OPTISOUND 3010 C Handbook

Ультразвуковой уровнемер

Foundation Fieldbus
Содержание

1 О данном документе
 1.1 Функция ... 4
 1.2 Целевая группа .. 4
 1.3 Используемые символы .. 4

2 В целях безопасности
 2.1 Требования к персоналу ... 6
 2.2 Надлежащее применение ... 6
 2.3 Предупреждение о неправильном применении 6
 2.4 Общие указания по безопасности 6
 2.5 Маркировка безопасности на устройстве 7
 2.6 Соответствие требованиям норм EC 7
 2.7 Исполнение Рекомендаций NAMUR 7

3 Описание изделия
 3.1 Структура ... 8
 3.2 Принцип работы .. 9
 3.3 Упаковка, транспортировка и хранение 9

4 Монтаж
 4.1 Общие указания .. 11
 4.2 Указания по монтажу .. 13

5 Подключение к источнику питания
 5.1 Подготовка к подключению ... 20
 5.2 Порядок подключения .. 21
 5.3 Схема подключения (однокамерный корпус) 22
 5.4 Схема подключения (двухкамерный корпус) 23
 5.5 Фаза включения .. 25

6 Начальная установка с помощью модуля индикации и настройки
 6.1 Установка модуля индикации и настройки 26
 6.2 Система настройки ... 27
 6.3 Порядок начальной установки 28
 6.4 Схема меню ... 38
 6.9 Сохранение данных параметрирования 40

7 Обслуживание и устранение неисправностей
 7.1 Обслуживание ... 41
 7.2 Устранение неисправностей ... 41
 7.3 Замена блока электроники ... 41
 7.4 Ремонт прибора .. 42

8 Демонтаж
 8.1 Порядок демонтажа .. 43
 8.2 Утилизация ... 43

9 Приложение
 9.1 Технические данные .. 44
 9.2 Foundation Fieldbus .. 47
 9.3 Размеры .. 51
Указания по безопасности для Ex-зон

Для Ex-применений следует соблюдать специальные указания по безопасности, которые прилагаются к каждому устройству в Ex-исполнении и являются составной частью данного руководства по эксплуатации.

Редакция: 2015-08-18
1 О данном документе

1.1 Функция
Данное руководство содержит необходимую информацию для монтажа, подключения и начальной настройки, а также важные указания по обслуживанию и устранению неисправностей. Перед пуском устройства в эксплуатацию ознакомьтесь с изложенными здесь инструкциями. Руководство по эксплуатации должно храниться в непосредственной близости от места эксплуатации устройства и быть доступно в любой момент.

1.2 Целевая группа
Данное руководство по эксплуатации предназначено для обученного персонала. При работе персонал должен иметь и исполнять изложенные здесь инструкции.

1.3 Используемые символы

- Информация, указания, рекомендации
 Символ обозначает дополнительную полезную информацию.

- Осторожно: Несоблюдение данной инструкции может привести к неисправности или сбою в работе.

- Предупреждение: Несоблюдение данной инструкции может нанести вред персоналу и/или привести к повреждению прибора.

- Опасно: Несоблюдение данной инструкции может привести к серьезному травмированию персонала и/или разрушению прибора.

- Применения Ex
 Символ обозначает специальные инструкции для применений во взрывоопасных зонах.

- Применения SIL
 Этот символ обозначает указания по функциональной безопасности, которые должны соблюдаться при применениях, связанных с безопасностью.

- Список
 Ненумерованный список не подразумевает определенного порядка действий.

- Действие
 Стрелка обозначает отдельное действие.

- Порядок действий
 Нумерованный список подразумевает определенный порядок действий.

- Утилизация батареи
 Этот символ обозначает особые указания по утилизации батарей и аккумуляторов.
В целях безопасности

2.1 Требования к персоналу
Данное руководство предназначено только для обученного и допущенного к работе с прибором персонала.
При работе на устройстве и с устройством необходимо всегда носить требуемые средства индивидуальной защиты.

2.2 Надлежащее применение
Датчик OPTISOUND 3010 C предназначен для непрерывного измерения уровня.
Область применения см. в гл. "Описание".
Эксплуатационная безопасность устройства обеспечивается только при надлежащем применении в соответствии с данными, приведенными в руководстве по эксплуатации и дополнительных инструкциях.
Для обеспечения безопасности и соблюдения гарантийных обязательств, любое вмешательство, помимо мер, описанных в данном руководстве, может осуществляться только персоналом, уполномоченным изготовителем. Самовольные переделки или изменения категорически запрещены.

2.3 Предупреждение о неправильном применении
Не соответствующее назначению применение прибора является потенциальным источником опасности и может привести, например, к переполнению емкости или повреждению компонентов установки из-за неправильного монтажа или настройки.

2.4 Общие указания по безопасности
Устройство соответствует современному уровню техники с учетом общепринятых требований и норм. Устройство разрешается эксплуатировать только в исправном и технически безопасном состоянии. Ответственность за безаварийную эксплуатацию лежит на лице, эксплуатирующим устройство.
Лицо, эксплуатирующее устройство, также несет ответственность за соответствие техники безопасности действующим и вновь устанавливаемым нормам в течение всего срока эксплуатации.
При эксплуатации необходимо соблюдать изложенные в данном руководстве указания по безопасности, действующие требования к монтажу электрооборудования, а также нормы и условия техники безопасности.
Для обеспечения безопасности и соблюдения гарантийных обязательств, любое вмешательство, помимо мер, описанных в данном руководстве, может осуществляться только персоналом,
уполномоченным изготовителем. Самовольные переделки или изменения категорически запрещены.
Следует также учитывать нанесенные на устройство маркировки и указания по безопасности.

2.5 Маркировка безопасности на устройстве
Следует соблюдать нанесенные на устройство обозначения и рекомендации по безопасности.

2.6 Соответствие требованиям норм EC
Устройство выполняет требования соответствующих директив Европейского союза, что подтверждено испытаниями и нанесением знака CE.

2.7 Исполнение Рекомендаций NAMUR
Объединение NAMUR представляет интересы автоматизации промышленных технологических процессов в Германии. Выпущенные Рекомендации NAMUR действуют как стандарты в сфере промышленного приборного обеспечения.
Устройство выполняет требования следующих Рекомендаций NAMUR:
• NE 21 – Электромагнитная совместимость оборудования
• NE 53 – Совместимость промышленных приборов и компонентов индикации/настройки
Дополнительные сведения см. на www.namur.de.
3 Описание изделия

3.1 Структура

Комплект поставки

Комплект поставки включает:

- Ультразвуковой уровнемер OPTISOUND 3010 C
- Документация
 - Данное руководство по эксплуатации
 - Указания по безопасности (для Ex-исполнений)
 - Руководство по эксплуатации "Модуль индикации и настройки" (вариант)
 - При необходимости, прочая документация

Информация:

В руководстве по эксплуатации описываются также особенности устройства, которые могут быть выбраны как опции при заказе. Поставляемое исполнение исходит из спецификации заказа.

Компоненты

OPTISOUND 3010 C состоит из следующих компонентов:

- Преобразователь звука со встроенным датчиком температуры
- Корпус с электроникой
- Крышка корпуса с модулем индикации и настройки (вариант)

Компоненты могут иметь различное исполнение.

Рис. 1: OPTISOUND 3010 C в исполнении с пластиковым корпусом

1 Крышка корпуса с модулем индикации и настройки (вариант)
2 Корпус с электроникой
3 Присоединение и преобразователь звука

Типовой шильдик

Типовой шильдик содержит важные данные для идентификации и применения прибора:

- Тип устройства
- Артикул и серийный номер устройства
3 Описание изделия

- Числовые коды документации
- Технические данные, например: разрешения, температура процесса, тип присоединения/материал, выход сигнала, питание, степень защиты оболочки

3.2 Принцип работы

Область применения
Ультразвуковой уровнемер OPTISOUND 3010 C предназначен для непрерывного измерения уровня жидкостей и сыпучих продуктов практически в любой отрасли промышленности, особенно в водоснабжении и канализации.

