitteen sarjanumero. Rd / piirikortin sarjanumero Rd
| | näyttö | kielit / oletusnäyttö Cust
| | yksikkö | tilavuusvirtaus Cust / massavirtaus Cust / virtausnopeus Cust / johdokyky Cust / lämpötila Cust / tilavuus Cust / massa Cust / tiheys Cust
| 1. ja 2. mittaussivu | piirturi | toiminto Cust / mittaus rivillä 1 Cust / alue min Cust / alue enint. Cust / rajoitus min / rajoitus enint. / lfc kynnysarvo / lfc hystereesi / vasteaika / desimaalien määrä 1 / mittaus rivillä 2 Cust / desimaalien määrä 2 Cust / mittaus rivillä 3 Cust / desimaalien määrä 3 Cust / alue +/-
| piirturi | valitse alue / alueen keskus / alue +/- / aikaskaala
Vertaa ja tyhjennä offline

Tila

<table>
<thead>
<tr>
<th>Yleiskuvaus</th>
<th>Vakio</th>
<th>Päämuuttuja raajon ulkopuolelle</th>
<th>Ei-päämuuttuja raajon ulkopuolelle</th>
<th>Päämuuttujan analoginen lähtö kiinteä</th>
<th>Päämuuttujan analoginen lähtö kiinteä</th>
<th>Kyölmäköynnys</th>
<th>Kenttäkäynnin virhe</th>
<th>Asetukset muuttuneet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virhe (laite)</td>
<td>F virhe laitteessa / F IO1 / F IO2 / F asetukset / F näyttö / F elektroninen anturi / F yleinen anturi / F paikallinen anturi / F paikallinen kenttävirto / F virta sisään-ulostulo A / F virta sisään-ulostulo B / F virta ulostulo C / F ohjelmiston käyttöliittymä / F ohjelmistoasetukset / F ohjelmiston tunnistus / F RAM/RAM virhe IO1 / F RAM/RAM virhe IO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vika (sovellus)</td>
<td>F sovellusvirhe / F tyhjä putki / F liian suuri virtausnopeus / F kenttätaajuus liian suuri / F DC pokkeama / F avoin piiri A / F avoin piiri B / F avoin piiri C / F alue liittynyt A virto / F alue liittynyt B virto / F alue liittynyt C virto / F alue liittynyt A pulssi / F alue liittynyt B pulssi / F alue liittynyt C pulssi / F aktiiviset asetukset / F tehdasasetukset / F värmuuskopio 1 asetukset / F värmuuskopion 2 asetukset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Määritysten ulkopuolella</td>
<td>S määritysten ulkopuolella / S putki ei täynnä / S putki tyhjä / S linearisuus / S virtausprofiili / S elektrodein kohina / S vähistusvirhe / S elektrodein symmetria / S kenttäkäämi rikki / S kenttäkäämi silloittu / S kenttävirran pokkeama / S kenttätaajuus liian suuri / S elektroniinin lämpötila / S käämin lämpötila / S laskuri ylittynyt 1 / S laskuri ylittynyt 2 / S laskuri 3 ylittynyt / S pohjakortti viallinen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarkista pyyntö & tiedot</td>
<td>tarkista pyyntö</td>
<td>C tarkastuksia käynnissä</td>
<td>C testianturi</td>
<td>tiedot</td>
<td>laskuri 1 pysäytetty / laskuri 2 pysäytetty / laskuri 3 pysäytetty / jännitekatkoo / ohjaustulo A aktiivinen / ohjaustulo B aktiivinen / ylialueen näyttö 1 / ylialueen näyttö 2 / pohjakortin anturi / pohjakortin asetukset / pohjakortin pokkeama / opitinen liitintä</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prosessin muuttujat

<table>
<thead>
<tr>
<th>prosessiarvot</th>
<th>tilavuusvirta / massavirta / virtausnopeus / johtavuus / käämin lämpötila / diagnoosiarvo Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>laskuri</td>
<td>laskuri 1 Opt / laskuri 2 Opt / laskuri 3 Opt</td>
</tr>
<tr>
<td>laite</td>
<td>posito Rd / kuvaus Rd</td>
</tr>
<tr>
<td>HART</td>
<td>kyselyosoite Rd / laitetunnus Rd</td>
</tr>
</tbody>
</table>

