OPTISWITCH 5200 C, 5250 C Handbook

Vibrating Level Switch

Relay (DPDT)
Contents

1 About this document .. 4
 1.1 Function ... 4
 1.2 Target group ... 4
 1.3 Symbols used ... 4

2 For your safety .. 5
 2.1 Authorised personnel ... 5
 2.2 Appropriate use .. 5
 2.3 Warning about incorrect use ... 5
 2.4 General safety instructions ... 5
 2.5 Safety label on the instrument ... 6
 2.6 EU conformity .. 6
 2.7 SIL conformity ... 6
 2.8 Installation and operation in the USA and Canada ... 6
 2.9 Safety instructions for Ex areas ... 6

3 Product description .. 7
 3.1 Configuration .. 7
 3.2 Principle of operation ... 8
 3.3 Adjustment .. 8
 3.4 Storage and transport .. 9
 3.5 Accessories .. 9

4 Mounting .. 11
 4.1 General instructions ... 11
 4.2 Mounting instructions .. 15

5 Connecting to power supply ... 18
 5.1 Preparing the connection ... 18
 5.2 Connection procedure ... 19
 5.3 Wiring plan, single chamber housing ... 19

6 Setup .. 21
 6.1 General information ... 21
 6.2 Adjustment elements ... 21
 6.3 Function table .. 22

7 Maintenance and fault rectification .. 24
 7.1 Maintenance ... 24
 7.2 Rectify faults .. 24
 7.3 Exchanging the electronics ... 25
 7.4 How to proceed if a repair is necessary .. 25

8 Dismount .. 26
 8.1 Dismounting steps ... 26
 8.2 Disposal .. 26

9 Supplement ... 27
 9.1 Technical data .. 27
 9.2 Dimensions .. 34
 9.3 Trademark ... 37
1 About this document

1.1 Function
This operating instructions manual provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, the exchange of parts and the safety of the user. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group
This operating instructions manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

1.3 Symbols used

- Information, tip, note
 This symbol indicates helpful additional information.

- Caution: If this warning is ignored, faults or malfunctions can result.

- Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.

- Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.

- Ex applications
 This symbol indicates special instructions for Ex applications.
 - List
 The dot set in front indicates a list with no implied sequence.

- Action
 This arrow indicates a single action.

- 1 Sequence of actions
 Numbers set in front indicate successive steps in a procedure.

- Battery disposal
 This symbol indicates special information about the disposal of batteries and accumulators.
2 For your safety

2.1 Authorised personnel
All operations described in this documentation must be carried out only by trained specialist personnel authorised by the plant operator. During work on and with the device the required personal protective equipment must always be worn.

2.2 Appropriate use
The OPTISWITCH 5200C, 5250 C is a sensor for point level detection.
You can find detailed information about the area of application in chapter "Product description".
Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.
For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

2.3 Warning about incorrect use
Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment. Thus damage to property, to persons or environmental contamination can be caused. Also the protective characteristics of the instrument can be influenced.

2.4 General safety instructions
This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.
During the entire duration of use, the user is obliged to determine the compliance of the necessary occupational safety measures with the current valid rules and regulations and also take note of new regulations.
The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.
For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden. For safety
reasons, only the accessory specified by the manufacturer must be used.
To avoid any danger, the safety approval markings and safety tips on the device must also be observed and their meaning read in this operating instructions manual.

2.5 Safety label on the instrument
The safety approval markings and safety tips on the device must be observed.

2.6 EU conformity
The device fulfils the legal requirements of the applicable EU directives. By affixing the CE marking, we confirm the conformity of the instrument with these directives.

2.7 SIL conformity
OPTISWITCH 5200C, 5250 C fulfills the requirements on functional safety according to IEC 61508 resp. IEC 61511. You can find further information in the Safety Manual "OPTISWITCH 5XXX".

2.8 Installation and operation in the USA and Canada
This information is only valid for USA and Canada. Hence the following text is only available in the English language.
Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).
Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code.

2.9 Safety instructions for Ex areas
Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Ex-approved instruments.
3 Product description

3.1 Configuration

Scope of delivery

The scope of delivery encompasses:
- OPTISWITCH 5200C, 5250 C point level switch
- Documentation
 - This operating instructions manual
 - Safety Manual "Functional safety (SIL)" (optional)
 - Ex-specific "Safety instructions" (with Ex versions)
 - If necessary, further certificates

Constituent parts

The OPTISWITCH 5200C, 5250 C consists of the components:
- Housing lid
- Housing with electronics
- Process fitting with tuning fork

![Fig. 1: OPTISWITCH 5200C, 5250 C](image)

1. Housing lid
2. Housing with electronics
3. Process fitting

Type label

The type label contains the most important data for identification and use of the instrument:
- Article number
- Serial number
- Technical data
- Article numbers, documentation
- SIL identification (with SIL rating ex works)

In addition to the type label outside on the instrument, you find the serial number also inside the instrument.
3.2 Principle of operation

OPTISWITCH 5200C, 5250 C is a point level sensor with tuning fork for point level detection.

