Radarový hladinoměr na principu FMCW s frekvencí 24 GHz pro měření sypkých látek ve formě granulátu nebo kusů
Všechna práva vyhrazena. Reprodukování tohoto dokumentu nebo jeho části je povoleno pouze po předchozím písemném souhlasu firmy KROHNE Messtechnik GmbH.

Změna údajů vyhrazena.

Copyright 2017
KROHNE Messtechnik GmbH - Ludwig-Krohne-Str. 5 - 47058 Duisburg (Německo)
1 Bezpečnostní pokyny
 1.1 Historie softwaru ... 7
 1.2 Předpokládané použití .. 7
 1.3 Certifikace .. 8
 1.4 Elektromagnetická kompatibilita .. 8
 1.5 Schválení pro radiokomunikace .. 8
 1.5.1 Evropská unie (EU) .. 8
 1.5.2 USA a Kanada ... 12
 1.6 Bezpečnostní pokyny výrobce .. 16
 1.6.1 Autorská práva a ochrana dat ... 16
 1.6.2 Vymezení odpovědnosti .. 16
 1.6.3 Odpovědnost za výrobek a záruka 17
 1.6.4 Informace o dokumentaci .. 17
 1.6.5 Používané výstražné symboly 18
 1.7 Bezpečnostní pokyny pro obsluhu 18

2 Popis přístroje
 2.1 Rozsah dodávky ... 19
 2.2 Popis přístroje ... 20
 2.3 Vizuální kontrola ... 21
 2.4 Výrobní štítky ... 22
 2.4.1 Výrobní štítek (příklady) .. 22

3 Montáž
 3.1 Základní pokyny k montáži .. 23
 3.2 Skladování .. 23
 3.3 Přeprava ... 24
 3.4 Požadavky na instalaci .. 24
 3.5 Rozsahy tlaků a teplot .. 25
 3.6 Doporučená poloha při montáži .. 26
 3.6.1 Základní pokyny .. 26
 3.6.2 Nádrže s klenutým a kónickým dnem 28
 3.7 Pokyny pro montáž ... 29
 3.7.1 Základní pokyny .. 29
 3.7.2 Provozní připojení .. 31
 3.8 Jak připevnit prodloužení antény 37
 3.9 Jako otočit nebo demontovat modul displeje 40
 3.10 Ochranný kryt proti povětrnostním vlivům 41
 3.10.1 Jak k přístroji připevnit ochranný kryt proti povětrnostním vlivům .. 41
 3.10.2 Jak otevřít ochranný kryt proti povětrnostním vlivům. 43

4 Elektrické připojení
 4.1 Bezpečnostní pokyny .. 44
 4.2 Základní pokyny ... 44
 4.3 Elektrické připojení: 2vodičové, napájení po smyčce 44
4.4 Elektrické připojení proudového výstupu ... 48
 4.4.1 Přístroje do normálního prostředí (bez Ex) ... 48
 4.4.2 Přístroje do prostředí s nebezpečím výbuchu ... 48
4.5 Ochrana krytí .. 48
4.6 Sítě .. 50
 4.6.1 Základní informace ... 49
 4.6.2 Zapojení point-to-point .. 49
 4.6.3 Sítě multi-drop ... 50

5 Uvedení do provozu .. 51
 5.1 Kontrola před uvedením do provozu ... 51
 5.2 Jak spustit hladinoměr ... 51
 5.3 Koncepce ovládání přístroje .. 51
 5.4 Obrazovka digitálního displeje ... 52
 5.4.1 Rozmístění údajů na obrazovce displeje ... 52
 5.4.2 Ovládací tlačítka .. 53
 5.5 Dálková komunikace s programem PACTware™ .. 55
 5.6 Dálková komunikace s AMS™ Device Manager ... 56

6 Provoz ... 57
 6.1 Uživatelské režímy .. 57
 6.2 Provozní režim .. 57
 6.3 Režim nastavení .. 61
 6.3.1 Základní pokyny... 61
 6.3.2 Ochrana konfigurace přístroje (přístupové úrovně) .. 62
 6.3.3 Jak vstoupit do menu Rychlé nastavení ... 64
 6.3.4 Funkce tlačitek ... 65
 6.3.5 Jak uložit změny nastavení provedené v Režimu nastavení 68
 6.3.6 Přehled menu ... 69
 6.3.7 Popis funkcí ... 75
 6.4 Další informace o nastavení přístroje v Režimu nastavení 97
 6.4.1 Standardní nastavení ... 97
 6.4.2 Záznam prázného spektra .. 100
 6.4.3 Konfigurace pro sítě HART® .. 103
 6.4.4 Měření vzdálenosti ... 104
 6.4.5 Měření výšky hladiny .. 105
 6.4.6 Jak nastavit přístroj pro měření objemu nebo hmotnosti 108
 6.4.7 Jak správně měřit v sílech s klenutým nebo kuželovitým dnem 110
 6.4.8 Jak vytvořit filtr k odstranění rušivých signálů .. 110
 6.5 Stavová (chybová) hlášení a diagnostické informace ... 112

7 Servis .. 119
 7.1 Pravidelná údržba .. 119
 7.1.1 Základní pokyny ... 119
 7.1.2 Údržba O-kroužků včetně krytu .. 119
 7.1.3 Jak očistit povrch přístroje .. 120
 7.1.4 Jak čistit trychtýřové antény za provozu .. 120
8 Technické údaje

8.1 Měřicí princip .. 128
8.2 Technické údaje .. 130
8.3 Přesnost měření .. 137
8.4 Minimální napájecí napětí ... 138
8.5 Údaje o maximálním provozním tlaku .. 139
8.6 Rozměry a hmotnosti .. 141

9 Popis rozhraní HART

9.1 Základní popis .. 148
9.2 Historie softwaru .. 149
9.3 Varianty připojení .. 149
 9.3.1 Připojení point-to-point – analogové/digitální režim 149
 9.3.2 Připojení Multi-drop (2vodičové připojení) .. 150
9.4 Proměnné zařízení HART® ... 150
9.5 Komunikátor Field Communicator 475 (FC 475) .. 150
 9.5.1 Instalace ... 150
 9.5.2 Provoz .. 151
9.6 Asset Management Solutions (AMS®) .. 151
 9.6.1 Instalace ... 151
 9.6.2 Provoz .. 151
 9.6.3 Parametry pro základní konfiguraci ... 151
9.7 Field Device Tool / Device Type Manager (FDT / DTM) 152
 9.7.1 Instalace ... 152
 9.7.2 Provoz .. 152
9.8 Process Device Manager (PDM) .. 152
 9.8.1 Instalace ... 152
 9.8.2 Provoz .. 152
9.9 Struktura menu HART® pro AMS .. 153
 9.9.1 Přehled menu pro AMS (pozice ve struktuře menu) 153
 9.9.2 Struktura menu pro AMS (podrobnosti pro nastavení) 154
9.10 Struktura menu HART® pro PDM ... 157
 9.10.1 Přehled menu pro PDM (pozice ve struktuře menu) 157
 9.10.2 Struktura menu pro PDM (podrobnosti pro nastavení) 158
10 Dodatek .. 161
 10.1 Objednací číslo .. 161
 10.2 Náhradní díly ... 166
 10.3 Příslušenství ... 169
 10.4 Slovníček pojmů ... 170

11 Poznámky .. 173
Bezpečnostní pokyny

1.1 Historie softwaru

Revize firmwaru je v souladu s NAMUR NE 53. Jedná se o řadu čísel používaných k záznamu o stavu revizí integrovaného softwaru (firmwaru) v elektronických zařízeních. Poskytuje informace o druhu provedených změn a jejich vlivu na kompatibilitu.

Údaje o revizích softwaru se zobrazují v menu 1.1.0 IDENT. (ID.C.PRISTR.). Podrobnosti viz *Popis funkci* na straně 75. Pokud není možno získat informace z menu přístroje, zapište si výrobní číslo hladinoměru (uvedené na štítku) a sdělte ho dodavateli v případě problémů s přístrojem.

Změny a vliv na kompatibilitu

<table>
<thead>
<tr>
<th></th>
<th>Zpětně kompatibilní změny a opravy chyb bez vlivu na provoz (např. pravopisné chyby na displeji)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-</td>
<td>Zpětně kompatibilní změny hardwaru a/nebo softwaru rozhraní:</td>
</tr>
<tr>
<td>H</td>
<td>HART®</td>
</tr>
<tr>
<td>P</td>
<td>Profibus</td>
</tr>
<tr>
<td>F</td>
<td>FOUNDATION fieldbus</td>
</tr>
<tr>
<td>3-</td>
<td>Zpětně kompatibilní změny hardwaru a/nebo softwaru vstupů a výstupů:</td>
</tr>
<tr>
<td>CO</td>
<td>Proudný výstup</td>
</tr>
<tr>
<td>FO,P</td>
<td>Frekvenční výstup / pulzní výstup</td>
</tr>
<tr>
<td>SO</td>
<td>Stavový výstup</td>
</tr>
<tr>
<td>LS</td>
<td>Mezní spínač</td>
</tr>
<tr>
<td>CI</td>
<td>Proudný vstup</td>
</tr>
<tr>
<td>D</td>
<td>Displej</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datum vydání</th>
<th>Modul s plošnými spoji</th>
<th>Revize firmwaru</th>
<th>Revize elektroniky</th>
<th>Revize hardwaru</th>
<th>Změny a kompatibilita</th>
<th>Dokumentace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2017</td>
<td>Uživatelské rozhodnutí (displej na přání)</td>
<td>BL1.24.04</td>
<td>ER1.0.06</td>
<td>4002905801a 1</td>
<td>—</td>
<td>MA OPTIWAVE 6400 R01</td>
</tr>
<tr>
<td></td>
<td>Základní a pomocný</td>
<td></td>
<td></td>
<td>4002815701d</td>
<td>4002859301a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snímač</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Pokud přístroj není vybaven displejem, je referenční číslo modulu 4002905802a

1.2 Předpokládané použití

Upozornění!

Uživatel nese plnou odpovědnost za přiměřené použití přístroje a za korozní odolnost použitých materiálů vůči měřenému médii.

Informace!

Výrobce neručí za škody vyplývající z nevhodného použití nebo z použití k jiným než stanoveným účelům.

Tento radarový hladinoměr je určen k měření vzdálenosti od hladiny, výšky hladiny, hmotnosti, objemu a odrazivosti granulátů a prášků.

Může být umístěn na silech, výsypkách a zásobnících (bunkrech).
1.3 Certifikace

Nebezpečí!
Pro přístroje určené do prostředí s nebezpečím výbuchu platí doplňkové bezpečnostní pokyny; prostudujte laskavě dokumentaci označenou Ex.

Značka CE

Tento přístroj splňuje základní požadavky směrnic EU:
- Směrnice pro elektromagnetickou kompatibilitu (EMC)
- Bezpečnostní část Směrnice pro zařízení nízkého napětí
- Pro přístroje do prostředí s nebezpečím výbuchu: Směrnice ATEX

Výrobce potvrzuje zdárné provedení zkoušek umístěním značky CE na výrobku. Další podrobnosti viz Schválení pro radiokomunikace na straně 8. To odpovídá požadavkům na odolnost a vyzařování pro průmyslové prostředí.

Všechny přístroje jsou označeny značkou CE a splňují požadavky Doporučení (Recommendation) NAMUR NE 21, NE 43, NE 53 a NE 107.

1.4 Elektromagnetická kompatibilita

Přístroj je vyroben v souladu se Směrnicí pro elektromagnetickou kompatibilitu.

Přístroj může být instalován na silech, zásobnících nebo bunkrech. Podrobnosti viz Schválení pro radiokomunikace na straně 8. To odpovídá požadavkům na odolnost a vyzařování pro průmyslové prostředí.

1.5 Schválení pro radiokomunikace

1.5.1 Evropská unie (EU)

Informace!
LPR (Level Probing Radar, radar pro sondování výšky hladiny) může měřit výšku hladiny ve volném prostoru nebo v uzavřeném objektu (např. v nádrži). TLPR (Tank Level Probing Radar, radar pro sondování výšky hladiny v nádrži) může měřit výšku hladiny pouze v uzavřeném objektu. Zařízení typu LPR lze použít v aplikacích určených pro zařízení typu TLPR. Zařízení typu LPR a TLPR splňují požadavky Směrnice pro rádiová zařízení (RED) pro použití v členských zemích EU.

Podrobnosti o objednacím čísle viz Objednací číslo na straně 161.

Tento hladinoměr je schválen pro použití i mimo uzavřené kovové nádrže. Pokud přístroj chcete používat venku ve volném prostoru, zkontrolujte nejprve štítek přístroje, zda může být použit pro Vaší aplikaci. Pro aplikaci ve venkovním prostředí mohou být používány pouze následující antény:
Bezpečnostní pokyny

Typ antény	**Objednací číslo**
Korozivzdorná ocel 316L / kovová trychtýřová DN80 (3") | VFDCxxxxxxxxxxxxx4xxx...
Korozivzdorná ocel 316L / kovová trychtýřová DN100 (4") | VFDCxxxxxxxxxxxxx5xxx...
Korozivzdorná ocel 316L / kovová trychtýřová DN150 (6") | VFDCxxxxxxxxxxxxx6xxx...
Korozivzdorná ocel 316L / kovová trychtýřová DN200 (8") | VFDCxxxxxxxxxxxxx7xxx...
PP / kapková DN80 (3") | VFDCxxxxxxxxxxxxxAxxx...
PP / kapková DN100 (4") | VFDCxxxxxxxxxxxxxBxxx...
PP / kapková DN150 (6") | VFDCxxxxxxxxxxxxxCxxx...
PTFE / kapková DN80 (3") | VFDCxxxxxxxxxxxxxExxx...
PTFE / kapková DN100 (4") | VFDCxxxxxxxxxxxxxFxxx...
PTFE / kapková DN150 (6") | VFDCxxxxxxxxxxxxxGxxx...

Obrázek 1-1: Evropská unie: informace o schválení pro radiokomunikace na štítku přístroje

2. HVIN (Hardware Version Identification Number, identifikační číslo verze hardwaru). Toto číslo udává frekvenci radarového signálu (24G = 24 GHz), umístění přístroje (T=TLPR nebo L=LPR) a typ převodníku (kompaktní (C))
 - Zařízení TLPR: HVIN: 24G-T-C
 - Zařízení LPR: HVIN: 24G-L-C
3. Značka CE
Pouze zařízení TLPR (Tank Level Probing Radar, radar pro sondování výšky hladiny v nádrži)
Montáž přístroje smí provádět pouze oprávněné osoby. Přístroj a nádrž jsou v souladu se Směrnicí pro rádiová zařízení (RED), pokud dodržujete následující pokyny:

- Radary pro sondování výšky hladiny v nádrži (TLPR) musí být umístěny a upevněny ve stálé poloze na uzavřené (nikoliv otevřené) kovové nádrži nebo vyztužené betonové nádrži nebo podobném uzavřeném objektu vyrobeném z materiálu tlumiči rádiové vlny obdobným způsobem;
- konstrukce přírub a příslušenství pro zařízení TLPR musí zajišťovat potřebné oddělení (utěsnění) mikrovlákninného záření;
- příruby a přípojovací příruby na nádrži musí být uzavřeny, aby nedocházelo k pronikání mikrovlákninného signálu do prostoru mimo nádrž;
- pokud je to možné, musí být zařízení TLPR namontováno na nádrži s anténou směřující směrem dolů;
- montáž a údržbu zařízení TLPR smí provádět pouze personál s patřičnou kvalifikací.

Podrobnosti o montáži odrušovacích těsnění jsou uvedeny v pokynech dodávaných k tomuto doplňkovému příslušenství.

Pouze zařízení LPR (Level Probing Radar, radar pro sondování výšky hladiny)
Montáž přístroje smí provádět pouze oprávněné osoby. Pokud je přístroj provozován venku ve volném prostoru, je v souladu se Směrnicí pro rádiová zařízení (RED), pokud dodržujete následující pokyny:

- Přístroj musí být umístěn ve vzdálenosti nejméně 4 km / 2,485 mil od radioastronomických observatoří.
- Pokud se přístroj nachází ve vzdálenosti 4...40 km / 2,485...24,855 mil od radioastronomické observatoře, nesmí být umístěn výše než 15 m / 49,21 ft nad zemí.

