OPTISOUND 3020 C Handbook

Ultrasone niveaumeter

Foundation Fieldbus
Inhoudsopgave

1 Over dit document
 1.1 Functie .. 4
 1.2 Doelgroep ... 4
 1.3 Gebruikte symbolen .. 4

2 Voor uw veiligheid
 2.1 Geautoriseerd personeel .. 5
 2.2 Correct gebruik .. 5
 2.3 Waarschuwing voor misbruik .. 5
 2.4 Algemene veiligheidsinstructies .. 5
 2.5 Veiligheidsmarkering op het instrument ... 6
 2.6 CE-conformiteit ... 6
 2.7 Voldoet aan NAMUR-aanbevelingen .. 6

3 Productbeschrijving
 3.1 Constructie ... 7
 3.2 Werking ... 8
 3.3 Verpakking, transport en opslag .. 8

4 Monteren
 4.1 Algemene instructies ... 10
 4.2 Montage-instructies ... 11

5 Op de voedingsspanning aansluiten
 5.1 Aansluiting voorbereiden ... 19
 5.2 Aansluitstappen ... 20
 5.3 Aansluit schema eenkamerbehuizing ... 21
 5.4 Aansluit schema tweekamerbehuizing .. 22
 5.5 Inschakelfase .. 24

6 In bedrijf nemen met de display- en bedieningsmodule
 6.1 Aanwijs- en bedieningsmodule inzetten .. 25
 6.2 Bedieningssysteem ... 26
 6.3 Inbedrijfnamestappen .. 27
 6.4 Menuschema .. 36
 6.9 Opslaan van de parameters ... 38

7 Service en storingen oplossen
 7.1 Onderhoud ... 39
 7.2 Storingen oplossen ... 39
 7.3 Elektronica vervangen .. 39
 7.4 Het instrument repareren ... 40

8 Demonteren
 8.1 Demontagestappen ... 41
 8.2 Afvoeren .. 41

9 Bijlage
 9.1 Technische gegevens ... 42
 9.2 Foundation Fieldbus ... 45
 9.3 Afmetingen ... 49
Veiligheidsinstructies voor Ex-omgeving
Let bij Ex-toepassingen op de Ex-specifieke veiligheidsinstructies. Deze worden met elk instrument met Ex-toelating als document meegeleverd en zijn bestanddeel van de handleiding.

Uitgave: 2015-08-18
1 Over dit document

1.1 Functie
Deze gebruiksaanwijzing geeft u de benodigde informatie voor de montage, aansluiting en inbedrijfname plus belangrijke instructies voor onderhoud en oplossen van storingen. Lees deze daarom voor de inbedrijfname en bewaar deze daarom goed toegankelijk als onderdeel van het product in de nabijheid van het instrument.

1.2 Doelgroep
Deze gebruiksaanwijzing is bedoeld voor gekwalificeerd vakpersoneel. De inhoud van deze handleiding moet aan het personeel beschikbaar worden gesteld.

1.3 Gebruikte symbolen

Informatie, tip, instructie
Dit symbool markeert nuttige aanvullende informatie.

Voorzichtig: bij niet aanhouden van deze waarschuwing kunnen storingen of foutief functioneren ontstaan.

Waarschuwing: bij niet aanhouden van deze waarschuwingen kan persoonlijk letsel en/of zware materiële schade ontstaan.

Gevaar: bij niet aanhouden van deze waarschuwing kan ernstig persoonlijk letsel en/of onherstelbare schade aan het instrument ontstaan.

Ex-toepassingen
Dit symbool markeert bijzondere instructies voor Ex-toepassingen.

SIL-toepassingen
Dit symbool markeert instructies betreffende de functionele veiligheid, die bij veiligheidsrelevante toepassing bijzonder zorgvuldig moeten worden aangehouden.

Lijst
De voorafgaande punt markeert een lijst zonder dwingende volgorde.

Handelingsstap
Deze pijl markeert een afzonderlijke handeling.

Handelingsvolgorde
Voorafgaande getallen markeren opeenvolgende handelingen.

Afvoeren batterij
Dit symbool markeert bijzondere instructies voor het afvoeren van batterijen en accu's.
2 Voor uw veiligheid

2.1 Geautoriseerd personeel
Alle in deze gebruiksaanwijzing beschreven handelingen mogen alleen door opgeleid en door de eigenaar van de installatie geautoriseerd vakpersoneel worden uitgevoerd.

Bij werkzaamheden aan en met het instrument moet altijd de benodigde persoonlijke beschermende uitrusting worden gedragen.

2.2 Correct gebruik
De OPTISOUND 3020 C is een sensor voor continue niveaumeting. Gedetailleerde informatie over het toepassingsgebied is in hoofdstuk "Productbeschrijving" opgenomen.

De bedrijfseigendom van het instrument is alleen bij correct gebruik conform de specificatie in de gebruiksaanwijzing en in de evt. aangulende handleidingen gegeven.

Handelingen die verder gaan dan hetgeen beschreven in de gebruiksaanwijzing mogen uit veiligheids- en garantie-overwegingen alleen door personeel worden uitgevoerd dat is geautoriseerd door de leverancier. Eigenmachtig ombouwen of veranderen is uitdrukkelijk verboden.

2.3 Waarschuwing voor misbruik
Bij ondeskundig of niet correct gebruik kunnen door het instrument toepassingsspecifieke gevaren ontstaan, zoals bijv. overlopen van een tank of schade aan installatiedelen door verkeerde montage of instelling.

2.4 Algemene veiligheidsinstructies
Het instrument voldoet aan de laatste stand der techniek rekening houdend met de geldende voorschriften en richtlijnen. Deze mag alleen onder technisch optimale en bedrijfseigendom toestand worden gebruikt. De eigenaar is verantwoordelijk voor het storingsvrij gebruik van het instrument.

De operator is verder verplicht, tijdens de gehele toepassingsduur de overeenstemming van de benodigde bedrijfseigendomsmaatregelen met de actuele stand van de betreffende instituten vast te stellen en nieuwe voorschriften aan te houden.

Door de gebruiker moeten de veiligheidsinstructies in deze handleiding, de nationale installatienormen en de geldende veiligheidsbepalingen en ongevallenpreventievoorschriften worden aangehouden.

Handelingen die verder gaan dan hetgeen beschreven in de gebruiksaanwijzing mogen uit veiligheids- en garantie-overwegingen alleen door personeel worden uitgevoerd dat is geautoriseerd door de leverancier. Eigenmachtig ombouwen of veranderen is uitdrukkelijk verboden.

Bovendien moeten de op het instrument aangebrachte veiligheidsymbolen en -instructies worden aangehouden.
2.5 Veiligheidsmarkering op het instrument
De veiligheidssymbolen en -instructies die op het instrument zijn aangebracht moeten worden aangehouden.

2.6 CE-conformiteit
Het instrument voldoet aan de wettelijke eisen van de geldende EG-richtlijnen. Met de CE-markering bevestigen wij de succesvolle beproeving.

2.7 Voldoet aan NAMUR-aanbevelingen
Namur is de belangenvereniging automatiseringstechniek binnen de procesindustrie in Duitsland. De uitgegeven NAMUR-aanbevelingen gelden als norm voor de veldinstrumentatie.
Het instrument voldoet aan de eisen van de volgende NAMUR-aanbevelingen:
• NE 21 – elektromagnetische compatibiliteit van bedrijfsmaterieel
• NE 53 – compatibiliteit van veldinstrumenten en aanwijs-/bedieningscomponenten

Zie voor meer informatie www.namur.de.
3 Productbeschrijving

3.1 Constructie

Leveringsomvang
De levering bestaat uit:

- Ultrasone sensor OPTISOUND 3020 C
- Documentatie
 - Deze gebruiksaanwijzing
 - Ex-specifieke Veiligheidsinstructies (bij Ex-uitvoeringen)
 - Gebruiksaanwijzing "Display- en bedieningsmodule" (optie)
 - evt. andere certificaten

Informatie:
In de handleidingen worden ook instrumentkenmerken beschreven, die optioneel zijn. De betreffende leveringsomvang is gespecificeerd in de bestelspecificatie.

Componenten
De OPTISOUND 3020 C bestaat uit de componenten:

- Procesaansluiting met geluidsomvormer
- Behuizing met elektronica
- Deksel behuizing met daaronder liggende display- en bedieningsmodule (optie)

De componenten zijn leverbaar in verschillende uitvoeringen.