Tarkista laite

Kalibroinnin hallinta

Vianmääritys ja testi

| simulointi A Opt, Cust / simulointi B Opt, Cust / simulointi C Opt, Cust / simulointi D Opt, Cust / piirilevyn tiedot |

Kalibroi

| autom. nollapisteen kalibroitinti Cust / D/A trim Cust / sovella arvoja Cust |

Nollaus

| nollaa virheet / nollaa asetus muutettu -merkintä / päänollaus / lämmin käynnistys / nollaa laskuri 1 Cust / aseta laskuri 1 Cust / nollaa laskuri 2 Cust / aseta laskuri 2 Cust / nollaa laskuri 3 Cust / aseta laskuri 3 Cust |

Perusasetukset

| valitse mitlauslaskuri 1 / valitse mitlauslaskuri 2 / valitse mitlauslaskuri 3 Opt / valitse diagnoosiarvo |

Nimeä uudelleen

| Poista määritys |

Määritä / korvaa

Kirjausketju

Tallenna manuaalinen tapahtuma

Piirrustukset / Huomautuksia

Ohje…
9.13 Liite C: HART® valikkopuu PDM:lle

Seuraavien taulukoiden lyhenteet:
- Opt Valinnainen, riippuu laiteversiosta ja määritkyksestä
- Rd Vain luku
- Cust Huoltajuus-lukko-suojauk
- Loc Paikallinen PDM, koskee vain PDM-näkymiä

9.13.1 Yleiskuvaus, PDM-valikkopuu (sijainnit valikkopuussa)

<table>
<thead>
<tr>
<th>Tiedonsiirtopolku</th>
<th>näyttö</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lataa laitteeseen</td>
<td>läskuri</td>
</tr>
<tr>
<td>Lataa kohteeseen PG/PC</td>
<td></td>
</tr>
<tr>
<td>Aseta osoite</td>
<td></td>
</tr>
<tr>
<td>Testi</td>
<td></td>
</tr>
<tr>
<td>Nollaus</td>
<td></td>
</tr>
<tr>
<td>Kalibrointi</td>
<td></td>
</tr>
<tr>
<td>HART</td>
<td></td>
</tr>
</tbody>
</table>

Yleiskuvaus: Valikkonäkymä

<table>
<thead>
<tr>
<th>näyttö</th>
</tr>
</thead>
<tbody>
<tr>
<td>laskuri</td>
</tr>
</tbody>
</table>

Yt-kaavio

<table>
<thead>
<tr>
<th>ulostulot</th>
</tr>
</thead>
<tbody>
<tr>
<td>virta ulostulo/taajuus ulostulo A Opt</td>
</tr>
<tr>
<td>virta ulostulo/taajuus ulostulo B Opt</td>
</tr>
<tr>
<td>virta ulostulo C Opt</td>
</tr>
<tr>
<td>taajuus ulostulo D Opt</td>
</tr>
</tbody>
</table>

Laitteen tila

<table>
<thead>
<tr>
<th>Laite</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART</td>
</tr>
<tr>
<td>Vakio (yleiskuvaus)</td>
</tr>
<tr>
<td>Virhe (laite)</td>
</tr>
<tr>
<td>Vika (sovellus)</td>
</tr>
<tr>
<td>Määritysten ulkopuolella</td>
</tr>
<tr>
<td>Tarkista pyyntö</td>
</tr>
<tr>
<td>Tiedot</td>
</tr>
</tbody>
</table>

Piirilevyn tiedot

<table>
<thead>
<tr>
<th>Työkalupalkki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilapalkki</td>
</tr>
<tr>
<td>Päivityä</td>
</tr>
</tbody>
</table>
Yleiskuvaus: parametritaulukko