Принцип действия
Преобразователь ультразвукового датчика посылает короткие ультразвуковые импульсы и принимает их в виде эхосигналов, отраженных от поверхности продукта. Время прохождения ультразвукового импульса от отсылки до приема пропорционально расстоянию до поверхности продукта, т.е. уровню. Определенный таким образом уровень преобразуется в соответствующий выходной сигнал и выдается в виде измеренного значения.

Питание и связь с шиной
Питание осуществляется через H1-Fieldbus. Двухпроводная линия, соотв. спецификации Fieldbus, служит для подачи питания и цифровой передачи сигнала нескольких датчиков. Эта линия может работать в двух вариантах:
- через интерфейсную карту H1 в системе управления и дополнительный источник питания
- через соединительное устройство с HSE (высокоскоростной Ethernet) и дополнительный источник питания по IEC 61158-2

DD/CFF
Необходимые для проектирования и конфигурирования коммуникационной сети FF (Foundation Fieldbus) описания устройств DD (Device Descriptions) и функциональные файлы CFF (Capability Files) можно найти в разделе загрузок на нашем сайте.

Питание подсветки модуля индикации и настройки осуществляется от датчика. Для этого необходим определенный уровень рабочего напряжения.

Напряжение питания см. п. "Технические данные".

3.3 Упаковка, транспортировка и хранение

Упаковка
Прибор поставляется в упаковке, обеспечивающей его защиту во время транспортировки. Соответствие упаковки обычным транспортным требованиям проверено согласно ISO 4180.

Упаковка прибора в стандартном исполнении состоит из экологически чистого и поддающегося переработке картона. Для упаковки приборов в специальном исполнении также применяются пенополиэтилен и полиэтиленовая пленка, которые можно утилизировать на специальных перерабатывающих предприятиях.
Транспортировка

Транспортировка должна выполняться в соответствии с указаниями на транспортной упаковке. Несоблюдение таких указаний может привести к повреждению прибора.

Осмотр после транспортировки

При получении доставленное оборудование должно быть незамедлительно проверено в отношении комплектности и отсутствия транспортных повреждений. Установленные транспортные повреждения и скрытые недостатки должны быть оформлены в соответствующем порядке.

Хранение

До монтажа упаковки должны храниться в закрытом виде и с учетом имеющейся маркировки складирования и хранения.

Если нет иных указаний, необходимо соблюдать следующие условия хранения:

• Не хранить на открытом воздухе
• Хранить в сухом месте при отсутствии пыли
• Не подвергать воздействию агрессивных сред
• Защитить от солнечных лучей
• Избегать механических ударов

Температура хранения и транспортировки

• Температура хранения и транспортировки: см. "Приложение - Технические данные - Условия окружающей среды"
• Относительная влажность воздуха 20 … 85 %
4 Монтаж

4.1 Общие указания

Монтажная позиция
Монтажное положение прибора должно быть удобным для монтажа и подключения, а также доступным для установки модуля индикации и настройки. Корпус прибора можно повернуть без инструмента на 330°. Модуль индикации и настройки также можно установить в одном из четырех положений со сдвигом на 90°.

Влажность
Использовать рекомендуемый кабель (см. "Подключение к источнику питания") и туго затянуть кабельный ввод.

Для защиты OPTISOUND 3010 C от попадания влаги рекомендуется соединительный кабель перед кабельным вводом направить вниз, чтобы влага от дождя или конденсата могла с него стекать. Данные рекомендации применимы, прежде всего, при монтаже на открытом воздухе, в помещениях с повышенной влажностью (например там, где осуществляется очистка), а также на емкостях с охлаждением или подогревом.

Рис. 2: Меры против попадания влаги

Отверстия под кабельные вводы с резьбой NPT
У устройств, корпус которых имеет отверстия под кабельные вводы с самоуплотняющимися резьбами NPT, при поставке с завода кабельные вводы могут быть не установлены. Поэтому для защиты при транспортировке свободные отверстия под кабельные вводы закрыты красными защитными колпачками. Перед пуском в эксплуатацию эти защитные колпачки должны быть заменены сертифицированными кабельными вводами или подходящими заглушками.

Диапазон измерения
Базовой плоскостью измерительного диапазона является нижняя сторона преобразователя звука.

Необходимо учитывать наличие под базовой плоскостью некоторого минимального расстояния, так называемого блокированного расстояния, где измерение невозможно. Точные значения блокированного расстояния см. в "Технических данных".
Рис. 3: Минимальное расстояние до максимального уровня заполнения
1 Блокированное расстояние
2 Базовая плоскость

Информация:
Если измеряемый продукт доходит до преобразователя звука, то возможно постепенное накопление продукта на преобразователе звука, что позднее может привести к ошибкам измерения.

Рис. 4: Диапазон измерения (рабочий диапазон) и максимальное измеряемое расстояние
1 "Полно"
2 "Пусто" (макс. измеряемое расстояние)
3 Диапазон измерения

Давление/вакуум
Избыточное давление в емкости не влияет на точность измерения с помощью OPTISOUND 3010 C. При низком давлении или вакууме ультразвуковые импульсы демпфируются, что оказывает влияние на результаты измерения, особенно если уровень низкий. При давлении ниже -0,2 бар (-20 кПа) следует применять другой принцип измерения, например, с помощью радара или направленных микроволн.
4.2 Указания по монтажу

Ввертывание

Для ввертывания OPTISOUND 3010 C использовать подходящий гаечный ключ и шестигранник на присоединении прибора. Макс. момент затяжки: см. "Технические данные".

Внимание!

При ввертывании запрещается держать прибор за корпус! В противном случае может быть повреждена вращательная механика корпуса.

Монтажная позиция

При монтаже OPTISOUND 3010 C расстояние от стенки емкости должно составлять не менее 200 мм (7.874 in). При монтаже уровнемера в центре выпуклой или округлой крыши емкости возможны множественные эхосигналы, которые можно отфильтровать с помощью соответствующей настройки (см. п. "Начальная установка").

Если это расстояние поддержать невозможно (особенно если вероятно накопление осадка продукта на стенке емкости), то при начальной установке необходимо создать память помех. Рекомендуется повторно создать память помех с уже накопившимся осадком на стенке емкости.

Рис. 5: Монтаж на выпуклой крыше емкости

1 Базовая плоскость
2 Центр или ось симметрии емкости

На емкостях с коническим днищем датчик рекомендуется монтировать по центру емкости, чтобы измерение было возможно на ее полную глубину.

Патрубок

Высота монтажного патрубка должна быть такой, чтобы нижняя часть преобразователя звука выступала из патрубка минимум на 10 мм (0.394 in).

На продуктах с хорошими отражательными свойствами OPTISOUND 3010 C можно монтировать также на патрубках, высота которых больше длины преобразователя звука (ориентировочные размеры патрубков см. на рисунке ниже). В этом случае конец патрубка должен быть гладким, без заусенцев и, по возможности, закругленным. При этом необходимо создать память помех.
Ориентация датчика

Для обеспечения оптимальных результатов измерения на жидкостях датчик необходимо устанавливать, по возможности, вертикально по отношению к поверхности продукта.

Для сокращения минимального допустимого расстояния до продукта при монтаже OPTISOUND 3010 C можно использовать дефлектор, что позволяет почти полностью заполнять емкость. Эта рекомендация применима, прежде всего, для открытых емкостей, например камер ливнеспуска.

Конструкции в емкости

При выборе монтажного положения для ультразвукового датчика следует учитывать, что находящиеся в емкости конструкции, например: лестницы, предельные выключатели, нагревательные спирали, подпорки и т.п. - могут вызывать ложные эхо-сигналы, которые накладываются на полезный эхо-сигнал.
При проектировании места измерения следует учитывать, что находящиеся в емкости конструкции (лестницы, предельные выключатели, нагревательные спирали, подпорки и т.п.) могут вызывать ложные эхосигналы, налагающиеся на полезный эхосигнал, и выбирать такое монтажное положение датчика, чтобы на пути распространения ультразвукового сигнала до поверхности продукта, по возможности, не оказывалось указанных препятствий.

