pH sensor

The documentation is only complete when used in combination with the relevant documentation for the signal converter.
1 Safety instructions 5

1.1 Intended use ... 5
1.2 Safety instructions from the manufacturer ... 5
1.2.1 Copyright and data protection .. 5
1.2.2 Disclaimer .. 6
1.2.3 Product liability and warranty .. 6
1.2.4 Information concerning the documentation ... 6
1.2.5 Warnings and symbols used ... 7
1.3 Safety instructions for the operator ... 7

2 Device description 8

2.1 Scope of delivery .. 8
2.2 Device description ... 9
2.2.1 pH electrodes .. 9
2.3 Nameplate .. 10

3 Installation 11

3.1 Notes on installation .. 11
3.2 Storage and transport .. 11
3.3 Installation procedure ... 12
3.4 Pre-installation requirements ... 13
3.5 Electrical connection ... 13
3.5.1 Connecting the sensor cable to the signal converter .. 14
3.5.2 Connecting the external temperature sensor ... 15
3.5.3 Connecting the cable to the sensor ... 16
3.6 Calibrating the electrode ... 16
3.7 Installing the sensor .. 17
3.7.1 General installation instructions .. 17
3.7.2 Mounting to a flow-through holder .. 18
3.7.3 Mounting to SENSOFIT IMM 1000 immersion holder ... 19
3.8 Installing an external temperature sensor .. 21
3.9 Examples of a typical measuring point .. 22

4 Operation 23

4.1 Menu mode structure ... 23
4.2 Function tables ... 25
4.2.1 Menu A, quick setup .. 25
4.2.2 Menu B, test .. 26
4.2.3 Menu C, setup .. 27
4.3 Calibration ... 29
4.3.1 Temperature compensation .. 29
4.3.2 Calibrating pH measurement ... 33
4.3.3 Calibration log ... 38
4.4 Troubleshooting .. 38
5 Service

5.1 Maintenance .. 39
 5.1.1 Cleaning ... 39
 5.1.2 Aging and re-calibration .. 39
5.2 Spare parts availability ... 40
5.3 Availability of services .. 40
5.4 Returning the device to the manufacturer ... 41
 5.4.1 General information .. 41
 5.4.2 Form (for copying) to accompany a returned device .. 42
5.5 Disposal ... 42

6 Technical data

6.1 Measuring principle ... 43
 6.1.1 pH measurement .. 43
6.2 Technical data .. 45
6.3 Dimensions .. 47

7 Appendix

7.1 pH as a function of mV ... 49
7.2 pH temperature dependency .. 50

8 Notes

49
Safety instructions

1.1 Intended use

CAUTION!
Responsibility for the use of the measuring devices with regard to suitability, intended use and corrosion resistance of the used materials against the measured fluid lies solely with the operator.

INFORMATION!
The manufacturer is not liable for any damage resulting from improper use or use for other than the intended purpose.

The intended use of OPTISENS PH 8500 sensor is the measurement of pH value in water applications. The sensor is suitable for connection to the MAC 100 signal converter.

1.2 Safety instructions from the manufacturer

1.2.1 Copyright and data protection

The contents of this document have been created with great care. Nevertheless, we provide no guarantee that the contents are correct, complete or up-to-date.

The contents and works in this document are subject to copyright. Contributions from third parties are identified as such. Reproduction, processing, dissemination and any type of use beyond what is permitted under copyright requires written authorisation from the respective author and/or the manufacturer.

The manufacturer tries always to observe the copyrights of others, and to draw on works created in-house or works in the public domain.

The collection of personal data (such as names, street addresses or e-mail addresses) in the manufacturer’s documents is always on a voluntary basis whenever possible. Whenever feasible, it is always possible to make use of the offerings and services without providing any personal data.

We draw your attention to the fact that data transmission over the Internet [e.g. when communicating by e-mail] may involve gaps in security. It is not possible to protect such data completely against access by third parties.

We hereby expressly prohibit the use of the contact data published as part of our duty to publish an imprint for the purpose of sending us any advertising or informational materials that we have not expressly requested.
1.2.2 Disclaimer

The manufacturer will not be liable for any damage of any kind by using its product, including, but not limited to direct, indirect or incidental and consequential damages.

This disclaimer does not apply in case the manufacturer has acted on purpose or with gross negligence. In the event any applicable law does not allow such limitations on implied warranties or the exclusion of limitation of certain damages, you may, if such law applies to you, not be subject to some or all of the above disclaimer, exclusions or limitations.

Any product purchased from the manufacturer is warranted in accordance with the relevant product documentation and our Terms and Conditions of Sale.

The manufacturer reserves the right to alter the content of its documents, including this disclaimer in any way, at any time, for any reason, without prior notification, and will not be liable in any way for possible consequences of such changes.

1.2.3 Product liability and warranty

The operator shall bear responsibility for the suitability of the device for the specific purpose. The manufacturer accepts no liability for the consequences of misuse by the operator. Improper installation and operation of the devices (systems) will cause the warranty to be void. The respective “Standard Terms and Conditions” which form the basis for the sales contract shall also apply.

1.2.4 Information concerning the documentation

To prevent any injury to the user or damage to the device it is essential that you read the information in this document and observe applicable national standards, safety requirements and accident prevention regulations.

If this document is not in your native language and if you have any problems understanding the text, we advise you to contact your local office for assistance. The manufacturer can not accept responsibility for any damage or injury caused by misunderstanding of the information in this document.

This document is provided to help you establish operating conditions, which will permit safe and efficient use of this device. Special considerations and precautions are also described in the document, which appear in the form of underneath icons.
1.2.5 Warnings and symbols used

Safety warnings are indicated by the following symbols.

DANGER!
This information refers to the immediate danger when working with electricity.

DANGER!
This warning refers to the immediate danger of burns caused by heat or hot surfaces.

DANGER!
This warning refers to the immediate danger when using this device in a hazardous atmosphere.

DANGER!
These warnings must be observed without fail. Even partial disregard of this warning can lead to serious health problems and even death. There is also the risk of seriously damaging the device or parts of the operator’s plant.

WARNING!
Disregarding this safety warning, even if only in part, poses the risk of serious health problems. There is also the risk of damaging the device or parts of the operator’s plant.

CAUTION!
Disregarding these instructions can result in damage to the device or to parts of the operator’s plant.

INFORMATION!
These instructions contain important information for the handling of the device.

LEGAL NOTICE!
This note contains information on statutory directives and standards.

HANDLING
This symbol designates all instructions for actions to be carried out by the operator in the specified sequence.

RESULT
This symbol refers to all important consequences of the previous actions.

1.3 Safety instructions for the operator

WARNING!
In general, devices from the manufacturer may only be installed, commissioned, operated and maintained by properly trained and authorized personnel. This document is provided to help you establish operating conditions, which will permit safe and efficient use of this device.
2 DEVICE DESCRIPTION

2.1 Scope of delivery

INFORMATION!
Inspect the cartons carefully for damages or signs of rough handling. Report damage to the carrier and to the local office of the manufacturer.

INFORMATION!
Do a check of the packing list to make sure that you have all the elements given in the order.

INFORMATION!
Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.

Figure 2-1: Standard scope of delivery
1. Ordered sensor
2. Documentation

Optional accessories
- SENSOFIT FLOW 1000 - flow through holder
- SENSOFIT IMM 1000 - immersion holder
- SENSOFIT INS 1000 - insertion screw in adapter
- SENSOFIT RET 1000/2000 - retractable holder (in preparation)
- Cable pH/ORP-W Sensor Coax 5 m (16.5 ft) / 10 m (33 ft)
- Cable pH/ORP-W Sensor SixPlug with temp. wire 5 m (16.5 ft) / 10 m (33 ft)

Consumables/Spare parts available
- 250 ml pH buffer solutions pH4/pH7
- OPTISENS PH 8500 with DIN Coax connector
- OPTISENS PH 8500 with SixPlug connector and integrated temperature sensor Pt100 (in preparation)

INFORMATION!
For further information contact your local sales office.
2.2 Device description

2.2.1 pH electrodes

Figure 2-2: Sensor types
1. Cable connector DIN Coax or SixPlug
2. O-ring (only for DIN Coax)
3. PG 13.5 thread
4. O-ring
5. Washer
6. Glass
7. Ceramic diaphragm
8. pH sensitive glass
The OPTISENS PH 8500 is manufactured using a pH sensitive special glass which can be used in almost all standard water applications due to its wide measuring range.