Upozornění!
Pokud je nezbytné přístroj umístit ve vzdálenosti menší než 4 km / 2,485 mil od radioastronomické observatoře, je nejprve nutno získat povolení příslušného národního regulačního orgánu (např. ANFR (Francie), Bundesnetzagentur (Německo), Ofcom (Spojené království), ČTÚ (ČR) apod.).
Oblasti rádiového ticha: umístění radioastronomických observatoří (stanic) v Evropě a severní Eurasii

<table>
<thead>
<tr>
<th>Země</th>
<th>Název stanice</th>
<th>Umístění</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Zeměpisná šířka, φ</td>
</tr>
<tr>
<td>Finsko</td>
<td>Metsähovi</td>
<td>60°13'04" N</td>
</tr>
<tr>
<td>Francie</td>
<td>Plateau de Bure</td>
<td>60°24'56" N</td>
</tr>
<tr>
<td>Německo</td>
<td>Effelsberg</td>
<td>44°38'01" N</td>
</tr>
<tr>
<td>Maďarsko</td>
<td>Penc</td>
<td>50°31'32" N</td>
</tr>
<tr>
<td>Itálie</td>
<td>Medicina</td>
<td>47°47'22" N</td>
</tr>
<tr>
<td>Lotyšsko</td>
<td>Ventspils</td>
<td>44°31'14" N</td>
</tr>
<tr>
<td>Polsko</td>
<td>Kraków – Fort Skala</td>
<td>36°52'34" N</td>
</tr>
<tr>
<td>Rusko</td>
<td>Dmitrov</td>
<td>39°29'50" N</td>
</tr>
<tr>
<td>Španělsko</td>
<td>Yebes</td>
<td>57°33'12" N</td>
</tr>
<tr>
<td>Švédsko</td>
<td>Onsala</td>
<td>50°03'18" N</td>
</tr>
<tr>
<td>Švýcarsko</td>
<td>Bleien</td>
<td>56°26'00" N</td>
</tr>
<tr>
<td></td>
<td>Robledo</td>
<td>57°13'22" N</td>
</tr>
<tr>
<td>Švýcarsko</td>
<td>Bleden</td>
<td>44°49'00" N</td>
</tr>
<tr>
<td>Švýcarsko</td>
<td>Zelenčukskaja</td>
<td>43°49'53" N</td>
</tr>
<tr>
<td>Švýcarsko</td>
<td>Yebes</td>
<td>40°31'27" N</td>
</tr>
<tr>
<td>Švýcarsko</td>
<td>Robledo</td>
<td>40°25'38" N</td>
</tr>
<tr>
<td></td>
<td>Bleien</td>
<td>47°20'26" N</td>
</tr>
<tr>
<td></td>
<td>Onsala</td>
<td>57°23'45" N</td>
</tr>
<tr>
<td>Spojené království</td>
<td>Cambridge</td>
<td>52°09'59" N</td>
</tr>
<tr>
<td></td>
<td>Darnhall</td>
<td>53°09'22" N</td>
</tr>
<tr>
<td></td>
<td>Jodrell Bank</td>
<td>53°14'10" N</td>
</tr>
<tr>
<td></td>
<td>Knockin</td>
<td>52°47'24" N</td>
</tr>
<tr>
<td></td>
<td>Pickmere</td>
<td>53°17'18" N</td>
</tr>
</tbody>
</table>
1.5.2 USA a Kanada

Informace!
LPR (Level Probing Radar, radar pro sondování výšky hladiny) může měřit výšku hladiny ve volném prostoru nebo v uzavřeném objektu (např. v nádrži). TLPR (Tank Level Probing Radar, radar pro sondování výšky hladiny v nádrži) může měřit výšku hladiny pouze v uzavřeném objektu.

Podrobnosti o objednacím čísle viz Objednací číslo na straně 161.

Tento hladinoměr je schválen pro použití i mimo uzavřené kovové nádrže. Pokud přístroj chcete používat venku ve volném prostoru, zkontrolujte nejprve štítek přístroje, zda může být použit pro Vaši aplikaci. Pro aplikace ve venkovním prostředí mohou být používány pouze následující antény:

<table>
<thead>
<tr>
<th>Typ antény</th>
<th>Objednací číslo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korozivzdorná ocel 316L / kovová trychtýřová DN80 (3”)</td>
<td>VFDCxxxxxxxxxxxxxx4xxx...</td>
</tr>
<tr>
<td>Korozivzdorná ocel 316L / kovová trychtýřová DN100 (4”)</td>
<td>VFDCxxxxxxxxxxxxxx5xxx...</td>
</tr>
<tr>
<td>Korozivzdorná ocel 316L / kovová trychtýřová DN150 (6”)</td>
<td>VFDCxxxxxxxxxxxxxx6xxx...</td>
</tr>
<tr>
<td>Korozivzdorná ocel 316L / kovová trychtýřová DN200 (8”)</td>
<td>VFDCxxxxxxxxxxxxxx7xxx...</td>
</tr>
<tr>
<td>PP / kapková DN80 (3”)</td>
<td>VFDCxxxxxxxxxxxxxAxxx...</td>
</tr>
<tr>
<td>PP / kapková DN100 (4”)</td>
<td>VFDCxxxxxxxxxxxxxBxxx...</td>
</tr>
<tr>
<td>PP / kapková DN150 (6”)</td>
<td>VFDCxxxxxxxxxxxxxCxxx...</td>
</tr>
<tr>
<td>PTFE / kapková DN80 (3”)</td>
<td>VFDCxxxxxxxxxxxxxExxx...</td>
</tr>
<tr>
<td>PTFE / kapková DN100 (4”)</td>
<td>VFDCxxxxxxxxxxxxxFxxx...</td>
</tr>
<tr>
<td>PTFE / kapková DN150 (6”)</td>
<td>VFDCxxxxxxxxxxxxxGxxx...</td>
</tr>
</tbody>
</table>
Právní upozornění!

FCC

Tento přístroj splňuje požadavky Části 15 předpisů FCC Rules (Federální komise pro komunikace). Provoz přístroje musí splňovat následující dvě podmínky:
1. Tento přístroj nesmí způsobit škodlivé rušení a
2. tento přístroj musí odolat všem druhům rušení včetně těch, které mohou způsobit nežádoucí funkci přístroje.

Pokud jsou na přístroji provedeny změny nebo úpravy bez výslovného souhlasu výrobce, může v tomto případě schválení FCC pro provoz přístroje pozbyt platnosti.

Při zkouškách tohoto přístroje bylo prokázáno, že splňuje omezení kladená na digitální zařízení Třídy B v souladu s Částí 15 předpisů FCC Rules (Federální komise pro komunikace). Tato omezení zajistí příměřenou ochranu proti škodlivému rušení při provozu v obytných oblastech. Tento přístroj generuje, používá a může šířit vysokofrekvenční energii, a pokud není namontován a používán v souladu s návodom, může nežádoucím způsobem ovlivňovat rádiové spojení. Není však zaručeno, že v dané instalaci nedojde ke vzniku rušení. Jestliže v důsledku funkce přístroje skutečně dojde k rušení příjmu rádiového nebo televizního vysílání, což může být prokázáno vypnutím a zapnutím přístroje, může se uživatel pokusit zjednat nápravu pomocí jednoho nebo více následujících opatření:
• Změnit orientaci nebo umístění antény pro příjem signálu.
• Zvětšit vzdálenost mezi přístrojem a přijímačem.
• Připojit napájení přístroje k jinému zdroji než přijímač.
• Konzultovat problém s dodavatelem nebo technikem se zkušenostmi s příjmem rádiového a televizního vysílání.
Právní upozornění!

IC
Tento přístroj je v souladu s výjimkou z povolovacího řízení podle předpisů RSS vydaných Industry Canada.

Provoz přístroje musí splňovat následující podmínky:
1. Tento přístroj nesmí způsobit škodlivé rušení a
2. tento přístroj musí odolat všem druhům rušení včetně těch, které mohou způsobit nežádoucí funkci přístroje.

Tento přístroj a příručka odpovídají požadavkům RSS-Gen. (General Requirements for Compliance of Radio Apparatus). Provoz přístroje musí splňovat následující podmínky:
1. Montáž přístroje musí provádět patřičně vyškolení pracovníci, a to přesně podle pokynů výrobce.
2. Přístroj je používán na principu "žádné rušení, žádná ochrana". To znamená, že uživatel musí akceptovat provoz výkonného radaru ve stejném frekvenčním pásmu, které může rušit nebo poškodit tento přístroj. Přístroje, které by rušily provoz již nainstalovaných zařízení s příslušným povolením k provozu, však bude uživatel povinen za vlastní náklady odstranit.
3. Zařízení TLPR musí být instalováno a provozováno ve zcela uzavřených nádržích, aby nemohlo docházet k vyzařování vysokofrekvenčního signálu, který by tak mohl rušit leteckou navigací.

Marketingový název tohoto přístroje (PMN) je "Optiwave x400 series".
Bezpečnostní pokyny

Obrázek 1-2: Informace o schválení pro radiokomunikace v USA a Kanadě na štítku přístroje

2. HVIN (Hardware Version Identification Number, identifikační číslo verze hardwaru). Toto číslo udává frekvenci radarového signálu (24G = 24 GHz), umístění přístroje (T=TLPR nebo L=LPR) a typ převodníku (kompaktní (C))
 Zařízení TLPR: HVIN: 24G-T-C
 Zařízení LPR: HVIN: 24G-L-C
3. Nálepka s identifikačním číslem FCC a IC
1.6 Bezpečnostní pokyny výrobce

1.6.1 Autorská práva a ochrana dat

Obsah tohoto dokumentu byl vytvořen s velkou péčí. Nicméně nepřebráme žádné záruky za to, že jeho obsah je bezchybný, kompletní a aktuální.

Obsah a díla uvedená v tomto dokumentu podléhají autorskému právu. Příspěvky třetích stran jsou patřičně označeny. Kopírování, úprava, šíření a jakýkoli jiný typ užívání mimo rozsah povolený v rámci autorských práv je možný pouze s písemným souhlasem příslušného autora a/nebo výrobce.

Výrobce vždy dbá o zachování cizích autorských práv a snaží se využívat vlastní a veřejně přístupné zdroje.

Shromažďování osobních údajů (jako jsou jména, poštovní nebo e-mailové adresy) v dokumentech výrobce pokud možno vždy vychází z dobrovolné pokytnutých dat.

V přiměřeném rozsahu je vždy možno využívat nabídky a služby bez poskytnutí jakýchkoliv osobních údajů.

Dovolujeme si Vás upozornit na skutečnost, že přenos dat prostřednictvím Internetu (např. při komunikaci e-mailem) vždy představuje bezpečnostní riziko. Tato data není možno zcela ochránit proti přístupu třetích stran.

Tímto výslovně zakazujeme používat povinně zveřejňované kontaktní údaje pro účely zasílání jakýchkoliv reklamních nebo informačních materiálů, které jsme si výslovně nevyžádali.

1.6.2 Vymezení odpovědnosti

Výrobce neodpovídá za jakékoliv škody vyplývající z používání tohoto výrobku včetně, nikoli však pouze přímých, následných, vedlejších, represivních a souhrnných odškodnění.

Toto vymezení odpovědnosti neplatí v případě, že výrobce jednal úmyslně nebo s velkou nedbalostí. V případě, že jakýkoli platný zákon nepřipouští taková omezení předpokládaných záruk nebo vyloučení určitých škod, pak v případě, že pro Vás takový zákon platí, nepodléháte některým nebo všem výše uvedeným odmítnutím, vyloučením nebo omezením.

Výrobce poskytuje na všechny zakoupené výrobky záruku v souladu s platnou kupní smlouvou a Všeobecnými dodacími a obchodními podmínkami.

Výrobce si vyhrazuje právo kdykoli, jakkoli a z jakékoli důvodu změnit obsah své dokumentace včetně tohoto vymezení odpovědnosti bez předchozího upozornění a za případné následky těchto změn nenese jakoukoli odpovědnost.
1.6.3 Odpovědnost za výrobek a záruka

1.6.4 Informace o dokumentaci

Je naprosto nezbytné důkladně prostudovat veškeré informace v tomto dokumentu a dodržovat platné národní normy, bezpečnostní předpisy a preventivní opatření, aby nedošlo ke zranění uživatele nebo k poškození přístroje.

Jestliže tento dokument není ve vašem rodném jazyce a máte problémy s porozuměním textu, doporučujeme vám požádat o pomoc naší nejbližší pobočce. Výrobce nepřebírá žádnou odpovědnost za škody nebo zranění způsobená v důsledku neporozumění informacím v tomto dokumentu.

Tento dokument vám má pomoci zajistit pracovní podmínky, které umožní bezpečné a efektivní využití tohoto přístroje. Dokument obsahuje rovněž speciální pokyny a opatření, na která upozorňují níže uvedené piktogramy.
1.6.5 Používané výstražné symboly

Bezpečnostní výstrahy jsou označeny následujícími symboly.

Nebezpečí!
Tento výstraха upozorňuje na bezprostřední nebezpečí při práci s elektrickým zařízením.

Nebezpečí!
Tento výstraха upozorňuje na bezprostřední nebezpečí popálení způsobeného teplem nebo horkým povrchem.

Nebezpečí!
Tento výstraха upozorňuje na bezprostřední nebezpečí při používání tohoto zařízení v potenciálně výbušné atmosféře.

Nebezpečí!
Je bezpodmínečně nutné dbát uvedených výstrah. I částečné ignorování těchto výstrah může vést k vážnému ohrožení zdraví nebo života. Rovněž může dojít k závažnému poškození přístroje nebo okolních zařízení.

Výstraha!
Ignorování těchto bezpečnostních výstrah, a to i částečné, představuje vážné riziko ohrožení zdraví. Rovněž může dojít k závažnému poškození přístroje nebo okolních zařízení.

Upozornění!
Ignorování těchto pokynů může vést k poškození přístroje nebo okolních zařízení.

Informace!
Tyto pokyny obsahují důležité informace o zacházení s přístrojem.

Právní upozornění!
Tato poznámka obsahuje informace o zákonných nařízeních a normách.

- **MANIPULACE**
 Tento symbol označuje všechny pokyny k činnostem, které musí obsluha provádět v určeném pořadí.
- **VÝSLEDEK**
 Tento symbol upozorňuje na všechny důležité výsledky předcházejících činností.

1.7 Bezpečnostní pokyny pro obsluhu

Výstraha!
Tento přístroj mohou montovat, uvádět do provozu, obsluhovat a udržovat pouze osoby s patřičnou kvalifikací. Tento dokument vám má pomoci zajistit pracovní podmínky, které umožní bezpečné a efektivní využití tohoto přístroje.
2.1 Rozsah dodávky

Informace!
Zkontrolujte dodací (balicí) list, zda jste obdrželi kompletní dodávku dle vaší objednávky.

Obrázek 2-1: Rozsah dodávky
1. Převodník signálu, provozní připojení a anténa v objednaném provedení
2. Prodloužení antény (doplněk na přání). Prodloužení se dodávají přípěvněná k přístroji. Pokud je celková délka spojených segmentů prodloužení příliš velká, může být přístroj rozdělen na dvě části.
3. Certifikáty: kalibráční protokol apod. (pokud byly pro přístroj objednány)
4. DVD-ROM (obsahující příručku, prospekt a příslušný software)
5. Magnetické pero
6. Přípravek na demontáž displeje (modul displeje dodáván jako doplněk na přání)
7. Klíč na demontáž víček krytu přístroje

Informace!
Pro přístroj jsou k dispozici segmenty prodloužení antény. Prodloužení se dodávají přípěvněná k přístroji. Pokud je celková délka spojených segmentů prodloužení příliš velká, může být přístroj rozdělen na dvě části. Podrobnosti o postupu montáže viz Jak připevnit prodloužení antény na straně 37.
2.2 Popis přístroje

Tento přístroj je radarový hladinoměr na principu FMCW s pracovní frekvencí 24 GHz. Přístroj má 2vodičové napájení a měří bez přímého kontaktu s měřeným mediem. Je určen k měření vzdálenosti od hladiny, výšky hladiny, hmotnosti, objemu a odrazivosti granulátů a prášků. Další podrobnosti o měřicím principu viz Měřicí princip na straně 128.

Radarové hladinoměry využívají anténu k vysílání signálu k povrchu měřeného média. Přístroj je k dispozici s mnoha různými typy anténě. Díky tomu je možno měřit prakticky libovolné médium, a to i za obtížných podmínek. Také viz Technické údaje na straně 128.

Pokud je přístroj objednán v příslušném provedení, může být certifikován pro použití v prostorech s nebezpečím výbuchu.

Převodník signálu je přímo připojen k provoznímu připojení a anténě. Na obrázku jsou uvedeny dodávané typy anténě.

Obrázek 2-2: Typy antény

1. Kovové trýchtýřové antény (dodávané rozměry antény: DN80 (3′), DN100 (4′), DN150 (6′) a DN200 (8′)) vyrobené z korozivzdorné oceli 316L. Pro vysoká hrdla jsou k dispozici prodloužení antény.
2. Kapkové antény (dodávané rozměry antény: DN80 (3′) DN100 (4′) a DN150 (6′)) vyrobené z PTFE nebo PP. Pro vysoká hrdla jsou k dispozici prodloužení antény.

Informace!

Podrobnosti o doplňcích viz Příslušenství na straně 169.
2.3 Vizuální kontrola

Výstraha!
Nedotýkejte se displeje, pokud má rozbité sklo.