![Diagram](image_url)

Fig. 1: OPTISOUND 3020 C - versie met kunststof behuizing

1 Deksel behuizing met daaronder liggende display- en bedieningsmodule (optie)
2 Behuizing met elektronica
3 Procesaansluiting met geluidsomvormer

Typeplaat
De typeplaat bevat de belangrijkste gegevens voor de identificatie en toepassing van het instrument:

- Instrumenttype
- Artikel- en serienummer instrument
3.2 Werking

De OPTISOUND 3020 C is een ultrasone sensor voor continue niveaumeeting. Het instrument is geschikt voor vloeistoffen en stortgoederen in nagenoeg alle industriële toepassingen, in het bijzonder in de water- en afvalwaterbehandeling.

Vanuit de geluidsomvormer van de ultrasonore sensor worden korte ultrasonore impulsen naar het te meten product verzonden. Deze worden door het productoppervlak gereflecteerd en door de geluidsomvormer als echo weer ontvangen. De looptijd van de ultrasonore impuls van uitzenden tot ontvangen is proportioneel met de afstand en dus met het niveau. Het zo bepaalde niveau wordt in een overeenkomstig uitgangssignaal omgevormd en als meetwaarde uitgestuurd.

De voedingsspanning wordt via de H1-veldbus verzorgd. Een tweedraadskabel conform Fieldbus-specificatie dient tegelijkertijd voor de voeding en de digitale data-overdracht van meerdere sensoren. Deze kabel kan in twee varianten worden gebruikt:

- via een H1-interfacekaart in het besturingssysteem en de aanvullende voeding.
- Via een Linking device met HSE (High speed Ethernet) en aanvullende voedingsspanning conform IEC 61158-2

De voor de projectering van uw FF (Foundation Fieldbus)-communicatienetwerk benodigde DD (Device Descriptions)- en CFF (Capability Files)-bestanden vindt u in de download-zone.

De achtergrondverlichting van de display- en bedieningsmodule wordt door de sensor gevoed. Voorwaarde is hierbij een bepaald niveau van de bedrijfsspanning.

De specificaties betreffende de voedingsspanning vindt u in het hoofdstuk "Technische gegevens".

3.3 Verpakking, transport en opslag

Uw instrument werd op weg naar de inbouwlocatie beschermd door een verpakking. Daarbij zijn de normale transportbelastingen door een beproeving verzekerd conform ISO 4180.

Het transport moet rekening houden met de instructies op de transportverpakking plaatsvinden. Niet aanhouden daarvan kan schade aan het instrument tot gevolg hebben.
Transportinspectie
De levering moet na ontvangst direct worden gecontroleerd op volledigheid en eventuele transportschade. Vastgestelde transportschade of verborgen gebreken moeten overeenkomstig worden behandeld.

Opslag
De verpakkingen moeten tot aan de montage gesloten worden gehouden en rekening houdend met de extern aangebrachte opstelings- en opslagmarkeringen worden bewaard.

Verpakkingen, voor zover niet anders aangegeven, alleen onder de volgende omstandigheden opslaan:

- Niet buiten bewaren
- Droog en stofvrij opslaan
- Niet aan agressieve media blootstellen
- Beschermen tegen directe zonnestralen
- Mechanische trillingen vermijden

Opslag- en transporttemperatuur
- Opslag- en transporttemperatuur zie "Appendix - Technische gegevens - Omgevingscondities"
- Relatieve luchtvochtigheid 20 … 85 %.
4 Monteren

4.1 Algemene instructies

Inbouwpositie
Kies de montagepositie zo mogelijk zodanig, dat u het instrument bij het monteren en aansluiten en bij het later inbouwen van een display- en bedieningsmodule goed kunt bereiken. Hiervoor kan de behuizing zonder gereedschap met 330° worden verdraaid. Bovendien kunt u de display- en bedieningsmodule in stappen van 90° verdraaien.

Vochtigheid
Gebruik de aanbevolen kabel (zie hoofdstuk "Op de voedingsspanning aansluiten") en draai de kabelwartel vast aan.

U beschermt uw OPTISOUND 3020 C extra tegen het binnendringen van vocht door de aansluitkabel voor de kabelwartel naar beneden te leiden. Regen- en condenswater kan dan afdruipen. Dit geldt vooral bij buitenopstelling of in ruimten waar met een hoge vochtigheid rekening moet worden gehouden (bijv. vanwege reinigingsprocessen) of op gekoelde resp. verwarmde tanks.

Fig. 2: Maatregelen tegen het binnendringen van vocht

Kabelinvoeren - NPT-schroefdraad
Bij instrumentbehuizingen met zelfafdichtende NPT-schroefdraad kunnen de kabelwartels niet af fabriek worden ingeschroefd. De vrije openingen van de kabeldoorvoeren zijn daarom met rode stofbeschermdoppen afgesloten als transportbeveiliging.

De beschermdoppen moeten voor de inbedrijfname door toegelaten kabelwartels worden vervangen of met geschikte blindpluggen worden afgesloten.

Meetbereik
Het referentieniveau voor het meetbereik is de onderzijde van de geluidsomvormer.

Let erop, dat onder het referentieniveau een minimale afstand, de zogenaamde blokafstand, moet worden aangehouden, waarbinnen geen meting mogelijk is. De exacte waarde van de blokafstand vindt u in het hoofdstuk "Technische gegevens".
Informatie:
Wanneer het product tot aan de geluidsomvormer komt, kan op termijn vervuiling op de geluidsomvormer ontstaan, die foutieve metingen tot gevolg kunnen hebben.

4.2 Montage-instructies
Draai de OPTISOUND 3020 C met een passende sleutel op het zeskant van de inschroefsok vast. Zie voor het maximale aandraaimoment het hoofdstuk "Technische gegevens."
Waarschuwing:
De behuizing mag niet worden gebruikt voor inschroeven van het instrument! Het vastdraaien kan op die manier schade aan het draaimechaniek van de behuizing veroorzaken.

Inbouwpositie

Monteer de OPTISOUND 3020 C op een positie, die minimaal op 200 mm afstand van de tankwand ligt. Wanneer de sensor in tanks met bol of rond dak wordt gemonteerd, kunnen veelvoudige echo's ontstaan, die door een inregeling moeten worden onderdrukt (zie hoofdstuk "Inbedrijfname").

Wanneer u deze afstand niet kunt aanhouden, moet u bij de inbedrijfsmontage het stoorsignaalverloop opslaan. Dit geldt vooral, wanneer aanhechtingen op de tankwand te verwachten zijn. In dit geval verdient het aanbeveling, het opslaan van het stoorsignaalverloop op een later tijdstip wanneer de aanhechting aanwezig is, te herhalen.

![Fig. 5: Montage op ronde tankdaken](image)

1 Referentievlak
2 Tankmidden resp. symmetrie-as

Bij tanks met een conische bodem kan het een voordeel zijn, de sensor in het midden van de tank te monteren, omdat de meting dan tot op de bodem mogelijk is.
Aansluitingen

Bij voorkeur moet de sok zodanig worden gedimensioneerd dat de onderzijde van de geluidsomvormer minimaal 10 mm uit de sok steekt.

![Fig. 6: Tank met conische bodem](image)

Bij goede reflecterende eigenschappen van het product kunt u de OPTISOUND 3020 C ook op de sok monteren, als deze hoger is dan de lengte van de geluidsomvormer. Richtwaarden voor de sokhoogte vindt u in de afbeelding hierna. Het sokeinde moet in dit geval glad zijn en vrij van bramen, indien mogelijk afgerond. Voer een storecho-onderdrukking uit.

![Fig. 7: Aanbevolen montage sok](image)
Sensoruitlijning

Lijn de sensor in vloeistoffen zo loodrecht mogelijk uit op het productoppervlak, teneinde optimale meetresultaten te realiseren.

![Fig. 8: Afwijkende sokmaten](image)

<table>
<thead>
<tr>
<th>d</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 mm/3"</td>
<td>150 mm/6"</td>
</tr>
<tr>
<td>100 mm/4"</td>
<td>300 mm/12"</td>
</tr>
<tr>
<td>150 mm/6"</td>
<td>400 mm/16"</td>
</tr>
</tbody>
</table>

Om de minimale afstand tot het product te verkleinen, kunt u de OPTISOUND 3020 C ook met een afbuigspiegel monteren. Daardoor kunt u uw tank praktisch geheel vullen. Deze opstelling is in eerste instantie goed geschikt voor open tanks zoals bijv. regenoverloopbekkens.