The pH electrodes are available with different diaphragms:

- **pH electrode with open diaphragm and Pt100**
 - Open diaphragm (microscopically small hole in the glass), integrated Pt100 temperature measurement; suitable for cooling water, waste water and chemical industry applications.

- **pH electrode with ceramic diaphragm**
 - Ceramic diaphragm; suitable for drinking water and pool industry applications.

- **pH electrode with PTFE diaphragm**
 - Dirt-repellent teflon diaphragm; suitable for waste water, surface water and process water applications.

2.3 Nameplate

INFORMATION!

Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.

The sensor type is specified on the labelling of the sensor package and on the sensor itself.
3.1 Notes on installation

INFORMATION!
Inspect the cartons carefully for damages or signs of rough handling. Report damage to the carrier and to the local office of the manufacturer.

INFORMATION!
Do a check of the packing list to make sure that you have all the elements given in the order.

INFORMATION!
Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.

3.2 Storage and transport

CAUTION!
Do not store the electrode tip dry. This will shorten lifetime considerably. Always store the pH electrode tip wet in a 3 molar KCl solution when not in use. Saltless water must be avoided since this would leak the KCl ions. The original packing in which the electrode tip was delivered contains a plastic tube with KCl solution and therefore is suitable for storage and transport [see following drawing].

- Since the pH electrode is made out of glass it is very fragile. Avoid shocks of any kind.
- Do not touch or scratch the pH sensitive glass tip of the electrode.
- Store the electrode in its original packaging in a dry, dust-free location. Keep it away from dirt. If necessary, clean it as described on page 39.
3.3 Installation procedure

Because a new pH electrode needs to be calibrated before it is installed into its final measuring location, it is important to follow the installation order:

1. Unpack the electrode.
2. Connect the electrode to the signal converter.
3. Calibrate the electrode.
4. Install the electrode into its final measuring location.

The required steps are explained in the following sections.
3.4 Pre-installation requirements

CAUTION!
- Never touch or scratch the pH sensitive glass tip of the electrode.
- Make sure that the glass tip is clean and dust-free. If necessary, clean the tip as described on page 39.

Unpacking the electrode
- Loosen the storage cap which is screwed or/and pushed on to the plastic tube ①.
- Gently pull the electrode out of the plastic tube ②.
- Lay the electrode on a soft mat/tissue ③.
- Screw or push the provided sealing cap on to the plastic tube, using O-ring as shown in the drawing ④. Keep the storage cap (the one with the hole in it) in the original packaging.

3.5 Electrical connection

DANGER!
All work on the electrical connections may only be carried out with the power disconnected. Take note of the voltage data on the nameplate!

DANGER!
Observe the national regulations for electrical installations!

WARNING!
Observe without fail the local occupational health and safety regulations. Any work done on the electrical components of the measuring device may only be carried out by properly trained specialists.

INFORMATION!
Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.
3.5.1 Connecting the sensor cable to the signal converter

DANGER!
All work on the electrical connections may only be carried out with the power disconnected. Take note of the voltage data on the nameplate!

INFORMATION!
Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.

The pH electrodes are available with or without internal Pt100 temperature sensor. Electrodes without internal Pt100 temperature sensor are connected to the signal converter using a coax cable. Electrodes with internal temperature sensor use a SixPlug cable.

When ordering the one channel version, only the interface “Pos.A” is populated. In the version with two channels the interfaces “Pos.A” and “Pos.B” are populated.

<table>
<thead>
<tr>
<th>Wire</th>
<th>Terminal block Pos.A/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTISENS PH 8500 with coax cable (without internal Pt100/1000)</td>
<td>Coax shield [red] N [ref.]</td>
</tr>
<tr>
<td></td>
<td>Coax core [transparent] 0 [pH/ORP]</td>
</tr>
<tr>
<td>OPTISENS PH 8500 with SixPlug cable (with internal Pt100/1000)</td>
<td>Inner coax shield [black] N [ref.]</td>
</tr>
<tr>
<td></td>
<td>Coax core [transparent] 0 [pH]</td>
</tr>
<tr>
<td></td>
<td>Sense [3-wire connection Pt100/Pt1000] U</td>
</tr>
<tr>
<td></td>
<td>Pt100 [white] P</td>
</tr>
<tr>
<td></td>
<td>Pt100 [green] X</td>
</tr>
<tr>
<td></td>
<td>Outer shield [green-yellow] S</td>
</tr>
</tbody>
</table>
The following instructions describe the connection of the different sensor cables.

Connecting the sensor cable to the signal converter

- Thread the sensor cable through the outer right cable gland ①.
- Push the coax shield ④ into terminal N ② and the coax core into terminal O ③.
- To remove a cable, press down the white clip ⑤ on the corresponding terminal and pull the cable out ⑥.

3.5.2 Connecting the external temperature sensor

Connect an external Pt100 or Pt1000 sensor to terminal block Pos.A/B of the signal converter according to the following drawings:

![Figure 3-5: Connection of an external Pt100/1000 temperature sensor to the signal converter]

- 1 - 2-wire connection
- ② - 3-wire connection
3.5.3 Connecting the cable to the sensor

CAUTION!
Moisture inside the sensor connector must be avoided! Moisture will shortcut the mV signal between the electrodes and deliver erratic readings!
If moisture has entered the connector dry it with air (e.g. hair blower).

Figure 3-6: Connecting the cable to the sensor

Connecting the cable to the sensor
- Unscrew the protective cap from the sensor connector and keep it for future use ①.
- Ensure that both cable and electrode connector are absolutely dry ②.
- Make sure that the O-ring is positioned on the sensor connector ③.
- Screw the cable connector ④ on to the sensor and tighten it by hand.

3.6 Calibrating the electrode

Before the electrode is installed, it has to be calibrated. Proceed as described on page 29. Then continue with the installation procedure.
3.7 Installing the sensor

3.7.1 General installation instructions

The electrode tip must always have full contact with the measuring medium.

The mounting position of the electrode should not deviate more than 75° from vertical position (electrode tip pointing downwards). Doing otherwise might cause internal air bubbles to float into the electrode’s glass tip. This would interrupt the electrical contact between the inner buffer solution and the glass surface.

![Diagram of installation requirements]

Figure 3-7: Installation requirements

1. Measuring medium
2. Maximum deviation of 75° from vertical position
3.7.2 Mounting to a flow-through holder

WARNING!
Ensure that the pipe is without pressure before installing or removing a sensor!

INFORMATION!
The flow-through holder is an optional accessory and not part of the standard scope of delivery. It has to be installed horizontally in pump or sample lines or directly in the process.

![Possible mounting positions of the flow-through holder](image)

Figure 3-8: Possible mounting positions of the flow-through holder
1. Mounting in an outlet pipe
2. Mounting in a bypass pipe
3. Valve
4. Flow-through holder

![Installing the sensor into the flow-through holder](image)

Figure 3-9: Installing the sensor into the flow-through holder
1. Flow-through holder
2. Female thread
3. Sensor thread
4. Washer
5. O-ring
6. Process connection
7. Flow direction
8. Protective cage

Installing a new sensor
- Make sure that the O-ring and the washer on the sensor are assembled in the sequence indicated in the drawing.
- Screw the sensor into the female thread of the flow-through holder. Tighten the sensor by hand.
- If you have not yet established the electrical connection to the signal converter, leave the protective cap on the sensor until you establish the electrical connection.
3.7.3 Mounting to SENSOFIT IMM 1000 immersion holder

INFORMATION!
The immersion assembly is an optional accessory and not part of the standard scope of delivery.

CAUTION!
- Never touch or scratch the pH sensitive glass tip of the electrode.
- Make sure that the glass tip is clean and dust-free. If necessary, clean the tip as described on page 39.