It is designed for industrial use in all areas of process technology and can be used in liquids.

Typical applications are overfill and dry run protection. The small tuning fork allows use in all kinds of tanks and vessels. Thanks to its simple and rugged measuring system, OPTISWITCH 5200C, 5250 C is virtually unaffected by the chemical and physical properties of the liquid.

It functions even under difficult conditions such as turbulence, air bubbles, foam generation, buildup, strong external vibration or changing products.

Function monitoring

The electronics module of OPTISWITCH 5200C, 5250 C continuously monitors the following criteria via frequency evaluation:

- Strong corrosion or damage on the tuning fork
- Loss of vibration
- Line break to the piezo drive

If a malfunction is detected or in case of power failure, the electronics takes on a defined switching condition, i.e. the relay deenergises (safe state).

Functional principle

The tuning fork is piezoelectrically energised and vibrates at its mechanical resonance frequency of approx. 1200 Hz. The piezos are fixed mechanically and are hence not subject to temperature shock limitations. The frequency changes when the tuning fork is covered by the medium. This change is detected by the integrated electronics module and converted into a switching command.

Voltage supply

OPTISWITCH 5200C, 5250 C is a compact instrument, i.e. it can be operated without external evaluation system. The integrated electronics evaluates the level signal and outputs a switching signal. With this switching signal, a connected device can be operated directly (e.g. a warning system, a pump etc.).

The data for power supply are specified in chapter "Technical data".

3.3 Adjustment

The switching condition of OPTISWITCH 5200C, 5250 C with plastic housing can be checked when the housing is closed (signal lamp). With the basic setting, products with a density ≥ 0.7 g/cm³ (0.025 lbs/in³) can be detected. The instrument can be adapted if products with lower density are to be measured.

On the electronics module you will find the following display and adjustment elements:

- Signal lamp for indication of the switching condition (green/red)
- DIL switch for sensitivity adjustment
- Mode adjustment for selection of the switching condition (A/B)
3.4 Storage and transport

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.

The packaging of standard instruments consists of environment-friendly, recyclable carton material. The sensing element is additionally protected with a cardboard cover. For special versions, PE foam or PE foil is also used. Please dispose of the packaging material through specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement - Technical data - Ambient conditions"
- Relative humidity 20 … 85 %

Lifting and carrying

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

3.5 Accessories

Flanges

Screwed flanges are available in different versions according to the following standards: DIN 2501, EN 1092-1, BS 10, ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

You can find additional information in the supplementary instructions manual "Flanges according to DIN-EN-ASME-JIS".

Electronics module

The electronics module SW E60 is a replacement part for level switches OPTISWITCH 5200C, 5250 C.

You can find information in the operating instructions manual of the electronics module.

Plug connector

For connecting the sensors with a separator to voltage supply or signal processing, the sensors are also available with plug connectors.
The following plug connectors are available:
- M12 x 1
- ISO 4400
- Harting HAN 7D
- Harting HAN 8D
- Amphenol-Tuchel
4 Mounting

4.1 General instructions

Suitability for the process conditions

Make sure that all parts of the instrument coming in direct contact with the process, especially the sensor element, process seal and process fitting, are suitable for the existing process conditions, such as process pressure, process temperature as well as the chemical properties of the medium.

You can find the specifications in chapter "Technical data" and on the nameplate.

Suitability for the ambient conditions

The instrument is suitable for standard and extended ambient conditions acc. to DIN/EN/IEC/ANSI/ISA/UL/CSA 61010-1.

Switching point

In general, OPTISWITCH 5200 C, 5250 C can be installed in any position. The instrument only has to be mounted in such a way that the tuning fork is at the height of the desired switching point.

The tuning fork has lateral markings (notches) that indicate the switching point with vertical mounting. The switching point applies to water in conjunction with the basic setting of the density switch $\geq 0.7 \text{ g/cm}^3 (0.025 \text{ lbs/in}^3)$. When mounting OPTISWITCH 5200 C, 5250 C, make sure that this marking is at the height of the requested switching point. Keep in mind that the switching point of the instrument will shift if the medium has a density other than water - water is $1 \text{ g/cm}^3 (0.036 \text{ lbs/in}^3)$. For products $\leq 0.7 \text{ g/cm}^3 (0.025 \text{ lbs/in}^3)$ and $\geq 0.5 \text{ g/cm}^3 (0.018 \text{ lbs/in}^3)$ the density switch must be set to $\geq 0.5 \text{ g/cm}^3$.

Keep in mind that foams with a density $\geq 0.45 \text{ g/cm}^3 (0.016 \text{ lbs/in}^3)$ are detected by the sensor. This can lead to erroneous switchings, particularly when the sensor is used for dry run protection.
Fig. 2: Vertical mounting
1 Switching point approx. 13 mm (0.51 in)
2 Switching point with lower density
3 Switching point with higher density
4 Switching point approx. 27 mm (1.06 in)

Fig. 3: Horizontal mounting
1 Switching point
2 Marking with screwed version, facing up

Fig. 4: Horizontal installation (recommended mounting position, particularly for adhesive products)
1 Switching point
2 Marking with screwed version, facing up

In the case of flange versions, the fork is aligned as follows.
Moisture

Use the recommended cables (see chapter "Connecting to power supply") and tighten the cable gland.