![Fig. 9: Uitlijnen in vloeistoffen](image)

Ingebouwde onderdelen in de tank

De inbouwpositie van de ultrasonore sensor moet zodanig worden gekozen dat in de tank ingebouwde onderdelen de ultrasonore geluiden niet kruisen.

Ingebouwde onderdelen zoals bijv. leidingen, eindschakelaars, verwarmingsslangen, tankversterkingen enz. kunnen stoor echo's veroorzaken en de effectieve echo wegdrukken. Let bij het ontwerpen van uw meting op een zo vrij mogelijk "zicht" van de ultrasonore sensor op het product.

![Fig. 10: Spiegel](image)
Bij aanwezigheid van ingebouwde onderdelen in de silo moet u bij de inbedrijfname een stoorsignaalonderdrukking uitvoeren.

Wanneer grote onderdelen zoals schoren en dragers in de tank stourecho’s veroorzaken, dan kunnen deze door aanvullende maatregelen worden afgezwakt. Kleine, schuin ingebouwde platen van staal of kunststof boven de ingebouwde onderdelen “verstrooien” de ultrasonic signalen en voorkomen zo effectief directe stourechoreflectie.

Fig. 11: Gladde profielen met verstrooiplaten afdekken

Roerwerken

Bij roerwerken in de tank moet u een stourecho-registratie bij een draaiend roerwerk bepalen. Zo is gewaarborgd, dat de stoorreflecties van het roerwerk in verschillende posities wordt opgeslagen.

Fig. 12: Roerwerken

Instromend medium

Monteer de instrumenten niet boven of in de vulstroom. Waarborg dat u het productoppervlak registreert en niet het instromende product.
Schuim

Door vullen, een roerwerk of andere processen in de tank, kunnen deels zeer consistent schuimen op het productoppervlak worden gevormd, die het zendsignaal zeer sterk dempen.

Wanneer schuim meetfouten veroorzaakt, dan moet u de sensor in een standpijp plaatsen of de daarvoor beter geschikte sensoren met geleide radar (TDR) gebruiken.

Geleide radar wordt niet beïnvloed door schuimvorming en is bijzonder geschikt voor dergelijke toepassingen.

Luchtbewegingen

Wanneer sterke luchtstromingen in de tank optreden, bijv. bij buiten-opstelling en sterke wind of luchtturbulentie in de tank, bijv. door cy-cloonafzuiging, dan moet u de OPTISOUND 3020 C in een standpijp monteren of een ander meetprincipe gebruiken zoals bijv. radar of geleide radar (TDR).

Standpijmeting

Door de toepassing in een standpijp (dippijp of bypass) zijn invloeden van ingebouwde onderdelen, schuimvorming en turbulentie uitgesloten.

Standpijpen moeten tot de gewenste minimale vulhoogte reiken, omdat een meting alleen in de pijp mogelijk is.
De OPTISOUND 3020 C kan vanaf pijpdiameter 50 mm toegepast worden.

Voorkom grote spleten en dikke lasnaden bij het verbinden van de pijpen. Bepaal het stoorchoprofiel.

In producten die sterk neigen tot afzetten, is de meting in een standpijp niet zinvol.

Flowmeting bij rechthoekige overstort

De korte voorbeelden geven inleidende instructies voor de flowmeting. Gedetailleerde ontwerpspecificaties vindt u bij de leveranciers van goten en in de vakliteratuur.

Fig. 14: Standpijp in tank

1 Ontluchtingsgat ø 5 ... 10 mm

In principe moet op het volgende worden gelet:

Fig. 15: Flowmeting met rechthoekige overstort: $d_{\text{min}} = \text{minimale afstand van de sensor (zie hoofdstuk "Technische gegevens"); } h_{\text{max}} = \text{max. vulhoogte rechthoekige overstortschot}$

1 Overstortgoten (zijaanzicht)
2 Bovenstroom
3 Benedenstrooms
4 Overstortgoot (aanzicht vanaf benedenstrooms)
Flowmeting bij Khafagi-venturigoten

In principe moet op het volgende worden gelet:

- Inbouw sensor bovenstrooms
- Inbouw midden boven de goot en loodrecht op het vloeistofoppervlak
- Afstand tot de overstort
- Afstand overstortopening boven de bodem
- Min. afstand overstortopening tot laagwater
- Min. afstand sensor t.o.v. max. opstuwhoogte

Fig. 16: Flowmeting met Khafagi-venturigoot: $d = \text{min. afstand van de sensor}$; $h_{\text{max}} = \text{max. vulgraad van de goot}$; $B = \text{grootste insnoering van de goot}$

1. Positie sensor
2. Venturigoot
5 Op de voedingsspanning aansluiten

5.1 Aansluiting voorbereiden

Let altijd op de volgende veiligheidsinstructies:

Waarschuwing:
Alleen in spanningsloze toestand aansluiten.
- De elektrische aansluiting mag alleen door opgeleide en door de eigenaar geautoriseerde vakspecialisten worden uitgevoerd.
- Indien overspanningen kunnen worden verwacht, moeten overspanningsbeveiligingen worden geïnstalleerd.

Voedingsspanning
Het instrument heeft een voedingsspanning van 9...23 VDC nodig. De voedingsspanning en het digitale bussignaal worden over dezelfde tweedraads aansluitkabel verzorgd. De voeding wordt met de H1-voeding uitgevoerd.

Verbindingskabel
Aansluiting met afgeschermd kabel conform veldbuspecificaties.
Gebruik kabels met ronde doorsnede bij instrument met behuizing en kabelwartel. Controleer voor welke kabeldiameter de kabelwartel geschikt is, om de afdichtende werking van de kabelwartel te waarborgen (IP-beschermingsklasse).
Gebruik een bij de kabeldiameter passende kabelwartel.
Let erop, dat de gehele installatie conform de Fieldbus-specificatie wordt uitgevoerd. Vooral het afsluiten van de bus via overeenkomstige afsluitweerstanden is belangrijk.

Opgelet:
Het indraaien van de NPT-kabelwartel resp. de stalen pijp in de Schroefdraad moet vetvrij zijn. Standaard vetten kunnen additieven bevatten die de koppeling tussen Schroefdraadstuk en behuizing aantasten. Dit zal de stevigheid van de verbinding en de dichtheid van de behuizing nadelig beïnvloeden.

Kabelafscherming en aarding
Bij installaties met potentiaalvereffening sluit u de kabelafscherming direct aan op het aardpotentiaal op het voedingsapparaat, in de aansluitbox en op de sensor. Daarvoor moet de afscherming in de sensor direct op de interne aardklem worden aangesloten. De externe aardklem op de behuizing moet laagimpedant op de potentiaalvereffening zijn aangesloten.
Bij installaties zonder potentiaalvereffening sluit u de kabelafscherming op het voedingsapparaat en op de sensor direct op het aardpotentiaal aan. In de aansluitbox resp. de T-verdeler mag de afscherming van de korte kabel naar de sensor niet met het aardpotentiaal en niet met een andere kabelafscherming worden verbonden. De kabelafschermingen naar het voedingsapparaat en naar de volgende verdeler moeten onderling worden verbonden en via een keramische condensator (bijv. 1 nF, 1500 V) met het aardpotentiaal worden verbonden. De laagfrequente potentiaalvereffeningstromen worden nu
geblokkeerd, maar de beschermende werking voor de hoogfrequente stoorsignalen blijft behouden.

Bij Ex-toepassingen mag de totale capaciteit van de kabel en alle condensatoren niet hoger worden dan 10 nF.

Bij Ex-toepassingen moeten de bijbehorende installatievoorschriften worden aangehouden. Vooral moet worden gewaarborgd, dat er geen potentiaalvereffeningsstromen via de kabelafscherming ontstaan. Dit kan worden gerealiseerd bij aarding aan beide zijden door toepassing van een condensator of via een separate potentiaalvereffening.