![Figure 3-10: Overview of the immersion holder](image)

1. Immersion holder
2. Protective cage
3. Spigot nut
4. Clamps
5. Electrode
6. Cap with cable gland
7. Sensor cable
8. Sensor connector

CAUTION!
Moisture inside the sensor connector must be avoided! Moisture will shortcut the mV signal between the electrodes and deliver erratic readings!
If moisture has entered the connector dry it with air (e.g. hair blower).
Installing a new electrode (step 1)

- Pull the cap off the immersion holder (upper part with cable gland).
- Unscrew the protective cage from the immersion holder (lower part).
- Push the sensor cable with the sensor connector first through the middle piece 1.
- Thread the other end of the sensor cable through the cap with cable gland as pictured in the drawing (to signal converter). Do not tighten the cable gland yet.
- Push the cap onto the immersion holder again 2.
- Make sure that the O-ring 4 and the washer 5 on the electrode are assembled in the sequence indicated in the drawing.
- Insert the electrode into the protective cage 3 and tighten it by hand 6.

Installing a new electrode (step 2)

- Unscrew the protective cap from the electrode 1.
- Make sure that the sensor connector is absolutely dry 2 and that the O-ring is in place 3.
- Screw the cable connector 4 on to the sensor.
- Push the protective cage containing the electrode into the immersion holder 5.
- Push the spigot nut over the thread 6 and tighten it by hand 7.
- Gently pull excess cable through the cable gland without stretching the cable 8.
- Tighten the cable gland.
- Mount the immersion holder using the provided clamps.

INFORMATION!
It is not necessary to tighten the sensor with a special device. Tighten the sensor by hand is absolutely sufficient.
3.8 Installing an external temperature sensor

Since the slope of the pH electrode is temperature-dependent, a temperature compensation makes sense if the temperature of your measuring medium varies.

If the pH electrode does not have an internal Pt100/1000 temperature sensor, you should use an external temperature sensor. There are various different possibilities of adding an external temperature sensor to your pH measurement installation. They can not be explain in detail in this document. Nevertheless, you should follow the general guidelines.

General guidelines for external temperature sensor installation

- The temperature sensor should be calibrated using a reference thermometer. For further information refer to Temperature compensation on page 29.
- The temperature should be measured close to the pH electrode in the same medium to avoid temperature differences. For example, surface water may have a different temperature than deeper water.

Suitable external temperature sensors are

- Pt100 in 2-wire or 3-wire connection
- Pt1000 in 2-wire or 3-wire connection
3.9 Examples of a typical measuring point

The following examples each show the signal converter, an electrode with or without integrated temperature measurement, and the flow-through or immersion holder.

Figure 3-13: Measuring point using the flow-through holder
1. Bypass measurement
2. Outlet measurement
3. Elbow pipe
4. Sample vial
5. Flow-through holder with electrode
6. Shut-off valve
7. Bypass pipe
8. Main pipe

Figure 3-14: Measuring point using the immersion holder
1. pH/ORP or pH/ORP + temperature
2. pH or pH + temperature
3. ORP + temperature
4.1 Menu mode structure

INFORMATION!
The following table just presents an overview. When programming the device, always consult the function tables additionally as they contain further information!

Only the sensor relevant menus are shown in the following tables. For detailed information about the general setting refer to the MAC 100 signal converter manual.

<table>
<thead>
<tr>
<th>Measuring mode</th>
<th>Main menu</th>
<th>Submenu</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>2.5 s</td>
<td>A quick setup</td>
<td>A9.1 temp. comp.</td>
</tr>
<tr>
<td>process input A pH calibration (for dual channel version; refer to pH/ORP sensor documentation for further information)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12.1 start calib. ORP</td>
<td></td>
<td>A12 ORP calibration B Only if switched to ORP! process input B ORP calibration (for dual channel version; refer to pH/ORP sensor documentation for further information)</td>
<td></td>
</tr>
<tr>
<td>A13.1 temp. comp.</td>
<td></td>
<td>A13 pH cal. B process input B pH calibration (for dual channel version; refer to pH/ORP sensor documentation for further information)</td>
<td>For further information see function tables.</td>
</tr>
</tbody>
</table>
Measuring mode

3 or 4 pages, scrolling with ↓ or ↑

Main menu

- B 1.1 temperature
- B 1.5 ORP
 - **Only if switched to ORP!** (for dual channel version, refer to pH/ORP sensor documentation for further information)
- B 1.7 pH
 - (for dual channel version, refer to pH/ORP sensor documentation for further information)
- B 2.1 temperature
- B 2.5 ORP
 - **Only if switched to ORP!** (for dual channel version, refer to pH/ORP sensor documentation for further information)
- B 2.7 pH
 - (for dual channel version, refer to pH/ORP sensor manual for further information)
- B 3.1 current out A
- B 3.2 current out B
- B 3.3 current out C
- B 3.6 simulation R3
- B 4.1 operating hours
- B 4.2 process input A
 - B 4.2.1 temperature
 - B 4.2.2 pH/ORP
 - B 4.2.7 CPU temp. (depends on V number)
 - B 4.2.11 electrode current
- B 4.3 process input B
 - B 4.3.1 temperature
 - B 4.3.2 pH/ORP
 - B 4.3.9 CPU temp. (depends on V number)
 - B 4.3.11 electrode current
- B 5.1 status log
- B 5.2 calibration log
- B 6.1 C number
- B 6.2 process input A
- B 6.3 process input B
- B 6.4 SW.REV.MS
- B 6.5 SW.REV.UIS
- B 6.6 Electronic Revision ER

For further information see function tables.

Submenu

- B 1 sim. process inp. A
- B 2 sim. process inp. B
- B 3 simulation I/O
- B 4 actual values
- B 5 logbooks
- B 6 information

Parameter

<table>
<thead>
<tr>
<th>Measuring mode</th>
<th>Main menu</th>
<th>Submenu</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B test</td>
<td>B 1 sim. process inp. A</td>
<td>B 1.1 temperature</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 1 sim. process inp. A</td>
<td>B 1.5 ORP</td>
<td>B 1.5 ORP</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 1 sim. process inp. A</td>
<td>B 1.7 pH</td>
<td>B 1.7 pH</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 2 sim. process inp. B</td>
<td>B 2.1 temperature</td>
<td>B 2.1 temperature</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 2 sim. process inp. B</td>
<td>B 2.5 ORP</td>
<td>B 2.5 ORP</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 2 sim. process inp. B</td>
<td>B 2.7 pH</td>
<td>B 2.7 pH</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 3 simulation I/O</td>
<td>B 3.1 current out A</td>
<td>B 3.1 current out A</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 3 simulation I/O</td>
<td>B 3.2 current out B</td>
<td>B 3.2 current out B</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 3 simulation I/O</td>
<td>B 3.3 current out C</td>
<td>B 3.3 current out C</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 3 simulation I/O</td>
<td>B 3.6 simulation R3</td>
<td>B 3.6 simulation R3</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.1 operating hours</td>
<td>B 4.1 operating hours</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.2 process input A</td>
<td>B 4.2 process input A</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.2.1 temperature</td>
<td>B 4.2.1 temperature</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.2.2 pH/ORP</td>
<td>B 4.2.2 pH/ORP</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.2.7 CPU temp. (depends on V number)</td>
<td>B 4.2.7 CPU temp. (depends on V number)</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.2.11 electrode current</td>
<td>B 4.2.11 electrode current</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.3 process input B</td>
<td>B 4.3 process input B</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.3.1 temperature</td>
<td>B 4.3.1 temperature</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.3.2 pH/ORP</td>
<td>B 4.3.2 pH/ORP</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.3.9 CPU temp. (depends on V number)</td>
<td>B 4.3.9 CPU temp. (depends on V number)</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 4 actual values</td>
<td>B 4.3.11 electrode current</td>
<td>B 4.3.11 electrode current</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 5 logbooks</td>
<td>B 5.1 status log</td>
<td>B 5.1 status log</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 5 logbooks</td>
<td>B 5.2 calibration log</td>
<td>B 5.2 calibration log</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 6 information</td>
<td>B 6.1 C number</td>
<td>B 6.1 C number</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 6 information</td>
<td>B 6.2 process input A</td>
<td>B 6.2 process input A</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 6 information</td>
<td>B 6.3 process input B</td>
<td>B 6.3 process input B</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 6 information</td>
<td>B 6.4 SW.REV.MS</td>
<td>B 6.4 SW.REV.MS</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 6 information</td>
<td>B 6.5 SW.REV.UIS</td>
<td>B 6.5 SW.REV.UIS</td>
</tr>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>B 6 information</td>
<td>B 6.6 Electronic Revision ER</td>
<td>B 6.6 Electronic Revision ER</td>
</tr>
</tbody>
</table>
4.2 Function tables

4.2.1 Menu A, quick setup

INFORMATION!
Note that the appearance of some sub-menus depends on the hardware setting and the used sensor(s). Also only the sensor relevant menus and sub-menus are shown here in detail. For all other menu functions refer to the MAC 100 signal converter manual.