Informace!
Pečlivě zkонтrolуйte dodané zboží, zda nenese známky poškození nebo špatného zacházení. Případné poškození oznamte přepravci a nejbližší pobočce výrobce.

Obrázek 2-3: Vizuální kontrola
1. Štítek přístroje (podrobnosti viz Výrobní štítek (příklady) na straně 22)
2. Údaje o provozním připojení (jmenovitá světlost a tlak, označení materiálu a číslo šarže)
3. Údaje o těsnění - viz následující obrázky

Obrázek 2-4: Symboly označující materiál dodaného těsnění (na boční straně provozního připojení)
1. EPDM
2. Kalrez® 6375

Je-li přístroj dodán s těsněním z materiálu FKM/FPM, není boční strana provozního připojení označena žádnou značkou.

Informace!
Zkontrolujte údaje na štítku přístroje, zda jsou v souladu s vaší objednávkou. Zkontrolujte zejména hodnotu napájecího napětí.

Informace!
Porovnejte údaje v objednávce s materiálovým označením na boční straně provozního připojení.
2.4 Výrobní štítky

Informace!
Zkontrolujte údaje na štítku přístroje, zda jsou v souladu s vaší objednávkou. Zkontrolujte zejména hodnotu napájecího napětí.

2.4.1 Výrobní štítek (příklady)

Obrázek 2-5: Štítek do normálního prostředí (bez Ex) připevněný ke krytu

1. Rozměr závitu pro vývodku
2. Revize elektroniky (podle NAMUR NE 53)
3. Výstup signálu (analogový, HART®, sběrnice, atd.), napájecí napětí a maximální proud (pro sběrnici: základní proud)
4. Stupeň ochrany krytem (podle ČSN EN 60529 / IEC 60529)
5. Označení měřicího okruhu (tag)
6. Datum výroby
7. Výrobní číslo
10. Logo, název a adresa výrobce
 Země původu / adresa webových stránek výrobce

Obrázek 2-6: Štítek pro výrobu v nebezpečném prostředí (Ex)

1. Rozměr závitu pro vývodku
2. Revize elektroniky (podle NAMUR NE 53)
3. Výstup signálu (analogový, HART®, sběrnice, atd.), napájecí napětí a maximální proud (pro sběrnici: základní proud)
4. Stupeň ochrany krytem (podle ČSN EN 60529 / IEC 60529)
5. Označení měřicího okruhu (tag)
6. Datum výroby
7. Výrobní číslo
10. Logo, název a adresa výrobce
 Země původu / adresa webových stránek výrobce
3.1 Základní pokyny k montáži

Informace!
Pečlivě zkontrolujte dodané zboží, zda nenese známky poškození nebo špatného zacházení. Případné poškození oznamte přepravci a nejblížší pobočce výrobce.

Informace!
Zkontrolujte dodací (balicí) list, zda jste obdrželi kompletní dodávku dle vaší objednávky.

Informace!
Zkontrolujte údaje na štítku přístroje, zda jsou v souladu s vaší objednávkou. Zkontrolujte zejména hodnotu napájecího napětí.

3.2 Skladování

Výstraha!
Neskladujte hladinoměr ve svislé poloze. Může dojít k poškození antény a přístroj pak nebude fungovat správně.

Obrázek 3-1: Podmínky pro skladování

1. Při skladování nesmí být hladinoměr ve svislé poloze.
3. Rozmezí teplot při skladování: -40...+85°C / -40...+185°F

- Skladujte přístroj na suchém místě chráněném před prachem.
- Chraňte převodník před přímým slunečním zářením.
- Skladujte přístroj pouze v původním obalu.
3.3 Přeprava

Výstraha!
Zvedejte a přenášejte přístroj opatrně, aby nedošlo k poškození antény. Pokud před přemístěním přístroje pomocí zvedáku odmontujete převodník, dbejte na to, aby při montáži zpět na snímač nebyl zaměněn za jiný převodník. V takovém případě může dojít k ovlivnění funkce hladinoměru.

3.4 Požadavky na instalaci

Informace!
Dodržujte následující pokyny, aby byla instalace přístroje správně provedena.

- Ujistěte se, že je v místě montáže dostatek prostoru pro její provedení.
- Chraňte převodník před přímým slunečním zářením. V případě potřeby použijte ochranný kryt proti povětrnostním vlivům.
- Na převodník nesmí působit silné vibrace. Hladinoměry jsou testovány na úroveň vibrací a vyhovují EN 50178 a IEC 60068-2-6.
3.5 Rozsahy tlaků a teplot

Obrázek 3-3: Rozsahy tlaků a teplot

1. Teplota u provozního připojení
 Přístroje do normálního prostředí (bez Ex): povolený rozsah teplot závisí na typu antény, provozním připojení a materiálu těsnění. Viz následující tabulka.
 Přístroje v provedení Ex: viz doplněk montážního a provozního předpisu

2. Teplota prostředí pro provoz displeje
 -20...+70°C / -4...+158°F
 Pokud je teplota prostředí mimo uvedené mezery, může dojít k dočasnému vypnutí displeje. Přístroj však nadále měří a poskytuje měřené hodnoty na výstupech.

3. Teplota prostředí
 Přístroje do normálního prostředí (bez Ex): -40...+80°C / -40...+176°F
 Přístroje v provedení Ex: viz doplněk montážního a provozního předpisu

4. Provozní tlak
 Závisí na typu antény a provozním připojení. Viz následující tabulka.

Výstraha!
Rozsah provozních teplot v místě provozního připojení hladinoměru musí být v souladu s povoleným rozsahem teplot pro materiál těsnění. Provozní tlak závisí na použitém provozním připojení a na teplotě v místě provozního připojení.

Maximální teplota u provozního připojení a provozní tlak

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapková z PP</td>
<td>+100</td>
<td>+212</td>
<td>16</td>
<td>232</td>
</tr>
<tr>
<td>Kapková z PTFE</td>
<td>+130</td>
<td>+266</td>
<td>16</td>
<td>232</td>
</tr>
<tr>
<td>Kovová trychtýřová</td>
<td>+130 (1)</td>
<td>+266 (1)</td>
<td>16</td>
<td>232</td>
</tr>
</tbody>
</table>

(1) Maximální teplota u provozního připojení musí být v souladu s mezemi hodnotami teploty pro použitý materiál těsnění

Podrobnosti o jmenovitých tlacích viz Údaje o maximálním provozním tlaku na straně 139.
3.6 Doporučená poloha při montáži

Upozornění!
Pro zajištění správné funkce přístroje je nutno dodržovat následující doporučení. Provedení montáže ovlivňuje výkon hladinoměru.

Doporučujeme provádět přípravu montáže dříve, než je nádrž naplněna.

3.6.1 Základní pokyny

Doporučené umístění hrdla pro sypké látky

Obrázek 3-4: Doporučené umístění hrdla pro sypké látky

1. Vzdálenost provozního připojení od stěny sila, r/2 (pro trýchřífovou anténu DN80, DN100, DN150 nebo DN200 a kapkovou anténu DN80, DN100 nebo DN150)
2. Poloměr sila, r
3. Minimální měřená výška hladiny pro přístroje bez příruby z PP zkosené o 2°
4. Minimální měřená výška hladiny pro přístroje s přírubou z PP zkosenou o 2°

Informace!
Chcete-li pro montáž hladinoměru použít stávající hrdlo (nátrubek), musí se nacházet minimálně 200 mm / 7,9" od stěny nádrže. Stěna nádrže musí rovná a v blízkosti hrdla (nátrubku) ani stěny nádrže se nesměji nacházet žádné překážky.
Maximální výkon přístroje závisí i na jeho správné orientaci

Obrázek 3-5: Maximální výkon přístroje závisí i na jeho správné orientaci

1. Závit pro vývodku
2. Nejbližší stěna nádrže
3. Osa nádrže

Natočte kabelové vývodky na krytu směrem k ose nádrže.

Počet přístrojů, které mohou být současně provozovány v síle

Obrázek 3-6: Počet přístrojů současně provozovaných v jednom síle není omezen

Počet přístrojů současně provozovaných v jednom síle není omezen. Mohou být umístěny přímo vedle jiných radarových hladinoměrů.
3.6.2 Nádrže s klenutým a kónickým dnem

Klenutá a kónická dna ovlivňují měřicí rozsah přístroje. Hladinoměr nemůže měřit ode dna nádrže. Pokud možno namontujte přístroj podle následujícího obrázku:

Obrázek 3-7: Nádrže s klenutým nebo kónickým dnem

1. Osa úhlu radarového paprsku
2. Minimální výška hladiny pro odečítání
3.7 Pokyny pro montáž

Upozornění!
Pro zajištění správné funkce přístroje je nutno dodržovat následující doporučení. Provedení montáže ovlivňuje výkon hladinoměru.

Doporučujeme provádět přípravu montáže dříve, než je nádrž naplněna.

3.7.1 Základní pokyny

Radary pro sondování výšky hladiny (LPR) a radary pro sondování výšky hladiny v nádrži (TLPR)

Výstraha!
LPR (Level Probing Radar, radar pro sondování výšky hladiny) může měřit výšku hladiny ve volném prostoru nebo v uzavřeném objektu (např. v nádrži). TLPR (Tank Level Probing Radar, radar pro sondování výšky hladiny v nádrži) může měřit výšku hladiny pouze v uzavřeném objektu. Zařízení typu LPR lze použít v aplikacích určených pro zařízení typu TLPR. Podrobnosti viz Schválení pro radiokomunikace na straně 8.

Příčiny vzniku rušivých signálů
- Objekty v nádrži nebo sile.
- Ostré rohy v rovině kolmé k dráze radarového signálu.
- Prudké změny průměru nádrže v dráze radarového signálu.

Upozornění!

Vnitřní zástavba a vybavení: jak zabránit měření rušivých signálů
Neumísťte přístroj přímo nad vnitřní vybavení nebo zástavbu v síle nebo bunkru. V takovém případě může dojít k ovlivnění funkce hladinoměru.

Informace!
Pokud možno neumísťte hrdlo do osy síla.
Montáž

Obrázek 3-8: Vnitřní zástavba a vybavení: jak zabránit rušivých signálů

1. Nenakláňejte přístroj více než o 2°
2. Pokud se v dráze signálu vysílaného radarem nachází příliš mnoho překážek (vnitřní zástavby), doporučujeme provést záznam prázdného spektra (podrobnosti viz Záznam prázdného spektra na straně 100).
3. Vyzařovací úhel antény: viz následující tabulka. Poloměr paprsku radarového signálu vzroste o "x" na každý metr vzdálenosti od antény.

Vyzařovací úhel antény

<table>
<thead>
<tr>
<th>Typ antény</th>
<th>Vyzařovací úhel</th>
<th>Poloměr paprsku x [mm/m]</th>
<th>[in/ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kovová trychtýřová, DN80 (3")</td>
<td>9°</td>
<td>79</td>
<td>0,9</td>
</tr>
<tr>
<td>Kovová trychtýřová, DN100 (4")</td>
<td>8°</td>
<td>70</td>
<td>0,8</td>
</tr>
<tr>
<td>Kovová trychtýřová, DN150 (6")</td>
<td>6°</td>
<td>53</td>
<td>0,6</td>
</tr>
<tr>
<td>Kovová trychtýřová, DN200 (8")</td>
<td>5°</td>
<td>44</td>
<td>0,5</td>
</tr>
<tr>
<td>Kapková z PTFE, DN80 (3")</td>
<td>8°</td>
<td>70</td>
<td>0,8</td>
</tr>
<tr>
<td>Kapková z PTFE, DN100 (4")</td>
<td>7°</td>
<td>61</td>
<td>0,7</td>
</tr>
<tr>
<td>Kapková z PTFE, DN150 (6")</td>
<td>4°</td>
<td>35</td>
<td>0,4</td>
</tr>
<tr>
<td>Kapková z PP, DN80 (3")</td>
<td>9°</td>
<td>79</td>
<td>0,9</td>
</tr>
<tr>
<td>Kapková z PP, DN100 (4")</td>
<td>7°</td>
<td>61</td>
<td>0,7</td>
</tr>
<tr>
<td>Kapková z PP, DN150 (6")</td>
<td>5°</td>
<td>44</td>
<td>0,5</td>
</tr>
</tbody>
</table>
Přívod média

Obrázek 3-9: Přívod média
① Přístroj je umístěn správně
② Přístroj je umístěn příliš blízko přívodu média

Upozornění!
Přístroj nesmí být umístěn v blízkosti přívodu média. Jestliže se médium přiváděné do sily bude dotýkat antény, přístroj nebude měřit správně. V případě, že se silo plní měřeným médiem až po anténu, přístroj rovněž nebude měřit správně.

Informace!
Další podrobnosti o měřicích rozsazích pro jednotlivé typy antény viz Přesnost měření na straně 137.

3.7.2 Provozní připojení

Informace!
Všechny níže uvedené postupy lze použít pouze pro přístroje s kovovou tryskovou nebo kapkovou anténou.

Přírubové připojení: postup při montáži

Obrázek 3-10: Přírubové připojení: postup při montáži
∅d = průměr hrdla
h = výška hrdla
Doporučené rozměry hrdla pro přírubové připojení

Hrdlo by mělo být co nejnižší. Maximální výška hrdla je uvedena v následující tabulce:

<table>
<thead>
<tr>
<th>Průměr antény a hrdla, Ød</th>
<th>Maximální výška hrdla, h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kovová trychtýřová anténa</td>
</tr>
<tr>
<td>[mm]</td>
<td>[mm]</td>
</tr>
<tr>
<td>80</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>10,24</td>
</tr>
<tr>
<td>100</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>12,99</td>
</tr>
<tr>
<td>150</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>19,29</td>
</tr>
<tr>
<td>200</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>25,98</td>
</tr>
</tbody>
</table>

1 Pokud má přístroj prodloužení antény, pak tato varianta zvětšuje maximální výšku hrdla. Připočtěte proto délku prodloužení antény přístroje k této hodnotě.

Potřebné vybavení:
- Přístroj
- Těsnění příruby (není součástí dodávky)
- Klič (není součástí dodávky)

Je-li průměr antény menší než rozměr provozního připojení (příruby):
- Zkontrolujte, zda je příruž na hrdle ve vodorovné rovině.
- Ujistěte se, že použitá těsnění vyhovují rozměrům příruby a zamýšlenému použití hladinoměru.
- Vystřeďte správně těsnění na těsnící ploše příruby hrdla.
- Přiložte opatrně přírubu hladinoměru k přírubě na síle. Prozatím ji k silu ještě nepřipojovujte
- Zajistěte správnou orientaci (natočení) přístroje v nádrži. Podrobnosti viz Základní pokyny na straně 26 ("Správná orientace přístroje").
- Utáhněte šrouby na přírubě. Při utahování šroubů dodržujte příslušné předpisy pro utahovací momenty.

Konec postupu.
Je-li průměr antény větší než rozměr provozního připojení (příruby):

Obrázek 3-11: Jak namontovat přístroj, je-li průměr antény větší než rozměr provozního připojení

Potřebné vybavení:

- Klíč s vnějším šestihranem 3 mm (není součástí dodávky)

Výstraha!
Při montáži antény ve stísněném prostoru se ujistěte, že je v něm dostatečné proudění vzduchu. Dbejte na to, aby Vás osoba, která není uvnitř síla, stále slyšela.

Informace!
Je-li anténa větší než provozní připojení přístroje, doporučujeme použít prodloužení antény. Jinak by se mohlo stát, že v místě montáže nebude dostatek prostoru pro utažení pojistného šroubu antény.

- Zkontrolujte, zda je příruba na hrdle ve vodorovné rovině.
- Kapkové antény bez prodloužení: Odšroubujte tři pojistné šrouby pomocí klíče s vnějším šestihranem 3 mm.
- Demontujte anténu z části přístroje nacházející se pod přírubou (pokud nemá prodloužení antény). Pokud má přístroj jeden nebo více kusů prodloužení antény, odšroubujte pojistný šroub z horního kusu prodloužení a demontujte anténu i s prodlouženěmi z části přístroje nacházející se pod přírubou.

Anténa není připevněna k přístroji. Pokud má přístroj kapkovou anténu, musí O-kroužek zůstat v drážce na anténu nebo na prodloužení antény.

- Vystřeďte správně těsnění na těsnici ploše příruby hrdla.
- Přiložte opatrně přírubu hladinoměru k přírubě na síle. Prozatím ji k silu nepřipojujte.
- Proveďte montáž zevní nádrže. Při montáži antény ve stísněném prostoru se ujistěte, že je v něm dostatečné proudění vzduchu.
- Připevněte anténu k části přístroje nacházející se pod přírubou. Je vhodné, aby přítom další osoba přidržovala přístroj nad nádrží.
- Pak pokračujte v montáži zvenku. Nadzvedněte trochu hladinoměru.
- Kapkové antény bez prodloužení: Pomocí klíče s vnějším šestihranem 3 mm příšroubujte k anténě tři pojistné šrouby.
- Kovové truchýřové antény bez prodloužení: Pomocí klíče s vnějším šestihranem 3 mm příšroubujte k anténu pojistný šroub.
Všechny antény s jedním nebo více kusy prodloužení: Pomocí klíče s vnějším šestihranem 3 mm příšroubujte k hornímu prodloužení antény pojistný šroub.