5.2 Aansluitstappen
Ga als volgt tewerk:

1. Deksel behuizing afschroeven
2. Eventueel aanwezige display- en bedieningsmodule door iets draaien naar links uitnemen.
3. Wartelmoer van de kabelwartel losmaken.
4. Aansluitkabel ca. 10 cm ontdoen van de mantel, aderuiteinde ca. 1 cm ontdoen van de isolatie.
5. Kabel door de kabelwartel in de sensor schuiven
6. Openingshefboom van de klemmen met een schroevendraaier optillen (zie figuur hierna).
7. Aderuiteinden conform aansluitschema in de open klemmen steken
8. Openingshefboom van de klemmen naar beneden drukken, de klemveer sluit hoorbaar.
9. Controleer of de kabels goed in de klemmen zijn bevestigd door licht hieraan te trekken
10. Afscherming op de interne aardklem aansluiten, de externe aardklem met de potentiaalvereffening verbinden
11. Wartelmoer van de kabelwartel vast aandraaien. De afdichtring moet de kabel geheel omsluiten
12. Deksel behuizing vastschroeven

De elektrische aansluiting is zo afgerond.
5 Op de voedingsspanning aansluiten

5.3 Aansluitschema eenkamerbehuizing

De afbeeldingen hierna gelden zowel voor de niet-Ex-, als ook voor de Ex-ia-uitvoering.

Overzicht behuizingen

Fig. 17: Aansluitstappen 6 en 7

Fig. 18: Materiaalvarianten eenkamerbehuizing

1 Kunststof
2 Aluminium
3 RVS
4 Filterelement voor drukcompensatie
Elektronica- en aansluitrui

Fig. 19: Elektronica- en aansluitrui
eenkamerbehuizing
1 Veerklemmen voor de Foundation Fieldbus-aansluiting
2 Simulatieschakelaar ("on" = bedrijf met vrijgave simulatie)
3 Veercontacten voor display- en bedieningsmodule
4 Interface voor service
5 Aardklem voor aansluiting van de kabelafscherming.

Aansluitschema\n
Fig. 20: Aansluitschema eenkamerbehuizing
1 Voedingsspanning, signaaluitgang

5.4 Aansluitschema tweekamerbehuizing
De afbeeldingen hierna gelden zowel voor de niet-Ex-, als ook voor de Ex-ia-uitvoering.
Overzicht behuizingen

Fig. 21: Tweekamerbehuizing
1 Deksel behuizing aansluitruimte
2 Blindplug
3 Deksel behuizing elektronicaruimte
4 Filterelement voor drukcompensatie
5 Kabelwartel

Elektronicaruimte

Fig. 22: Elektronicaruimte tweekamerbehuizing
1 Simulatieschakelaar ("on" = bedrijf met vrijgave simulatie)
2 Veercontacten voor display- en bedieningsmodule
3 Interface voor service
4 Interne verbindingskabel naar aansluitruimte
5 Aardklem voor aansluiting van de kabelafscherming.
5 Op de voedingsspanning aansluiten

Aansluitruimte

![Diagram Aansluitruimte Tweekamerbehuizing](image)

Fig. 23: Aansluitruimte tweekamerbehuizing

1 Veerkrachtklemmen voor de voedingsspanning
2 Connector voor service-interface
3 Aardklem voor aansluiting van de kabelafscherming.

Aansluitschema

![Diagram Aansluitschema Tweekamerbehuizing](image)

Fig. 24: Aansluitschema tweekamerbehuizing

1 Voedingsspanning, signaaluitgang

5.5 Inschakelfase

Na de aansluiting van de OPTISOUND 3020 C op de voedingsspanning resp. na terugkeer van de voedingsspanning voert het instrument eerst gedurende ca. 30 seconden een zelftest uit.

- Interne test van de elektronica.
- Aanwijzing van het type instrument, de firmwareversie en het sensor-tagnummer (sensoridentificatie).
- Uitgangssignaal verspringt kort (ca. 10 s) naar de ingestelde storingsstroom.

Daarna wordt de bijbehorende stroom op de kabel uitgestuurd (de waarde komt overeen met het actuele niveau en de al uitgevoerde instellingen, bijv. de fabrieksinstellingen).
6 In bedrijf nemen met de display- en bedieningsmodule

6.1 Aanwijss- en bedieningsmodule inzetten
De display- en bedieningsmodule kan te allen tijde in de sensor worden geplaatst en weer worden verwijderd. Een onderbreking van de voedingsspanning is hiervoor niet nodig.

Voor het inbouwen van de display- en bedieningsmodule gaat u als volgt te werk:
1. Deksel behuizing afschroeven
2. Display- en bedieningsmodule in de gewenste positie op de elektronica plaatsen (vier posities, 90° verdraaid naar keuze)
3. Display- en bedieningsmodule op de elektronica plaatsen en iets naar rechts verdraaien tot deze borgt
4. Deksel behuizing met venster vastschroeven

De demontage volgt in omgekeerde volgorde

De display- en bedieningsmodule wordt door de sensor gevoed, andere aansluitingen zijn niet nodig.

Opmerking:
Indien u naderhand het instrument met een display- en bedieningsmodule voor permanente meetwaarde-aanwijzing wilt uitrusten, dan is een verhoogd deksel met venster nodig.
6.2 Bedieningssysteem

U bedient het instrument via de vier toetsen van de display- en bedieningsmodule. Op het LC-display worden de afzonderlijke menupunten getoond. De functies van de afzonderlijke toetsen vindt u in de afbeelding hiervoor.

Toetsfuncties

- **[OK]-toets:**
 - Naar menu-overzicht gaan
 - Gekozen menu bevestigen
 - Parameter wijzigen
 - Waarde opslaan

- **[->]-toets voor keuze van:**
 - Menuwisseling
 - Lijstpositie kiezen
 - Te wijzigen positie kiezen

- **[+] - toets:**
 - Waarde van een parameter veranderen

- **[ESC] - toets:**
 - Invoer onderbreken
 - Naar bovenliggend menu terugspringen

Tijdfuncties

Bij eenmalig bedienen van de [+] - en [->]-toetsen wijzigt de bewerkte waarde of de cursor met een positie. Bij bediening langer dan 1 s verloopt de verandering continu.

Gelijktijdig bedienen van de [OK]- en [ESC]-toetsen langer dan 5 s zorgt voor terugkeer naar het basismenu. Daarbij wordt de menutaal naar "Engels" omgeschakeld.
6 In bedrijf nemen met de display- en bedieningsmodule

Ca. 60 minuten na de laatste toetsbediening wordt een automatische terugkeer naar de meetwaarde-aanwijzing uitgevoerd. Daarbij gaan de nog niet met [OK] bevestigde waarden verloren.

6.3 Inbedrijfnamestappen

De sensor meet de afstand van de sensor tot het productoppervlak. Voor de aanwijzing van het eigenlijke niveau moet een toekenning van de gemeten afstand aan de procentuele hoogte plaatsvinden.

Aan de hand van deze invoer wordt dan het eigenlijke niveau berekend. Tegelijkertijd wordt daardoor het werkgebied van de sensor van het maximum op het benodigde bereik begrens.

Fig. 27: Parametreervoorbeeld min.-/max.-inregeling

1. *Min. niveau = max. meetafstand*
2. *Max. niveau = min. meetafstand*

Het actuele niveau speelt bij deze inregeling geen rol, de min.-/max.-inregeling wordt altijd zonder verandering van het productniveau uitgevoerd. Daarom kunnen deze instellingen al vooraf worden ingevoerd, zonder dat het instrument hoeft te zijn ingebouwd.

Basisinstelling - min. inregeling

Ga als volgt tewerk:

4. Voer de bij de procentuele waarde horende afstandswaarde in meters in voor de lege tank (bijv. afstand van de sensor tot aan de tankbodem).

Basisinstelling - max. inregeling

Ga als volgt tewerk:

2. Voer de bij de procentuele waarde passende afstandswaarde in meters in voor de volle tank. Let erop dat het maximale niveau niet binnen de dode band mag liggen.

Basisinstelling - medium

Ieder product heeft een ander reflectiegedrag. Bij vloeistoffen komen onrustige productoppervlakken en schuimvorming als storende factoren voor. Bij stortgoed zijn dit stofontwikkeling, stortgoedtaluds en stoorecho’s door de silowand. Om de sensor aan te passen op deze verschillende meetomstandigheden, moet in dit menupunt eerst de keuze "Vloeistof" of "Stortgoed" worden gemaakt.

Bij stortgoederen kan bovendien uit "Poeder/stof", "Granulaat/pellets" of "Grind/kiezels" worden gekozen.

Door deze extra instelling wordt de sensor optimaal op het product aangepast en wordt de meetzekerheid vooral bij media met slechte reflecterende eigenschappen duidelijk verbeterd.