<table>
<thead>
<tr>
<th>Measuring mode</th>
<th>Main menu</th>
<th>Submenu</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 or 4 pages, scrolling with ↓ or ↑</td>
<td>C setup</td>
<td>C1 process input A, B</td>
<td>C1.1 parameter [pH/ORP]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.7 inner buffer (only pH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.8 zero point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.9 slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.10 calibration buffers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.14 time constant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.15 temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.16 ORP cal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C1.17 pH cal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.1 parameter [pH/ORP]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.7 inner buffer (only pH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.8 zero point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.9 slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.10 calibration buffers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.14 time constant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.15 temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.16 ORP cal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2.17 pH cal.</td>
</tr>
</tbody>
</table>

 attempt to read the remaining text, but it is not clearly visible and might be incomplete.
4.2.2 Menu B, test

INFORMATION!

Note that the appearance of some sub-menus depends on the hardware setting and the used sensor(s). Also only the sensor relevant menus and sub-menus are shown here in detail. For all other menu functions refer to the MAC 100 signal converter manual.

The procedure to start the simulation process is the same for all functions:

- Choose the function with the help of ↓ or ↑ and press ⌃.
- You see the two options “set value” (opens the editor to enter the simulation value) and “break” (exits the menu without simulation).
- Choose the desired option with the help of ↑ or ↓ and press ⌃.
- If you chose “set value”, the device asks “start simulation” and offers the options “no” (exits the menu without simulation) or “yes” (starts the simulation finally).
- Choose the desired option with the help of ↑ or ↓ and press ⌃.
- If you chose “yes”, the simulation starts.

<table>
<thead>
<tr>
<th>Level</th>
<th>Designation / function</th>
<th>Settings / descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.1B1.1 B1.1B1.1</td>
<td>temperature</td>
<td>In this menu the temperature can be simulated.</td>
</tr>
<tr>
<td>B1.5B1.5 B1.5B1.5</td>
<td>ORP ONLY if switched to ORP! (for dual channel version only; refer to pH/ORP sensor manual for further information)</td>
<td>In this menu the relative concentration of ORP can be simulated. For dual channel version only; refer to pH/ORP sensor manual for further information.</td>
</tr>
<tr>
<td>B1.7B1.7 B1.7B1.7</td>
<td>pH (for dual channel version only; refer to pH/ORP sensor manual for further information)</td>
<td>In this menu the relative concentration of pH can be simulated. For dual channel version only; refer to pH/ORP sensor manual for further information.</td>
</tr>
</tbody>
</table>

B4, actual values

<table>
<thead>
<tr>
<th>Level</th>
<th>Designation / function</th>
<th>Settings / descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4.1</td>
<td>operating hours</td>
<td>This menu shows the operating time of the devices in hours.</td>
</tr>
<tr>
<td>B4.2</td>
<td>process input A</td>
<td>In this menu the measurements from process input A can be read.</td>
</tr>
<tr>
<td>B4.3</td>
<td>process input B</td>
<td>In this menu the measurements from process input B can be read. For dual channel version only; refer to pH/ORP sensor manual for further information.</td>
</tr>
</tbody>
</table>
4.2.3 Menu C, setup

INFORMATION!
The signal converter has a dual process input, A and B. Each process input has an own submenu in this main menu. Process input A is always present, i.e. there is always a board in the interface "Pos.A" in the connection area. The interface of process input B only has a board with the dual channel signal converter. Be aware that the definition which kind of measurement a process input can do is defined when ordering the device. The configuration cannot be changed later.

INFORMATION!
Note that the appearance of some submenus depends on the hardware setting and the used sensors).

C1, process input A

C2, process input B

<table>
<thead>
<tr>
<th>Level</th>
<th>Designation / function</th>
<th>Settings / descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1.1</td>
<td>parameter pH</td>
<td>This menu item is for selecting the probe which is connected to process input A/B. The entries of this selection depends on the chosen device configuration. The device configuration is customer specific and set during production.</td>
</tr>
<tr>
<td>C2.1</td>
<td>parameter ORP</td>
<td></td>
</tr>
<tr>
<td>C1.7</td>
<td>inner buffer</td>
<td>setting for inner buffer of the pH sensor</td>
</tr>
<tr>
<td>C2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1.8</td>
<td>zero point</td>
<td>this menu item shows the actual zero point to the calibrated pH/ORP sensor</td>
</tr>
<tr>
<td>C2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1.9</td>
<td>slope</td>
<td>this menu item shows the actual slope point to the calibrated pH/ORP sensor</td>
</tr>
<tr>
<td>C2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1.10</td>
<td>calibration buffer</td>
<td>this menu item shows the used buffer concentration for the last calibration</td>
</tr>
<tr>
<td>C2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1.15</td>
<td>temperature</td>
<td>Menu for temperature measurement. Available for sensor 1 and sensor 2.</td>
</tr>
<tr>
<td>C2.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1.15.1</td>
<td>probe</td>
<td>Options:</td>
</tr>
<tr>
<td>C2.15.1</td>
<td></td>
<td>• manual: used if no internal or external temperature sensor is connected to the signal converter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pt100: used if the pH electrode has an integrated Pt temperature measurement or if an external Pt100 temperature sensor is connected to the signal converter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pt1000: used if an external Pt1000 temperature sensor is connected to the signal converter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• process input A: choose this option if there is a temperature sensor connected to input A of the signal converter</td>
</tr>
<tr>
<td>C1.15.2</td>
<td>manual</td>
<td>Only available if C1.15.1 or C2.15.1 is set to "manual".</td>
</tr>
<tr>
<td>C2.15.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1.15.3</td>
<td>correction</td>
<td>Offset correction for temperature measurement. Not available if C1.15.1 or C2.15.1 is set to "manual".</td>
</tr>
<tr>
<td>C2.15.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1.15.4</td>
<td>limitation</td>
<td>Measuring ranges for temperature measurement.</td>
</tr>
<tr>
<td>C2.15.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Operation

<table>
<thead>
<tr>
<th>Level</th>
<th>Designation / function</th>
<th>Settings / descriptions</th>
</tr>
</thead>
</table>
| C1.15.5
C2.15.5 | temp. comp. | Menu for activating the temperature compensation parameters for the measurement. Options:
• Linear: linear temperature compensation.
• Off: temperature compensation is disabled. |
| C1.16
C2.16 | ORP cal. | menu item for calibrating the ORP sensor |
| C1.16.1
C2.16.1 | prepare calibration | view actual ORP value |
| C1.16.2
C2.16.2 | ref. value ORP | Enter the reference value of the probe in mV |
| C1.16.3
C2.16.3 | start calibration? | Start calibration procedure. |
| C1.16.4
C2.16.4 | stored value | View stored value of calibration. |
| C1.17
C2.17 | pH cal. | menu item for calibration the pH sensor |
| C1.17.1
C2.17.1 | temp.comp | Menu for activating the temperature compensation parameters for the calibration. Options:
• off: temperature measurement is disabled
• manual: temperature value has to be entered manually
• automatic: temperature measurement is performed as configured |
| C1.17.3
C2.17.3 | calib. buffer 1 | Start calibration procedure in buffer 1 |
| C1.17.4
C2.17.4 | pH 1 set value | Enter the reference value of the probe in pH |
| C1.17.6
C2.17.6 | calib. buffer 2 | Start calibration procedure in buffer 2 |
| C1.17.7
C2.17.7 | pH 2 set value | Enter the reference value of the probe in pH |

CAUTION!

If you choose for measurement the temperature compensation "linear" than choose between "automatic" or "manual" for the temperature compensation during calibration. If you choose for measurement the temperature compensation "off" than choose also "off" for the temperature compensation during calibration.
4.3 Calibration

4.3.1 Temperature compensation

There are three basic options for temperature compensation:

- **automatic**: the signal converter will automatically compensate temperature influences using the information of a Pt100 or Pt1000 temperature sensor.
- **manual**: the signal converter will compensate temperature influences using a manually entered value; this option only makes sense if the temperature of the measured medium is quite constant.
- **off**: temperature compensation is disabled.