You can give your instrument additional protection against moisture penetration by leading the connection cable downward in front of the cable entry. Rain and condensation water can thus drain off. This applies mainly to outdoor mounting as well as installation in areas where high humidity is expected (e.g. through cleaning processes) or on cooled or heated vessels.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

Make sure that the degree of contamination specified in chapter "Technical data" meets the existing ambient conditions.

Fig. 6: Measures against moisture ingress
Transport

Caution:
Do not hold OPTISWITCH 5200C, 5250 C on the tuning fork. Particularly with flange or tube versions, the tuning fork can be damaged just by the weight of the instrument. Transport coated instruments very carefully and avoid touching the tuning fork.

Remove the packaging or the protective cover just before mounting.

Pressure/Vacuum

The process fitting must be sealed if there is gauge or low pressure in the vessel. Before use, check if the seal material is resistant against the measured product and the process temperature.

The max. permissible pressure is specified in chapter "Technical data" or on the type label of the sensor.

Handling

The vibrating level switch is a measuring instrument and must be treated accordingly. Bending the vibrating element will destroy the instrument.

Warning:
The housing must not be used to screw the instrument in! Applying tightening force can damage internal parts of the housing.

Use the hexagon above the thread for screwing in.

Cable entries - NPT thread

Cable glands

Metric threads
In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.
You have to remove these plugs before electrical connection.

NPT thread
In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection.
Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.
4.2 Mounting instructions

Welded socket

OPTISWITCH 5200C, 5250 C has a defined thread starting point. This means that every OPTISWITCH 5200C, 5250 C is in the same fork position after being screwed in. Remove therefore the supplied seal from the thread of OPTISWITCH 5200C, 5250 C. This seal is not required when using a welded socket with O-ring in front.

Keep in mind that this welded socket is not suitable for coated instrument versions.

Screw OPTISWITCH 5200C, 5250 C completely into the welded socket. The later position can be determined already before welding. Mark the appropriate position of the welded socket. Before welding, unscrew OPTISWITCH 5200C, 5250 C and remove the rubber ring from the welded socket. The welded socket has a marking (notch). Weld the socket with the notch facing upward, or in case of pipelines (DN 32 up to DN 50), aligned with the direction of flow.

![Fig. 8: Marking on the welded socket](image)

1. **Marking**

Adhesive products

In case of horizontal mounting in adhesive and viscous products, the surfaces of the tuning fork should be vertical in order to reduce buildup on the tuning fork. On the screwed version you will find a marking on the hexagon. With this you can check the position of the tuning fork when screwing it in. When the hexagon touches the seal, the thread can still be turned by approx. half a turn. This is sufficient to reach the recommended installation position.

In the case of flange versions, the fork is aligned with the flange holes. When used in adhesive and viscous products, the tuning fork should protrude into the vessel to avoid buildup. For that reason, sockets for flanges and mounting bosses should be avoided when mounting horizontally.

Inflowing medium

If OPTISWITCH 5200C, 5250 C is mounted in the filling stream, unwanted false measurement signals can be generated. For this reason, mount OPTISWITCH 5200C, 5250 C at a position in the vessel where no disturbances, e.g. from filling openings, agitators, etc., can occur. This applies particularly to instrument types with long extension tube.
Product flow

To make sure the tuning fork of OPTISWITCH 5200C, 5250 C generates as little resistance as possible to product flow, mount the sensor so that the surfaces are parallel to the product movement.

Agitators

Due to the effects of agitators, equipment vibration or similar, the level switch can be subjected to strong lateral forces. For this reason, do not use an overly long extension tube for OPTISWITCH 5200C, 5250 C, but check if you can mount a level switch on the side of the vessel in horizontal position.

Extreme vibration caused by the process or the equipment, e.g. agitators or turbulence in the vessel, can cause the extension tube of OPTISWITCH 5200C, 5250 C to vibrate in resonance. This leads to increased stress on the upper weld joint. Should a longer tube version be necessary, you can provide a suitable support directly above the tuning fork to secure the extension tube.

This measure applies mainly to applications in Ex areas category 1G or WHG. Make sure that the tube is not subject to bending stress due to this measure.
Enamel coating

Instruments with enamel coating should be treated very carefully and shocks should be avoided. Unpack OPTISWITCH 5200C, 5250 C directly before installation. Insert OPTISWITCH 5200C, 5250 C carefully into the vessel opening and avoid touching any sharp vessel parts.

Gas-tight leadthrough

The second seal of the gas-tight leadthrough (option) prevents an uncontrolled leakage of the medium. The service life of the gas-tight leadthrough depends on the chemical resistance of the materials. See "Technical data".