Если в емкости имеются внутренние конструкции, при начальной установке необходимо создать память помех.

Ложные эхосигналы от больших стоек и подпорок в емкости можно ослабить с помощью установленных над этими конструкциями маленьких наклонных экранов из листового металла или пластика, которые будут рассеивать ультразвуковые сигналы и тем самым предотвращать зеркальное ложное отражение.

Рис. 11: Отражатели над конструкциями в емкости

Мешалки

Для емкости с мешалками следует создать память помех при работающих мешалках. В этом случае ложные отражения запоминаются при различных положениях мешалок.

Рис. 12: Мешалки
Втекающий продукт

Приборы не следует монтировать над заполняющим потоком. Прибор должен определять поверхность продукта, а не втекающий продукт.

Рис. 13: Втекающая жидкость

Пена

Густая пена, образующаяся на поверхности продукта при заполнении емкости, работе мешалок и других процессах, может значительно поглощать излучаемый сигнал.

Если пенообразование может привести к ошибкам измерения, рекомендуется устанавливать датчик в опускной трубе или применять датчики, реализующие принцип измерения посредством направленных микроволн.

Пена не оказывает влияния на измерение посредством направленных микроволн, поэтому в условиях пенообразования особенно применимы радарные уровнемеры, реализующие принцип измерения посредством направленных микроволн.

Воздушные потоки

Если в емкости возможны мощные воздушные потоки, например, из-за ветра при монтаже на открытом воздухе или вследствие использования циклонной вытяжки, рекомендуется установить OPTISOUND 3010 C в опускной трубе или использовать иной принцип измерения, например с помощью радара или направленных микроволн.

Измерение в опускной трубе

Установка датчика в трубе (опускной или выносной) позволяет исключить влияние внутренних конструкций емкости, пенообразования и турбулентности измеряемой среды.

Поскольку в этом случае измерение возможно только в трубе, то опускная труба должна быть длиной до желаемого минимального уровня.
OPTISOUND 3010 C можно устанавливать на трубах диаметром от 40 мм.

При соединении труб не должно оставаться больших зазоров или грубых сварных швов. Рекомендуется создать память ложных эхо-сигналов.

При склонности продукта к сильному налипанию, измерение в опускной трубе не рекомендуется.

Измерение расхода с прямоугольным сливом

В примере ниже даются основные рекомендации по применению для измерения расхода. Необходимые для проектирования данные можно получить у изготовителя лотка и из специальной литературы.

Рис. 15: Измерение расхода с прямоугольным водосливом: \(d_{\text{min}} = \) минимальное расстояние датчика (см. гл. "Технические данные"); \(h_{\text{max}} = \) max. заполнение прямоугольного водослива

1 Диафрагма слива (вид сбоку)
2 Верхний бьеф
3 Нижний бьеф
4 Диафрагма слива (вид со стороны нижнего бьефа)
Необходимо соблюдать следующие основные условия:

- Установка датчика на стороне верхнего бьефа
- Установка по центру лотка и вертикально по отношению к верхней поверхности жидкости
- Расстояние до диафрагмы слива
- Расстояние от отверстия диафрагмы до дна
- Минимальное расстояние от отверстия диафрагмы до нижнего бьефа
- Минимальное расстояние от датчика до максимального подъема уровня

Измерение расхода с лотком Хафаги-Вентури

Рис. 16: Измерение расхода с лотком Хафаги-Вентури: $d =$ минимальное расстояние датчика; $h_{\text{max}} =$ максимальное заполнение лотка; $B =$ наибольшее сужение лотка

1 Положение датчика
2 Лоток Вентури

Необходимо соблюдать следующие основные условия:

- Установка датчика на приемной стороне
- Установка по центру лотка и вертикально по отношению к верхней поверхности жидкости
- Расстояние до лотка Вентури
- Минимальное расстояние от датчика до максимального подъема уровня
5 Подключение к источнику питания

5.1 Подготовка к подключению

Основные указания по безопасности:

Внимание!
Подключать только при отсутствии напряжения.

- Электрическое подключение на месте эксплуатации может производиться только обученным и допущенным квалифицированным персоналом.
- Если возможны перенапряжения, установить защиту от перенапряжений.

Питание

Для данного устройства требуется рабочее напряжение 9 ... 32 V DC. Рабочее напряжение и цифровой сигнал шины передаются по одному и тому же двухпроводному кабелю. Питание подается от источника питания H1.

Подключение выполняется с помощью экранированного кабеля в соответствии со спецификацией шины.

Для устройств с корпусом и кабельным вводом используйте кабель круглого сечения. Для обеспечения уплотнительного действия кабельного ввода (степени защиты IP), проверьте, для какого диаметра кабеля применим данный кабельный ввод.

Используйте кабельный ввод, подходящий для данного диаметра кабеля.

При установке интегрированной аппаратуры (например, двух- или трёхпроводной шины) подключение к источнику питания производится с помощью кабеля, который обеспечивает непосредственное соединение с двумя клеммами кабельной вставки.

Осторожно!
Кабельный ввод НPT или стальная трубка должны вворачиваться в резьбовую вставку без смазки. Обычные смазки могут содержать присадки, разъедающие место соединения между резьбовой вставкой и пластиковым корпусом, что приводит к нарушению прочности соединения и герметичности корпуса.

Экранирование кабеля и заземление

В системах с выравниванием потенциалов кабельный экран на источнике питания, в соединительной коробке и на датчике нужно соединить непосредственно с потенциалом "земли". Для этого в датчике экран должен быть подключен прямо к внутренней клемме заземления. Внешняя клемма заземления на корпусе должна быть низкоомно соединена с выравниванием потенциалов.

В системах без выравнивания потенциалов, кабельный экран на источнике питания и на датчике подключите непосредственно к потенциалу "земли". В соединительной коробке и Т-распределителе экран короткого кабеля, идущего к датчику, не должен быть связан ни с потенциалом "земли".
Подключение к источнику питания

Кабельные экраны к источнику питания и к следующему распределителю должны быть связаны между собой и через керамический конденсатор (напр., 1 нФ, 1500 В) соединены с потенциалом "земли". Тем самым подавляются низкочастотные уравнительные токи, но сохраняется защитный эффект против высокочастотных помех.

Для применения во взрывоопасных зонах общая емкость кабеля и всех конденсаторов не должна превышать 10 нФ.

Для применения во взрывоопасных зонах соединительный кабель должен отвечать соответствующим требованиям. Следует исключить возможность уравнительных токов в кабельном экране. При заземлении с обеих сторон это достигается за счет применения конденсатора или отдельного выравнивания потенциалов.

5.2 Порядок подключения

Выполнить следующее:
1. Отвинтить крышку корпуса.
2. Снять модуль индикации и настройки, если он установлен, повернув его слегка влево.
3. Ослабить гайку кабельного ввода.
4. Удалить прибл. 10 см обкладки кабеля, концы проводов зачистить прибл. на 1 см.
5. Вставить кабель в датчик через кабельный ввод.
6. Открыть контакты, приподняв рычажки отверткой (см. рис. ниже).
7. Провода вставить в открытые контакты в соответствии со схемой подключения.
8. Закрыть контакты, нажав на рычажки, при этом должен быть слышен щелчок пружины контакта.
9. Слегка потянуть за провода, проверить надежность их закрепления в контактах
10. Экран подключить к внутренней клемме заземления, а внешнюю клемму заземления соединить с выравниванием потенциалов.
11. Туго затянуть гайку кабельного ввода. Уплотнительное кольцо должно полностью облегать кабель.
12. Завинтить крышку корпуса.