INFORMATION!

If you choose no compensation, the measured pH value will most likely deviate from the actual pH value. The reason is that the pH value of a specific medium varies depending on the temperature of the medium.

The menu for the type of temperature compensation offers the following options:

- **Pt1000**: choose this option if there is an external Pt1000 temperature sensor connected to the signal converter.
- **Pt100**: choose this option if the electrode has an integrated Pt100 temperature measurement or if there is an external Pt100 temperature sensor connected to the signal converter.
- **manual**: choose this option if there is no internal or external temperature sensor connected to the signal converter.
- **process input A**: choose this option if there is a temperature sensor connected to input A of the signal converter.

INFORMATION!

In the basic configuration the setting of the temperature compensation is Pt100. If you use a pH sensor without Pt100/1000 than select the temperature compensation “manual” and enter the value. Otherwise an error will be displayed.
After starting-up the signal converter, the measuring screen appears. This is the standard screen which is displayed automatically in the normal operating mode. If you are in this mode and you want to adjust the temperature compensation, you have to perform the following steps:

Step 1: activating the temperature compensation for measurement

- Press ▶ for more than 2.5 seconds, then release the button. You are on the main menu level. The upper line of the display “A” appears, beneath the main menu quick setup is highlighted.
- Press ◀ or ▶ until the main menu setup is highlighted.
- Press ▶ to enter the chosen menu.

You are on the first submenu level. In the upper line of the display “setup” appears, beneath the submenu process input A is highlighted.

- Press ◀ or ▶ to select process input A or process input B. Choose process input A or B where ever pH is configurated.
- Press ▶ to enter the chosen menu.

You are on the second submenu level. The submenu parameter is highlighted.

- Press ▶ to enter the chosen menu.

You are on the third submenu level. In the upper line of the display “parameters” appears.

- Press ◀ or ▶ to select pH
- Press ▶ to confirm the entered value

You are on the second submenu level. The submenu parameter is highlighted.

- Press ▶ to enter the chosen menu.

You are on the third submenu level. The upper line of the display “temperature” and “C1.15.1” appears. You can setup the temperature compensation.

- Press ◀ or ▶ to select temp.comp
- Press ▶ to enter the chosen menu.

You are on the fourth submenu level. Press ◀ or ▶ to choose between automatic or off

- Press ▶ to confirm the entered value

You are on the third submenu level. If you have chosen the option automatic, you can select the type of temperature compensation now.

- Press ◀ or ▶ to choose probe
- Press ▶ to enter the chosen menu.

You are on the fourth submenu level. Press ◀ or ▶ to choose between Pt100, Pt1000, manual or process input A.

- Press ▶ to confirm the entered value

Press ◀ or ▶ several time until you reach the measuring mode again. Choose yes to safe and confirm your selection.

INFORMATION!

When ordering the dual channel version, the interface “Pos A” and “Pos B” are populated. A separate temperature sensor has to be connected to “Pos A” and configured on process input A. To connect a electrode with integrated Pt100/Pt1000 the temperature sensor has to be connected on the same terminal block as the electrode.
Step 2: Configure / adjust the temperature sensor

Step 2a: probe Pt100/1000

Read the currently measured temperature of the Pt100/1000 temperature sensor from the measurement screen and write it down. Measure the temperature with a reference thermometer and check if it deviates from the temperature measured by the Pt100/1000.

- Press ▶ for more than 2.5 seconds, then release the button. You are on the main menu level. In the upper line of the display "A" appears, beneath the main menu setup is highlighted.
- Press ▼ or ▲ until the main menu setup is highlighted.

You are on the first submenu level. In the upper line of the display "setup" and "c1" appears, beneath the submenu process input A process input A process input A process input A is highlighted.

- Press ▶ or ▼ to select process input A or process input B.
- Press ▶ to enter the chosen menu process input A/B.

You are on the second submenu level. Press ▶ or ▼ until the submenu temperature is highlighted.

- Press ▶ to enter the chosen menu. The submenu probe is highlighted.
- Press ▼ or ▲ until the submenu Pt100/1000 is highlighted.
- Press ▲ to enter the chosen menu.

- If necessary, enter the temperature correction in Kelvin so that the signal converter shows the same temperature as the reference thermometer. Press ▲ to confirm the entered value. The temperature sensor has been adjusted.
Step 2b: probe manual

Measure the temperature of the measuring medium.

- Press ▲ for more than 2.5 seconds, then release the button. You are on the main menu level. In the upper line of the display "A" appears, beneath the main menu setup is highlighted.
- Press ▼ or ▲ until the main menu setup is highlighted.

MAIN MENU

- **A quick setup**
- **B test**
- **C setup**
- **D service**

You are on the first submenu level. In the upper line of the display "setup" and "c1" appears, beneath the submenu process input A is highlighted. Choose process input A or B where ever pH is configured.

- Press ▼ or ▲ to select process input A or process input B.
- Press ▲ to enter the chosen menu process input A/B.

You are on the second submenu level. Press ▼ or ▲ until the submenu temperature is highlighted.

- Press ▲ to enter the chosen menu. The submenu probe is highlighted.

- Press ▼ or ▲ until the submenu manual is highlighted.
- Press ▲ to enter the chosen menu.

- Enter the measured temperature. Press ▲ to confirm the entered value. The manually measured temperature will now be used for temperature compensation.

Step 2c: probe process input A

The temperature sensor connected to input A of the signal converter is used for temperature compensation.

The temperature sensor probe process input A has to configured in submenu process input A. If you use a Pt100/1000 follow the instruction in step 2.1. If you use manually entered value, follow the instruction in step 2.2.
4.3.2 Calibrating pH measurement

A pH calibration is necessary in regular intervals or when installing a new pH electrode.

In an intact electrode, the optimal slope is 59 mV for each pH unit and the optimal zero point is 0 mV at pH 7. The slope should at least have a value between 50...65 mV per pH unit. Re-calibrate the electrode if the slope does not approximate those limits. The pH electrode ages, the slope gets flatter and the zero error increases. When one or both of these values exceed certain limits, the converter displays a message indicating that the electrode has to be exchanged.

CAUTION!
- Never touch or scratch the pH sensitive glass tip of the electrode.
- Make sure that the glass tip is clean and dust-free. If necessary, clean the tip as described on page 39.

CAUTION!
Moisture inside the sensor connector must be avoided! Moisture will shortcut the mV signal between the electrodes and deliver erratic readings! If moisture has entered the connector dry it with air (e.g. hair blower).

To avoid alarms on the process control system when temporarily removing the sensor (i.e. for maintenance), the converter has a hold function. This function "freezes" all outputs (i.e. the display and the current outputs) of the last measured value.

INFORMATION!
As an indication that the manual hold function is active, the "warning sign" in the upper left corner of the display appears. Meanwhile the status messages show "checks in progress". For more details about how to select the manual hold function refer to the converter manual.

After starting-up the converter, the measuring screen appears. This is the standard screen which is displayed automatically in the normal operating mode. If you are in this mode and you want to initiate a calibration, you have to activate the manual hold function in the first step.
Step 1: activating the manual hold function

- Press ▲ for more than 2.5 seconds, then release the button. You are on the main menu level. In the upper line of the display "A" appears, beneath the main menu quick setup is highlighted.
- Press ◄ or ► until the main menu quick setup is highlighted.

You are on the first submenu level. In the upper line of the display "quick setup" and A1 appears, beneath the submenu language is highlighted.
- Press ◄ or ► until the submenu manual hold is highlighted.
- Press ▲ to enter the chosen menu.

You are on the second submenu level. In the upper line of the display "manual hold" appears, beneath the option off is highlighted.
- Press ◄ or ► to choose the option on
- Press ▲ to confirm the entered value.

- You have activated the manual hold function. To go to the next step and prepare the calibration procedure. You have to return to the measuring mode.
- Press ◄ until you reach the measuring mode again.

Step 2: preparing the calibration procedure

- If you re-calibrate an existing electrode, remove the electrode from its respective assembly [for further information refer to Mounting to a flow-through holder on page 18 or refer to Calibrating pH measurement on page 33].
- If you calibrate a new electrode, make sure that the electrode is correctly connected to the converter.
- Check the electrode for damages, check the diaphragm for coating and rinse the electrode tip with tap water and gently swipe it with a soft tissue.
- Provide two buffer solutions with the same known temperature: pH 4 and pH 7.