<table>
<thead>
<tr>
<th>tunnistus</th>
<th>käyttöyksikkö</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>laite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sisääntulo</th>
<th>kalibrointi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>suodatus</td>
</tr>
<tr>
<td></td>
<td>testaus</td>
</tr>
<tr>
<td></td>
<td>tiedot</td>
</tr>
</tbody>
</table>

mittausrajat

| tilavuusvirtaus |
| massavirtaus |
| virtausnopeus |
| johtokyky |
| käämin lämpötila |

I/O

<table>
<thead>
<tr>
<th>A Opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Opt</td>
</tr>
<tr>
<td>C Opt</td>
</tr>
<tr>
<td>D Opt</td>
</tr>
</tbody>
</table>

laskuri 1

laskuri 2

laskuri 3 Opt

Käyttöliittymä

<table>
<thead>
<tr>
<th>paikallinen näyttö</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ja 2. mittaussivu</td>
</tr>
</tbody>
</table>

piirturi

yksikköä (laitte)

yksiköt (HART)

muodot (HART)
9.13.2 PDM valikkopuu (asetusten tiedot)

Valikkolaite

<table>
<thead>
<tr>
<th>Tiedonsiirtopolku</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lataa laitteeseen</td>
<td></td>
</tr>
<tr>
<td>Lataa kohteeseen PG/PC</td>
<td></td>
</tr>
</tbody>
</table>

Aseta osoite

<table>
<thead>
<tr>
<th>Testi</th>
<th>simulopinti virta ulostulo/taajuus ulostulo A Opt, Cust</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>simulopinti virta ulostulo/taajuus ulostulo B Opt, Cust</td>
</tr>
<tr>
<td></td>
<td>simulopinti virta ulostulo/taajuus ulostulo C Opt, Cust</td>
</tr>
<tr>
<td></td>
<td>simulopinti virta ulostulo/taajuus ulostulo D Opt, Cust</td>
</tr>
</tbody>
</table>

Nollaus

<table>
<thead>
<tr>
<th><kuittaa häiriöt></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><kuittaa asetukset muuttuneet -merkinnät></td>
<td></td>
</tr>
<tr>
<td><päänollaus></td>
<td></td>
</tr>
<tr>
<td><lämmin käynnistys></td>
<td></td>
</tr>
<tr>
<td><nollaa laskuri 1> Cust</td>
<td></td>
</tr>
<tr>
<td><aseta laskuri 1> Cust</td>
<td></td>
</tr>
<tr>
<td><nollaa laskuri 2> Cust</td>
<td></td>
</tr>
<tr>
<td><aseta laskuri 2> Cust</td>
<td></td>
</tr>
<tr>
<td><nollaa laskuri 3> Opt, Cust</td>
<td></td>
</tr>
<tr>
<td><aseta laskuri 3> Opt, Cust</td>
<td></td>
</tr>
</tbody>
</table>

Kalibrointi

autom. nollapisteen kalibrointi Cust	
D/A viritys Cust	
sovella arvoja Cust	

HART

| pyydetyt johdannot Rd / vastausjohdannot | |
| dynaamisten muuttujien asetuksset | PV on Rd / SV on / TV on / 4V on |
Valikkonäkymä

lähetetty

tilavuusvirta / massavirta / virtausnopeus / johtavuus / käämin lämpötila / diagnoosiarvo / laitteen tila

laskuri

laskuri 1 Opt / laskuri 2 Opt / laskuri 3 Opt /

Yt-kaavio

tilavuusvirtaus Opt / massavirtaus Opt

ulostulot

virta ulostulos/tajuus ulostulos A Opt

mitattu arvo Opt / A Opt / % alue A Opt

virta ulostulos/tajuus ulostulos B Opt

mitattu arvo Opt / B Opt / % alue B Opt

virta ulostulos C Opt

mitattu arvo Opt / C Opt / % alue C Opt

taajuus ulostulos D Opt

mitattu arvo Opt / D Opt / % alue D Opt

Laitteen tila

laite

C-numero Rd / laitteen sarjanumero Rd / elektroninen sarjanumero Rd

HART

tunniste / valmistaja Rd / kirjoitussuoja Rd / malli Rd / laitteen tunnus / yleinen versio Rd / laiteversio Rd / ohjelmistoversio Rd / laitteistoversio Rd / päivämäärä Rd / lopullisen kokoospanon numero Rd / anturin sarjanumero Rd