Электрическое подключение выполнено.
5.3 Схема подключения (однокамерный корпус)

Рисунки ниже действительны для исполнения без взрывозащиты, а также для исполнения Ex ia.

Обзор корпусов

Рис. 18: Однокамерный корпус из различных материалов

1 Пластик
2 Алюминий
3 Нержавеющая сталь
4 Фильтрующий элемент для компенсации давления воздуха
Отсек электроники и подключения

Рис. 19: Отсек электроники и подключения (однокамерный корпус)
1 Контакты для подключения Foundation Fieldbus
2 Переключатель моделирования (“on” = режим работы с разрешением моделирования)
3 Прижимные контакты для модуля индикации и настройки
4 Интерфейс для сервиса
5 Клемма заземления для подключения экрана кабеля

Схема подключения

Рис. 20: Схема подключения (однокамерный корпус)
1 Питание, выход сигнала

5.4 Схема подключения (двухкамерный корпус)

Рисунки ниже действительны для исполнения без взрывозащиты, а также для исполнения Ex ia.
Обзор корпусов

Рис. 21: Двухкамерный корпус
1 Крышка отсека подключения
2 Заглушка
3 Крышка отсека электроники
4 Фильтрующий элемент для компенсации давления воздуха
5 Кабельный ввод

Отсек электроники

Рис. 22: Отсек электроники (двухкамерный корпус)
1 Переключатель моделирования ("on" = режим работы с разрешением моделирования)
2 Прижимные контакты для модуля индикации и настройки
3 Интерфейс для сервиса
4 Внутренняя соединительная линия к отсеку подключения
5 Клемма заземления для подключения экрана кабеля
Отсек подключения

Рис. 23: Отсек подключения (двухкамерный корпус)
1 Пружинные контакты для источника питания
2 Разъем для подключения сервисного интерфейса
3 Клемма заземления для подключения экрана кабеля

Схема подключения

Рис. 24: Схема подключения (двухкамерный корпус)
1 Питание, выход сигнала

5.5 Фаза включения

Фаза включения

После подключения OPTISOUND 3010 C к источнику питания или после восстановления напряжения в течение прибл. 30 сек. выполняется самопроверка прибора:

- Внутренняя проверка электроники
- Индикация типа устройства, версии ПО и тега (обозначения) датчика
- Кратковременный (10 сек.) скачок выходного сигнала до установленного значения отказа

Затем выдается соответствующий токовый сигнал (значение соответствует действительному уровню и уже выполненным установкам, например заводской установке).
6 Начальная установка с помощью модуля индикации и настройки

6.1 Установка модуля индикации и настройки

Модуль индикации и настройки можно установить на датчике и снять с него в любой момент. Для этого не нужно отключать питание.

Для установки модуля индикации и настройки выполнить следующее:

1. Отвинтить крышку корпуса.
2. Установить модуль индикации и настройки в желаемое положение на электронике (возможны четыре положения со сдвигом на 90°).
3. Установить модуль индикации и настройки на электронике и слегка повернуть вправо до щелчка
4. Туго завинтить крышка корпуса со смотровым окошком.

Для демонтажа выполнить описанные выше действия в обратном порядке.

Питание модуля индикации и настройки осуществляется от датчика.

Примечание:
При использовании установленного в устройстве модуля индикации и настройки для местной индикации требуется более высокая крышка корпуса с прозрачным окошком.
6.2 Система настройки

Рис. 26: Элементы индикации и настройки
1 ЖК-дисплей
2 Индикация номера пункта меню
3 Клавиши настройки

Функции клавиш

- Клавиша [OK]:
 - переход к просмотру меню
 - подтверждение выбора меню
 - редактирование параметра
 - сохранение значения

- Клавиша [->]:
 - смена меню
 - перемещение по списку
 - выбор позиции для редактирования

- Клавиша [+]:
 - изменение значения параметра

- Клавиша [ESC]:
 - отмена ввода
 - возврат в меню уровнем выше

Система настройки

Прибор настраивается с помощью четырех клавиш и меню на жидкокристаллическом дисплее модуля индикации и настройки. Функции клавиш показаны на рисунке выше.

Временные функции

Разовым нажатием клавиш [+ и [->] редактируемое значение и положение курсора изменяется на одну позицию. При нажатии длительностью более 1 с, изменение выполняется непрерывно.

При одновременном нажатии клавиш [OK] и [ESC] в течение более 5 с, выполняется возврат в главное меню. При этом язык меню переключается на “English”.

Через 60 мин. после последнего нажатия клавиш автоматически происходит возврат к отображению измеренных
значений. Значения, не подтвержденные нажатием клавиши [OK], будут потеряны.

6.3 Порядок начальной установки

Уровнемер измеряет расстояние от датчика до поверхности продукта. Для индикации собственно высоты заполнения, необходимо задать соответствие измеренного расстояния высоте заполнения в процентах.

Данная установка используется для вычисления реального уровня, а также для ограничения рабочего диапазона датчика до требуемого интервала.

Рис. 27: Пример выполнения Установки Min./Max.

1. Мин. уровень = max. измеренное расстояние
2. Макс. уровень = min. измеренное расстояние

Для установки Min./Max. фактический уровень не имеет значения: такая настройка всегда осуществляется без изменения уровня и может проводиться еще до монтажа прибора на месте измерения.

Базовая установка - Установка Min.

Выполнить следующее:

1. Нажатием [OK] перейти от индикации измеренных значений в главное меню.

2. С помощью [->] выбрать меню Базовая установка и подтвердить нажатием [OK]. На дисплее появится меню "Установка Min".
3. Для изменения процентного значения нажать [OK] и с помощью [->] установить курсор на нужную позицию. С помощью [+/-] ввести необходимое процентное значение и сохранить его нажатием [OK]. Курсор теперь переходит на значение расстояния.

4. Ввести соответствующее данному процентному значению значение расстояния в метрах для пустой емкости (например, расстояние от датчика до дна емкости).

5. Подтвердить установку клавишей [OK] и с помощью [->] перейти к установке Max.

Базовая установка - Установка Max.

Выполнить следующее:

1. Для изменения процентного значения нажать [OK] и с помощью [->] установить курсор на нужную позицию. С помощью [+/-] ввести необходимое процентное значение и сохранить его нажатием [OK]. Курсор теперь переходит на значение расстояния.

2. Ввести соответствующее значение расстояния в метрах для полной емкости. Максимальный уровень должен быть ниже мертвой зоны.

Базовая установка - Среда

Каждая измеряемая среда имеет различные отражательные свойства. На характер отражения влияют также некоторые состояния среды: для жидкостей – это волна поверхности и пенообразование, для сыпучих продуктов – насыпной конус, пылеобразование и дополнительные отражения от стенок емкости. Для адаптации прибора к условиям измерения необходимо в этом меню выбрать "Жидкость" или "Сыпучий продукт".

Среда

- Жидкость

Для сыпучих продуктов можно дополнительно выбрать "Порошок/пьль", "Гранулы/таблетки" или "Щебень/гравий".

Данная дополнительная установка позволяет повысить надежность измерения, особенно на средах со слабыми отражательными свойствами.
Базовая установка - Форма емкости

После ввода необходимых параметров сохранить установку и с помощью клавиши [→] перейти к следующему пункту меню.

Геометрия емкости может также влиять на надежность измерения. Для адаптации датчика к условиям измерения нужно выбрать соответствующий тип емкости. Подменю типов емкости различаются в зависимости от выбора измеряемой среды: для установки "Жидкость" - это "Резервуар", "Опуск. труба", "Открытая емкость" или "Емкость с мешалкой", для установки "Сыпучий продукт" - это "Силос" или "Бункер".

Базовая установка - Демпфирование

Для устранения колебаний значений на дисплее, например в связи с волнением поверхности продукта, можно установить демпфирование, задав время в пределах от 0 до 999 секунд. При этом следует учитывать, что время реакции полного измерения и задержки реакции на быстрое изменение измеряемых величин также увеличится. Обычно для выравнивания дисплея измеренных значений достаточно нескольких секунд.