Voer de gewenste parameter in via de betreffende toetsen, sla uw instellingen op en [->]-toets naar het volgende menupunt.
Basisinstelling - tankvorm
Naast het medium kan ook de tankvorm de meting beïnvloeden. Om de sensor op deze meetomstandigheden aan te passen, geeft dit menupunt afhankelijk van de keuze voor vloeistof of stortgoed, verschillende mogelijkheden. Bij "Vloeistof" zijn dit "Opslagtank", "Standpijp", "Open container" of "Roerwerktank", bij "Stortgoed", "Silo" of "Bunker".

Voer de gewenste parameter in via de betreffende toetsen, sla uw instellingen op en [->]-toets naar het volgende menupunt.

Basisinstelling - demping
Om variaties in de meetwaarde-aanwijzing bijv. door onrustige mediumoppervlakken te onderdrukken, kan een demping worden ingesteld. Deze tijd mag tussen 0 en 999 seconden liggen. Let erop, dat daarmee echter ook de reactietijd van de gehele meting groter wordt en de sensor op snelle meetwaardeveranderingen vertraagd reageert. In de regel is een tijd van enkele seconden voldoende, om de meetwaarde-aanwijzing verregaand te stabiliseren.

Voer de gewenste parameter in via de betreffende toetsen, sla uw instellingen op en [->]-toets naar het volgende menupunt.

Basisinstelling - linearisatiecurve
Een linearisatie is bij alle tanks nodig, waarbij het tankvolume niet lineair toeneemt met de vulhoogte - bijv. bij een liggende cilindrische tank of een kogeltank - en de aanwijzing of uitsturing van het volume gewenst is. Voor deze tanks zijn bijbehorende linearisatiecurves opgenomen. Deze geven de verhouding tussen het procentuele niveau en het tankvolume aan. Door activering van de passende curve wordt het procentuele tankvolume correct aangewezen. Indien het volume niet in procenten, maar bijvoorbeeld in liters of kilogram moet worden aangewezen, kan ook nog een schaalverdeling onder het menupunt "Display" worden ingesteld.

Voer de gewenste parameter in via de betreffende toetsen, sla uw instellingen op en [->]-toets naar het volgende menupunt.

Basisinstelling - sensortag
In dit menupunt kan aan de sensor een eenduidige naam worden gegeven, bijv. de meetplaatsnaam of de tank- resp. productnaam. In digitale systemen en voor de documentatie van grotere installaties moet voor een nauwkeurige identificatie van de meetplaatsen een eenduidige naam worden ingevoerd.
Met dit menupunt is de basisinstelling afgerond en u kunt nu met de [ESC]-toets terugkeren naar het hoofdmenu.

Menu display

Display - aanwijswaarde

De radar-, geleide microgolf en ultrasone sensoren leveren de volgende meetwaarden:
- SV1 (Secondary Value 1): procentuele waarde na inregeling
- SV2 (Secondary Value 2): afstandswaarde voor inregeling
- PV (Primary Value): gelineariseerde procentuele waarde
- AI FB1 (Out)

In het menu "Display" defineert u, welke van deze waarden op het display wordt getoond.

Display - verlichting

Een af fabriek geïntegreerde achtergrondverlichting kan via het bedieningsmenu worden ingeschakeld. De functie is afhankelijk van de hoogte van de voedingsspanning. Zie "Technische gegevens/voedingsspanning".

Diagnose - aanwijzing

In de sensor worden steeds de minimale en maximale meetwaarde opgeslagen. In het menupunt "Sleepaanwijzer" worden de waarden getoond.
- Min.- en max.-afstand in m(d)
- Min.- en max.-temperatuur

Diagnose - meetzekerheid

Bij contactloos werkende niveausensoren kan de meting door de procesomstandigheden worden beïnvloed. In dit menupunt wordt de meetzekerheid van de niveau-echo als dB-waarde weergegeven. De meetzekerheid is signaalsterkte minus ruis. Des te groter de waarde is, des te betrouwbaarder functioneert de meting. Bij een werkende meting zijn de waarden > 10 dB.
Diagnose - instrumentstatus

In dit menupunt wordt de instrumentstatus getoond. Wanneer door de sensor geen fout wordt herkend, dan volgt de aanwijzing "OK". Wanneer een fout wordt geconstateerd, dan volgt sensorspecificie een knipperende foutmelding, bijv. "E013". De fout wordt bovendien in tekst weergegeven bijv. "Geen meetwaarde aanwezig".

Informatie:
De foutmelding en de tekstaanwijzing worden tevens op het meetwaardedisplay getoond.

Diagnose - curveselectie

Bij ultrasone sensoren geeft de "Echocurve" de signaalsterkte van de echo weer over het meetbereik. De eenheid voor de signaalsterkte is "dB". De signaalsterkte maakt het mogelijk, de kwaliteit van de meting te beoordelen.

De "stoorerchocurve" geeft de opgeslagen stooracho's (zie menu "Service") weer van de lege tank met signaalsterkte in "dB" over het meetbereik.

Met de start van een "Trendcurve" worden afhankelijk van de sensor tot maximaal 3000 meetwaarden geregistreerd. De waarden kunnen aansluitend op een tijdas worden weergegeven. De telkens oudste meetwaarden worden weer gewist.

In het menu "Curveselectie" wordt de betreffende curve gekozen.

Informatie:
Bij de uitlevering af fabriek is de trendregistratie niet actief. Deze moet door de gebruiker via het menupunt "Trendcurve starten" worden gestart.

Diagnose - curveweergave

Een vergelijking van de echo- en stoorerchocurve maakt een meer exacte uitspraak over de meetnauwkeurigheid mogelijk. De gekozen curve wordt continu geactualiseerd. Met de toets [OK] wordt een submenu met zoomfuncties geopend:

Bij de "Echo- en stoorerchocurve" zijn beschikbaar:
• "X-zoom": loepfunctie voor de meetafstand
• "Y-zoom": 1-, 2-, 5- en 10-voudige vergroting van het signaal in "dB"
• "Unzoom": terugzetten van de weergave naar het nominale meetbereik met enkele vergroting

Bij de "Trendcurve" zijn beschikbaar:
• "X-zoom": resolutie
6 In bedrijf nemen met de display- en bedieningsmodule

- 1 minuut
- 1 uur
- 1 dag

- "Stop/start": onderbreken van een lopende registratie resp. begin van een nieuwe registratie
- "Unzoom": resetten van de resolutie naar minuten

Het registratieraster heeft als defaultinstelling 1 minuut. Met de bedieningssoftware PACTware kan dit raster ook op 1 uur of 1 dag worden ingesteld.

Service - stoorsignaalonderdrukking

Hoge sokken of ingebouwde onderdelen zoals versterkingen of roerwerken, en aanhechtingen of lasnaden in de tankwanden veroorzaken storende reflecties, die de meting beïnvloeden. Een beïnvloeden registreert, markeert en bewaart deze stoorsignalen zodat deze voor de niveaumeting worden genegeerd. Dit moet bij een laag niveau worden uitgevoerd, zodat alle eventueel aanwezige stoorreflecties kunnen worden meegenomen.

Ga als volgt tewerk:

Opmerking:
Controleer de afstand tot het productoppervlak, omdat bij een verkeerde (te grote) opgave het actuele niveau als stoorsignaal wordt opgeslagen. Zo kan in dit bereik het niveau niet meer worden bepaald.

Service - uitgebreide instelling

Het menupunt "Aanvullende instelling" biedt de mogelijkheid, de OPTISOUND 3020 C voor toepassingen te optimaliseren, waarbij het niveau zeer snel verandert. Kies hiervoor de functie "Snelle niveauverandering > 1 m/min.".
Opmerking:
Omdat bij de functie "Snelle niveauverandering > 1 m/min" de gemiddelde waardeberekening van de signaalverwerking duidelijk is gereduceerd, dan kunnen storingsreflecties door roerwerken of ingebouwde onderdelen meetwaardevariaties veroorzaken. Een stoorrecho-onderdrukking verdient daarom aanbeveling.

Service/simulatie

Met dit menu punt simuleert u willekeurige niveau- en drukwaarden via de stroomuitgang. Daarmee kan de signaalweg, bijv. via nageschakelde aanwijsinstrumenten of de ingangskaart van het besturingssysteem worden getest.

De volgende simulatiegrootheden staan ter beschikking:
- Procent
- Stroom
- Druk (bij druktransmitters)
- Afstand (bij radar en geleide microgolf)

Bij Proibus PA-sensoren volgt de keuze van de gesimuleerde waarde via het "Channel" in het menu "Basisinstellingen".