Caution:

⚠️ If it is determined (e.g. via an error message from OPTISWITCH 5200C, 5250 C) that medium has already penetrated into the vibrating element, the instrument must be exchanged immediately.
5 Connecting to power supply

5.1 Preparing the connection

Note safety instructions

Always keep in mind the following safety instructions:

Warning:
Connect only in the complete absence of line voltage.

- The electrical connection must only be carried out by trained personnel authorised by the plant operator.
- Always switch off power supply, before connecting or disconnecting the instrument.

Note:
Install a disconnecting device for the instrument which is easy to access. The disconnecting device must be marked for the instrument (IEC/EN 61010).

Take note of safety instructions for Ex applications

In hazardous areas you must take note of the respective regulations, conformity and type approval certificates of the sensors and power supply units.

Voltage supply

Connect the voltage supply according to the connection diagrams. The electronics module with relay output is designed in protection class I. To maintain this protection class, it is absolutely necessary that the earth conductor be connected to the inner earth conductor terminal. Keep the general installation regulations in mind. Take note of the corresponding installation regulations for hazardous areas with Ex applications.

The data for power supply are specified in chapter "Technical data".

Connection cable

The instrument is connected with standard three-wire cable without screen. If electromagnetic interference is expected which is above the test values of EN 61326 for industrial areas, screened cable should be used.

Make sure that the cable used has the required temperature resistance and fire safety for max. occurring ambient temperature

Use cable with round cross-section. A cable outer diameter of 5 … 9 mm (0.2 … 0.35 in) ensures the seal effect of the cable gland. If you are using cable with a different diameter or cross-section, exchange the seal or use a suitable cable gland.

In hazardous areas, use only approved cable connections for OPTISWITCH 5200C, 5250 C.

Connection cable for Ex applications

Take note of the corresponding installation regulations for Ex applications.

Cover all housing openings conforming to standard according to EN 60079-1.
5.2 Connection procedure

With Ex instruments, the housing cover may only be opened if there is no explosive atmosphere present.

Proceed as follows:
1. Unscrew the housing lid
2. Loosen compression nut of the cable gland and remove blind plug
3. Remove approx. 10 cm (4 in) of the cable mantle, strip approx. 1 cm (0.4 in) of insulation from the ends of the individual wires
4. Insert the cable into the sensor through the cable entry
5. Open the terminals with a screwdriver
6. Insert the wire ends into the open terminals according to the wiring plan
7. Tighten the terminals with a screwdriver
8. Check the hold of the wires in the terminals by lightly pulling on them
9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
10. Screw the housing lid back on

The electrical connection is finished.

5.3 Wiring plan, single chamber housing

The following illustrations apply to the non-Ex as well as to the Ex-d version.

Housing overview

![Housing overview diagram]

Fig. 11: Material versions, single chamber housing
1. Plastic (not with Ex d)
2. Aluminium
3. Stainless steel, precision casting
4. Stainless steel, electropolished (not with Ex d)
5. Filter element for pressure compensation (not with Ex d)
5 Connecting to power supply

Electronics and terminal compartment

![Diagram of Electronics and terminal compartment]

Fig. 12: Electronics and terminal compartment, single chamber housing
1 Control lamp
2 DIL switch for mode adjustment
3 DIL switch for switching point adaptation
4 Ground terminal
5 Connection terminals

Wiring plan

We recommend connecting OPTISWITCH 5200C, 5250 C in such a way that the switching circuit is open when there is a level signal, line break or failure (safe state).

Information:
The relays are always shown in non-operative condition.

![Diagram of Wiring plan]

Fig. 13: Wiring plan, single chamber housing
1 Relay output
2 Relay output
3 Voltage supply
6 Setup

6.1 General information
The figures in brackets refer to the following illustrations.

Function/Configuration
With plastic housings, the switching condition of the electronics can be checked when the housing cover is closed (control lamp). With the basic setting, products with a density ≥ 0.7 g/cm³ (0.025 lbs/in³) can be detected. For products with lower density, the switch must be set to ≥ 0.5 g/cm³ (0.018 lbs/in³).

On the electronics module you will find the following display and adjustment elements:
- Signal lamp (1)
- DIL switch for mode adjustment - A/B (2)
- DIL switch for adjustment of the density range (3)

Note:
Always immerse the tuning fork of OPTISWITCH 5200C, 5250 C in a liquid to test its function. Do not test the function of OPTISWITCH 5200C, 5250 C with your hand. This can damage the sensor.

6.2 Adjustment elements

![Diagram of adjustment elements](image)

Fig. 14: Oscillator SWE60R - Relay output
1 Control lamp (LED)
2 DIL switch for mode adjustment
3 DIL switch for adjustment of the density range

Signal lamp (1)
Control lamp for indication of the switching status
- green = relay energized
- red = relay deenergized
- red (flashing) = failure

Mode adjustment (2)
With the mode adjustment (A/B) you can change the switching condition of the relay. You can set the required mode according to the
6 Setup

"Function table" (A - max. detection or overflow protection, B - min. detection or dry run protection).