Базовая установка - Кривая линеаризации

Линеаризация необходима в том случае, когда требуется индикация или вывод измеренных значений в единицах объема, а объем емкости изменяется нелинейно по отношению к уровню ее заполнения, например когда емкость горизонтальная цилиндрическая или сферическая. Для таких типов емкостей заданы кривые линеаризации, представляющие отношение между уровнем заполнения в процентах и объемом емкости. При активировании соответствующей кривой линеаризации на дисплей выводятся правильные процентные значения объема. Для индикации объема не в процентах, а, например, в литрах или килограммах, можно дополнительно в меню "Дисплей" задать пересчет.
Базовая установка - Тег датчика

В этом пункте меню можно ввести ясное обозначение датчика, например наименование места измерения, продукта или емкости. В цифровых системах и в документации для больших установок такое обозначение вводится для точной идентификации отдельных мест измерения.

На этом базовая установка завершена и с помощью клавиши [ESC] можно вернуться в главное меню.

Меню настройки дисплея

Радарные датчики, датчики с направленными микроволнами и ультразвуковые датчики выдают следующие значения:

- SV1 (Secondary Value 1): процентное значение в соответствии со значениями установки
- SV2 (Secondary Value 2): значение расстояния до пересчета со значениями установки
- PV (Primary Value): линеаризованное процентное значение
- AI FB1 (Out)

В меню "Дисплей" задается, какое из этих значений будет отображаться на дисплее.

Дисплей - Подсветка

Интегрированная подсветка дисплея включается через операционное меню. Функция зависит от уровня напряжения питания, см. "Технические данные/ Напряжение питания".

По умолчанию подсветка выключена.

Диагностика - Пиковые значения

В датчике сохраняются минимальное и максимальное измеренные значения. Эти значения отображаются через меню "Пиковые значения".

- Min. и Max. расстояние в m(d)
- Min. и Max. температура
6 Начальная установка с помощью модуля индикации и настройки

Диагностика - Надежность измерения

При бесконтактном измерении следует учитывать возможное влияние рабочих условий. В этом пункте меню отображается надежность эхо-сигнала от уровня заполнения. Надежность измерения - это уровень сигнала в dB за вычетом помех. Чем выше это значение, тем надежнее измерение. При действующем измерении значения составляют > 10 dB.

Диагностика - Статус устройства

В данном меню отображается информация о состоянии устройства. При отсутствии ошибок выводится статус "OK". При неисправности будет мигать соответствующий код ошибки, например "E013". Дополнительно может отображаться текстовое описание ошибки: "Отсутствует измеренное значение".

Информация:

Код ошибки и ее текстовое описание также отображаются на дисплее измеренных значений.

Диагностика - Выбор кривой

"Эхо-кривая" ультразвукового датчика показывает уровень эхосигналов в dB в пределах диапазона измерения. Уровень сигнала позволяет оценить качество измерения.

"Эхо-кривая помех" показывает сохраненные эхосигналы помех (см. меню "Сервис") с уровнем сигнала в "dB" в пределах диапазона измерения в пустой емкости.

Пуск записи "Тренда", в зависимости от датчика, позволяет записать до 3000 измеренных значений. Записанные значения могут быть отображены в виде тренда по оси времени. При заполнении памяти самые старые значения стираются.

Необходимую кривую можно выбрать через меню "Выбор кривой".

Информация:

По умолчанию запись тренда выключена. Включить запись тренда можно через меню "Пуск записи тренда".

Диагностика - Представление кривой

Сравнение эхо-кривой и кривой ложных эх о дает возможность оценить надежность измерения. Выбранная кривая обновляется в текущем режиме. Нажатием клавиши [OK] открывается подменю функций изменения масштаба.

Для эхо-кривой и кривой ложных эхо-сигналов:

- "X-Zoom": функция увеличения для измеренного расстояния
6 Начальная установка с помощью модуля индикации и настройки

- "Y-Zoom": 1-, 2-, 5- и 10-кратное увеличение сигнала в "dB"
- "Unzoom": возврат к изображению в пределах номинального диапазона измерения с однократным увеличением

Для кривой тренда:
- "X-Масштаб": разрешение
 - 1 минута
 - 1 час
 - 1 день
- "Стоп/Пуск": остановка текущей записи или начало новой записи
- "Уменьшить": возврат к разрешению в минутах

Заводская установка разрешения - 1 минута. Изменить разрешение на 1 час или 1 день можно через программное обеспечение PACTware.

Service - Память помех

Высокие патрубки или конструкции в емкости, например подпорки или мешалки, а также осадок продукта или сварные швы на стенках емкости могут вызывать ложные отражения. Такие ложные отраженные сигналы можно сохранить в памяти помех, и они будут игнорироваться при измерении. При создании памяти помех уровень продукта в емкости должен быть минимальным, тогда будут обнаружены все возможные ложные отражения.

Выполнить следующее:
1. Нажатием [OK] перейти от индикации измеренных значений в главное меню.
2. С помощью [->] выбрать меню Сервис и подтвердить нажатием [OK]. На дисплее появится меню "Память помех".
3. Подтвердить выбор меню "Память помех - Изменить сейчас" клавишей [OK] и в открывшемся подменю выбрать "Создать снова". Ввести фактическое расстояние от датчика до поверхности продукта. Нажатием [OK] в датчике будут сохранены все сигналы помех в пределах этого расстояния.

Примечание:
Проверьте расстояние до поверхности продукта. Если ввести неправильное (слишком большое) значение, актуальный уровень сохранится в памяти как помеха и на указанном расстоянии уровень определяться более не будет.
Сервис - Расширенная настройка

Через меню "Дополнительная установка" можно оптимизировать OPTISOUND 3010 C для применения с быстрым изменением уровня. Для этого необходимо выбрать функцию "Быстрое изменение уровня > 1 м/мин.".

Примечание:
Установка функции "Быстрое изменение уровня > 1 м/мин." значительно редуцирует усреднение при формировании сигнала, вследствие чего ложные отраженные сигналы от мешалок или конструкций в емкости могут привести к отклонению измеренного значения. Поэтому рекомендуется создать память помех.

Сервис - Моделирование

Данное меню позволяет моделировать желаемые значения уровня и давления через токовый выход, с помощью чего проверяется канал передачи сигнала, например через подключенное устройство индикации или входную карту системы управления.

Возможно моделирование следующих значений:
- Проценты
- Ток
- Давление (для преобразователей давления)
- Расстояние (для радарных датчиков и датчиков с направленными микроволнами)

Выбор моделируемого значения для датчиков Profibus PA осуществляется через функцию "Channel" в меню "Базовая установка".

Для запуска моделирования:
1. Нажать [OK]
2. Клавишей [->] выбрать желаемую величину моделирования и подтвердить нажатием [OK]
4. Нажать [OK]

Выполняется моделирование, при этом датчики 4…20 мА/HART выдают токовое значение, а датчики Profibus PA или Foundation Fieldbus - цифровое значение.

Для остановки моделирования:
→ Нажать [ESC]

Информация:
Моделирование останавливается автоматически через 10 минут после последнего нажатия клавиши.
6 Начальная установка с помощью модуля индикации и настройки

Моделирование
Начать моделирование?