After activating the manual hold function and the preparative measures, you can get access to the calibration procedure from the measuring mode in two different ways. Either you go via the main menu setup (step 3a) or via the main menu quick setup (step 3b).
Step 3a: accessing the calibration menu via the main menu setup

- Press → for more than 2.5 seconds, then release the button. You are on the main menu level. In the upper line of the display "A" appears, beneath the main menu setup is highlighted.
- Press ▸ or ◄ until the main menu setup is highlighted.

<table>
<thead>
<tr>
<th>MAIN MENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>A quick setup</td>
</tr>
<tr>
<td>B test</td>
</tr>
<tr>
<td>C setup</td>
</tr>
<tr>
<td>D service</td>
</tr>
</tbody>
</table>

You are on the first submenu level. In the upper line of the display "setup" and "c1" appears, beneath the submenu process input A is highlighted.
- Press ▸ or ◄ to select process input A or process input B is highlighted. Choose process input A or B where ever pH is configured.
- Press → to enter the chosen menu.

You are on the second submenu level. In the upper line of the display "process input A" and "C1.1" appears, beneath the submenu parameter is highlighted.
- Press ▸ or ◄ until the submenu pH cal. is highlighted.
- Press → to enter the chosen menu.

You can start the calibration procedure now as described in "Step 4."

Step 3b: accessing the calibration menu via the main menu quick setup

- Press → for more than 2.5 seconds, then release the button. You are on the main menu level. In the upper line of the display "A" appears, beneath the main menu quick setup is highlighted.

<table>
<thead>
<tr>
<th>MAIN MENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>▸ A quick setup</td>
</tr>
<tr>
<td>B test</td>
</tr>
<tr>
<td>▸ C setup</td>
</tr>
<tr>
<td>D service</td>
</tr>
</tbody>
</table>

You are on the first submenu level. In the upper line of the display "quick setup" and "a" appears, beneath the submenu language is highlighted.
- Press ▸ or ◄ until the submenu pH cal. A or B is highlighted, wherever pH is configured.
- Press → to enter the chosen menu.

You can start the calibration procedure now as described in "Step 4."
4 OPERATION

OPTISENS PH 8500

Step 4: calibration procedure

- After choosing the submenu pH cal. (step 3a) or pH cal. A or B (step 3b) in the previous steps, continue by pressing ». The signal converter demands to choose the kind of temperature compensation for the calibration. You have the options "off", "automatic" and "manual" (for detailed information refer to Temperature compensation on page 29). Please select the same kind of temperature compensation for the calibration as for the measurement.

- If you chose "automatic", just press ». If you chose "manual", first enter the temperature of the buffer solutions using ▼ or ▲ and then press ».

» On the screen the message calib. buffer 1 appears.

- Submerge the sensor tip into the pH 7 buffer solution ①.

» The currently measured value is shown on the display.

» Wait until a steady value is displayed, then press ».

» Press » to finally start the calibration procedure.

» The message pH 1 set value and the pH value of the first buffer solution are displayed on the screen.

» Press » to confirm the settings.

» After 25 seconds the calibration step is completed and calib. buffer 2 appears. Otherwise, if the shown value deviates from the buffer solution, enter the correct value using ▼ or ▲.

» Press » to confirm the entered value.

» On the screen the message calib. buffer 2 appears.

» Rinse the sensor tip with tap water ② and clean it with a soft tissue.

» Submerge the sensor tip into the pH 4 buffer solution ③.

» The currently measured value is shown on the display.

» Wait until a steady value is displayed.

» Press » to continue the calibration procedure.

» The message pH 2 set value and the pH value of the second buffer solution are displayed on the screen.

» Press » to confirm the setting.

» After 25 seconds the calibration step is completed. Otherwise, if the shown value deviates from the buffer solution, enter the correct value using ▼ or ▲.

» Press » to confirm the entered value.

» The zero point of the electrode is displayed (should be near 0 mV in an intact electrode).
• Press \(\text{ } \) to confirm.
 – The slope of the electrode is displayed (should be near 59 mV in an intact electrode).
• Press \(\text{ } \) to confirm.
 – The message store cal. value is displayed on the screen. The converter asks if the new calibration values should be stored.
• Choose yes to store the calibration values. Choose no to discard the results.
• Press \(\text{ } \) to confirm.
 – Prior returning to the measuring display, you are asked if the configuration should be stored.
• Choose yes using \(\downarrow \) or \(\uparrow \) to store the new calibration values.
 – You have completed the pH calibration.
• If you want to return to the measuring mode, press \(\text{ } \) several times until you reach this mode.

INFORMATION!
If an error occurs during the calibration procedure, the display shows an error message. Possible causes for an error are:

• Slope too flat.
• Wrong buffer solution.
• Wrong electrical connection.
• Moisture in the sensor connector.

Step 5: re-installing the electrode
• After the calibration procedure, rinse the electrode with tap water.
• Reinstall the electrode into its assembly, refer to **Installing the sensor** on page 17.

Step 6: switching back to measurement
• Deactivate the function “manual hold” again.
4.3.3 Calibration log

INFORMATION!

In order to show the history of the calibrations, the converter has a calibration logbook function. Up to 64 entries of the calibration history are stored including date and time.

Accessing the calibration log

- Press ▶ for more than 2.5 seconds, then release the button. You are on the main menu level. In the upper line of the display "A" appears, beneath the main menu quick setup is highlighted.
- Press ▼ or ▲ until the main menu test is highlighted.

MAIN MENU

- A quick setup
- B test
- C setup
- D service

Press ▶ to enter the chosen menu.

You are on the first submenu level. In the upper line of the display "test" and "B1" appears, beneath the submenu sim.process input A is highlighted.

Press ▼ or ▲ until the submenu logbooks is highlighted.

Press ▶ to enter the chosen menu.

You are on the second submenu level. In the upper line of the display "logbooks" and "B1" appears, beneath the submenu status log is highlighted.

Press ▼ or ▲ until the submenu calibration log is highlighted.

Press ▶ to enter the chosen menu.

- You are on the data level and you see the calibration history. With the help of ▼ or ▲ you can scroll through the different entries.
- If you want to return to the measuring mode press ◄ several times until you reach this mode.

4.4 Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The pH electrode does not deliver a signal.</td>
<td>Mechanical damage of the glass bulb, e.g. small cracks. This will shortcut the ion exchange and deliver a pH7 reading.</td>
<td>Exchange electrode.</td>
</tr>
<tr>
<td></td>
<td>Moisture inside the electrode connector. This will shortcut the signal between pH glass half cell and reference half cell and deliver a reading of pH7.</td>
<td>Clean the connector (electrode/cable) with pure water and dry with air (e.g. hair blower).</td>
</tr>
<tr>
<td>The pH electrode delivers an unstable signal.</td>
<td>The diaphragm in the reference half cell does not provide good contact to the process medium due to drying up or coatings.</td>
<td>→ Clean the diaphragm with hot soap or acid using a soft tissue (details on page 39). → Submerge electrode in water and increase the temperature to 50...60°C / 122...140°F. → Submerge electrode in 3 molar KCl solution at ambient temperature. The decrease in temperature will cause the reference half cell to suck in KCl solution through the diaphragm and regenerate the diaphragm's functionality.</td>
</tr>
</tbody>
</table>
5.1 Maintenance

5.1.1 Cleaning

- Slight dirt residues or dust: Rinse the sensor tip with tap water and clean it with a soft tissue.
- Oily and greasy coatings: Remove with a warm soap solution and rinse with water.
- Hardness deposits or metal hydroxide deposits: Remove with 10% citric acid or hypochloric acid and rinse with water.

5.1.2 Aging and re-calibration

During operation, but already during storage, pH electrodes age due to poisoning effects of the inner buffer system. Therefore it is important to re-calibrate the electrode in regular intervals as described.

When the electrode becomes too old to provide reliable measurements, the signal converter displays an error message after the calibration procedure. In this case, the electrode has to be exchanged.