Vakio (yleiskuvaus)

Päämuuttuja rajojen ulkopuolelle

Ei-päämuuttuja rajojen ulkopuolelle

Päämuuttujan analoginen lähtö kiinteä

Päämuuttujan analoginen lähtö kiinteä

Kylmäkäännystys

Asetukset muuttuneet

Kenttälaitteen virhe

Virhe [laite]

F virhe laitteessa / F I01 / F I02 / F asetuksset

F näyttö / F elektroninen anturi / F yleinen anturi / F paikallinen anturi

F paikallinen kenttävirto / F virta sisään-ulostulos A / F virta ulostulos B / F virta ulostulos C / F ohjelmistovirto / F ohjelmistokäyttö / F ojelmistosetukset / F ohjelmiston tunnistus

F RAM/ROM virhe I01 / F RAM/ROM virhe I02

Vika [sovellus]

F sovellusvirhe / F tyhjä putki / F liian suuri virtausnopeus / F kenttätajuus liian suuri / F DC-poikkeama / F avoin piiri A / F avoin piiri B / F avoin piiri C / F alue ylittynyt A / F alue ylittynyt B / F alue ylittynyt C / F alue ylittynyt D / F aktiiviset asetukset / F tehdasasetukset

F aktiviset asetuksset / F tehdasasetukset / F varmuuskopio 1 asetuksset / F varmuuskopio 2 asetuksset

Määrittysten ulkopuolella

S määrittelyksen ulkopuolella / S putki liian suuri virtausnopeus / S kenttätajuus liian suuri

S lineaarisuus / S virtausprofiili / S virtauksen kohina / S määrittelyksen ulkopuolella

S vahvistusvirhe / S elektridimen symmetria / S kenttäkiinnät rikki / S kenttäkiinnät silloitetu / S kenttävirran poikkeama / S kenttätajuus liian suuri / S elektroninen lämpötila

S käämin lämpötila / S laskuri ylittynyt 1 / S laskuri ylittynyt 2 / S laskuri 3 ylittynyt / S pohjakortti viallinen

tarkista pyyntö

C tarkastuksia käynnissä / C testianturi
Piirilevyn tiedot

Työkalupalkki

Tilapalkki

Päivitä

PDM-parametritaulukko

tunnistus

<table>
<thead>
<tr>
<th>käyttöyksikkö</th>
<th>posito / kuvaus / viesti</th>
</tr>
</thead>
<tbody>
<tr>
<td>laite</td>
<td>C-numero Rd / laitteen sarjanumero Rd / elektroninen sarjanumero Rd / valmistaja Rd / malli Rd / laitetunnus Rd / yleinen versio Rd / laiteversio Rd / ohjelmistoversio Rd / laitteistoversio Rd / päivämäärä / topullisen kokoonpanon numero / anturin sarjanumero</td>
</tr>
</tbody>
</table>

sisääntulo

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>testaus</td>
<td>tyhjä putki Cust / tyhjä putken rajoitus Cust / täysi putki Cust / täyden putken rajoitus Cust / lineaarisuus Cust / vahvistus Cust / käämivirta Cust / virtausprofiili Cust / virtausprofiili rajoitus Cust / opt, Cust / elektrodin kohina Cust / elektrodin kohinan rajoitus Opt, Cust / kentän asettuminen Cust / diagnosiasarvo</td>
</tr>
</tbody>
</table>

tiedot

| vuoraus / elektrodimateriaali / sarjanumero, anturi Rd / V nro. anturi Rd |

Mittausrajat kohteelle...