Сервис - Сброс

Базовая установка
При выполнении "Сброса" значения параметров датчика восстанавливаются в соответствии со следующей таблицей:1)

<table>
<thead>
<tr>
<th>Функция</th>
<th>Значение сброса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Установка Max</td>
<td>0 m(d)</td>
</tr>
<tr>
<td>Установка Min</td>
<td>Конец диапазона измерения, m(d)²</td>
</tr>
<tr>
<td>Среда</td>
<td>Жидкость</td>
</tr>
<tr>
<td>Форма емкости</td>
<td>неизвестно</td>
</tr>
<tr>
<td>Демпфирование</td>
<td>0 s</td>
</tr>
<tr>
<td>Линеаризация</td>
<td>Линейная</td>
</tr>
<tr>
<td>ТЕГ датчика</td>
<td>Датчик</td>
</tr>
<tr>
<td>Индицируемое значение</td>
<td>AI-Out</td>
</tr>
<tr>
<td>Единицы установки</td>
<td>m(d)</td>
</tr>
</tbody>
</table>

При выполнении "Сброса" не сбрасываются значения следующих установок (см. таблицу):

<table>
<thead>
<tr>
<th>Функция</th>
<th>Значение сброса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Язык</td>
<td>не сбрасывается</td>
</tr>
</tbody>
</table>

Заводская установка
Выполняется такой же сброс, как при базовой установке, а также восстанавливаются значения по умолчанию для специальных параметров.³)

Пиковые значения
Минимальное и максимальное значения расстояния и температуры сбрасываются до текущего значения.

Сервис - Единицы установки
В данном меню выбираются единицы измерения для самого датчика.

Сервис - Язык
На заводе язык меню устанавливается в соответствии с заказом. Язык меню можно изменить. Например, в версии программного обеспечения 3.50 возможны следующие языки:

- Deutsch

1) Базовая установка датчика.
2) В зависимости от типа датчика, см. "Технические данные".
3) Специальные параметры - это параметры, которые устанавливаются на сервисном уровне с помощью программного обеспечения PACTware.
Начальная установка с помощью модуля индикации и настройки

- English
- Français
- Espanól
- Русскуу
- Italiano
- Netherlands
- Japanese
- Chinese

Язык
Немецкий

Сервис - Копировать данные датчика

Эта функция позволяет считывать данные из датчика и записывать данные в датчик через модуль индикации и настройки. См. Руководство по эксплуатации "Модуль индикации и настройки".

С помощью этой функции можно считывать и записывать следующие данные:
- Представление измеренных значений
- Установка
- Среда
- Форма емкости
- Демпфирование
- Кривая линеаризации
- ТЕГ датчика
- Индивидуальное значение
- Единицы дисплея
- Пересчет
- Токовый выход
- Единицы установки
- Язык

Не будут считываться или записываться следующие релевантные для безопасности данные:
- Режим работы HART
- PIN

Сервис - PIN

В данном меню можно активировать/деактивировать PIN. Четырехзначный PIN позволяет защитить данные датчика от несанкционированного доступа и случайного изменения. Если PIN активирован постоянно, то его можно временно деактивировать (примерно на 60 минут). На заводе PIN устанавливается на 0000.
При активированном PIN доступны только следующие функции:

- Выбор меню и отображение данных
- Считывание данных из датчика в модуль индикации и настройки

Меню информации

Инфо

В этом меню можно получить следующую информацию о датчике:

- Тип устройства
- Серийный номер: 8-значное число, например 12345678

Даты и версии ПО

- Дата изготовления: дата заводской калибровки, например 24. Март 2015
- Версия ПО: номер версии ПО датчика, например 3.80

- Последнее изменение через ПК: дата последнего изменения параметров датчика через ПК, например 24. Март 2015

- Даты и версии ПО

- Device-ID
- ТЕГ датчика

- Особенности датчика, например: вид взрывозащиты, тип присоединения, уплотнение, измерительная ячейка, диапазон измерения, электроника, корпус, кабельный ввод, разъем, длина кабеля и т.д.
6.4 Схема меню

Информация:
Показанные меню доступны в зависимости от исполнения прибора и выбранного применения.

Базовая установка

Установка Min
000.0 %
= 10.000 m(d)
1.245 m(d)

Установка Max
100.0 %
= 0.000 m(d)
6.789 m(d)

Среда
Жидкость
Форма емкости
Резервуар

Дисплей

Индивидуируемое значение
Al-Out

Подсветка
Выключено

Кривая линеаризации
Линейная

Демпфирование
0 s
6 Начальная установка с помощью модуля индикации и настройки

Диагностика

Базовая установка

3

Дисплей

 Диагностика

 Сервис

 Инфо

Наглядные значения

3.1

Расстояние мин.: 0,234 м(d)

Расстояние макс.: 5,385 м(d)

Т-мин.: 16.5 °C

Т-мин.: 37.5 °C

Надежность измерения

3.2

36 dB

Статус устройства

ОК

Выбор кривой

3.3

Эхо-кривая

Представление эхо-кривой

Сервис

Базовая установка

4

Дисплей

 Диагностика

 Сервис

 Инфо

Память помех

4.1

Изменить сейчас?

Дополнительная установка

4.2

Быстрое изменение уровня

(> 1 м/мин.)

Моделирование

4.3

Начать моделирование?

Сброс

4.4

Выполнить сброс?

Единицы установки

4.5

m(d)

Язык

4.8

Немецкий

Копировать данные датчика

4.7

Копировать данные датчика?

PIN

4.8

Активировать сейчас?

Инфо

Базовая установка

5

Дисплей

 Диагностика

 Сервис

 Инфо

Device ID

5.1

< max. 32 знака >

Sensor-TAG (PD_TAG)

< max. 32 знака >

Тип устройства

5.2

VEGASON 6x

Серийный номер

12345678

Дата калибровки

5.3

24. Март 2015

Версия ПО

3.80

Последнее изменение

через ПК

5.4

10. Апрель 2015

Особенности датчика

5.5

Показать сейчас?
6.9 Сохранение данных параметрирования

Для сервисных целей рекомендуется записать данные установки, например, в этом руководстве по эксплуатации, а также сохранить их в архиве.

При наличии модуля индикации и настройки, данные установки OPTISOUND 3010 C можно считывать из датчика и сохранять их в модуле (см. Руководство по эксплуатации "Модуль индикации и настройки", меню "Копировать данные датчика"). Данные долговременно сохраняются в модуле, в том числе при отсутствии питания датчика.

При замене датчика модуль индикации и настройки устанавливается на новом датчике, и сохраненные в модуле данные установки записываются в новый датчик также через меню "Копировать данные датчика".
7 Обслуживание и устранение неисправностей

7.1 Обслуживание
При использовании по назначению и нормальной эксплуатации особое обслуживание не требуется.

7.2 Устранение неисправностей
Лицо, эксплуатирующее устройство, должно принять соответствующие меры для устранения возникших неисправностей.

Работа OPTISOUND 3010 C характеризуется высокой надежностью. Однако возможны отказы, источником которых может стать:
- Датчик
- Процесс
- Питание
- Формирование сигнала

В случае отказа прежде всего необходимо проверить выходной сигнал и сообщения об ошибках на модуле индикации и настройки (см. ниже).

<table>
<thead>
<tr>
<th>Ошибка</th>
<th>Причина</th>
<th>Устранение</th>
</tr>
</thead>
<tbody>
<tr>
<td>E013</td>
<td>Отсутствует измеренное значение</td>
<td>Датчик в фазе загрузки Датчик не обнаруживает эхо-сигнал, напр., из-за ошибки монтажа или неправильной установки параметров</td>
</tr>
<tr>
<td>E017</td>
<td>Диапазон установки слишком малый</td>
<td>Перевести установки в диапазон, увеличив интервал между установками Min и Max</td>
</tr>
<tr>
<td>E036</td>
<td>Отсутствует исполнимое ПО датчика</td>
<td>Выполнить обновление ПО или отправить устройство на ремонт</td>
</tr>
<tr>
<td>E041</td>
<td>Аппаратная ошибка, дефект электроники</td>
<td>Заменить устройство или отправить его на ремонт</td>
</tr>
</tbody>
</table>

После устранения неисправности, если это необходимо в связи с причиной неисправности и принятыми мерами по ее устранению, повторно выполнить действия, описанные в п. "Пуск в эксплуатацию".

7.3 Замена блока электроники
Дефектный блок электроники может быть заменен самим пользователем.
Для Ex-применений могут применяться только устройства и блоки электроники с соответствующей маркировкой взрывозащиты.

Запасной блок электроники можно заказать через соответствующее представительство KROHNE.