Aging effects pH electrodes:

- **Decrease of slope** due to abrasion, drying, corrosion of glass bulb coating and leaching. The slope should be > 50 mV/pH. An optimal value is 59 mV/pH at 25° C / 77° F. When the slope drops below 50 mV/pH, an error message is displayed and the electrode has to be exchanged.

 The slope of the electrode is displayed after each calibration procedure.

- **Shift of zero point** due to leaching / contamination of reference half cell or increased resistance between glass bulb and reference half cell. The zero point should lie between -58...+58 mV at pH 7. An optimal value is 0 mV at pH 7.

 The zero point of the electrode is displayed after each calibration procedure.
The following figure shows the aging effects:

![Figure 5-1: Aging effects of electrode](image)

INFORMATION!
The life time of a pH electrode can lie anywhere between 6 weeks and 2 years. The life time expectation depends heavily on the application. The right choice of the electrode type is very important.

5.2 Spare parts availability

The manufacturer adheres to the basic principle that functionally adequate spare parts for each device or each important accessory part will be kept available for a period of 3 years after delivery of the last production run for the device.

This regulation only applies to spare parts which are subject to wear and tear under normal operating conditions.

5.3 Availability of services

The manufacturer offers a range of services to support the customer after expiration of the warranty. These include repair, maintenance, technical support and training.

INFORMATION!
For more precise information, please contact your local representative.
5.4 Returning the device to the manufacturer

5.4.1 General information

This device has been carefully manufactured and tested. If installed and operated in accordance with these operating instructions, it will rarely present any problems.

CAUTION!

Should you nevertheless need to return a device for inspection or repair, please pay strict attention to the following points:

- Due to statutory regulations on environmental protection and safeguarding the health and safety of our personnel, manufacturer may only handle, test and repair returned devices that have been in contact with products without risk to personnel and environment.
- This means that the manufacturer can only service this device if it is accompanied by the following certificate (see next section) confirming that the device is safe to handle.

CAUTION!

If the device has been operated with toxic, caustic, flammable or water-endangering products, you are kindly requested:

- to check and ensure, if necessary by rinsing or neutralizing, that all cavities are free from such dangerous substances,
- to enclose a certificate with the device confirming that is safe to handle and stating the product used.
5.4.2 Form (for copying) to accompany a returned device

<table>
<thead>
<tr>
<th>Company:</th>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department:</th>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tel. no.:</th>
<th>Fax no.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer’s order no. or serial no.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

The device has been operated with the following medium:

- water-hazardous
- toxic
- caustic
- flammable

We checked that all cavities in the device are free from such substances.

We have flushed out and neutralized all cavities in the device.

We hereby confirm that there is no risk to persons or the environment through any residual media contained in the device when it is returned.

Date: Signature: Stamp:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.5 Disposal

CAUTION!
Disposal must be carried out in accordance with legislation applicable in your country.
6.1 Measuring principle

6.1.1 pH measurement

The measuring principle of a pH electrode is based on a pH sensitive glass. When the pH sensitive glass gets into contact with a liquid, a thin layer of hydrated gel develops on the surface, enabling an ion exchange between the glass surface and the liquid. The so-called Nernst potential builds up on the glass surface. If both sides of the glass are in contact with liquids, a voltage may be detected between the two surface potentials. The voltage correlates to the difference in H⁺ ion concentration and thus to the difference of pH values in both liquids.

The pH measuring electrode contains an internal buffer solution with a known pH value. If the pH value of the measuring medium on the outside of the electrode is equal to the internal pH value, the resulting voltage is 0 V.

If the pH value of the medium differs from the internal pH value, a voltage between the internal and the external layer can be measured. From the resulting voltage, the pH difference of the two liquids can be calculated.

The voltage is measured using a measuring electrode and a reference electrode; both are built into the sensor. The measuring electrode is in contact with the known buffer solution in the pH sensitive glass bulb. The reference electrode is immersed into a saturated solution of potassium chloride (KCl). The KCl solution itself is in electrical contact with the measuring medium by means of a diaphragm. The diaphragm prevents the measuring medium from penetrating into the reference system but still allows electrical contact with the measuring medium.

Figure 6-1: Measuring principle for pH measurement

1. Reference electrode
2. Measuring electrode
3. Diaphragm in contact with KCl solution and measuring medium
4. Inner pH 7 buffer solution
5. Surface potential on the inside (contact with buffer solution)
6. pH sensitive glass
7. Surface potential on the outside (contact with measuring medium)
8. Measuring medium
The voltage change of a pH electrode at 25°C / 77°F is around 59 mV for each pH unit. This is also called the slope of the pH electrode. The slope is temperature dependent and decreases over the lifetime of the electrode.

To compensate for the temperature dependency of the pH measurement, the temperature of the medium can be measured and automatically compensated in the signal converter.
6.2 Technical data

INFORMATION!
- The following data is provided for general applications. If you require data that is more relevant to your specific application, please contact us or your local representative.
- Additional information (certificates, special tools, software,...) and complete product documentation can be downloaded free of charge from the website (Download Center).

<table>
<thead>
<tr>
<th>Measuring system</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring principle</td>
<td>Potentiometric</td>
</tr>
<tr>
<td>Measuring range</td>
<td>0…14 pH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Glass electrode</td>
</tr>
<tr>
<td>Shaft diameter</td>
<td>12 mm / 0.47”</td>
</tr>
<tr>
<td>Length</td>
<td>120 mm / 4.72”</td>
</tr>
<tr>
<td>Process connection</td>
<td>PG 13.5</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>Pt100 optional</td>
</tr>
<tr>
<td>Sensor cap</td>
<td>S8 DIN Coax or SixPlug</td>
</tr>
<tr>
<td>Type of diaphragm</td>
<td>Ceramic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measuring accuracy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference conditions</td>
<td>Medium: water</td>
</tr>
<tr>
<td></td>
<td>Temperature: 20°C / 68°F</td>
</tr>
<tr>
<td></td>
<td>Pressure: 1 bar / 14.5 psi (absolute)</td>
</tr>
<tr>
<td>Maximum measuring error</td>
<td>pH: 0.2% full scale</td>
</tr>
<tr>
<td></td>
<td>Temperature: 1.0% full scale</td>
</tr>
<tr>
<td>Repeatability</td>
<td>0.2% full scale</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1 (or 0.01 in extended mode)</td>
</tr>
<tr>
<td>Long-term stability</td>
<td>24 hours: tested within accuracy definition</td>
</tr>
<tr>
<td>Temperature drift</td>
<td>Tested within accuracy definition</td>
</tr>
<tr>
<td>Cable length variation</td>
<td>Tested within accuracy definition</td>
</tr>
</tbody>
</table>
Operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>-5…+70°C / +23…+158°F</td>
</tr>
<tr>
<td>Max. operating pressure</td>
<td>2 bar / 29 psi (absolute)</td>
</tr>
<tr>
<td>Minimum conductivity</td>
<td>> 150 µS/cm</td>
</tr>
</tbody>
</table>

Installation conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process connection</td>
<td>PG 13.5</td>
</tr>
<tr>
<td>Immersion</td>
<td>SENSOFIT IMM 1000</td>
</tr>
<tr>
<td>Flow-through</td>
<td>SENSOFIT FLOW 1000</td>
</tr>
<tr>
<td>Insertion</td>
<td>SENSOFIT INS 1000</td>
</tr>
<tr>
<td>Retractable</td>
<td>SENSOFIT RET 1000/2000</td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode shaft</td>
<td>Glass</td>
</tr>
<tr>
<td>Measuring electrode</td>
<td>AH Glass</td>
</tr>
<tr>
<td>Inner buffer</td>
<td>pH 7.0</td>
</tr>
<tr>
<td>Reference electrolyte</td>
<td>Ag/AgCl/TepoxGel</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>Ceramics</td>
</tr>
<tr>
<td>Gasket</td>
<td>EPDM</td>
</tr>
</tbody>
</table>

Electrical connection

<table>
<thead>
<tr>
<th>Connector</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable</td>
<td>Cable PH/ORP-W Coax</td>
</tr>
<tr>
<td></td>
<td>Cable PH/ORP-W SixPlug</td>
</tr>
<tr>
<td>Cable length</td>
<td>5 m / 16.4 ft or 10 m / 32.8 ft</td>
</tr>
</tbody>
</table>

INFORMATION!