Přiložte opatrně přírubu hladinoměru k přírubě na síle.

Zajistěte správnou orientaci (natočení) přístroje v nádrži. Podrobnosti viz Základní pokyny na straně 26 ("Správná orientace přístroje").

Utáhněte šrouby na přírubě. Při utahování šroubů dodržujte příslušné předpisy pro utahovací momenty.

Konec postupu.

Informace!

Prodloužení antény pro přístroje s přírubami
Pokud je hladinoměr vybaven prodloužením antény, pak tato varianta zvětšuje maximální výšku hrdla. Každý kus prodloužení antény má délku 105 mm / 4,1". Maximální počet kusů prodloužení antény, které je možné připojit k přístroji, je následující:

- Kovová trychtýřová anténa: 10
- Kapková anténa z PP: 5
- Kapková anténa z PTFE: 5

Závitové připojení: postup při montáži

Obrázek 3-12: Závitové připojení: postup při montáži

Doporučené rozměry nátrubku pro závitové připojení
Nátrubek musí být co nejnižší. Pokud je nátrubek zapuštěný, pak použijte tabulku s doporučenými rozměry hrdel (pro přírubové připojení) v této kapitole.

Pokud je hladinoměr vybaven prodloužením antény, pak tato varianta zvětšuje maximální výšku nátrubku. Připočtěte proto délku prodloužení antény přístroje k této hodnotě.

Potřebné vybavení:
- Přístroj
- Těsnění pro připojení G 1½ (není součástí dodávky)
- Těsnicí páska (PTFE) na závity pro připojení 1½ NPT (není součástí dodávky)
- Maticový klíč 50 mm (není součástí dodávky)
Je-li anténa menší než provozní připojení (závitové):

- Zkontrolujte, zda je provozní připojení nádrže ve vodorovné rovině.
- **Připojení podle ISO 228-1 (G):** zkontrolujte, zda použité těsnění vyhovují rozměrům provozního připojení a zamýšlenému použití hladinoměru.
- **Připojení podle ISO 228-1 (G):** vyrovnejte řádně těsnění.
- **Připojení NPT:** omotejte těsnicí pásku kolem závitů provozního připojení v souladu s běžnou inženýrskou praxí.
- Přiložte opatrně hladinoměr k provoznímu připojení na sile.
- Zašroubujte závitové připojení na anténě do provozního připojení nádrže.
- Zajistěte správnou orientaci (natočení) přístroje v nádrži. Podrobnosti viz Základní pokyny na straně 26 ("Správná orientace přístroje").
- Při utahování provozního připojení použijte přiměřený utahovací moment (max. 40 N·m / 29,5 lb·ft).

izzazione: Konec postupu.

Je-li anténa větší než provozní připojení (závitové)

![Obrázek 3-13: Jak namontovat přístroj, je-li anténa větší než provozní připojení](image-url)

Potřebné vybavení:
- Klíč s vnějším šestihranem 3 mm (není součástí dodávky)

Výstraha!
- **Při montáži antény ve stíněném prostoru se ujistěte, že je v něm dostatečné proudění vzduchu.** Dbejte na to, aby Vás osoba, která není uvnitř sila, stále slyšela.

Informace!
- Je-li anténa větší než provozní připojení přístroje, doporučujeme použít prodloužení antény. Jinak by se mohlo stát, že v místě montáže nebude dostatek prostoru pro utažení pojistného šroubu antény.
Zkontrolujte, zda je provozní připojení síla ve vodorovné rovině.

Kapkové antény bez prodloužení: Odšroubujte tři pojistné šrouby pomocí klíče s vnějším šestihranem 3 mm.

Demontujte anténu z části přístroje nacházející se pod přírubou (pokud nemá prodloužení antény). Pokud má přístroj jeden nebo více kusů prodloužení antény, odšroubujte pojistný šroub z horního kusu prodloužení a demontujte anténu i s prodlouženinami z části přístroje nacházející se pod přírubou.

Anténa není připevněna k přístroji. Pokud má přístroj kapkovou anténu, musí O-kroužek zůstat v drážce na anténu nebo na prodloužení antény.

Připojení podle ISO 228-1 (G): zkontrolujte, zda použité těsnící vyhovují rozměrům provozního připojení a zamýšlenému použití hladinoměru.

Připojení podle ISO 228-1 (G): vyrovnejte řádně těsnění.

Připojení NPT: omotejte těsnící pásku kolem závitů provozního připojení v souladu s běžnou inženýrskou praxí.

Prvek je opatrně upevněn k provoznímu připojení na sile. Prozatím provozní připojení k silu nepřipevnějte.

• Připojení podle ISO 228-1 (G): zkontrolujte, zda použitá těsnící vyhovují rozměrům provozního připojení a zamýšlenému použití hladinoměru.

• Připojení podle ISO 228-1 (G): vyrovnejte řádně těsnění.

• Připojení NPT: omotejte těsnící pásku kolem závitů provozního připojení v souladu s běžnou inženýrskou praxí.

• Připevněte pojistný šroub antény k prodloužení. Utáhněte pojistný šroub antény.

• Otočením matice na provozním připojení hladinoměru připevněte hladinoměr k sile.

• Při utahování provozního připojení použijte příměřený utahovací moment (max. 40 N·m / 29,5 lb·ft).

• Zajistěte správnou orientaci (natočení) přístroje v nádrži. Podrobnosti viz Základní pokyny na straně 26 (“Správná orientace přístroje”).

• Připojení podle ISO 228-1 (G): zkontrolujte, zda použité těsnící vyhovují rozměrům provozního připojení a zamýšlenému použití hladinoměru.

• Připojení podle ISO 228-1 (G): vyrovnejte řádně těsnění.

• Připojení NPT: omotejte těsnící pásku kolem závitů provozního připojení v souladu s běžnou inženýrskou praxí.

• Připevněte pojistný šroub antény k prodloužení. Utáhněte pojistný šroub antény.

Informace!

Prodloužení antény pro přístroje se závitovým připojením

Pokud je hladinoměr vybaven prodloužením antény, pak tato varianta zvětšuje maximální výšku hrdla. Každý kus prodloužení antény má délku 105 mm / 4,1”. Maximální počet kusů prodloužení antény, které je možno připojit k přístroji, je následující:

• Kovová trýchťová anténa: 10
• Kapková anténa z PP: 5
• Kapková anténa z PTFE: 5

Koniec postupu.
3.8 Jak připevnit prodloužení antény

Pokud při dodávce není anténa připojena k převodníku signálu nebo pokud jsou prodloužení antény dodána dodatečně, postupujte podle následujících pokynů.

Kovová trychtýřová anténa – prodloužení antény

Obrázek 3-14: Kovová trychtýřová anténa – jak připojit prodloužení antény

Potřebné vybavení:
• Klíč s vnějším šestihranem 3 mm (není součástí dodávky)
• Maticový nebo očkový klíč 36 mm (není součástí dodávky)

Upozornění!

Kovové trychtýřové antény: k hladinoměru s kovovou trychtýřovou anténou lze připojit nejvýše 10 segmentů prodloužení antény. Pokud použijete více než 10 prodloužení antény, přístroj nebudete správně měřit.

Postup 1: jak připevnit prodloužení antény
• Připevněte prodloužení antény ① pod přírubu. Každý segment prodloužení antény utáhněte pomocí maticového klíče 36 mm. Ujistěte se, že do sebe jednotlivé segmenty prodloužení antény ① správně zapadají.
• Utáhněte pojistný šroub ③ na každém segmentu prodloužení pomocí klíče s vnějším šestihranem 3 mm.
• Připevněte anténu ②. Ujistěte se, že je prodloužení s anténou správně spojeno.
• Utáhněte pojistný šroub ③ na každém segmentu prodloužení pomocí klíče s vnějším šestihranem 3 mm.
• K utažení pojistných šroubů ③ použijte klíč s vnějším šestihranem 3 mm.

Pokud bylo prodloužení antény dodáno spolu s přístrojem, není nutno upravovat nastavení hladinoměru. Konec postupu.

Pokud bylo prodloužení antény dodáno dodatečně, je nutno změnit nastavení přístroje. Použijte následující postup.

Postup 2: úprava nastavení přístroje s prodloužením antény
• Stiskněte 2 × [>] a [>], 2 × [▼] a [>] pro přechod na položku menu Přiňlášení.
• Zadejte heslo v hexadecimálním tvaru (standardní heslo: 0058).
• Stiskněte 2 × [▲], 2 × [▼], 2 × [>], 5 × [▼] a [>] pro přechod na položku menu C1.8 Prodlouž. antény.
• Do menu vstoupíte stisknutím tlačítka [>]. Polohu kurzoru změňte stisknutím tlačítka [>]. Tlačítkem [▼] snížte a tlačítkem [▲] zvýšte hodnotu.
Každé prodloužení antény má délku 105 mm. Pokud má přístroj 3 segmenty prodloužení antény, je celková délka prodloužení 315 mm. V tomto případě tedy zadáme hodnotu "315".

- Jestliže jste změnili délku prodloužení antény, musíte rovněž změnit hodnotu mrtvé vzdálenosti. Stiskněte [], 3 × [] a pro přechod na položku menu C1.5 Mrtvá vzdálenost.
- Do menu vstoupíte stisknutím tlačítka []. Polohu kurzoru změníte stisknutím tlačítka []. Tlačítkem [] snížíte a tlačítkem [] zvýšíte hodnotu. Doporučená minimální mrtvá vzdálenost = délka antény + (délka prodloužení antény × počet prodloužení) + 0,3 m / 12".
- Stiskněte 3 × [] pro návrat k obrazovce s dotazem "Uložit nastavení?".
- Stiskněte [] nebo [] pro přechod na volbu Ano a stiskněte [] pro uložení a používání změněných parametrů nastavení.

Konec postupu.

Kapková anténa – prodloužení antény

Obrázek 3-15: Kapková anténa – jak připojit prodloužení antény

Upozornění!

Kapková anténa: k hladinoměru s kapkovou anténou lze připojit nejvýše 5 prodloužení antény. Pokud použijete více než 5 prodloužení antény, přístroj nebude správně měřit. Ujistěte se, že jste do drážky v horní ploše každého prodloužení antény vložili O-kroužek.

Potřebné vybavení (není součástí dodávky):
- Klíč s vnějším šestihranem 3 mm
- Maticový nebo očkový klíč 36 mm

Upozornění!

Pojistné šrouby

Délka pojistných šroubů pro prodloužení antény a pro samotnou kapkovou anténu není stejná. Zkontrolujte, zda při montáži přístroje používáte šrouby se správnou délkou. Podrobnosti viz následující seznam.

Délka pojistných šroubů
- Prodloužení antény: M6 × 10 (počet: 1 pro každý segment prodloužení antény)
- Kapková anténa DN80 (3¨): M6 × 16 (počet: 3)
- Kapková anténa DN100 (4¨): M6 × 20 (počet: 3)
- Kapková anténa DN150 (6¨): M6 × 40 (počet: 3)
Postup 1: jak připevnit prodloužení antény

3. Utáhněte pojistný šroub na každém segmentu prodloužení pomocí klíče s vnějším šestihranem 3 mm.
5. Ujistěte se, že je prodloužení s anténou správně spojeno.

Postup 2: úprava nastavení přístroje s prodloužením antény

- Stiskněte 2 × [>|], 2 × [>|] a [>|] pro přechod na položku menu Přihlášení.
- Zadejte heslo v hexadecimálním tvaru (standardní heslo: 0058)
- Stiskněte 2 × [<|], 2 × [<|], 2 × [>|], 5 × [<|] a [>|] pro přechod na položku menu C 1.8 Prodloužení antény.
- Do menu vstoupíte stisknutím tlačítka [>|]. Polohu kurzoru změňte stisknutím tlačítka [>|].
- Každé prodloužení antény má délku 105 mm. Pokud má přístroj 3 segmenty prodloužení antény, je celková délka prodloužení 315 mm. V tomto příkladě tedy zadáme hodnotu “315”.
- Jestliže jste změnili délku prodloužení antény, musíte rovněž změnit hodnotu mrtvé vzdálenosti. Stiskněte [<|], 3 × [<|], [>|] pro přechod na položku menu C 1.5 Mrtvá vzdálenost.
- Do menu vstoupíte stisknutím tlačítka [>|]. Polohu kurzoru změňte stisknutím tlačítka [>|].
- Tlačítkem [<|] snížte a tlačítkem [<|] zvýšte hodnotu. Doporučená minimální mrtvá vzdálenost = délka antény + (délka prodloužení antény × počet prodloužení) + 0,3 m / 12".
- Stiskněte 3 × [<|] pro návrat k obrazovce s dotazem “Uložit nastavení?”.
- Stiskněte [<|] nebo [<|] pro přechod na volbu Ano a stiskněte [<|] pro uložení a používání změněných parametrů nastavení.
- Konec postupu.
3.9 Jako otočit nebo demontovat modul displeje

Pokud se blízko přístroje nacházejí překážky, které brání pohodlnému odečítání hodnot z displeje, můžete displej otočit, a to v krocích po 90°.

Obrázek 3-16: Jako otočit nebo demontovat modul displeje

Potřebné vybavení:
• Klíč na víčko krytu
• Přípravek na demontáž displeje

Upozornění!
Odpojte napájení.

Postupujte následujícím způsobem:
• Sejměte víčko krytu pomocí klíče na víčka.

• Opatrně vytáhněte modul displeje z krytu a pak odpojte přípravek na demontáž od modulu displeje.
• Otočte modul displeje do požadované polohy.
• Připojte modul displeje zpět k modulu elektroniky. Pokud úchyty cvaknou, je displej k modulu elektroniky správně připojen.
• Zkontrolujte, zda je na víčku krytu těsnění. Nasadte víčko zpět na kryt a dotáhněte ho rukou.

Konec postupu.

Informace!
Klíč na víčka a přípravek na demontáž displeje jsou součástí dodávky přístroje. Pokud potřebujete klíč na víčka nebo přípravek na demontáž displeje dodatečně objednat viz Příslušenství na straně 169.

3.10 Ochranný kryt proti povětrnostním vlivům

3.10.1 Jak k přístroji připevnit ochranný kryt proti povětrnostním vlivům

Celkové rozměry ochranného krytu proti povětrnostním vlivům jsou na straně 141.
1. Umístěte objímku ochranného krytu kolem horní části převodníku.
2. Našroubujte dvě pojistné matice na závity objímky ochranného krytu. Matici utáhněte nástrčkovým klíčem o rozměru 10 mm.
3. Nasuňte ochranný kryt proti povětrnostním vlivům na objímku tak, aby se otvor pro zajištění krytu nacházel ve výřezu v přední části krytu.
4. Zasuňte pružnou závlačku do otvoru v přední části ochranného krytu.
5. Konec postupu.
3.10.2 Jak otevřít ochranný kryt proti povětrnostním vlivům

1. Vytáhněte pružnou závlačku z otvoru v přední části ochranného krytu.
2. Sejměte přístroje ochranný kryt proti povětrnostním vlivům.
4.1 Bezpečnostní pokyny

Nebezpečí!
Veškeré práce na elektrickém připojení mohou být prováděny pouze při vypnutém napájení. Věnujte pozornost údajům o napájecím napětí na štítku přístroje!

Nebezpečí!
Dodržujte národní předpisy pro elektrické instalace!

Nebezpečí!
Pro přístroje určené do prostředí s nebezpečím výbuchu platí doplňkové bezpečnostní pokyny; prostudujte laskavě dokumentaci označenou Ex.

Výstraha!
Bezpodmíněně dodržujte místní předpisy týkající se bezpečnosti a ochrany zdraví. Veškeré práce s elektrickými součástmi měřicích přístrojů mohou provádět pouze pracovníci s patřičnou kvalifikací.

Informace!
Zkontrolujte údaje na štítku přístroje, zda jsou v souladu s vaší objednávkou. Zkontrolujte zejména hodnotu napájecího napětí.

4.2 Základní pokyny

Tato kapitola obsahuje informace o elektrickém připojení přístrojů s výstupem 4...20 mA a komunikaci HART®.

4.3 Elektrické připojení: 2vodičové, napájení po smyčce

Svorky pro elektrické připojení

Informace!
Napájení přístroje se připojuje k svorkám výstupu. Svorky výstupu se rovněž používají pro komunikaci HART®.
Upozornění!
• Použijte vhodné elektrické kably s kabelovými vývodkami.
• Zajistěte, aby proud nepřekročil hodnotu 5 A nebo aby byl napájecí obvod jištěn pojistkou s jmenovitou hodnotou 5 A.