7.4 Ремонт прибора
При необходимости ремонта сделать следующее:
Через Интернет с нашей домашней страницы
можно загрузить формуляр возврата.
Заполнение такого формуляра позволит быстро и без дополнительных запросов произвести ремонт.
- Распечатать и заполнить бланк для каждого прибора
- Прибор очистить и упаковать для транспортировки
- К устройству приложить заполненный бланк и имеющийся лист с данными безопасности
8 Демонтаж

8.1 Порядок демонтажа

Внимание!

При наличии опасных рабочих условий (емкость или трубопровод под давлением, высокая температура, агрессивный или ядовитый продукт и т.п.), демонтаж следует выполнять с соблюдением соответствующих норм техники безопасности.

Выполнить действия, описанные в п. "Монтаж" и "Подключение к источнику питания", в обратном порядке.

8.2 Утилизация

Устройство состоит из перерабатываемых материалов. Конструкция прибора позволяет легко отделить блок электроники.

Директива WEEE 2002/96/EG
Данное устройство не подлежит действию Директивы WEEE 2002/96/EG и соответствующих национальных законов. Для утилизации устройство следует направлять прямо на специализированное предприятие, минуя коммунальные пункты сбора мусора, которые, в соответствии с Директивой WEEE, могут использоваться только для утилизации продуктов личного потребления.

Утилизация в соответствии с установленными требованиями исключает негативные последствия для человека и окружающей среды и позволяет повторно использовать ценные материалы.

Материалы: см. п. "Технические данные"
При невозможности утилизировать устройство самостоятельно, обращайтесь к изготовителю.
9 Приложение

9.1 Технические данные

Общие данные

Контактирующие с продуктом материалы
- Преобразователь звука PVDF
- Уплотнение преобразователя звука/присоединения EPDM, FKM
- Присоединение G1½ DIN3852-A-B PVDF
- Присоединение 1½ NPT ASME B1.20.1 PVDF

Не контактирующие с продуктом материалы
- Корпус Пластик PBT (полиэстер), литой под давлением алюминий с порошковым покрытием, 316L
- Уплотнение между корпусом и крышкой корпуса NBR (корпус из нерж. стали), силикон (корпус из алюминия/пластикаТ)
- Смотровое окошко в крышке корпуса Поликарбонат
- Клемма заземления 316Ti/316L

Вес 1,8 … 4 кг (4 … 8.8 lbs), в зависимости от присоединения и корпуса

Макс. момент затяжки резьбы 25 Nm

Выходная величина

Выход
- Сигнал цифровой выходной сигнал, протокол Foundation Fieldbus
- Физический слой по IEC 61158-2

Время цикла min. 1 сек. (в зависимости от установки параметров)
- Демпфирование (63 % входной величины) 0 … 999 с, устанавливаемое
- Исполненная Рекомендация NAMUR NE 43

Channel Numbers
- Channel 1 Primary value
- Channel 2 Secondary value 1
- Channel 3 Secondary value 2

Скорость передачи 31,25 Кбит/с
Значение тока 10 mA, ±0.5 mA
Разрешающая способность измерения (цифровая) > 1 mm (0.039 in)
Входная величина

<table>
<thead>
<tr>
<th>Измеряемая величина</th>
<th>Расстояние между нижней кромкой преобразователя звука и поверхностью продукта</th>
</tr>
</thead>
</table>

Диапазон измерения

- **Жидкости**: до 5 м
- **Сыпучие продукты**: до 2 м
- **Блокированное расстояние**: 0,25 м

Условия при определении точности (по DIN EN 60770-1)

<table>
<thead>
<tr>
<th>Этalonные условия по DIN EN 61298-1</th>
<th>Прочие контрольные условия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Жидкости: +18 ... +30 °C (+64 ... +86 °F)</td>
<td>ОТРАЖАТЕЛЬ</td>
</tr>
<tr>
<td>Относительная влажность: 45 ... 75 %</td>
<td>Ложные отражения</td>
</tr>
<tr>
<td>Давление воздуха: 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)</td>
<td>Наибольший сигнал помехи 20 dB меньше полезного сигнала</td>
</tr>
</tbody>
</table>

Характеристики измерения

<table>
<thead>
<tr>
<th>Ультразвуковая частота</th>
<th>70 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Интервал измерения</td>
<td>> 2 сек. (в зависимости от установки параметров)</td>
</tr>
<tr>
<td>Ширина диаграммы направленности при -3 дБ</td>
<td>11°</td>
</tr>
<tr>
<td>Время успокоения или реакции на скачок 4)</td>
<td>> 3 сек. (в зависимости от установки параметров)</td>
</tr>
</tbody>
</table>

Точность измерения

<table>
<thead>
<tr>
<th>Разрешающая способность измерения</th>
<th>max. 1 мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Погрешность измерения</td>
<td>См. диаграмму</td>
</tr>
</tbody>
</table>

4) Время до выдачи правильного значения (с макс. отклонением 10 %) уровня при скачкообразном изменении уровня.
Влияние температуры окружающей среды на электронику датчика\(^5\)

Средний температурный коэффициент нулевого сигнала (температура погрешность) 0,06 %/10 K

Условия окружающей среды

<table>
<thead>
<tr>
<th>Условия окружающей среды</th>
<th>Температура окружающей среды, хранения и транспортировки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура окружающей среды</td>
<td>-40 ... +80 °C (-40 ... +176 °F)</td>
</tr>
</tbody>
</table>

Условия процесса

<table>
<thead>
<tr>
<th>Условия процесса</th>
<th>Давление процесса</th>
<th>Температура процесса (температура преобразователя звука)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Давление процесса</td>
<td>-20 ... 200 kPa/-0,2 ... 2 bar (-2,9 ... 29 psig)</td>
<td>- Уплотнение EPDM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Уплотнение FKM</td>
</tr>
<tr>
<td>Устойчивость к вибрации</td>
<td>Механические колебания с 4 g и 5 ... 100 Гц(^6)</td>
<td></td>
</tr>
</tbody>
</table>

Электромеханические данные

<table>
<thead>
<tr>
<th>Кабельный ввод</th>
<th>Однокамерный корпус</th>
<th>1 x кабельный ввод M20 x 1,5 (кабель ø 5 ... 9 мм), 1 x заглушка M20 x 1,5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>или: 1 x колпачок ½ NPT, 1 x заглушка ½ NPT</td>
</tr>
<tr>
<td></td>
<td>Двухкамерный корпус</td>
<td>1 x кабельный ввод M20 x 1,5 (кабель ø 5 ... 9 мм), 1 x заглушка M20 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>или: 1 x колпачок ½ NPT, 1 x заглушка ½ NPT</td>
</tr>
<tr>
<td>Пружинные контакты для провода сечением до</td>
<td>2,5 мм(^2) (AWG 14)</td>
<td></td>
</tr>
</tbody>
</table>

Модуль индикации и настройки

<table>
<thead>
<tr>
<th>Питание и передача данных</th>
<th>Питание и передача данных через датчик</th>
</tr>
</thead>
<tbody>
<tr>
<td>Индикатор</td>
<td>Жидкокристаллический точечно-матричный дисплей</td>
</tr>
<tr>
<td>Элементы настройки</td>
<td>4 клавиши</td>
</tr>
<tr>
<td>Степень защиты</td>
<td>IP 20</td>
</tr>
<tr>
<td></td>
<td>IP 40</td>
</tr>
<tr>
<td>Материал</td>
<td>Корпус</td>
</tr>
<tr>
<td></td>
<td>ABS</td>
</tr>
<tr>
<td></td>
<td>Смотровое окошко</td>
</tr>
<tr>
<td></td>
<td>Полиэстеровая пленка</td>
</tr>
</tbody>
</table>

\(^5\) Относительно номинального диапазона измерения.