- tilavuusvirtaus
- massavirtaus
- virtausnopeus
- johtokyky
- käämin lämpötila

yläanturin raja Rd / ala-anturin raja Rd / minimialue Rd
<table>
<thead>
<tr>
<th>I/O</th>
<th>liitännät A<sub>Cust</sub> / liitännät B<sub>Cust</sub> / liitännät C<sub>Cust</sub> / liitännät D<sub>Cust</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>A / B / C / D<sup>Opt</sup></td>
<td>virta ulostulo<sup>Opt</sup></td>
</tr>
<tr>
<td></td>
<td>taajuus ulostulo<sup>Opt</sup></td>
</tr>
<tr>
<td></td>
<td>pulssi ulostulo<sup>Opt</sup></td>
</tr>
<tr>
<td></td>
<td>tila ulostulo<sup>Opt</sup></td>
</tr>
<tr>
<td></td>
<td>rajakytkin<sup>Opt</sup></td>
</tr>
<tr>
<td></td>
<td>sisääntulo<sup>Opt</sup></td>
</tr>
<tr>
<td>laskuri</td>
<td>laskuri 1<sup>Opt</sup></td>
</tr>
<tr>
<td></td>
<td>laskuri 2<sup>Opt</sup></td>
</tr>
<tr>
<td></td>
<td>laskuri 3<sup>Opt</sup></td>
</tr>
</tbody>
</table>

Käyttöliittymä

<table>
<thead>
<tr>
<th>paikallinen näyttö</th>
<th>kieli / oletusnäyttö<sup>Opt</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ja 2. mittaussivu</td>
<td>toiminto<sub>Cust</sub> / mittaus 1.rivi<sub>Cust</sub> / mittaus 2.rivi<sub>Cust</sub> / mittaus 3.rivi<sub>Cust</sub> / mittaus<sub>Cust</sub> / alue min<sub>Cust</sub> / alue enint.<sub>Cust</sub> / rajoitus min<sub>Cust</sub> / rajoitus enint. <sub>Cust</sub> / lfc kynnysarvo<sub>Cust</sub> / lfc hystereesi<sub>Cust</sub> / aikakavio<sub>Cust</sub> / muoto 1.rivi / muoto 2.rivi<sub>Cust</sub> / muoto 3.rivi<sub>Cust</sub> / desimaalien määrä 3<sub>Cust</sub></td>
</tr>
<tr>
<td>piirturi</td>
<td>valitse alue / alueen keskus / alue +/- / ajanjakso</td>
</tr>
<tr>
<td>yksikkö [laitte]</td>
<td>yksikkö kohteelle...</td>
</tr>
<tr>
<td></td>
<td>tilavuusvirtaus<sub>Cust</sub> / massavirtaus<sub>Cust</sub> / virtausnopeus / johtokyky / lämpötila / tilavuus<sub>Cust</sub> / massa<sub>Cust</sub> / tiheys<sub>Cust</sub></td>
</tr>
<tr>
<td>yksiköt [HART]</td>
<td>yksikkö kohteelle...</td>
</tr>
<tr>
<td></td>
<td>tilavuusvirtaus<sub>Loc</sub> / massavirtaus<sub>Loc</sub> / virtausnopeus<sub>Loc</sub> / johtokyky<sub>Loc</sub> / käämin lämpötila<sub>/</sub> / laskuri 1<sub>Loc</sub> / laskuri 2<sub>Loc</sub> / laskuri 3<sub>Opt</sub></td>
</tr>
<tr>
<td>muodot [HART]</td>
<td>muodot kohteelle...</td>
</tr>
<tr>
<td></td>
<td>tilavuusvirtaus<sub>Loc</sub> / massavirtaus<sub>Loc</sub> / virtausnopeus<sub>Loc</sub> / johtokyky<sub>Loc</sub> / käämin lämpötila<sub>Loc</sub> / laskuri 1<sub>Loc</sub> / laskuri 2<sub>Loc</sub> / laskuri 3<sub>Opt</sub> / loc / diagnoosiarvo<sub>Opt, Loc</sub></td>
</tr>
</tbody>
</table>
KROHNE – Prosessi-instrumentaatio- ja mittausratkaisut

- Virtaama
- Taso
- Lämpötila
- Paine
- Prosessianalyysi
- Palvelut

Pääkonttori KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Saksa)
Puh.: +49 203 301 0
Faksi: +49 203 301 10389
info@krohne.com

KROHNE-yhteystietojen ja osoitteiden nykyinen luettelo on osoitteessa:
www.krohne.com