Potřebné vybavení:
• Klíč s vnějším šestihranem 3 mm (není součástí dodávky)
• Klíč na víčko krytu

Postup
1. Klíčem s vnějším šestihranem 3 mm povolte pojistný šroub.
2. Sejměte pojistku víčka.
3. Pomocí klíče na víčko otočte víčkem proti směru hodinových ručiček.
4. Sejměte víčko.

Obrázek 4-2: Jak otevřít komoru svorkovnice
Potřebné vybavení:
• Malý šroubovák na šrouby s křížovou hlavou (není součástí dodávky)

Postup
1 Povolte kabelovou vývodku. Protáhněte elektrické vodiče otvorem v kabelové vývodce.
2 Pomocí malého křížového šroubováku povolte šroubky svorek. Připojte vodiče ke svorkám.
3 Pomocí malého křížového šroubováku utáhněte šroubky svorek.
4 Utáhněte kabelovou vývodku.
Elektrické připojení

Potřebné vybavení:
- Klíč s vnějším šestihranem 3 mm (není součástí dodávky)

1. Přiložte víčko na kryt převodníku
2. Otáčejte víkem ve směru hodinových ručiček, dokud není zcela zašroubováno.
3. Přiložte pojistku víčka a pojistný šroub.
4. Utáhněte pojistný šroub klíčem s vnějším šestihranem 3 mm.
4.4 Elektrické připojení proudového výstupu

4.4.1 Přístroje do normálního prostředí (bez Ex)

Obrázek 4-5: Elektrické připojení pro přístroje do normálního prostředí (bez Ex)

1. Napájecí napětí
2. Rezistor pro komunikaci HART® (obykle 250 Ω)
3. Volitelné připojení k zemnicí svorce
4. Výstup: 12...30 Vss pro výstup 21,5 mA na svorkách
5. Přístroj

4.4.2 Přístroje do prostředí s nebezpečím výbuchu

Nebezpečí!

Elektrické parametry pro provoz přístrojů v prostorech s nebezpečím výbuchu viz příslušné certifikáty a doplňkové návody (ATEX, IECEx atd.). Tuto dokumentaci najdete na DVD-ROM přiloženém k přístroji nebo ji lze zdarma zkopírovat z našich internetových stránek (Download Center).

4.5 Ochrana krytím

Informace!

Stupeň ochrany krytí pro kryt přístroje odpovídá parametrům pro IP66 / IP68 (0,1 barg / 1,45 psig) podle mezinárodní normy IEC 60529.

Nebezpečí!

Ujistěte se, že je kabelová vývodka vodotěsná.

Obrázek 4-6: Jak zajistit, aby elektrická instalace byla v souladu se stupněm ochrany krytí IP68

- Ujistěte se, že těsnění nejsou poškozená.
- Ujistěte se, že elektrické kabely nejsou poškozené.
Elektrické připojení

- Ujistěte se, že použité elektrické kabely jsou v souladu s příslušnými národními normami pro elektrické instalace.
- Kabely by měly před přístrojem tvořit smyčku ①, aby voda nemohla stékat do vývodek.
- Utáhněte řádně kabelové vývodky ②.
- Nepoužíte otvory se závity utěsněte vhodnými záslepkami ③.

Průměr vnějšího pláště elektrického kabelu (pro napájení a proudový výstup) musí být 6…10 mm nebo 0,24…0,39".

4.6 Sítě

4.6.1 Základní informace

Přístroj využívá komunikační protokol HART®. Tento protokol je v souladu se standardem HART® Communication Foundation. Přístroj může být připojen v režimu point-to-point. Může mít rovněž přiřazenou adresu od 1 do 63 v síti multi-drop.

Výstup hladinoměru je při dodávce nastaven na komunikaci v režimu point-to-point. Změna režimu komunikace z point-to-point na multi-drop viz Konfigurace pro sítě HART® na straně 103.

4.6.2 Zapojení point-to-point

Obrázek 4-7: Připojení pro režim point-to-point (normální prostředí, bez Ex)

① Adresa zařízení (0 pro režim point-to-point)
② 4...20 mA + HART®
③ Rezistor pro komunikaci HART® (obvykle 250 Ω)
④ Napájecí napětí
⑤ Převodník HART®
⑥ Komunikační software HART®
4.6.3 Sítě multi-drop

Obrázek 4-8: Síť multi-drop (normální prostředí, bez Ex)

1. Adresa zařízení (každé zařízení musí mít v síti multi-drop jedinečnou adresu)
2. 4 mA + HART®
3. Rezistor pro komunikaci HART® (obvykle 250 Ω)
4. Napájecí napětí
5. Převodník HART®
6. Komunikační software HART®
5.1 Kontrola před uvedením do provozu

Před připojením přístroje k sítě zkontrolujte následující body:

- Mají všechny součásti přicházející do styku s měřeným médím (těsnění, příruba, anténa) dostatečnou korozní odolnost vůči médiu v sile?
- Odpovídají informace na štítku převodníku provozním údajům?
- Je hladinoměr správně namontován na sile?
- Je elektrické připojení hladinoměru v souladu s příslušnými národními normami pro elektrické instalace? Použijte vhodné elektrické kabely s kabelovými vývodkami.

Nebezpečí!
Před připojením přístroje k sítě se ujistěte, že napájecí napětí a jeho polarita jsou správné.

Nebezpečí!
Pokud je přístroj schválen do prostředí s nebezpečím výbuchu, ujistěte se, že přístroj a jeho instalace odpovídají požadavkům v příslušném certifikátu typu.

5.2 Jak spustit hladinoměr

- Připojte převodník k napájení.
- Zapněte napájení.
- **Pouze přístroje s modulem displeje:** po 10 sekundách se na displeji zobrazí "Optiwave 6400" a logo výrobce. Po 40 sekundách se na displeji zobrazí předvolená obrazovka. Přístroj bude zobrazovat měřené hodnoty. Měřené hodnoty odpovídají specifikaci uvedené v objednávce.

Upozornění!
Pokud výrobci v objednávce zadaly údaje o aplikaci, bude přístroj měřit správně. Pokud ne, přejděte do submenu **A4 Aplikační asistent** v Režimu nastavení a zvolte správné hodnoty parametrů.

5.3 Koncepce ovládání přístroje

Odečet měřených hodnot a programování přístroje lze provádět pomocí:

- Digitálního displeje s tlačítky (dodáváno na přání)
- Připojení k systému nebo PC s programem PACTware™. Soubor DTM (Device Type Manager) lze zkopírovat z našich internetových stránek. Rovněž je umístěn na DVD-ROM dodávaném s přístrojem.
- Připojení k systému nebo PC s AMS™. Soubor DD (Device Description) lze zkopírovat z našich internetových stránek. Rovněž je umístěn na DVD-ROM dodávaném s přístrojem.
- Připojení ke komunikátoru HART® Field Communicator. Soubor DD (Device Description) lze zkopírovat z našich internetových stránek. Rovněž je umístěn na DVD-ROM dodávaném s přístrojem.
5.4 Obrazovka digitálního displeje

Po sejmutí víčka krytu můžete používat tlačítka na displeji. Pokud nelze víčko sejmout, můžete přístroj ovládat pomocí magnetického pera. Podrobnosti viz Ovládací tlačítka na straně 53.

5.4.1 Rozmístění údajů na obrazovce displeje

Zobrazení na displeji v Provozním režimu

![Obrázek 5-1: Rozmístění údajů (měřených hodnot) na obrazovce displeje v Provozním režimu](image)

Obrazek 5-1: Rozmístění údajů (měřených hodnot) na obrazovce displeje v Provozním režimu

1. Procentuální vyjádření hodnoty na proudovém výstupu (bargraph)
2. Stav přístroje (symboly podle NAMUR NE 107)
3. Označení přístroje a jednotky
4. Změny a jednotky
5. Měřená hodnota a jednotky
6. Tlačítka na klávesnici s Hallovými senzory (senzory reagujícími na velké změny intenzity magnetického pole)

Grafické vyjádření hodnoty na výstupu (bargraph) se zobrazuje jen v případě, že je nastaveno "1 hodn. a graf.zobr." nebo "2 hodn. a graf.zobr." v položkách menu C6.4.1 Funkce (1.str.měř.hodn.) nebo C6.5.1 Funkce (2.str.měř.hodn.). Pokud je v položce menu C6.4.2 "1.měř. proměnná" (1.str.měř.hodn.) zadáno "Výška hladiny", pak přístroj zobrazuje v Provozním režimu procentuální vyjádření hodnoty výšky hladiny na proudovém výstupu (viz položka 1 na obrázku).
Zobrazení na displeji v Režimu nastavení

Obrázek 5-2: Rozmístění údajů na obrazovce displeje v Režimu nastavení

1. Číslo menu nebo číslo položky menu
2. Umístění submenu nebo položky menu (menu, ve kterém se nachází)
3. Název položky menu

5.4.2 Ovládací tlačítka

Funkce tlačítek

<table>
<thead>
<tr>
<th>Ovládací tlačítko</th>
<th>Symbol</th>
<th>Funkce</th>
</tr>
</thead>
</table>
| ![Šipka vpravo](arrow_right.png) | | Provozní režim: vstup do Režimu nastavení
Režim nastavení:
Menu: vstup do submenu nebo položky menu
| ![Enter](enter.png) | | Provozní režim: žádná
Režim nastavení:
Menu: opuštění menu. Pokud se nacházíte na nejvyšší úrovní menu, přístroj se vrátí do Provozního režimu.
Položka menu: potvrzení změn a opuštění položky menu. |
| ![Escape](escape.png) + ![Šipka dolů](down_arrow.png) | | Provozní režim: žádná
Režim nastavení:
Menu: opuštění menu.
Položka menu: opuštění položky menu. Tento krok také zruší všechny změny předtím provedené v nastavení této položky. |
| ![Šipka dolů](down_arrow.png) | | Provozní režim: změna (přepnutí) obrazovky (stránky měřených hodnot 1 a 2 a stránka stavových hlášení)
Režim nastavení: snížení hodnoty nebo změna parametru |
| ![Šipka nahoru](up_arrow.png) | | Provozní režim: změna (přepnutí) obrazovky (stránky měřených hodnot 1 a 2 a stránka stavových hlášení)
Režim nastavení: zvýšení hodnoty nebo změna parametru |

Další podrobnosti o funkci tlačítek na klávesnici viz Funkce tlačítek na straně 65.
Jak aktivovat tlačítko rukou

1. Sejměte víčko krytu pomocí klíče dodaného spolu s přístrojem.
2. Stiskněte potřebná tlačítka na klávesnici.

Takto můžete ovládat přístroj.

Obrázek 5-3: Jak aktivovat tlačítko rukou

Potřebné vybavení

- Klíč na víčko krytu
Jak aktivovat tlačítko magnetickým perem

Obrázek 5-4: Jak aktivovat tlačítko magnetickým perem

Informace!
Při tomto postupu není nutno sejmout vičko na displeji.

- Přidržte magnetické pero u tlačítka na klávesnici.
- Tlačítko je aktivováno magnetickým perem. Pokud potřebujete stisknout stejné tlačítko několikrát, zvedněte magnet a pak ho znovu přiložte k tlačítku.

5.5 Dálková komunikace s programem PACTware™

Instalujte následující programy a příslušenství:
- Microsoft® .NET Framework verze 2.0 nebo novější.
- PACTware.
- Převodník HART® (USB, RS232...).
- DTM (Device Type Manager) pro přístroj.

Software a pokyny k instalaci jsou umístěny na DVD-ROM dodávaném s přístrojem.

Rovněž si můžete nejnovější verzi PACTware™ a DTM zkopírovat z našich webových stránek.

5.6 Dálková komunikace s AMS™ Device Manager

AMS™ Device Manager je průmyslový softwarový nástroj pro Plant Asset Management (PAM). Jeho úkolem je:

- Ukládání informací o konfiguraci všech zařízení.
- Načítání a ukládání provozních údajů.
- Načítání a ukládání diagnostických informací.
- Plánování preventivní údržby, a tedy minimalizace prostořů.

Soubor DD je umístěn na DVD-ROM dodávaném s přístrojem. Soubor je rovněž možno zkopírovat z našich internetových stránek.
6.1 Uživatelské režimy

Provozní režim
V tomto režimu se zobrazují měřené hodnoty a stavová (chybová) hlášení. Podrobnosti o měřených hodnotách viz Provozní režim na straně 57. Podrobnosti o stavových (chybových) hlášeních viz Stavová (chybová) hlášení a diagnostické informace na straně 112.

Režim nastavení
Tento režim se používá pro prohlížení a změnu parametrů, uvedení přístroje do provozu, vytvoření tabulek pro měření objemu nebo hmotnosti a pro změnu důležitých hodnot při měření za obtížných provozních podmínek. Nastavení přístroje v Režimu nastavení lze změnit jen v případě, že přístroj používáte na příslušné přístupové úrovni (uživatel, obsluha nebo odborník). Podrobnosti o jednotlivých položkách menu viz Popis funkcí na straně 75.

Všechni uživatelé mohou v Režimu nastavení prohlížet parametry, ale pouze uživatelé na úrovni "Obsluha" nebo "Odborník" mají přístup k provádění změn v nastavení přístroje. Další podrobnosti o úrovních přístupu viz Ochrana konfigurace přístroje (přístupové úrovni) na straně 62.

6.2 Provozní režim

V tomto režimu se zobrazují měřené hodnoty. Pomocí tlačítek na modulu displeje můžete změnit typ měřených hodnot zobrazených na obrazovce a prohlížet stavová hlášení.

Zobrazení měřených hodnot na displeji má 5 variant. Viz následující obrázek:

Varianty zobrazení měřených hodnot

Obrázek 6-1: Varianty zobrazení měřených hodnot v Provozním režimu

- 1. Jedna hodnota
- 2. Jedna hodnota a grafické zobrazení v % z rozsahu měřené proměnné
- 3. Dvě hodnoty
- 4. Dvě hodnoty a grafické zobrazení v % z rozsahu měřené proměnné
- 5. Tři hodnoty
Informace!

Proudový výstup a nastavení displeje

Pokud postupujete podle procedury Stand. nastavení, pak měřená hodnota na první stránce displeje (v Provozním režimu) automaticky převezme parametry a hodnoty z nastavení proudu proudu (měřenou proměnnou, rozsah 0% a 100%). Na první stránce měřených hodnot se standardně zobrazí "jedna hodnota a grafické zobrazení". Pokud si přejete zobrazovat jednu nebo více měřených proměnných, které se liší od měřené proměnné na proudovém
výstupu, změňte nastavení menu C6.4 1.str.měř.hodn. a C6.5 2.str.měř.hodn.. Podrobnosti viz Popis funkci na straně 75 – tabulka menu C. Úplné nastavení (C Display).

Měřené hodnoty mohou být různého typu (výška hladiny, vzdálenost, objem, volný objem, hmotnost, atd.). Některé typy měření jsou v Provozním režimu k dispozici pouze v případě, že jste zadali správné parametry v Režimu nastavení. Pokud je stránka měřených hodnot nastavena tak, aby se na ní zobrazovalo více měřených hodnot, jsou jednotlivé typy měření v Provozním režimu označeny zkratkami. Seznam zkratek používaných v Provozním režimu je uveden v následující tabulce:

<table>
<thead>
<tr>
<th>Zkratka typu měření používané v Provozním režimu</th>
<th>Zkratka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzdálenost</td>
<td>Dis</td>
</tr>
<tr>
<td>Výška hladiny</td>
<td>Lvl</td>
</tr>
<tr>
<td>Odrazivost</td>
<td>Ref</td>
</tr>
<tr>
<td>Hodnota ze snímače</td>
<td>SV</td>
</tr>
<tr>
<td>Objem</td>
<td>Vol</td>
</tr>
<tr>
<td>Volný objem</td>
<td>Ull</td>
</tr>
<tr>
<td>Hmotnost</td>
<td>M</td>
</tr>
<tr>
<td>Volná hmotnost</td>
<td>UllM</td>
</tr>
<tr>
<td>Linearizovaná vzdálenost</td>
<td>Ldis nebo Distance Lin.</td>
</tr>
<tr>
<td>Linearizovaná výška hladiny</td>
<td>LLvl nebo Level Lin.</td>
</tr>
</tbody>
</table>

Chyby formátu měřených hodnot

Obrázek 6-2: Symbol chyby: počet platných číslic a desetinných míst nepostačuje pro zobrazení měřených hodnot

Symbol chyby: počet platných číslic a desetinných míst nepostačuje pro zobrazení měřených hodnot. Pravděpodobně je nutno změnit nastavení z "mm" na "m".

V tomto příkladě přístroj měří vzdálenost 10,001 m, ale v C7.5.1 Jednotka délky je zadáno "mm" a v C6.4.5 Formát 1.prom. je zadáno "X.XXX" (čtyři číslice se třemi desetinnými místy). Toto nastavení není postačující pro zobrazení hodnoty 10,001 m. Pokud je měřená hodnota větší nebo rovna 10 m, nastavte C6.4.5 Formát 1.prom. na "Automatický".