\(^6\) Проверено в соотв. с Директивами Немецкого ллойда, Характеристика 2.
Питание

Рабочее напряжение

- Устройство не-Ex 9 … 32 V DC
- Устройство Ex ia 9 … 24 V DC
- Устройство Ex d 16 … 32 V DC

Рабочее напряжение - с подсветкой модуля индикации и настройки

- Устройство не-Ex 12 … 32 V DC
- Устройство Ex ia 12 … 24 V DC
- Устройство Ex d 20 … 32 V DC

Источник питания/макс. число датчиков

- Полевая шина макс. 32 (макс. 10 при Ex)

Защитные меры

Степень защиты

- Пластиковый корпус IP 66/IP 67 (NEMA 4X)
- Корпус из алюминия или нержавеющей стали IP 66/IP 68 (0,2 bar) NEMA 6P

Категория перенапряжений III

Класс защиты II

Разрешения

Устройства в исполнении с соответствующим разрешением могут иметь отличающиеся технические данные. Для таких устройств следует учитывать соответствующую документацию, поставляемую вместе с прибором.

9.2 Foundation Fieldbus

Блок-схема обработки измеренных значений

На следующем рисунке в упрощенной форме показаны блок преобразователя (TB) и функциональный блок (FB).

7) Для соблюдения данной степени защиты нужен подходящий кабель.
Рис. 29: Обработка измеренных значений OPTISOUND 3010 C

Диаграмма установки параметров
На рисунке ниже представлена функция установки параметров:

Рис. 30: Установка OPTISOUND 3010 C
Список параметров для версии устройства 3.0

В данном списке представлены наиболее важные параметры и их значение:

- **primary_value**
 - This is the process value after adjustment and Linearization with the status of the transducer block
- **primary_value_unit**
 - Unit code of 'Primary_value'
- **secondary_value_1**
 - Value after min./max.-adjustment (level + level offset). Selected as input to AIFB by setting 'Channel' = 2. Unit derives from 'Secondary_value_1_unit'
- **secondary_value_1_unit**
 - Unit code of 'Secondary_value_1'
- **secondary_value_2**
 - Sensor value + sensor offset. Selected as input to AIFB by setting 'Channel' = 3. Unit derives from 'Secondary_value_2_unit'
- **secondary_value_2_unit**
 - Unit code of 'Secondary_value_2'
- **sensor_value**
 - Raw sensor value, i.e. the uncalibrated measurement value from the sensor. Unit derives from 'Sensor_range.unit'
- **sensor_range**
 - 'Sensor_range.unit' refers to 'Sensor_value', 'Max/Min_peak_sensor_value', 'Cal_point_hi/lo'
- **simulate_primary_value**
- **simulate_secondary_value_1**
- **simulate_secondary_value_2**
- **Device Status**
- **Linearization Type**
 - Possible types of linearization are: linear, user defined, cylindrical lying container, spherical container
- **CURVE_POINTS_1_10**
 - X and Y values for the user defined linearization curve
- **CURVE_POINTS_11_20**
 - X and Y values for the user defined linearization curve
- **CURVE_POINTS_21_30**
 - X and Y values for the user defined linearization curve
- **CURVE_POINTS_31_33**
 - X and Y values for the user defined linearization curve
- **CURVE_STATUS**
 - Result of table plausibility check
- **SUB_DEVICE_NUMBER**
- **SENSOR_ELEMENT_TYPE**
- **display_source_selector**
 - Selects the type of value, which is displayed on the indicating and adjustment module
- **max_peak_sensor_value**
 - Holds the maximum sensor value. Write access resets to current value. Unit derives from 'Sensor_range.unit'
- **min_peak_sensor_value**
 - Holds the minimum sensor value. Write access resets to current value. Unit derives from 'Sensor_range.unit'
- **CAL_POINT_HI**
 - Min./max.-adjustment: Upper calibrated point of the sensor. It refers to 'Cal_level_hi'. The unit is defined in 'Sensor_range.unit' hi
- **CAL_POINT_LO**
 - Min./max.-adjustment: Lower calibrated point of the sensor. It refers to 'Cal_level_lo'. The unit is defined in 'Sensor_range.unit'

- **CAL_LEVEL_HI**
 - Min./max.-adjustment: Level at 'Cal_point_hi'. When writing 'Cal_level_hi' and 'Cal_type' = 1 (Online) the 'Cal_point_hi' is automatically set to the current sensor value. The unit is defined in 'Level_unit'

- **CAL_LEVEL_LO**
 - Min./max.-adjustment: Level at 'Cal_point_lo'. When writing 'Cal_level_lo' and 'Cal_type' = 1 (Online), the 'Cal_point_lo' is automatically set to the current sensor value. The unit is defined in 'Level_unit'

- **CAL_TYPE**
 - Min./max.-adjustment: Defines type of calibration: Dry: no influence of sensor value. Online: current sensor value determines 'Cal_point_hi/lo'

- **level**
 - Value after min./max. adjustment

- **level_unit**
 - Unit code of 'Level', 'Level_offset', 'Cal_level_hi', 'Cal_level_lo'

- **level_offset**
 - Offset that is added to the 'Level' value. Unit derives from 'Level_unit'

- **SENSOR_OFFSET**
 - Offset that is added to the 'Sensor_value'. Unit derives from 'Sensor_range.unit'

- **end_of_operation_range**
 - Set up to suit the process conditions

- **begin_of_operation_range**
 - Set up to suit the process conditions

- **product_type**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written

- **liquids_medium_type**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written

- **solids_medium_type**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written

- **liquids_vessel_type**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written

- **solids_vessel_type**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written

- **fast_level_change**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written

- **first_echo_factor**
 - Set up to suit the process conditions

- **pulse_velocity_correction**
 - Set up to suit the process conditions

- **echo_quality**
 - Signal/Noise ratio

- **empty_vessel_curve_corr_dist**
 - Distance from the sensor to the product surface. Unit derives from 'Sensor_range.unit'

- **empty_vessel_curve_corr_op_code**
- Update, create new or delete the empty vessel curve
- sound_velocity
 - Set up to suit the process conditions
- sound_velocity_unit
 - Unit code of 'Sound_velocity'
- Temperature
 - Process temperature. Selected as input to AIFB by setting 'Channel' = 4. Unit derives from 'Temperature.unit'
- temperature_unit
 - Unit code of 'Temperature', 'Max./Min._peak_temperature_value'
- max_peak_temperature_value
 - Holds the maximum process temperature. Write access resets to current value. Unit derives from 'Temperature.unit'
- min_peak_temperature_value
 - Holds the minimum process temperature. Write access resets to current value. Unit derives from 'Temperature.unit'

9.3 Размеры

Корпус

1. Пластиковый корпус
2. Корпус из нержавеющей стали
3. Алюминиевый двухкамерный корпус
4. Алюминиевый корпус

Рис. 31: Корпус в исполнении IP 66/IP 67 и IP 66/IP 68; 0,2 bar (с установленным модулем индикации и настройки корпус выше или шире на 9 мм)
Приложение

OPTISOUND 3010 C

Рис. 32: OPTISOUND 3010 C

1 Блокированное расстояние: 0,25 м (0.82 ft)
2 Диапазон измерения: на жидкостях - до 5 м (16.4 ft), на сыпучих продуктах - до 2 м (6.562 ft)
9.4 Товарный знак
Все используемые фирменные марки, а также торговые и фирменные имена являются собственностью их законного владельца/автора.
KROHNE product overview

- Electromagnetic flowmeters
- Variable area flowmeters
- Ultrasonic flowmeters
- Mass flowmeters
- Vortex flowmeters
- Flow controllers
- Level meters
- Temperature assemblies
- Pressure transmitters
- Analysis products
- Products and systems for the oil and gas industry

KROHNE Messtechnik GmbH & Co. KG
Ludwig-Krohne-Straße 5
D-47058 Duisburg
Tel.: +49 (0) 203 301 0
Tel.: +49 (0) 203 301 10389
info@krohne.de

The current list of all KROHNE contacts and addresses can be found at:
www.krohne.com