Adjustment of the density range (3)

With this DIL switch (3) you can set the switching point to liquids having a density between 0.5 and 0.7 g/cm³ (0.018 and 0.025 lbs/in³). With the basic setting, liquids with a density of ≥ 0.7 g/cm³ (0.025 lbs/in³) can be detected. In liquids with lower density, you must set the switch to ≥ 0.5 g/cm³ (0.018 lbs/in³). The specifications for the position of the switching point relate to water - density value 1 g/cm³ (0.036 lbs/in³). In products with a different density, the switching point will shift in the direction of the housing or tuning fork end depending on the density and type of installation.

Note:
Keep in mind that foams with a density ≥ 0.45 g/cm³ (0.016 lbs/in³) are detected by the sensor. This can lead to erroneous switchings, particularly when the sensor is used for dry run protection.

6.3 Function table

The following table provides an overview of the switching conditions depending on the set mode and the level.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Level</th>
<th>Switching status</th>
<th>Control lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode A</td>
<td>Overflow protection</td>
<td>Relay energized (6) (7) (8)</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode A</td>
<td>Overflow protection</td>
<td>Relay deenergized (6) (7) (8)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode B</td>
<td>Dry run protection</td>
<td>Relay energized (6) (7) (8)</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode B</td>
<td>Dry run protection</td>
<td>Relay deenergized (6) (7) (8)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure of the supply voltage (mode A/B)</td>
<td>any</td>
<td>Relay deenergized (6) (7) (8)</td>
<td>Off</td>
</tr>
<tr>
<td>Level</td>
<td>Switching status</td>
<td>Control lamp</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Fault</td>
<td>any</td>
<td>Relay deenergized</td>
<td>flashes red</td>
</tr>
</tbody>
</table>

- Relay deenergized flashes red
7 Maintenance and fault rectification

7.1 Maintenance
If the device is used properly, no special maintenance is required in normal operation.

7.2 Rectify faults
The operator of the system is responsible for taking suitable measures to rectify faults.

Reaction when malfunction occurs

Causes of malfunction
OPTISWITCH 5200C, 5250 C offers maximum reliability. Nevertheless, faults can occur during operation. These may be caused by the following, e.g.:
- Sensor
- Process
- Voltage supply
- Signal processing

Fault rectification
The first measure to take is to check the output signal. In many cases, the causes can be determined this way and the faults quickly rectified.

Checking the switching signal

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Rectification</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTISWITCH 5200C, 5250 C signals "covered" without being submerged (overfill protection)</td>
<td>Operating voltage too low</td>
<td>Check operating voltage</td>
</tr>
<tr>
<td>OPTISWITCH 5200C, 5250 C signals "uncovered" when being submerged (dry run protection)</td>
<td>Electronics defective</td>
<td>Press the mode switch. If the instrument then changes the mode, the vibrating element may be covered with buildup or mechanically damaged. Should the switching function in the correct mode still be faulty, return the instrument for repair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Press the mode switch. If the instrument then does not change the mode, the electronics module may be defective. Exchange the electronics module.</td>
</tr>
<tr>
<td>Unfavourable installation location</td>
<td>Mount the instrument at a location in the vessel where no dead zones or air bubbles can form.</td>
<td></td>
</tr>
<tr>
<td>Buildup on the vibrating element</td>
<td>Check the vibrating element and the sensor for buildup and remove the buildup if there is any.</td>
<td></td>
</tr>
<tr>
<td>Wrong mode selected</td>
<td>Set the correct mode with the mode switch (overflow protection, dry run protection). Wiring should be carried out according to the closed-circuit principle.</td>
<td></td>
</tr>
</tbody>
</table>
7 Maintenance and fault rectification

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Rectification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal lamp flashes red</td>
<td>Error on the vibrating element</td>
<td>Check if the vibrating element is damaged or extremely corroded.</td>
</tr>
<tr>
<td></td>
<td>Interference on the electronics module</td>
<td>Exchanging the electronics module</td>
</tr>
<tr>
<td></td>
<td>instrument defective</td>
<td>Exchange the instrument or send it in for repair</td>
</tr>
</tbody>
</table>

Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter “Set up” may have to be carried out again.

7.3 Exchanging the electronics

If the electronics module is defective, it can be replaced by the user.

In Ex applications only an electronics module with respective Ex approval may be used.

You can find all the information you need to carry out an electronics exchange in the handbook of the new electronics module.

In general, all electronics modules of series SW60 can be interchanged. If you want to use an electronics module with a different signal output, you carry out the complete setup. You find the necessary, suitable operating instruction on our homepage.

Note:

Keep in mind that enamelled instrument versions need special electronics modules. These electronics modules are called SW60E or SW60E1.

7.4 How to proceed if a repair is necessary

If it is necessary to repair the instrument, please contact the responsible Krohne agency.
8 Dismount

8.1 Dismounting steps

Warning:
Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to power supply" and carry out the listed steps in reverse order.

With Ex instruments, the housing cover may only be opened if there is no explosive atmosphere present.

8.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive 2002/96/EG
This instrument is not subject to the WEEE directive 2002/96/EG and the respective national laws. Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points. These may be used only for privately used products according to the WEEE directive.