Můžete také změnit počet číslic a desetinných míst pro zobrazení měřených hodnot v Provozním režimu.
Informace!

Jak změnit počet číslic a desetinných míst pro zobrazení měřených hodnot v Provozním režimu

1. stránka měřených hodnot: přejděte do menu C6.4 1.str.měř.hodn. a pak změňte počet číslic a desetinných míst v C6.4.5 Formát 1.prom., C6.4.7 Formát 2.prom. nebo C6.4.9 Formát 3.prom..

2. stránka měřených hodnot: přejděte do menu C6.5 2.str.měř.hodn. a pak změňte počet číslic a desetinných míst v C6.5.5 Formát 1.prom., C6.5.7 Formát 2.prom. nebo C6.5.9 Formát 3.prom..

Pokud jsou velké rozdíly mezi jednotlivými měřenými hodnotami, nastavte příslušnou položku menu na "Automatický".

Měření objemu nebo hmotnosti

Pro zobrazení hodnot objemu nebo hmotnosti musíte nejprve vytvořit přepočetní (převodní) tabulku. Přejděte do menu C3.2 Zadání tabulky (Úplné nastavení > Přepočet) a vytvořte převodní tabulku. Podrobnosti viz Jak nastavit přístroj pro měření objemu nebo hmotnosti na straně 108.

Funkce tlačítek na klávesnici (Provozní režim)

<table>
<thead>
<tr>
<th>Ovládací tlačítko</th>
<th>Symbol</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Šipka vpravo]</td>
<td>[>]</td>
<td>Vstup do Režimu nastavení</td>
</tr>
<tr>
<td>[Enter]</td>
<td>[-]</td>
<td>—</td>
</tr>
<tr>
<td>[Escape]</td>
<td>[>] + [↑]</td>
<td>—</td>
</tr>
<tr>
<td>[Šipka dolů]</td>
<td>[↓]</td>
<td>Změna (přepnutí) obrazovky (stránky měřených hodnot 1 a 2 a stránka stavových hlášení)</td>
</tr>
<tr>
<td>[Šipka nahoru]</td>
<td>[↑]</td>
<td>Změna (přepnutí) obrazovky (stránky měřených hodnot 1 a 2 a stránka stavových hlášení)</td>
</tr>
</tbody>
</table>

Definice typů měření

<table>
<thead>
<tr>
<th>Typ měření</th>
<th>Popis</th>
<th>Povolené jednotky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výška hladiny</td>
<td>Varianta pro displej a funkci výstupu. Jedná se o vzdálenost od dna nádrže k povrchu měřené kapaliny nebo sypké látky (Výška nádrže - Vzdálenost). Pokud není v položce menu C1.11 Odchylka dna nádrže v Režimu nastavení zadána nula, pak se tato hodnota bude rovnat (Výška nádrže + Odchylka dna nádrže) - Hodnota ze snímače.</td>
<td>m, cm, mm, in (palce), ft (stopy), uživatelská jednotka délky</td>
</tr>
<tr>
<td>Vzdálenost</td>
<td>Varianta pro displej a funkci výstupu. Jedná se o vzdálenost od těsnicí plochy provozního připojení (příruby nebo dorazu závitu) k povrchu měřené kapaliny. Pokud není v položce menu C1.10 Referenční odchylka v Režimu nastavení zadána nula, pak se tato hodnota bude rovnat součtu Hodnota ze snímače + Referenční odchylka. Pokud je v položce menu C1.10 Referenční odchylka zadána nula (0), pak Vzdálenost = Hodnota ze snímače. Viz také "Hodnota ze snímače" niže v této tabulce.</td>
<td>m, cm, mm, in (palce), ft (stopy), uživatelská jednotka délky</td>
</tr>
</tbody>
</table>
Objem

Varianta pro displej a funkci výstupu. Udává objem nebo hmotnost obsahu nádrže. Tyto hodnoty jsou k dispozici, pokud jste připravili přepočetní tabulku objemu v Režimu nastavení (Úplné nastavení > Přepočet). Návod, jak připravit přepočetní tabulku, viz Jak nastavit přístroj pro měření objemu nebo hmotnosti na straně 108.

Volný objem

Varianta pro displej a funkci výstupu. Udává objem volného obsahu nádrže. Tyto hodnoty jsou k dispozici, pokud jste připravili přepočetní tabulku objemu v Režimu nastavení (Úplné nastavení > Přepočet). Návod, jak připravit přepočetní tabulku, viz Jak nastavit přístroj pro měření objemu nebo hmotnosti na straně 108.

Hmotnost

Varianta pro displej a funkci výstupu. Udává hmotnost obsahu nádrže. Tyto hodnoty jsou k dispozici, pokud jste připravili přepočetní tabulku hmotnosti v Režimu nastavení (Úplné nastavení > Přepočet). Návod, jak připravit přepočetní tabulku, viz Jak nastavit přístroj pro měření objemu nebo hmotnosti na straně 108.

Volná hmotnost

Varianta pro displej a funkci výstupu. Udává hmotnost volného obsahu nádrže. Tyto hodnoty jsou k dispozici, pokud jste připravili přepočetní tabulku hmotnosti v Režimu nastavení (Úplné nastavení > Přepočet). Návod, jak připravit přepočetní tabulku, viz Jak nastavit přístroj pro měření objemu nebo hmotnosti na straně 108.

Odrazivost

Varianta pro displej a funkci výstupu. Jedná se o procentuální vyjádření vyslaného radarového signálu, který se odrazil od povrchu měřené kapaliny a je přijat přístrojem zpět.

Hodnota ze snímače

Varianta pro displej a funkci výstupu. Jedná se o vzdálenost od tečnicí plochy provozního připojení (příruby nebo dorazu závitu) k povrchu měřené kapaliny. Tuto hodnotu nemůžete změnit v Režimu nastavení. Víz také "Vzdálenost" výše v této tabulce.
6.3 Režim nastavení

6.3.1 Základní pokyny

Nastavení přístroje můžete změnit v Režimu nastavení. Popis menu je uveden na straně 75. Můžete:

- Použít menu **A Rychlé nastavení** pro změnu jazyka zobrazených textů, změnu označení přístroje (tag), zadání přihlašovacích údajů, provedení standardního nastavení nebo záznamu prázdného spektra.
- Použít menu **B Test** pro spuštění diagnostických testů, prohlížení měřených hodnot a záznamů spektra.
- Použít menu **C Úplné nastavení** pro změnu nastavení přístroje. Můžete zadat přepočetní tabulku pro měření objemu nebo hmotnosti, změnit hodnoty proudového výstupu, změnit nastavení komunikace HART®, změnit způsob zobrazení měřených hodnot v Provozním režimu, prohlížet identifikační údaje přístroje, změnit důležité parametry pro obtížné provozní podmínky, změnit heslo, změnit jednotky pro měřené hodnoty nebo vrátit nastavení přístroje na standardní hodnoty z výroby.

Upozornění!
Pokud jste výrobci nezadalí před expedicí instalací parametry přístroje, musíte nejprve přístroj nastavit v proceduře Rychlé nastavení.

Informace!
Nelze vstupovat do menu **D Servis**. Toto menu je určeno pouze pro kalibraci ve výrobě a pro vyškolené servisní pracovníky.
6.3.2 Ochrana konfigurace přístroje (přístupové úrovně)

Přístupové úrovne a dostupné funkce v Režimu nastavení

<table>
<thead>
<tr>
<th>Přístupová úroveň</th>
<th>Standardní heslo</th>
<th>Dostupné funkce v Režimu nastavení (přehled)</th>
</tr>
</thead>
</table>
| Odborník | 0058 | • Prohlížení: měřené hodnoty a chybové hlášení dostupné pro přístupovou úroveň "Uživatel" (Provozní režim a položky menu B2 Okamž.hodnoty a C7.3.1 Náhled zprávy)
• Změna: všechna submenu v menu A Rychlé nastavení, B Test a C Úplné nastavení
POZNÁMKA: můžete změnit heslo pro přístupovou úroveň "Odborník" v položce menu C7.2.2 Změna hesla. Viz následující poznámka INFORMACE! |
| Obsluha | 0009 | • Prohlížení: měřené hodnoty a chybové hlášení dostupné pro přístupovou úroveň "Uživatel" (Provozní režim a položky menu B2 Okamž.hodnoty a C7.3.1 Náhled zprávy)
• Změna: veškeré nastavení komunikace HART® (C5) – avšak ne C5.1.1 Režim proud.smyčky
POZNÁMKA: můžete změnit heslo pro přístupovou úroveň "Obsluha" v položce menu C7.2.2 Změna hesla. Viz následující poznámka INFORMACE! |
| Uživatel | — | • Prohlížení: měřené hodnoty a chybové hlášení (Provozní režim a položky menu B2 Okamž.hodnoty a C7.3.1 Náhled zprávy)
• Prohlížení: veškeré parametry v menu A Rychlé nastavení, B Test a C Úplné nastavení
• Změna: veškeré nastavení v menu C6 Displej (jazyk, vypnutí/zapnutí podsvícení, kontrast obrazovky a způsob zobrazení měřených hodnot (Provozní režim, stránky 1 a 2)) a C7.5 Jednotky (délka, objem, hmotnost a uživatelské jednotky)
• Změna: přístupová úroveň. Přejděte do menu A3 Přihlášení nebo C7.2.1 Přihlášení a změňte přístupovou úroveň z "Uživatel" na "Obsluha" nebo "Odborník" |

Pokud je vaše přístupová úroveň příliš nízká, v Režimu nastavení se na displeji vedle položek menu zobrazí symbol "zámku". Pokud potřebujete změnit příslušné nastavení, přesuňte kurzor na položku menu, stiskněte [>] a zadejte heslo, které se aktuálně používá pro přístup k této položce menu.

Obrázek 6-3: Symbol zámku

1 Symbol zámku. Pokud je na displeji zobrazen tento symbol, nemůžete změnit nastavení.
Jak změnit heslo

• Stiskněte [>] pro vstup do Režimu nastavení.
• Stiskněte 2 × [▼], [>], 5 × [▼], [>] a [>] přejděte na položku menu C7.2 Ochrana.
• Stiskněte [>] a vstupte do položky C7.2.1 Přihlášení.
• Zadejte heslo aktuálně používané pro danou přístupovou úroveň ("Obsluha" nebo "Odborník"). Pokud se jedná o předdefinované (standardní) heslo, viz hodnoty uvedené v tabulce "Přístupové úrovne a dostupné funkce v Režimu nastavení" v této kapitole.
• Stiskněte [▼] a [▼] a přejděte na položku menu C7.2.2 Změna hesla.
• Stiskněte [>] pro vstup do této položky menu.
• Zadejte heslo aktuálně používané pro přístupovou úroveň nastavenou na začátku této procedury. Pokud se jedná o předdefinované (standardní) heslo, viz hodnoty uvedené v tabulce "Přístupové úrovne a dostupné funkce v Režimu nastavení" v této kapitole.
• Stiskněte [▼] a vstupte do položky C7.2.3 Přihlášení.
• Zadejte heslo aktuálně používané pro přístupovou úroveň "Obsluha", pak první číslice musí být nuly (000x). Na posledním místě může být číslice (1...9) nebo písmeno (A...F). Pokud měníte heslo pro přístupovou úroveň "Odborník", pak první dvě číslice musejí být nuly (00xx). Na posledních dvou místech může být číslice (1...9) nebo písmeno (A...F).

• Zadejte nové heslo znovu.
• Stiskněte 6 × [▼] pro návrat do Provozního režimu.

Informace!
Každá přístupová úroveň má čtyřmístné heslo v hexadecimálním tvaru.

První tři číslice pro přístupovou úroveň "Obsluha" musejí být nuly (000x). Na posledním místě může být číslice (1...9) nebo písmeno (A...F).

První dvě číslice pro přístupovou úroveň "Odborník" musejí být nuly (00xx). Na posledních dvou místech může být číslice (1...9) nebo písmeno (A...F).

Informace!
Poznamenejte si nové heslo a uložte jej na bezpečné místo. Ztratí-li heslo, kontaktujte prosím dodavatele přístroje.

Informace!
Pokud přístroj vypnete a znovu zapnete, přístupová úroveň se vrátí zpět na "Uživatel". Pokud se nedotknete klávesnice po dobu 5 minut, přístroj se vrátí do Provozního režimu a přístupová úroveň se vrátí zpět na "Uživatel".
6.3.3 Jak vstoupit do menu Rychlé nastavení

Menu Rychlé nastavení obsahuje položky menu, které jsou potřebné pro nastavení nejdůležitějších parametrů přístroje. Menu je rozděleno do 2 skupin: "Stand.nastavení" a "Prázd.spektrum". Skupina "Stand.nastavení" umožňuje uživateli (s přístupovou úrovní "Odborník") nastavit výšku nádrže, typ nádrže (provozní, skladovací, atd.), proměnnou pro proudový výstup, rozsah 0% a rozsah 100%, chybovou funkci a prodlevu chyby. "Prázd.spektrum" je procedura, při které jsou nalezeny v nádrži rušivé signály a nastaven filtr, který tyto signály odstraní ze souboru měřených hodnot.

Upozornění!
Pokud jste výrobci nezadalí před expedicí přístroje instalacní parametry přístroje, musíte nejprve přístroj nastavit v proceduře Rychlé nastavení.

Postupujte následujícím způsobem:

- Stiskněte [>] pro vstup do Režimu nastavení.
- Stiskněte [>] 2 × [▼] pro přechod na položku menu A3 Přihlášení.
- Stiskněte [▼]. Zadejte heslo aktuálně používané pro přístupovou úroveň "Odborník". Pokud zadáváte předdefinované (standardní) heslo, zadejte "0058".
- Stiskněte [◄], [▼] a [>] pro přechod na položku menu A4.1 Stand.nastavení.
- Stiskněte [▼]. Provedte základní nastavení konfigurace přístroje v menu "Stand.nastavení". Další podrobnosti o tomto postupu viz Standardní nastavení na straně 97. Stiskněte [◄] na konci každého kroku této procedury, přejdete tak k dalšímu kroku.
- Stiskněte [▼] a [>] pro přechod na položku menu A4.2.1 Záznam spektra.
- Stiskněte [▼] pro spuštění procedury záznamu prázdného spektra. Podrobnosti viz Záznam prázdného spektra na straně 100. Stiskněte [◄] na konci každého kroku této procedury, přejdete tak k dalšímu kroku.
- Konec postupu.
6.3.4 Funkce tlačítek

Navigace v menu

Obrázek 6-4: Navigace v menu

1. Číslo menu nebo číslo položky menu
2. Umístění submenu nebo položky menu (menu, ve kterém se nachází)
3. Název položky menu

Obdobnou obrazovku uvidíte, pokud se nacházíte v Režimu nastavení. Funkce tlačítek jsou uvedeny v následující tabulce:

Funkce tlačítek pro navigaci v menu

<table>
<thead>
<tr>
<th>Tlačítko</th>
<th>Popis</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>✋ ✋</td>
<td>Šipka vpravo</td>
<td>• Přechod na nižší úroveň menu (např. z menu C1 na submenu C1.1).
• Vstup do položky menu.</td>
</tr>
<tr>
<td>✋ ⏎</td>
<td>Enter</td>
<td>• Přechod na vyšší úroveň menu (např. ze submenu C1.1 na menu C1).
• Přechod do Provozního režimu (měření). Pokud jste provedli změny parametrů v Režimu nastavení, musíte nové hodnoty uložit nebo zrušit. Podrobnosti viz Jak uložit změny nastavení provedené v Režimu nastavení na straně 68.</td>
</tr>
<tr>
<td>✋ ✋</td>
<td>Esc (Escape)</td>
<td>• Přechod na vyšší úroveň menu (např. ze submenu C1.1 na menu C1).</td>
</tr>
<tr>
<td>✋ ✋</td>
<td>Šipka dolů</td>
<td>• Posun dolů v seznamu položek menu (například z menu C1 na menu C2).
• Posun dolů v seznamu položek submenu (například ze submenu C2.1 na submenu C2.2).</td>
</tr>
<tr>
<td>✋ ✋</td>
<td>Šipka nahoru</td>
<td>• Posun nahoru v seznamu položek menu (například z menu C2 na menu C1).
• Posun nahoru v seznamu položek submenu (například ze submenu C2.2 na submenu C2.1).</td>
</tr>
</tbody>
</table>
Seznam parametrů v položce menu

![Diagram s parametry položky menu]

Obrázek 6-5: Seznam parametrů v položce menu

1. Položka menu s aktuálně uloženými parametry (první obrazovka). Stiskněte [>] pro vstup do této položky menu.
2. Stiskněte [▲] nebo [▼] pro změnu parametru
3. Stiskněte [●] pro potvrzení nového parametru a návrat na úroveň menu.
4. Parametr
5. Název položky menu
6. Standardní hodnota z výroby (vlevo) a symbol pro standardní hodnotu z výroby (vpravo)
7. Symbol "zaškrtnutí" signalizuje, že došlo je změně nastavení (nová hodnota momentálně ještě není uložena)

Obdobnou obrazovku uvidíte, pokud zvolíte položku menu, která obsahuje seznam parametrů. Funkce tlačítek jsou uvedeny v následující tabulce:

Funkce tlačítek v položkách menu, které mají seznam parametrů

<table>
<thead>
<tr>
<th>Tlačítko</th>
<th>Popis</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲►</td>
<td>Šipka vpravo</td>
<td>—</td>
</tr>
<tr>
<td>▼◄</td>
<td>Enter</td>
<td>Volba parametru a návrat do menu</td>
</tr>
<tr>
<td>▼►</td>
<td>Esc (Escape)</td>
<td>Pokud stiskněte tato tlačítko ihned po změně parametru, přístroj tuto změnu rovněž ignoruje a vrátí se do menu.</td>
</tr>
<tr>
<td>▼▼</td>
<td>Šipka dolů</td>
<td>Posun dolů v seznamu</td>
</tr>
<tr>
<td>▲▼</td>
<td>Šipka nahoru</td>
<td>Posun nahoru v seznamu</td>
</tr>
</tbody>
</table>
Hodnoty v položkách menu

Obrazek 6-6: Hodnoty v položkách menu

3. Stiskněte [×] pro potvrzení nového parametru a návrat na úroveň menu.
4. Zvolte umístění kurzoru na číslici nebo na desetinné tečce.
5. Název položky menu
6. Standardní hodnota z výroby (vlevo) a symbol pro standardní hodnotu z výroby (vpravo)
7. Minimální a maximální hodnoty (min./max.) pro tuto položku menu (vlevo) a symbol pro min./max. hodnotu (vpravo)
8. Symbol "zaškrtnutí" signalizuje, že došlo je změnění nastavení (nová hodnota momentánně ještě není uložena)

Obdobnou obrazovku uvidíte, pokud zvolíte položku menu, která obsahuje hodnotu.