Zo start u de simulatie:
1. [OK] indrukken
4. [OK] indrukken

De simulatie loopt nu, daarbij wordt bij 4 ... 20 mA/HART een stroom resp. bij Proibus PA of Foundation Fieldbus een digitale waarde uitgestuurd.

Zo onderbreekt u de simulatie:
→ [ESC] indrukken

Informatie:
10 minuten na de laatste toetsbediening wordt de simulatie automatisch afgebroken.

Service - Reset

Basisinstelling
Wanneer de "Reset" wordt uitgevoerd, zet de sensor de waarden voor de volgende menupunten terug naar de resetwaarde (zie tabel):¹)

¹) Sensorspecifieke basisinstelling.
Functie Resetwaarde

<table>
<thead>
<tr>
<th>Functie</th>
<th>Resetwaarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.-inregeling</td>
<td>0 m(d)</td>
</tr>
<tr>
<td>Min.-inregeling</td>
<td>Meetbereikindwaarde in m(d)²</td>
</tr>
<tr>
<td>Medium</td>
<td>Vloeistof</td>
</tr>
<tr>
<td>Tankvorm</td>
<td>Niet bekend</td>
</tr>
<tr>
<td>Damping</td>
<td>0 s</td>
</tr>
<tr>
<td>Linearisatie</td>
<td>Lineair</td>
</tr>
<tr>
<td>Sensor-TAG</td>
<td>Sensor</td>
</tr>
<tr>
<td>Aanwijswaarde</td>
<td>AI-Out</td>
</tr>
<tr>
<td>Inregeleenheid</td>
<td>m(d)</td>
</tr>
</tbody>
</table>

De waarden van de volgende menupunten worden bij de *Reset* **niet** naar de resetwaarden (zie tabel) teruggezet:

<table>
<thead>
<tr>
<th>Functie</th>
<th>Resetwaarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taal</td>
<td>Geen reset</td>
</tr>
</tbody>
</table>

Fabrieksinstelling

Als basisinstelling, bovendien worden speciale parameters naar de defaultwaarde teruggezet.³)

Slaapaanwijzer

De min.- en max.-afstands- en temperatuurwaarden worden naar de actuele waarden gereset.

Service - inregeleenheid

In dit menupunt kiest u de interne rekeneenheid van de sensor.

![Unit of measurement]

m(d)

Service - taal

De sensor is af fabriek op de taal van het land van bestelling ingesteld. In dit menupunt kiest u een andere taal. De volgende talen staan bijv. in de softwareversie 3.50 ter beschikking:

- Deutsch
- English
- Français
- Espanól
- Pycckuu
- Italiano
- Netherlands
- Japanese
- Chinese

²) Afhankelijk van het sensortype, zie "Technische gegevens".
³) Speciale parameters zijn parameters, die met de bedieningssoftware PACTware op serviceniveau klantspecifiek zijn ingesteld.
Service - sensordata kopiëren

Deze functie maakt het uitlezen mogelijk van parametreergegevens en het schrijven daarvan naar de sensor via de display- en bedieningsmodule. Een beschrijving van de functie vindt u in de gebruiks-aanwijzing "Display- en bedieningsmodule".

De volgende data worden met deze functie uitgelezen resp. geschreven:
- Weergave meetwaarde
- Inregeling
- Medium
- Tankvorm
- Damping
- Linearisatiecurve
- Sensor-TAG
- Aanwijswaarde
- Aanwijseenheid
- Schaalverdeling
- Stroomuitgang
- Inregeleeriteit
- Taal

De volgende veiligheidsrelevant data worden niet uitgelezen resp. geschreven:
- HART-bedrijfsstand
- PIN

Service - PIN

In dit menupunt wordt de PIN permanent geactiveerd/gedeactiveerd. Met de invoer van een 4-cijferige PIN beschermt u de data tegen ongeautoriseerde toegang en onbedoelde veranderingen. Wanneer de PIN permanent is geactiveerd, dan kan deze in ieder menupunt tijdelijk (d.w.z. gedurende ca. 60 minuten) worden gedeactiveerd. De PIN bij uitlevering is 0000.

Bij een actieve PIN zijn alleen nog de volgende functies toegestaan:
- Menupunten kiezen en data weergeven
- Data vanuit de sensor in de display- en bedieningsmodule inlezen
6 In bedrijf nemen met de display- en bedieningsmodule

Menu info

Info

In dit menu kunt u de belangrijkste sensorinformatie uitlezen:

- Instrumenttype
- Serienummer: 8-cijferig getal, bijv. 12345678

- Kalibratiedatum: datum van de fabriekskalibratie, bijv. 24 maart 2015
- Software-versie: uitvoerbestand van de sensorsoftware, bijv. 3.80

- Laatste verandering via de PC: de datum van de laatste verandering van de sensorparameters via PC, bijv. 24 maart 2015

- Device-ID
- Sensor-TAG

- Sensorkenmerken, bijv. toelating, procesaansluiting, afdichting, meetcel, meetbereik, elektronica, behuizing, kabelwartel, stekker, kabellengte, enz.

6.4 Menuschema

Informatie:
Licht weergegeven menuvensters staan afhankelijk van de uitrusting en toepassing niet altijd ter beschikking.
Basisinstelling

1. Basic adjustment
 - Display
 - Diagnostics
 - Service
 - Info

 Min. adjustment 1.1
 - 000.0 %
 - =
 - 10.000 m(d)
 - 1.245 m(d)

 Max. adjustment 1.2
 - 100.0 %
 - =
 - 0.000 m(d)
 - 6.789 m(d)

 Medium 1.3
 - Liquid

 Vessel form 1.4
 - Storage tank

 Damping 1.5
 - 0 s

 Linearisation curve 1.6
 - Linear

Display

2. Basic adjustment
 - Display
 - Diagnostics
 - Service
 - Info

 Displayed value 2.1
 - AI-Out

 Backlight 2.4
 - Switched off▼

Diagnose

3. Basic adjustment
 - Display
 - Diagnostics
 - Service
 - Info

 Peak value indicator 3.1
 - Distance min.: 0.234 m(d)
 - Distance max.: 5.385 m(d)
 - T-min.: 16.5 °C
 - T-min.: 37.5 °C

 Meas. reliability 3.2
 - 36 dB
 - Sensor status
 - OK

 Curve selection 3.3
 - Echo curve

 Echo curve 3.4
 - Presentation of the echo curve
6 In bedrijf nemen met de display- en bedieningsmodule

Service

<table>
<thead>
<tr>
<th>Basic adjustment 4</th>
<th>Display</th>
<th>Diagnostics</th>
<th>Service</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>False signal suppression 4.1</td>
<td>Change now?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended setting 4.2</td>
<td>Fast level change (> 1 m/min.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation 4.3</td>
<td>Start simulation?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset 4.4</td>
<td>Reset now?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit of measurement 4.5</td>
<td>m(d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language 4.6</td>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy sensor data 4.7</td>
<td>Copy sensor data?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIN 4.8</td>
<td>Enable?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Basic adjustment 5</th>
<th>Display</th>
<th>Diagnostics</th>
<th>Service</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID 5.1</td>
<td>< max. 32 characters ></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor-TAG (PD_TAG)</td>
<td>< max. 32 characters ></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument type 5.2</td>
<td>VEGASON 6x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial number 5.2</td>
<td>12345678</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of manufacture 5.3</td>
<td>24. March 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software version 5.3</td>
<td>3.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last change using PC 5.4</td>
<td>10. April 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensor characteristics 5.5 | Display now? |

6.9 Opslaan van de parameters

Het verdient aanbeveling, de ingestelde waarden te noteren, bijv. in deze handleiding, en aansluitend te archiveren. Deze kunnen daardoor nogmaals worden gebruikt en zijn beschikbaar voor bijv. servicedoeleinden.

Wanneer de OPTISOUND 3020 C is uitgerust met een display- en bedieningsmodule, dan kunnen de belangrijkste data uit de sensor in de display- en bedieningsmodule worden ingelezen. De procedure wordt beschreven in de handleiding "Display- en bedieningsmodule" onder het menupunt "Sensordata worden". De data blijven daar permanent opgeslagen, ook bij uitval van de voedingsspanning.

Wanneer vervanging van de sensor noodzakelijk is, dan wordt de display- en bedieningsmodule in het vervangende apparaat geplaatst en de data worden via het menupunt "Sensorgegevens kopiëren" in de sensor geschreven.
7 Service en storingen oplossen

7.1 Onderhoud
Bij correct gebruik is bij normaal bedrijf geen bijzonder onderhoud nodig.

7.2 Storingen oplossen
Gedrag bij storingen
Het is de verantwoordelijkheid van de eigenaar van de installatie, geschikte maatregelen voor het oplossen van optredende storingen te nemen.