Correct disposal avoids negative effects on humans and the environment and ensures recycling of useful raw materials.

Materials: see chapter "Technical data"

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.
9 Supplement

9.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein - for example regarding the process conditions or the voltage supply.

<table>
<thead>
<tr>
<th>General data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material 316L corresponds to 1.4404 or 1.4435</td>
<td></td>
</tr>
<tr>
<td>Materials, wetted parts</td>
<td></td>
</tr>
<tr>
<td>- Process fitting - thread</td>
<td>316L, Alloy C22 (2.4602)</td>
</tr>
<tr>
<td>- Process fitting - flange</td>
<td>316L, 316L with Alloy C22 (2.4602) coating, steel enamelled, 316L with ECTFE coating, 316L with PFA coating</td>
</tr>
<tr>
<td>- Process seal</td>
<td>Klingersil C-4400</td>
</tr>
<tr>
<td>- Tuning fork</td>
<td>316L, Alloy C22 (2.4602)</td>
</tr>
<tr>
<td>- Extension tube: ø 21.3 mm (0.839 in)</td>
<td>316L, Alloy C22 (2.4602), Alloy C22 (2.4602) enamelled, 316L with ECTFE coating, 316L with PFA coating</td>
</tr>
<tr>
<td>Materials, non-wetted parts</td>
<td></td>
</tr>
<tr>
<td>- Plastic housing</td>
<td>Plastic PBT (Polyester)</td>
</tr>
<tr>
<td>- Aluminium die-cast housing</td>
<td>Aluminium die-casting AlSi10Mg, powder-coated (Basis: Polyester)</td>
</tr>
<tr>
<td>- Stainless steel housing (precision casting)</td>
<td>316L</td>
</tr>
<tr>
<td>- Stainless steel housing (electropolished)</td>
<td>316L</td>
</tr>
<tr>
<td>- Seal between housing and housing lid</td>
<td>Silicone SI 850 R</td>
</tr>
<tr>
<td>- Seal between housing and housing cover (lacquer-compatible version)</td>
<td>EPDM</td>
</tr>
<tr>
<td>- Optical fibre in housing cover</td>
<td>PMMA (Makrolon)</td>
</tr>
<tr>
<td>- Ground terminal</td>
<td>316L</td>
</tr>
<tr>
<td>- Cable gland</td>
<td>PA, stainless steel, brass</td>
</tr>
<tr>
<td>- Sealing, cable gland</td>
<td>NBR</td>
</tr>
<tr>
<td>- Blind plug, cable gland</td>
<td>PA</td>
</tr>
<tr>
<td>- Temperature adapter (optional)</td>
<td>316L</td>
</tr>
<tr>
<td>Second Line of Defense resp. gas-tight leadthrough (optional)</td>
<td></td>
</tr>
<tr>
<td>- The Second Line of Defense (SLOD) is a second level of the process separation in the form of a gas-tight feedthrough in the lower part of the housing, preventing product from penetrating into the housing.</td>
<td></td>
</tr>
<tr>
<td>- Supporting material</td>
<td>316L</td>
</tr>
<tr>
<td>- Glass potting</td>
<td>Borosilicate glass (Schott no. 8421)</td>
</tr>
</tbody>
</table>
Contacts: 1.4101
Helium leak rate: < 10^-6 mbar l/s
Pressure resistance: PN 64

Sensor length (L):
- 316L, Alloy C22 (2.4602): 80 ... 6000 mm (3.15 ... 236.22 in)
- Alloy C22 (2.4602) enamelled: 80 ... 1500 mm (3.15 ... 59.055 in)
- 316L, ECTFE coated: 80 ... 3000 mm (3.15 ... 118.11 in)
- 316L, PFA coated: 80 ... 4000 mm (3.15 ... 157.48 in)

Sensor lengths - accuracy: ± 2 mm (± 0.079 in)

Tube diameter: ø 21.3 mm (0.839 in)

Weight:
- Instrument weight (depending on process fitting): approx. 0.8 ... 4 kg (0.18 ... 8.82 lbs)
- Tube extension: approx. 920 g/m (9.9 oz/ft)

Layer thickness:
- Enamel: 600 µm +200/-100 µm (0.024 in +0.008/-0.004 in)
- ECTFE: 500 µm +500/-200 µm (0.02 in +0.02/-0.008 in)
- PFA: 600 µm +500/-300 µm (0.024 in +0.02/-0.012 in)

Surface quality:
- Standard: R_a approx. 3 µm (1.18^-4 in)
- Hygienic version 3A (OPTISWITCH 5250 C): R_a < 0.8 µm (3.15^-5 in)
- Hygienic version 3A (OPTISWITCH 5250 C): R_a < 0.3 µm (1.18^-5 in)

Process fittings:
- Pipe thread, cylindrical (DIN 3852-A): G¾, G1
- Pipe thread, conical (ASME B1.20.1): ¾ NPT, 1 NPT
- Flanges: DIN from DN 25, ASME from 1"
- hygienic fittings: Slotted nut DN 40 PN 40, Clamp 1" DIN 32676 ISO 2852/316L, Clamp 2" DIN 32676 ISO 2852/316L, conus DN 25 PN 40, Tuchenhagen Varivent DN 50 PN 10