Informace!
Pokud mají položky menu hodnoty, které můžete změnit, můžete velmi malé nebo velmi velké hodnoty psát jako čísla v exponenciálním tvaru (b^n). Pokud je například na displeji zobrazena hodnota 100,00+03, rovná se tato hodnota 100 × 10^3, což je 100000.

Funkce tlačítek jsou uvedeny v následující tabulce:

<table>
<thead>
<tr>
<th>Tlačítko</th>
<th>Popis</th>
<th>Funkce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Šipka vpravo</td>
<td>• Vstup do položky menu a prohlížení aktuální nastavené hodnoty. • Otevření položky menu pro změnu nastavené hodnoty. • Posun kurzu na následující číslici vpravo. Je-li kurzor na poslední číslici, stiskněte [] a přejdete znovu na první číslici. Můžete rovněž umístit kurzor na desetinnou tečku.</td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td>Potvrzení nové hodnoty a návrat do submenu.</td>
<td></td>
</tr>
<tr>
<td>Esc (Escape)</td>
<td>Pokud stisknete tato tlačítko ihned po změně hodnoty, přístroj tuto změnu rovněž ignoruje a vrátí se do menu.</td>
<td></td>
</tr>
<tr>
<td>Šipka dolů</td>
<td>Pokud je kurzor na číslici, stisknutím tohoto tlačítka snížíte její hodnotu. Pokud je kurzor na desetinné tečce, stisknutím tohoto tlačítka se desetinná tečka posune vlevo (hodnota se tím 10krát zmenší).</td>
<td></td>
</tr>
<tr>
<td>Šipka nahoru</td>
<td>Pokud je kurzor na číslici, stisknutím tohoto tlačítka zvýšíte její hodnotu. Pokud je kurzor na desetinné tečce, stisknutím tohoto tlačítka se desetinná tečka posune vpravo (hodnota se tím 10krát zvětší).</td>
<td></td>
</tr>
</tbody>
</table>
Informace!

Hodnoty v položkách menu

Pokud je číslice součástí názvu uživatelské jednotky, zvolte znak z následujícího seznamu dostupných znaků:

<table>
<thead>
<tr>
<th>Číslice</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Písmena malé abecedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>k</td>
</tr>
<tr>
<td>u</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Písmena velké abecedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speciální znaky</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

6.3.5 Jak uložit změny nastavení provedené v Režimu nastavení

- Po provedení všech potřebných změn parametrů stiskněte tlačítko [↩], aby byly nové hodnoty přijaty a zapsány.
- Stiskněte několikrát [↩], dokud se nedostanete zpět na obrazovku s dotazem "Uložit nastavení?".
- Přístroj vás vyzve k uložení nebo zrušení všech zadaných hodnot. Stiskněte [↩] nebo [↑] a zvolte Ano, Ne nebo Zpět. Po volbě Zpět se přístroj vrátí zpět do Provozního režimu. Na obrazovce nastavené na "Ano" (potvrdit) nebo "Ne" (odmítnout) stiskněte [↩] pro potvrzení vaší volby.
- Po stisknutí tlačítka [↩] na volbě "Ano" nebo "Ne" se přístroj vrátí zpět do Provozního režimu.
6.3.6 Přehled menu

Přehled menu: A – Rychlé nastavení

<table>
<thead>
<tr>
<th>Provoz</th>
<th>Nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Menu A</td>
</tr>
<tr>
<td></td>
<td>> ↓ ↑</td>
</tr>
<tr>
<td>A Quick Setup</td>
<td>A1 Jazyk</td>
</tr>
<tr>
<td></td>
<td>A2 Tag</td>
</tr>
<tr>
<td></td>
<td>A3 Přihlášení</td>
</tr>
<tr>
<td></td>
<td>A4 Aplikační asistent</td>
</tr>
<tr>
<td></td>
<td>A4.1.3.1 Proměn.na pr.výst.1</td>
</tr>
<tr>
<td></td>
<td>A4.1.3.2 Rozsah 0%</td>
</tr>
<tr>
<td></td>
<td>A4.1.3.4 Rozsah proud.výst.</td>
</tr>
<tr>
<td></td>
<td>A4.2 Prázdn.spektrum / A4.2.1 Záznam spektra</td>
</tr>
<tr>
<td></td>
<td>A4.2.1.10 Graf prázdného spektra</td>
</tr>
<tr>
<td></td>
<td>A4.2.1.11 Uložit spektrum?</td>
</tr>
<tr>
<td></td>
<td>A4.2.1.12 Prázdné spektrum aktivní</td>
</tr>
</tbody>
</table>

1 Přístroj zobrazí tuto položku menu, pokud v položce menu A4.2.1.1 zadáte "Částečně, průměr" nebo "Částečně, max"
Přehled menu: B – Test

<table>
<thead>
<tr>
<th>Provoz</th>
<th>Nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu B</td>
<td>Submenu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>> ↔</th>
<th>↓ ↑</th>
<th>> ↔</th>
<th>↓ ↑</th>
<th>> ↔</th>
<th>↓ ↑</th>
<th>> ↔</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Test</td>
<td>①</td>
<td>B1.1 Zadat hodnotu</td>
<td>B1.1.2 Výška hlad.</td>
<td>B1.1.3 Vzdálenost</td>
<td>B1.1.4 Odrazivost</td>
<td>B1.1.5 Linear.výš.hlad. ②</td>
</tr>
<tr>
<td>B1 Simulace</td>
<td>①</td>
<td>B1.2 Výstup</td>
<td>B1.2.1 Proud.výstup 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B2 Okamžité hodnoty</th>
<th>B2.1 Doba provozu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B2.2 Hmotnost ②</td>
</tr>
<tr>
<td></td>
<td>B2.3 Výška hlad. ②</td>
</tr>
<tr>
<td></td>
<td>B2.4 Vzdálenost</td>
</tr>
<tr>
<td></td>
<td>B2.5 Objem ②</td>
</tr>
<tr>
<td></td>
<td>B2.6 Odrazivost</td>
</tr>
<tr>
<td></td>
<td>B2.7 Linear.výš.hlad. ②</td>
</tr>
<tr>
<td></td>
<td>B2.8 Teplota sním.</td>
</tr>
<tr>
<td></td>
<td>B2.9 Hmotnost ②</td>
</tr>
<tr>
<td></td>
<td>B2.10 Lineariz.vzdál. ②</td>
</tr>
<tr>
<td></td>
<td>B2.11 Volný objem ②</td>
</tr>
<tr>
<td></td>
<td>B2.12 Volná hmotnost ②</td>
</tr>
<tr>
<td></td>
<td>B2.13 Teplota převod.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B3 Výkon. spektrum</th>
<th>B3.2 Výkon. spektrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4 Opravené spektrum</td>
<td>B4.2 Opravené spektrum</td>
</tr>
<tr>
<td>B5 Prázd. spektrum</td>
<td>B5.2 Prázd. spektrum</td>
</tr>
</tbody>
</table>

① Pro zobrazení a používání tohoto menu musíte nejprve zadat heslo pro úroveň "Odborník" v menu A3 Přihlášení nebo C7.2.1 Přihlášení

② Přístroj zobrazí tuto položku menu, pokud vytvořite přepočetní tabulku v menu C3 Přepočet
Optiwave 6400 C Provoz

Přehled menù: C – Úplné nastavení

<table>
<thead>
<tr>
<th>Provoz</th>
<th>Nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Submenu</td>
</tr>
<tr>
<td></td>
<td>> ←</td>
</tr>
<tr>
<td></td>
<td>C1 Instalační parametry</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2 Proces</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3 Přepočet ①</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4 Výstup</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Provoz</td>
<td>Nastavení</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Menu C</td>
</tr>
<tr>
<td></td>
<td>> ↓</td>
</tr>
<tr>
<td></td>
<td>C5 Komunikace</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C6 Displej</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Provoz

<table>
<thead>
<tr>
<th>Provoz</th>
<th>Nastavení</th>
<th>Submenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu C</td>
<td>C6 Displej</td>
<td>C6.4 1.str.měř.hodn.</td>
</tr>
<tr>
<td></td>
<td>C6.5 2.str.měř.hodn.</td>
<td>C6.4.1 Funkce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.4.2 1.měř. proměnná</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.4.3 Rozsah 0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.4.4 Rozsah 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.4.5 Formát 1.prom.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.4.6 2.měř. proměnná</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.4.7 Formát 2.prom.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.4.8 3.měř. proměnná</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.4.9 Formát 3.prom.</td>
</tr>
<tr>
<td></td>
<td>C7 Přístroj</td>
<td>C6.5.1 Funkce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.5.2 1.měř. proměnná</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.5.3 Rozsah 0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.5.4 Rozsah 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.5.5 Formát 1.prom.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.5.6 2.měř. proměnná</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.5.7 Formát 2.prom.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.5.8 3.měř. proměnná</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C6.5.9 Formát 3.prom.</td>
</tr>
<tr>
<td></td>
<td>C7.1 Informace</td>
<td>C7.1.1 Tag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.1.2 Výrobní číslo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.1.3 Název přístroje</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.1.4 Číslo V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.1.5 Revize elektroniky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.1.6 Verze software</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.1.7 Výr.č. elektroniky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.1.8 Datum výroby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.1.9 Datum kalibrace</td>
</tr>
<tr>
<td></td>
<td>C7.2 Ochrana</td>
<td>C7.2.1 Přihlášení</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.2.2 Změna hesla</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.2.3 Vymazání hesla</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.2.4 Povolit rozšíření rozhaz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.2.5 Povolit SIL</td>
</tr>
<tr>
<td></td>
<td>C7.3 Chyby</td>
<td>C7.3.1 Náhled zprávy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7.3.2.1 Mapování chyb / Snímač: informace</td>
</tr>
</tbody>
</table>
Provoz

Nastavení

<table>
<thead>
<tr>
<th>Menu C</th>
<th>Submenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>> ⇧</td>
<td>> ⇧</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C7.5 Jednotky</th>
<th>C7.5.1 Jednotka délky</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.5.2.1 Uživatel.délka / Text</td>
<td></td>
</tr>
<tr>
<td>C7.5.2.2 Uživatel.délka / Odchylka</td>
<td></td>
</tr>
<tr>
<td>C7.5.2.3 Uživatel.délka / Koeficient</td>
<td></td>
</tr>
<tr>
<td>C7.5.3 Objem</td>
<td></td>
</tr>
<tr>
<td>C7.5.4.1 Uživatel.objem / Text</td>
<td></td>
</tr>
<tr>
<td>C7.5.4.2 Uživatel.objem / Odchylka</td>
<td></td>
</tr>
<tr>
<td>C7.5.4.1 Uživatel.objem / Koeficient</td>
<td></td>
</tr>
<tr>
<td>C7.5.5 Hmotnost</td>
<td></td>
</tr>
<tr>
<td>C7.5.6.1 Uživatel.hmot. / Text</td>
<td></td>
</tr>
<tr>
<td>C7.5.6.2 Uživatel.hmot. / Odchylka</td>
<td></td>
</tr>
<tr>
<td>C7.5.6.3 Uživatel.hmot. / Koeficient</td>
<td></td>
</tr>
</tbody>
</table>

| C7.6 Standard z výroby | C7.6.1 Reset na stand.výr.? 🍀 |

1. Pro zobrazení a používání tohoto menu musíte nejprve zadat heslo pro úroveň "Odborník" v menu A3 Přihlášení nebo C7.2.1 Přihlášení.
2. Toto menu je k dispozici, pokud má přístroj zadanou přepočetní tabulku.
3. Toto menu je k dispozici, pokud přístroj nemá zadanou přepočetní tabulku.
4. Položka menu C4.1.7 je k dispozici, pokud je v C4.15 zadáno "Nízký". Položka menu C4.1.8 je k dispozici, pokud je v C4.15 zadáno "Vysoký".
5. Toto menu je k dispozici, pokud je v C6.4.1 Funkce zadán správný parametr. Podrobnosti viz menu C. Úplné nastavení (C6.4 1.str.měř.hodn.) v následující kapitole.
6. Toto menu je k dispozici, pokud je v C6.5.1 Funkce zadán správný parametr. Podrobnosti viz menu C. Úplné nastavení (C6.5 2.str.měř.hodn.) v následující kapitole.
7. Toto menu je možno povolit (odemknout) pouze ve výrobním závodě.
6.3.7 Popis funkcí

A – menu Rychlé nastavení

<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Jazyk</td>
<td>Zvolte jeden z jazyků uložených v přístroji pro zobrazení měřených hodnot a nastavení. Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td>Angličtina, francouzština, němčina, italština, japonština, čínština (zjednodušená), portugalská, ruština, španělština, čeština, polština, turečtina</td>
<td>English (angličtina)</td>
</tr>
<tr>
<td>A2</td>
<td>Tag</td>
<td>V této položce vidíte označení přístroje (tag). Označení může mít maximálně 8 znaků a může obsahovat číslice, malá a velká písmena a speciální znaky. Podrobnosti viz Funkce tlačitek na straně 65 (hodnoty v položkách menu). Minimální přístupová úroveň pro změnu tohoto nastavení: Obsluha</td>
<td>Viz "Popis funkcí"</td>
<td>TANK01</td>
</tr>
<tr>
<td>A3</td>
<td>Přihlášení</td>
<td>Zadejte příslušné heslo umožňující provádět změny nastavení přístroje. Pokud nezadáte heslo, můžete změnit pouze nastavení pro přístupovou úroveň "uživatel". Podrobnosti viz Ochrana konfigurace přístroje (přístupové úrovně) na straně 62.</td>
<td>4místné heslo v hexadecimálním tvaru</td>
<td>Viz "Popis funkci"</td>
</tr>
</tbody>
</table>
Menu č. - Funkce - Popis funkcí - Seznam možných hodnot - Stand. nastavení

A4 Aplikační asistent

A4.1 Stand. nastavení

V tomto menu se spouští procedura rychlého nastavení přístroje vhodná pro většinu aplikací. Můžete zde zadat jednotku délky, parametry aplikace (typ nádrže, výšku nádrže apod.) a parametry proudového výstupu (rozsah 0%, rozsah 100%, chybovou funkci apod.). Další podrobnosti o funkcích viz tabulka C – Úplné nastavení v této kapitole. Další podrobnosti o tomto postupu viz *Standardní nastavení* na straně 97.