Storingsoorzaken
De OPTISOUND 3020 C biedt een hoge mate aan functionele betrouwbaarheid. Toch kunnen er tijdens bedrijf storingen optreden. Deze kunnen bijv. worden veroorzaakt door het volgende:
- Sensor
- Proces
- Voedingsspanning
- Signaalverwerking

Storingen verhelpen
De eerste maatregelen zijn de controle van het uitgangssignaal en de analyse van storingsmeldingen via de display- en bedieningsmodule. De procedure wordt hierna beschreven.

Foutmeldingen via de display- en bedieningsmodule

<table>
<thead>
<tr>
<th>Fout</th>
<th>Oorzaak</th>
<th>Oplossen</th>
</tr>
</thead>
<tbody>
<tr>
<td>E013</td>
<td>Geen meetwaarde aanwezig</td>
<td>Sensor in opstartfase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensor vindt geen echo bijv. door foutieve inbouw of verkeerde parametering.</td>
</tr>
<tr>
<td>E017</td>
<td>Inregelbereik te klein</td>
<td>Inregeling opnieuw uitvoeren, daarbij de afstand tussen min.- en max.-inregeling vergroten.</td>
</tr>
<tr>
<td>E036</td>
<td>Geen goede sensorsoftware</td>
<td>Software-update uitvoeren resp. instrument ter reparatie opsturen</td>
</tr>
<tr>
<td>E041</td>
<td>Hardwarefout, elektronica defect</td>
<td>Instrument vervangen resp. voor reparatie inzenden</td>
</tr>
</tbody>
</table>

Gedrag na oplossen storing
Afhankelijk van de oorzaak van de storing en de getroffen maatregelen moeten eventueel de in het hoofdstuk "In bedrijf nemen" beschreven handelingen weer worden uitgevoerd.

7.3 Elektronica vervangen
Bij een defect kan de elektronica door de gebruiker worden vervangen.

Bij Ex-toepassingen mag slechts één instrument en één elektronica met bijbehorende Ex-toelating worden ingezet.

Indien ter plekke geen elektronica beschikbaar is, kan deze via uw Krohne-dealer worden besteld.
7.4 Het instrument repareren

Wanneer een reparatie nodig is, gaat u als volgt te werk:

Op internet kunt u op onze homepage
http://www.krohne-mar.com/fileadmin/
media-lounge/PDF-Download/Specimen_e.pdf
een formulier voor retourzending downloaden.

U helpt on zo, de reparatie snel en zonder tijdverlies vanwege vragen uit te voeren.

- Omschrijving van de opgetreden storing.
- Het instrument schoonmaken en goed inpakken
- Voeg aan het instrument het ingevulde formulier toe en eventueel een veiligheidsspecificatieblad
8 Demonteren

8.1 Demontagegestappen

Waarschuwing:

Let voor het demonteren goed op gevaarlijke procesomstandigheden zoals bijv. druk in de tank of leiding, hoge temperaturen, agressieve of toxische media enz.

Houdt de hoofdstukken "Monteren" en "Op de voedingsspanning aansluiten" aan en voer de daar genoemde handelingen uit in omgekeerde volgorde.

8.2 Afvoeren

Het instrument bestaat uit materialen die door gespecialiseerde recyclingbedrijven weer kunnen worden hergebruikt. Wij hebben daarom de elektronica eenvoudig demonteerbaar ontworpen en gebruiken recyclebare materialen.

WEEE-richtlijn 2002/96/EG

Een deskundige afvoer voorkomt negatieve effecten op mens en milieu en maakt hergebruik van waardevolle grondstoffen mogelijk.

Materialen: zie hoofdstuk "Technische gegevens"

Wanneer u niet de mogelijkheid heeft, het ouder instrument goed af te voeren, neem dan met ons contact op voor terugname en afvoer.
9 Bijlage

9.1 Technische gegevens

Algemene specificaties

Materialen, in aanraking met medium
- Geluidsomvormer: PVDF
- Afdichting geluidsomvormer/procesaansluiting: EPDM, FKM
- Procesaansluiting G2 DIN3852-A-B: PVDF
- Procesaansluiting 2 NPT: ASME B1.20.1

Materialen, niet in aanraking met medium
- Behuizing: Kunststof PBT (polyester), gietaluminium poedergecoat, 316L
- Afdichting tussen behuizing en deksel behuizing: NBR (RVS-huis), siliconen (aluminium/kunststof behuizing)
- Venster in deksel behuizing: Polycarbonaat
- Aardklem: 316Ti/316L

Gewicht: 1,8 … 4 kg afhankelijk van procesaansluiting en behuizing

Max. aandraaimoment inschroefsoek: 25 Nm

Uitgangsgrootheid

Uitgang
- Signaal: Digitaal uitgangssignaal, Foundation Fieldbus-protocol
- Fysische laag: Conform IEC 61158-2
- Cyclustijd: min. 1 s (afhankelijk van de parametrering)
- Demping (63 % van de ingangsgroot-heid): 0 … 999 s, instelbaar
- Voldoet aan NAMUR-aanbeveling: NE 43

Channel Numbers
- Channel 1: Primary value
- Channel 2: Secondary value 1
- Channel 3: Secondary value 2

Overdrachtssnelheid: 31,25 Kbit/s

Stroomwaarde: 10 mA, ±0.5 mA

Meetresolutie digitaal: > 1 mm (0.039 in)

Ingangsgrootheden

Meeteenheid: Afstand tussen onderkant geluidsomvormer en productoppervlak

Meetbereik
- Vloeistoffen: Tot 8 m (26.25 ft)
- Stortgoederen: tot 3,5 m (11.48 ft)
Blokatstand

0,4 m (1.312 ft)

Referentiecondities voor meetnauwkeurigheid (conform DIN EN 60770-1)

Referentie-omstandigheden conform DIN EN 61298-1

- Temperatuur: +18 ... +30 °C (+64 ... +86 °F)
- Relatieve luchtvochtigheid: 45 ... 75 %
- Luchtdruk: 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Overige referentie-omstandigheden

- Reflector: Ideale reflector, bijv. metalen plaat 2 x 2 m (6.56 x 6.56 ft)
- Stoorreflecties: Grootste stoorsignaal 20 dB kleiner dan effectief signaal

Meetkarakteristieken

- Ultrasonore frequentie: 55 kHz
- Meetinterval: > 2 s (afhankelijk van de parametrering)
- Stralingshoek bij -3 dB: 11°
- Insteltijd\(4)\): > 3 s (afhankelijk van parametrering)

Meetnauwkeurigheid

- Meetresolutie algemeen: max. 1 mm
- Meetafwijking: Zie diagram

![Meetafwijking OPTISOUND 3020 C](Fig. 28: Meetafwijking OPTISOUND 3020 C)

Invloed van de omgevingstemperatuur op de sensorelektronica\(5)\)

Gemiddelde temperatuurcoëfficiënt van het nulsignaal (temperatuurfout)

0,06 %/10 K

Omgevingscondities

- Omgevings-, opslag- en transporttemperatuur: -40 ... +80 °C (-40 ... +176 °F)

\(4)\) Tijd tot de juiste uitsturing (max. 10 % afwijking) van het niveau bij een sprongsgewijze niveauverandering.