Max. torque - process fitting:
- Thread G¾, ¾ NPT: 75 Nm (55 lbf ft)
- Thread G1, 1 NPT: 100 Nm (73 lbf ft)

Torque for NPT cable glands and Conduit tubes:
- Plastic housing: max. 10 Nm (7.376 lbf ft)
- Aluminium/Stainless steel housing: max. 50 Nm (36.88 lbf ft)

High voltage test (enamel): max. 5 KV

Gas-tight leadthrough (optional):
- Leakage rate: < 10^-6 mbar l/s
- Pressure resistance: PN 64
<table>
<thead>
<tr>
<th>Output variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Relay output (DPDT), 2 floating spdts</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>max. 253 V AC/DC</td>
</tr>
<tr>
<td></td>
<td>With circuits > 150 V AC/DC, the relay contacts must be in the same circuit.</td>
</tr>
<tr>
<td>Switching current</td>
<td>max. 3 A AC (cos phi > 0.9), 1 A DC</td>
</tr>
<tr>
<td>Breaking capacity</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>50 mW</td>
</tr>
<tr>
<td>Max.</td>
<td>750 VA AC, 40 W DC (at U < 40 V DC)</td>
</tr>
<tr>
<td></td>
<td>If inductive loads or stronger currents are switched through, the gold plating on the relay contact surface will be permanently damaged. The contact is then no longer suitable for switching low-level signal circuits.</td>
</tr>
<tr>
<td>Contact material (relay contacts)</td>
<td>AgNi or AgSnO2 each with 3 µm gold plating</td>
</tr>
<tr>
<td>Modes (switchable)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Max. detection or overflow/overfill protection</td>
</tr>
<tr>
<td>B</td>
<td>Min. detection or dry run protection</td>
</tr>
</tbody>
</table>

Accuracy (according to DIN EN 60770-1)

Reference conditions and influencing variables (according to DIN EN 61298-1)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>+18 … +30 °C (+64 … +86 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>45 … 75 %</td>
</tr>
<tr>
<td>Air pressure</td>
<td>860 … 1060 mbar/86 … 106 kPa (12.5 … 15.4 psig)</td>
</tr>
<tr>
<td>Product temperature</td>
<td>+18 … +30 °C (+64 … +86 °F)</td>
</tr>
<tr>
<td>Product density</td>
<td>1 g/cm³ (0.036 lbs/in³) (water)</td>
</tr>
<tr>
<td>Product viscosity</td>
<td>1 mPa s</td>
</tr>
<tr>
<td>Superimposed pressure</td>
<td>0 kPa</td>
</tr>
<tr>
<td>Sensor installation</td>
<td>Vertically from top</td>
</tr>
<tr>
<td>Density selection switch</td>
<td>≥ 0.7 g/cm³</td>
</tr>
</tbody>
</table>

Measuring accuracy

| Deviation | ± 1 mm (0.04 in) |
Influence of the process temperature on the switching point

Fig. 31: Influence of the process temperature on the switching point
1 Shifting of the switching point in mm (in)
2 Process temperature in °C (°F)
3 Switching point at reference conditions (notch)
4 Tuning fork

Influence of the product density on the switching point

Fig. 32: Influence of the product density on the switching point
1 Shifting of the switching point in mm (in)
2 Product density in g/cm³ (lb/in³)
3 Switch position ≥ 0.5 g/cm³ (0.018 lb/in³)
4 Switch position ≥ 0.7 g/cm³ (0.025 lb/in³)
5 Switching point at reference conditions (notch)
6 Tuning fork
Influence of the process pressure to the switching point

Fig. 33: Influence of the process pressure to the switching point

1 Shifting of the switching point in mm (in)
2 Process pressure in bar (psig)
3 Switching point at reference conditions (notch)
4 Tuning fork

Repeatability 0.1 mm (0.004 in)
Hysteresis approx. 2 mm (0.08 in) with vertical installation
Switching delay approx. 500 ms (on/off)
Measuring frequency approx. 1200 Hz

Ambient conditions
Ambient temperature on the housing -40 ... +70 °C (-40 ... +158 °F)
Storage and transport temperature -40 ... +80 °C (-40 ... +176 °F)

Process conditions
Measured variable Limit level of liquids
Process pressure -1 ... 64 bar/-100 ... 6400 kPa (-14.5 ... 928 psig)
The process pressure is dependent on the process fitting, for example Clam p or flange (see the following diagrams)
Maximum allowable operating pressure 100 bar/10000 kPa (1450 psig) or 1.5 times process pressure
The function of the instrument is ensured up to an operating pressure of 100 bar/10000 kPa (1450 psig) at a maximum process temperature of +50 °C (+122 °F) (only with threaded versions).