For further information contact your local sales office.
6.3 Dimensions

Figure 6-4: Dimensions without integrated Pt100

<table>
<thead>
<tr>
<th>Dimensions [mm]</th>
<th>Dimensions [inch]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>31</td>
</tr>
<tr>
<td>b</td>
<td>120</td>
</tr>
<tr>
<td>c</td>
<td>12</td>
</tr>
<tr>
<td>d</td>
<td>Ø 12</td>
</tr>
</tbody>
</table>

Figure 6-5: Dimension with SixPlug and integrated Pt100

<table>
<thead>
<tr>
<th>Dimensions [mm]</th>
<th>Dimensions [inch]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>52</td>
</tr>
<tr>
<td>b</td>
<td>120</td>
</tr>
<tr>
<td>c</td>
<td>12</td>
</tr>
<tr>
<td>d</td>
<td>Ø 12</td>
</tr>
</tbody>
</table>
Figure 6-6: Dimensions SENSOFIT FLOW 1000

<table>
<thead>
<tr>
<th>Dimensions [mm]</th>
<th>Dimensions [inch]</th>
</tr>
</thead>
<tbody>
<tr>
<td>aₘₚₙ</td>
<td>165</td>
</tr>
<tr>
<td>b</td>
<td>142.5</td>
</tr>
<tr>
<td>c</td>
<td>178.5</td>
</tr>
<tr>
<td>d</td>
<td>Ø 75</td>
</tr>
<tr>
<td>e</td>
<td>Ø 21</td>
</tr>
<tr>
<td>e₁</td>
<td>G1</td>
</tr>
<tr>
<td>f</td>
<td>19.1</td>
</tr>
<tr>
<td>g</td>
<td>22</td>
</tr>
</tbody>
</table>

Figure 6-7: Dimensions SENSOFIT IMM 1000

<table>
<thead>
<tr>
<th>Dimensions [mm]</th>
<th>Dimensions [inch]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1030 (may be shortened)</td>
</tr>
<tr>
<td>b</td>
<td>160</td>
</tr>
<tr>
<td>c</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>Ø 25</td>
</tr>
<tr>
<td>e</td>
<td>Ø 59</td>
</tr>
</tbody>
</table>
7.1 pH as a function of mV

The pH-value is the negative decadative logarithm of the hydrogen ion concentration, and it is directly related to the proportion of hydrogen ions H^+ to hydroxide ions OH^- in the media. The pH-electrode measures excess or deficit of the hydrogen ions and gives a proportional millivolt signal as output. The signal is 59.16 mV per 1 pH at $25^\circ C / 77^\circ F$. In clean water there is a total balance between hydrogen ions and hydroxide ions, the output from the electrode is 0.0 mV and pH is 7. The millivolt signal is measured by the pH sensor and the corresponding pH value is calculated in the signal converter.

<table>
<thead>
<tr>
<th>mV</th>
<th>pH</th>
<th>H^+ ions [mol/l]</th>
<th>OH^- ions [mol/l]</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>414</td>
<td>0</td>
<td>1</td>
<td>0.00000000000001</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>1</td>
<td>0.1</td>
<td>0.00000000000001</td>
<td></td>
</tr>
<tr>
<td>296</td>
<td>2</td>
<td>0.01</td>
<td>0.00000000000001</td>
<td>Coca Cola</td>
</tr>
<tr>
<td>237</td>
<td>3</td>
<td>0.001</td>
<td>0.00000000000001</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>4</td>
<td>0.0001</td>
<td>0.00000000000001</td>
<td>Orange juice</td>
</tr>
<tr>
<td>118</td>
<td>5</td>
<td>0.00001</td>
<td>0.00000000000001</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>6</td>
<td>0.000001</td>
<td>0.00000000000001</td>
<td>Milk</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>0.00000001</td>
<td>0.00000000000001</td>
<td>Clean water</td>
</tr>
<tr>
<td>-59</td>
<td>8</td>
<td>0.000000001</td>
<td>0.00000000000001</td>
<td>Blood</td>
</tr>
<tr>
<td>-118</td>
<td>9</td>
<td>0.0000000001</td>
<td>0.00000000000001</td>
<td></td>
</tr>
<tr>
<td>-177</td>
<td>10</td>
<td>0.0000000000001</td>
<td>0.00000000000001</td>
<td></td>
</tr>
<tr>
<td>-237</td>
<td>11</td>
<td>0.00000000000001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>-296</td>
<td>12</td>
<td>0.00000000000001</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>-355</td>
<td>13</td>
<td>0.00000000000001</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>-414</td>
<td>14</td>
<td>0.00000000000001</td>
<td>1</td>
<td>Sulfa</td>
</tr>
</tbody>
</table>
7.2 pH temperature dependency

The output from a pH-electrode varies with the temperature in a predictable way. The size of the variation depends on both the temperature and the pH being measured.

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>41</td>
<td>2.30</td>
<td>3.24</td>
<td>4.18</td>
<td>5.12</td>
<td>6.06</td>
<td>7.00</td>
<td>8.06</td>
<td>9.12</td>
<td>10.18</td>
<td>11.24</td>
<td>12.30</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>2.15</td>
<td>3.12</td>
<td>4.09</td>
<td>5.06</td>
<td>6.03</td>
<td>7.00</td>
<td>8.03</td>
<td>9.06</td>
<td>10.09</td>
<td>11.12</td>
<td>12.15</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
<td>2.00</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>6.00</td>
<td>7.00</td>
<td>8.00</td>
<td>9.00</td>
<td>10.00</td>
<td>11.00</td>
<td>12.00</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>1.85</td>
<td>2.88</td>
<td>3.91</td>
<td>4.94</td>
<td>5.97</td>
<td>7.00</td>
<td>7.97</td>
<td>8.94</td>
<td>9.91</td>
<td>10.88</td>
<td>11.85</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
<td>1.70</td>
<td>2.76</td>
<td>3.82</td>
<td>4.88</td>
<td>5.94</td>
<td>7.00</td>
<td>7.94</td>
<td>8.88</td>
<td>9.82</td>
<td>10.76</td>
<td>11.70</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
<td>1.55</td>
<td>2.84</td>
<td>3.73</td>
<td>4.82</td>
<td>5.91</td>
<td>7.00</td>
<td>7.91</td>
<td>8.88</td>
<td>9.73</td>
<td>10.64</td>
<td>11.55</td>
</tr>
<tr>
<td>65</td>
<td>149</td>
<td>1.40</td>
<td>2.52</td>
<td>3.64</td>
<td>4.76</td>
<td>5.88</td>
<td>7.00</td>
<td>7.88</td>
<td>8.76</td>
<td>9.64</td>
<td>10.52</td>
<td>11.40</td>
</tr>
<tr>
<td>75</td>
<td>167</td>
<td>1.25</td>
<td>2.30</td>
<td>3.55</td>
<td>4.70</td>
<td>5.85</td>
<td>7.00</td>
<td>7.85</td>
<td>8.70</td>
<td>9.55</td>
<td>10.40</td>
<td>11.25</td>
</tr>
<tr>
<td>85</td>
<td>185</td>
<td>1.10</td>
<td>2.28</td>
<td>3.46</td>
<td>4.64</td>
<td>5.82</td>
<td>7.00</td>
<td>7.82</td>
<td>8.64</td>
<td>9.46</td>
<td>10.28</td>
<td>11.10</td>
</tr>
<tr>
<td>95</td>
<td>203</td>
<td>0.95</td>
<td>2.21</td>
<td>3.37</td>
<td>4.58</td>
<td>5.79</td>
<td>7.00</td>
<td>7.79</td>
<td>8.58</td>
<td>9.37</td>
<td>10.16</td>
<td>10.95</td>
</tr>
</tbody>
</table>

At pH 7 and 25°C / 77°F the temperature error is zero. If temperature or pH changes the temperature error is calculated using the following formula:

\[
0.03 \text{ pH-difference / °F} \quad \text{or} \quad 0.03 \text{ pH-difference / °C}
\]
KROHNE product overview

- Electromagnetic flowmeters
- Variable area flowmeters
- Ultrasonic flowmeters
- Mass flowmeters
- Vortex flowmeters
- Flow controllers
- Level meters
- Temperature meters
- Pressure meters
- Analysis products
- Products and systems for the oil & gas industry
- Measuring systems for the marine industry