\(5)\) Gerelateerd aan het nom. meetbereik.
Procescondities

Procesdruk
-20 ... 200 kPa/-0,2 ... 2 bar (-2.9 ... 29 psig)

Procestemperatuur (temperatuur geluidsomvormer)
- Afdichting EPDM
-40 ... +80 °C (-40 ... +176 °F)
- Afdichting FKM
-20 ... +80 °C (-4 ... +176 °F)

Trillingsbestendigheid
Mechanische trillingen met 4 g en 5 ... 100 Hz⁶)

Elektromechanische gegevens

Kabelinvoer

- Eenkamerbehuizing
 1 x kabelwartel M20 x 1,5 (kabel: ø 5 ... 9 mm), 1 x blindplug M20 x 1,5 of:
 1 x afsluitkap ½ NPT, 1 x blindplug ½ NPT
- Tweekamerbehuizing
 1 x kabelwartel M20 x 1,5 (kabel: ø 5 ... 9 mm), 1 x blindplug M20 x 1,5 of:
 1 x afsluitkap ½ NPT, 1 x blindplug ½ NPT

Veerkrachtklemmen voor aderdiameter tot 2,5 mm² (AWG 14)

Display- en bedieningsmodule

Voedingsspanning en data-overdracht
Door de sensor

Weergave
LC-display in dotmatrix

Bedieningselementen
4 toetsen

Beschermingsgraad
- Los
 IP 20
- Ingebouwd in sensor zonder deksel
 IP 40

Materiaal
- Behuizing
 ABS
- Venster
 Polyesterfolie

Voedingsspanning

Bedrijfsspanning
- Niet-Ex instrument
 9 ... 32 V DC
- Ex-ia-instrument
 9 ... 24 V DC
- Ex-d-instrument
 16 ... 32 V DC

Bedrijfsspanning met verlichte display- en bedieningsmodule
- Niet-Ex instrument
 12 ... 32 V DC
- Ex-ia-instrument
 12 ... 24 V DC
- Ex-d-instrument
 20 ... 32 V DC

Voeding via / max. aantal sensoren
- Veldbus
 max. 32 (max. 10 bij Ex)

⁶) Getest conform de richtlijnen van de Germanischen Lloyd, GL-karakteristiek 2.
Elektrische veiligheidsmaatregelen

Beschermingsgraad
- Kunststof behuizing: IP 66/IP 67 (NEMA 4X)
- Aluminium of RVS-behuizing: IP 66/IP 68 (0,2 bar) NEMA 6P

Overspanningscategorie: III
Veiligheidsklasse: II

Toelagen
Instrumenten met toelagen kunnen afhankelijk van de uitvoering afwijkende technische specificaties hebben. Bij deze instrumenten moeten daarom de bijbehorende toelagendocumenten worden aangehouden. Deze zijn met het instrument meegeleverd.

9.2 Foundation Fieldbus

Blokschema meetwaardeverwerking
De volgende afbeelding toont het Transducer Block (TB) en het functieblok (FB) in vereenvoudigde vorm.

![Blokschema meetwaardeverwerking OPTISOUND 3020 C](image)

Fig. 29: Meetwaardeverwerking OPTISOUND 3020 C

7) Voorwaarde voor het behouden van de beschermingsklasse is een passende kabel.
Diagram inregeling
De volgende afbeelding toont de functie van de inregeling:

Fig. 30: Inregeling OPTISOUND 3020 C

Parameterlijst voor Device revision 3.0
De volgende lijst bevat de belangrijkste parameters en de betekenis daarvan:

- primary_value
 - This is the process value after adjustment and Linearization with the status of the transducer block
- primary_value_unit
 - Unit code of 'Primary_value'
- secondary_value_1
 - Value after min./max.-adjustment (level + level offset). Selected as input to AIFB by setting 'Channel' = 2. Unit derives from 'Secondary_value_1_unit'
- secondary_value_1_unit
 - Unit code of 'Secondary_value_1'
- secondary_value_2
 - Sensor value + sensor offset. Selected as input to AIFB by setting 'Channel' = 3. Unit derives from 'Secondary_value_2_unit'
- secondary_value_2_unit
 - Unit code of 'Secondary_value_2'
- sensor_value
 - Raw sensor value, i.e. the uncalibrated measurement value from the sensor. Unit derives from 'Sensor_range.unit'
- sensor_range
 - Sensor_range.unit refers to 'Sensor_value', 'Max/Min_peak_sensor_value', 'Cal_point_hi/lo'
- simulate_primary_value
- simulate_secondary_value_1
- simulate_secondary_value_2
- Device Status
- Linearization Type
 - Possible types of linearization are: linear, user defined, cylindrical lying container, spherical container
- CURVE_POINTS_1_10
 - X and Y values for the user defined linearization curve
- CURVE_POINTS_11_20
 - X and Y values for the user defined linearization curve
- CURVE_POINTS_21_30
- X and Y values for the user defined linearization curve
- CURVE_POINTS_31_33
 - X and Y values for the user defined linearization curve
- CURVE_STATUS
 - Result of table plausibility check
- SUB_DEVICE_NUMBER
- SENSOR_ELEMENT_TYPE
- display_source_selector
 - Selects the type of value, which is displayed on the indicating and adjustment module
- max_peak_sensor_value
 - Holds the maximum sensor value. Write access resets to current value. Unit derives from 'Sensor_range.unit'
- min_peak_sensor_value
 - Holds the minimum sensor value. Write access resets to current value. Unit derives from 'Sensor_range.unit'
- CAL_POINT_HI
 - Min./max.-adjustment: Upper calibrated point of the sensor. It refers to 'Cal_level_hi'. The unit is defined in 'Sensor_range.unit'
- CAL_POINT_LO
 - Min./max.-adjustment: Lower calibrated point of the sensor. It refers to 'Cal_level_lo'. The unit is defined in 'Sensor_range.unit'
- CAL_LEVEL_HI
 - Min./max.-adjustment: Level at 'Cal_point_hi'. When writing 'Cal_level_hi' and 'Cal_type' = 1 (Online) the 'Cal_point_hi' is automatically set to the current sensor value. The unit is defined in 'Level_unit'
- CAL_LEVEL_LO
 - Min./max.-adjustment: Level at 'Cal_point_lo'. When writing 'Cal_level_lo' and 'Cal_type' = 1 (Online), the 'Cal_point_lo' is automatically set to the current sensor value. The unit is defined in 'Level_unit'
- CAL_TYPE
 - Min./max.-adjustment: Defines type of calibration: Dry: no influence of sensor value. Online: current sensor value determines 'Cal_point_hi/lo'
- level
 - Value after min./max. adjustment
- level_unit
 - Unit code of 'Level', 'Level_offset', 'Cal_point_hi', 'Cal_level_lo'
- level_offset
 - Offset that is added to the 'Level' value. Unit derives from 'Level_unit'
- SENSOR_OFFSET
 - Offset that is added to the 'Sensor_value'. Unit derives from 'Sensor_range.unit'
- end_of_operation_range
 - Set up to suit the process conditions
- begin_of_operation_range
 - Set up to suit the process conditions
- product_type
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- liquids_medium_type
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- solids_medium_type
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- **liquids_vessel_type**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- **solids_vessel_type**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- **fast_level_change**
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- **first_echo_factor**
 - Set up to suit the process conditions
- **pulse_velocity_correction**
 - Set up to suit the process conditions
- **echo_quality**
 - Signal/Noise ratio
- **empty_vessel_curve_corr_dist**
 - Distance from the sensor to the product surface. Unit derives from 'Sensor_range.unit'
- **empty_vessel_curve_corr_op_code**
 - Update, create new or delete the empty vessel curve
- **sound_velocity**
 - Set up to suit the process conditions
- **sound_velocity_unit**
 - Unit code of 'Sound_velocity'
- **Temperature**
 - Process temperature. Selected as input to AIFB by setting 'Channel' = 4. Unit derives from 'Temperature.unit'
- **temperature_unit**
 - Unit code of 'Temperature', 'Max./Min._peak_temperature_value'
- **max_peak_temperature_value**
 - Holds the maximum process temperature. Write access resets to current value. Unit derives from 'Temperature.unit'
- **min_peak_temperature_value**
 - Holds the minimum process temperature. Write access resets to current value. Unit derives from 'Temperature.unit'
9.3 Afmetingen

Behuizing

Fig. 31: Varianten behuizing in beschermingsklasse IP 66/IP 67 en IP 66/IP 68; 0,2 bar (met ingebouwde display-en bedieningsmodule wordt de behuizing 9 mm hoger resp. breder)

1 Kunststof behuizing
2 RVS-behuizing
3 Aluminium-tweekamerbehuizing
4 Aluminium behuizing

Fig. 32: OPTISOUND 3020 C

1 Blokafstand: 0,4 m (1.312 ft)
2 Meetbereik: bij vloeistoffen tot 8 m (26.25 ft), bij stortgoederen tot 3,5 m (11.48 ft)
9.4 Handelsmerken
Alle gebruikte merken en handels- en bedrijfsnamen zijn eigendom van hun rechtmatige eigenaar/auteur.
Overicht van KROHNE producten

- Elektromagnetische flowmeters
- Vlotterdebietmeters
- Ultrasone flowmeters
- Massaflowmeters
- Vortexflowmeters
- Flowregelaars
- Niveaumeters
- Temperatuurimeters
- Drukmeters
- Analyseproducten
- Meetsystemen voor de olie- en gasindustrie