Process temperature (thread or flange temperature)
- OPTISWITCH 5200C, 5250 C of 316L/Alloy C22 (2.4602) -50 ... +150 °C (-58 ... +302 °F)
Process temperature (thread or flange temperature) with temperature adapter (option)

- **OPTISWITCH 5200C, 5250 C** of 316L/Alloy C22 (2.4602)

> -50 ... +250 °C (-58 ... +482 °F)

- **OPTISWITCH 5200C, 5250 C** enamelled

> -50 ... +200 °C (-58 ... +392 °F)

- **OPTISWITCH 5200C, 5250 C** with ECTFE coating

> -50 ... +150 °C (-58 ... +302 °F)

- **OPTISWITCH 5200C, 5250 C** with PFA coating

> -50 ... +250 °C (-58 ... +482 °F)

Fig. 34: Ambient temperature - Process temperature

1. Process temperature in °C (°F)
2. Ambient temperature in °C (°F)
3. Temperature range with temperature adapter

Fig. 35: Process temperature - Process pressure with switch position ≥ 0.7 g/cm³ (sensitivity switch)

1. Process pressure in bar (psig)
2. Process temperature in °C (°F)
Fig. 36: Process temperature - Process pressure with switch position ≥ 0.5 g/cm³ (sensitivity switch)

1 Process pressure in bar (psig)
2 Process temperature in °C (°F)

SIP process temperature (SIP = Sterilization in place)
PFA and ECTFE coatings are not suitable for SIP cleaning
Vapour stratification up to 2 h +150 °C (+302 °F)

Additional process conditions

Viscosity - dynamic 0.1 … 10000 mPa s (requirement: with density 1)
Flow velocity max. 6 m/s (with a viscosity of 10000 mPa s)
Density
 - Standard sensitivity 0.7 … 2.5 g/cm³ (0.025 … 0.09 lbs/in³)
 - High sensitivity 0.5 … 2.5 g/cm³ (0.018 … 0.09 lbs/in³)
Vibration resistance
 - Instrument housing 1 g at 5 … 200 Hz according to EN 60068-2-6 (vibration with resonance)
 - Sensor 1 g with 5 … 200 Hz according EN 60068-2-6 (vibration at resonance) with sensor length up to 50 cm (19.69 in)

With a sensor length > 50 cm (19.69 in) you have to fix the extension tube with a suitable support. See mounting instructions.

Electromechanical data

Cable entry/plug (dependent on the version)
 - Single chamber housing
 - 1 x cable entry M20 x 1.5 (cable: ø 5 … 9 mm),
 1 x blind plug M20 x 1.5; attached 1 x cable entry M20 x 1.5
 or:
 - 1 x cable entry ½ NPT, 1 x blind plug ½ NPT, 1 x cable entry ½ NPT
 or:
 - 1 x plug M12 x 1; 1 x blind plug M20 x 1.5

Screw terminals for wire cross-section up to 1.5 mm² (AWG 16)
Adjustment elements

Mode switch
- A: Max. detection or overflow/overfill protection
- B: Min. detection or dry run protection

Density changeover switch
- ≥ 0.5 g/cm³: 0.5 ... 2.5 g/cm³ (0.018 ... 0.09 lbs/in³)
- ≥ 0.7 g/cm³: 0.7 ... 2.5 g/cm³ (0.025 ... 0.09 lbs/in³)

Voltage supply
Operating voltage: 20 ... 253 V AC, 50/60 Hz, 20 ... 72 V DC (at U >60 V DC, the ambient temperature can be max. 50 °C/122 °F)
Max. power consumption: 8 VA (AC), 1.5 W (DC)

Electrical protective measures
Protection rating: IP 66/IP 67 (NEMA Type 4X)
Overvoltage category: III
Protection class: I

Approvals
Depending on the version, instruments with approvals can have different technical data. For these instruments, please note the corresponding approval documents. They are included in the scope of delivery.

9.2 Dimensions

OPTISWITCH 5200C, 5250 C, housing

Fig. 37: Housing versions
1 Plastic housing
2 Stainless steel housing (electropolished)
3 Stainless steel housing (precision casting)
4 Aluminium housing
Fig. 38: OPTISWITCH 5200C, 5250 C

1 Thread
2 Clamp
3 Cone DN 25
4 Slotted nut DN 40
5 Flange
6 Tuchenhagen Varivent

L = Sensor length, see chapter “Technical data”
Fig. 39: Options

1 Gas-tight leadthrough
2 Temperature adapter
9.3 Trademark
All the brands as well as trade and company names used are property of their lawful proprietor/originator.
KROHNE product overview

- Electromagnetic flowmeters
- Variable area flowmeters
- Ultrasonic flowmeters
- Mass flowmeters
- Vortex flowmeters
- Flow controllers
- Level meters
- Temperature assemblies
- Pressure transmitters
- Analysis products
- Products and systems for the oil and gas industry

KROHNE Messtechnik GmbH & Co. KG
Ludwig-Krohne-Straße 5
D-47058 Duisburg
Tel.: +49 (0) 203 301 0
Tel.: +49 (0) 203 301 10389
info@krohne.de

The current list of all KROHNE contacts and addresses can be found at:
www.krohne.com