Minimální přístupová úroveň pro spuštění procedury: Odborník

Minimální přístupová úroveň pro spuštění procedury: Odborník

A4.2 Prázdné spektrum

Minimální přístupová úroveň pro spuštění procedury: Odborník
B – menu Test

<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
</table>

B1 Simulace

B1.1 Zadat hodnotu

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.1.2 Výška hlad.</td>
<td>Při tomto testu je na přístroji nastavena zadaná zkušební hodnota výšky hladiny. Před simulací hodnoty výšky hladiny zkontrolujte, zda je v položce menu C4.1.1 Proměn na pr.výst.1 zadáno "Výška hlad.". Při tomto postupu se na výstup přivede signál odpovídající zkušební hodnotě. Na výstupu se objeví zvolená hodnota bez ohledu na skutečnou měřenou hodnotu. Když stisknutím [▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?". Stisknutím [▼] nebo [▲] přejděte na volbu "Ano". Test spustíte dalším stisknutím [▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu. Minimální přístupová úroveň pro spuštění procedurey: Odborník</td>
<td>min-max: -4900,0...+5100,0 m / -192,9103...+200,7903 in / -16076...+16732 ft</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.1.3 Vzdálenost</td>
<td>Při tomto testu je na přístroji nastavena zadaná zkušební hodnota vzdálenosti. Před simulací hodnoty vzdálenosti zkontrolujte, zda je v položce menu C4.1.1 Proměn na pr.výst.1 zadáno "Vzdálenost". Při tomto postupu se na výstup přivede signál odpovídající zkušební hodnotě. Na výstupu se objeví zvolená hodnota bez ohledu na skutečnou měřenou hodnotu. Když stisknutím [▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?". Stisknutím [▼] nebo [▲] přejděte na volbu "Ano". Test spustíte dalším stisknutím [▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu. Minimální přístupová úroveň pro spuštění procedurey: Odborník</td>
<td>min-max: -4900,0...+5100,0 m / -192,9103...+200,7903 in / -16076...+16732 ft</td>
<td>1</td>
</tr>
<tr>
<td>Menu č.</td>
<td>Funkce</td>
<td>Popis funkcí</td>
<td>Seznam možných hodnot</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| B1.1.4 | Odrazivost | Při tomto testu je na přístroji nastavena zadána zkušební hodnota odrazivosti. Před simulací hodnoty odrazivosti zkontrolujte, zda je v položce menu C4.1.1 Proměn. na pr. výst. 1 zadáno "Odrazivost". Při tomto postupu se na výstup přivede signál odpovídající zkušební hodnotě. Na výstupu se objeví zvolená hodnota bez ohledu na skutečnou měřenou hodnotu.
Když stisknutím [▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?" Stisknutím [▲] nebo [▼] přejděte na volbu "Ano". Test spusťte dalším stisknutím [▼▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu.
Minimální přístupová úroveň pro spuštění procedury: Odborník

<table>
<thead>
<tr>
<th>min-max: 0...100%</th>
<th>□</th>
</tr>
</thead>
</table>
Když stisknutím [▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?" Stisknutím [▲] nebo [▼] přejděte na volbu "Ano". Test spusťte dalším stisknutím [▼▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu.
Minimální přístupová úroveň pro spuštění procedury: Odborník

<p>| min-max: -5000,0...+5000,0 m / -196,85+03...+196,85+03 in / -16404...+16404 ft | □ |</p>
<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.1.6</td>
<td>Objem</td>
<td>Při tomto testu je na přístroji nastavena zadaná zkušební hodnota objemu. Tato položka menu je k dispozici pouze v případě, že jste zadali přepočetní tabulku (objemu) v položce menu C3.1 Upravit tabulku. Před simulací hodnoty objemu zkontrolujte, zda je v položce menu C4.1.1 Proměn.na pr.výst.1 zadáno "Objem". Při tomto postupu se na výstup přiveďte signál odpovídající zkušební hodnotě. Na výstupu se nastaví zvolená hodnota bez ohledu na skutečnou měřenou hodnotu. Když stisknutím [▼ ▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?" Stisknutím [▼ ▼] nebo [◄ ►] přejděte na volbu "Ano". Test spustíte dalším stisknutím [▼ ▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu. Minimální přístupová úroveň pro spuštění procedury: Odborník min-max: (0...1,00\times10^6 \text{ m}^3)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B1.1.7</td>
<td>Hmotnost</td>
<td>Při tomto testu je na přístroji nastavena zadaná zkušební hodnota hmotnosti. Tato položka menu je k dispozici pouze v případě, že jste zadali přepočetní tabulku (hmotnosti) v položce menu C3.1 Upravit tabulku. Před simulací hodnoty hmotnosti zkontrolujte, zda je v položce menu C4.1.1 Proměn.na pr.výst.1 zadáno "Hmotnost". Při tomto postupu se na výstup přiveďte signál odpovídající zkušební hodnotě. Na výstupu se nastaví zvolená hodnota bez ohledu na skutečnou měřenou hodnotu. Když stisknutím [▼ ▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?" Stisknutím [▼ ▼] nebo [◄ ►] přejděte na volbu "Ano". Test spustíte dalším stisknutím [▼ ▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu. Minimální přístupová úroveň pro spuštění procedury: Odborník min-max: (0...10,00\times10^9 \text{ kg})</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Menu č.</td>
<td>Funkce</td>
<td>Popis funkcí</td>
<td>Seznam možných hodnot</td>
<td>Stand. nastavení</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>---</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>B1.1.8</td>
<td>Lineariz.vzdál.</td>
<td>Při tomto testu je na přístroji nastavena zadaná zkušební hodnota vzdálenosti (linearizovaná). Tato položka menu je k dispozici pouze v případě, že jste zadali lineární tabulku v položce menu C3.1 Upravit tabulku. Před simulací hodnoty vzdálenosti zkontrolujte, zda je v položce menu C4.1.1 Proměn na pr.výst.1 zadáno "Lineariz.vzdál.". Při tomto postupu se na výstup přivede signál odpovídající zkušební hodnotě. Na výstupu se nastaví zvolená hodnota bez ohledu na skutečnou měřenou hodnotu. Když stisknutím [▼▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?" Stisknutím [▼] nebo [▼▼] přejděte na volbu "Ano". Test spustíte dalším stisknutím [▼▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu. Minimální přístupová úroveň pro spuštění procedury: Odborník</td>
<td>min-max: -5000.0...+5000.0 m / -196.85"03...+196.85"03 in / -16404...+16404 ft</td>
<td>1</td>
</tr>
<tr>
<td>B1.1.9</td>
<td>Volný objem</td>
<td>Při tomto testu je na přístroji nastavena zadaná zkušební hodnota volného objemu. Tato položka menu je k dispozici pouze v případě, že jste zadali přepočetnou tabulku (objemu) v položce menu C3.1 Upravit tabulku. Před simulací hodnoty objemu zkontrolujte, zda je v položce menu C4.1.1 Proměn na pr.výst.1 zadáno "Volný objem". Při tomto postupu se na výstup přivede signál odpovídající zkušební hodnotě. Na výstupu se nastaví zvolená hodnota bez ohledu na skutečnou měřenou hodnotu. Po stisknutí [▼▼] se na displeji zobrazí dotaz "Spustit simulaci?" Stisknutím [▼] nebo [▼▼] přejděte na volbu "Ano". Test spustíte dalším stisknutím [▼▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu. Minimální přístupová úroveň pro spuštění procedury: Odborník</td>
<td>min-max: 0...1,00"06 m³</td>
<td>1</td>
</tr>
</tbody>
</table>
Provoz

Menu č.	**Funkce**	**Popis funkcí**	**Seznam možných hodnot**	**Stand. nastavení**
B1.1.10 | Volná hmotnost | Při tomto testu je na přístroji nastavena zadána zkušební hodnota volné hmotnosti. Tato položka menu je k dispozici pouze v případě, že jste zadali přepočetní tabulku (hmotnosti) v položce menu C3.1 **Upravit tabulku.** Před simulací hodnoty hmotnosti zkontrolujte, zda je v položce menu C4.1.1 Proměn na pr.výst.1 zadáno "Volná hmotnost". Při tomto postupu se na výstup přivede signál odpovídající zkušební hodnotě. Na výstupu se nastaví zvolená hodnota bez ohledu na skutečnou měřenou hodnotu.
Když stisknutím [▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?" Stisknutím [▼] nebo [▲] přejděte na volbu "Ano". Test spustíte dalším stisknutím [▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu.

Minimální přístupová úroveň pro spuštění procedury: Odborník

| min-max: 0...10,000 kg |
| 1 |

B1.2 Výstup

B1.2.1 | Proud.výstup 1 | Nastavení analogového výstupu 1 na zkušební hodnotu [mA]. Na výstupu se nastaví zvolená hodnota bez ohledu na okamžitou měřenou hodnotu.
Když stisknutím [▼] potvrdíte hodnotu, na displeji se zobrazí dotaz "Spustit simulaci?" Stisknutím [▼] nebo [▲] přejděte na volbu "Ano". Test spustíte dalším stisknutím [▼]. Přístroj se vrátí do Provozního režimu provozu za 1 hodinu.

Minimální přístupová úroveň pro spuštění procedury: Odborník

| 3,6...21,5 mA |
| 1 |

B2 Okamžité hodnoty

B2.1 | Doba provozu [s] | Toto je celková doba v sekundách, po kterou je přístroj zapnutý. | Pouze pro čtení |
B2.4 | Výška hlad. | V tomto menu se zobrazuje aktuální měřená hodnota výšky hladiny v daném okamžiku. Měřená hodnota se zobrazí v jednotkách zadaných v menu C7.5 **Jednotky.** | Pouze pro čtení |
B2.5 | Vzdálenost | V tomto menu se zobrazuje aktuální měřená hodnota vzdálenosti v daném okamžiku. Měřená hodnota se zobrazí v jednotkách zadaných v menu C7.5 **Jednotky.** | Pouze pro čtení |
B2.6 | Odrazivost | V tomto menu se zobrazuje procentní podíl signálu vyslaného radarem, který se odrazil od povrchu média obsaženého v síle, a byl přístrojem přijat zpět. | Pouze pro čtení |
<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2.7</td>
<td>Linear.výš.hlad.</td>
<td>V tomto menu se zobrazuje aktuální měřená hodnota výšky hladiny (linearizovaná) v daném okamžiku. Měřená hodnota se zobrazí v jednotkách zadaných v menu C7.5 Jednotky. Tato položka menu je k dispozici pouze v případě, že jste zadali linearizační tabulku v položce menu C3.1 Upravit tabulku.</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>B2.8</td>
<td>Objem</td>
<td>V tomto menu se zobrazuje aktuální měřená hodnota objemu v daném okamžiku. Měřená hodnota se zobrazí v jednotkách zadaných v menu C7.5 Jednotky. Tato položka menu je k dispozici pouze v případě, že jste zadali přepočetní tabulku (objemu) v položce menu C3.1 Upravit tabulku.</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>B2.9</td>
<td>Hmotnost</td>
<td>V tomto menu se zobrazuje aktuální měřená hodnota hmotnosti v daném okamžiku. Měřená hodnota se zobrazí v jednotkách zadaných v menu C7.5 Jednotky. Tato položka menu je k dispozici pouze v případě, že jste zadali přepočetní tabulku (hmotnosti) v položce menu C3.1 Upravit tabulku.</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>B2.10</td>
<td>Lineariz.vzdál.</td>
<td>V tomto menu se zobrazuje aktuální měřená hodnota vzdálenosti (linearizovaná) v daném okamžiku. Měřená hodnota se zobrazí v jednotkách zadaných v menu C7.5 Jednotky. Tato položka menu je k dispozici pouze v případě, že jste zadali linearizační tabulku v položce menu C3.1 Upravit tabulku.</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>B2.11</td>
<td>Volný objem</td>
<td>V tomto menu se zobrazuje aktuální měřená hodnota volného objemu v daném okamžiku. Měřená hodnota se zobrazí v jednotkách zadaných v menu C7.5 Jednotky. Tato položka menu je k dispozici pouze v případě, že jste zadali přepočetní tabulku (objemu) v položce menu C3.1 Upravit tabulku.</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>B2.12</td>
<td>Volná hmotnost</td>
<td>V tomto menu se zobrazuje aktuální měřená hodnota volné hmotnosti v daném okamžiku. Měřená hodnota se zobrazí v jednotkách zadaných v menu C7.5 Jednotky. Tato položka menu je k dispozici pouze v případě, že jste zadali přepočetní tabulku (hmotnosti) v položce menu C3.1 Upravit tabulku.</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>B2.13</td>
<td>Teplota sním.</td>
<td>Teplota modulu elektroniky snímače.</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>B2.14</td>
<td>Teplota převod.</td>
<td>Teplota modulu elektroniky převodníku. Provoz displeje se může přerušit, pokud je teplota nižší než -20°C / -4°F nebo vyšší než +70°C / +158°F.</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
</tbody>
</table>
B3 Výkon.spektrum

| B3.2 | Výkon.spektrum | V tomto menu se zobrazuje neupravené spektrum radarového signálu, který se odráží od povrchu média obsaženého v síle, a je přijat přístrojem zpět. Tyto údaje se zobrazují jako graf procentního podílu z maxima signálu v závislosti na vzdálenosti. | Pouze pro čtení | — |

B4 Opravené spektrum

| B4.2 | Opravené spektrum | V tomto menu se zobrazuje opravené spektrum radarového signálu, který se odráží od povrchu média obsaženého v síle, a je přijat přístrojem zpět. Jedná se o hodnoty získané odečtením spektra zaznamenaného v prázdnom síle od výkonového spektra. Tyto údaje se zobrazují jako graf procentního podílu z maxima signálu v závislosti na vzdálenosti. | Pouze pro čtení | — |

B5 Prázd.spektrum

| B5.2 | Prázd.spektrum | V tomto menu se zobrazuje spektrum radarového signálu, který se odrazil od objektů nacházejících se uvnitř nádrže (rušivé signály). Tyto údaje se zobrazují jako graf procentního podílu z maxima signálu v prázdnom síle. Pokud nádrž není možné zcela vyprázdnit, je možné provést záznam prázdného spektra i v částečně zaplněné nádrži. | Pouze pro čtení | — |

1 Standardní (předdefinovanou) hodnotou je měřená hodnota v okamžiku spuštění simulace

C – menu Úplné nastavení

| C1.1 | Typ nádrže | Podmínky, ve kterých je hladinoměr instalován. Je-li povrch média rovný, zvolte "Rovný povrch". Je-li mírně zvlněný, zvolte "Mírný svah". Má-li povrch prudký sklon, zvolte "Prudký svah". **Minimální přístupová úroveň pro změnu tohoto nastavení:** Odborník | Rovný povrch, Mírný svah, Prudký svah | Prudký svah 1 |

<p>| C1.2 | Výška nádrže | Výška nádrže je vzdálenost mezi dolní plochou připojovací příruby / dorazu závitu provozního připojení a dnem nádrže. Pokud používáte přístroj jako zařízení LPR venku ve volném prostoru, pak je tato hodnota zároveň maximální vzdáleností, kterou přístroj musí měřit (měřicí rozsah). Minimální přístupová úroveň pro změnu tohoto nastavení: Obsluha | min-max: 0,0...100,0003 mm / 0,0...2362,22 / 0,0...196,85 ft | 20000 mm / 787,402" / 65,617 ft 1 |</p>
<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1.5</td>
<td>Mrtvá vzdálenost</td>
<td>Vzdálenost mezi těsnicí plochou příruby nebo dorazem závitu a horní mezi měřícího rozsahu (oblast zadaná uživatelem, ve které není možné měření). Doporučujeme minimální mrtvou vzdálenost 300 mm / 12" pod dolním koncem antény. Je-li měřená vzdálenost menší než mrtvá vzdálenost, na displeji přístroje je zobrazena hodnota mrtvé vzdálenosti. Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník</td>
<td>min-max: 0,0...5000,0 mm / 0,0...196,85" / 0,0...16,404 ft</td>
<td>Délka antény + délka prodloužení antény + 300 mm / 12"</td>
</tr>
<tr>
<td>C1.6</td>
<td>Čas. konstanta</td>
<td>Pomocí této funkce přístroj zpracovává několik měřených hodnot tak, aby se odfiltrovaly rušivé signály. Zvýšení hodnot časové konstanty dosáhne meření blíže horní míry a pokles hodnot méně plynulý.</td>
<td>min-max: 0,...100,0 s (sekund)</td>
<td>30 s</td>
</tr>
<tr>
<td>C1.7</td>
<td>Typ antény</td>
<td>Typ antény přepínán do přístroje. Pokud změňte typ antény, bude mít toto nastavení vliv na menu C1.2 Výška nádrže a C1.5 Mrtvá vzdálenost. Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník</td>
<td>Kov. trychtýř. (DN80), Kov. trychtýř. (DN100), Kov. trychtýř. (DN200), Kapková (PP, DN80), Kapková (PP, DN100), Kapková (PP, DN150), Kapková (PTFE, DN80), Kapková (PTFE, DN100), Kapková (PTFE, DN150)</td>
<td>Podle specifikace v objednávce zákazníka</td>
</tr>
<tr>
<td>C1.8</td>
<td>Prodlouž. antény</td>
<td>Prodloužení antény dodávané na přání. Připojují se mezi přírubu a anténu. Každý segment je dlouhý 105 mm / 4,1". Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník</td>
<td>min-max: 0,0...1050 mm / 0,0...41,339" / 0,0...3,4449 ft</td>
<td>0 mm / 0° 1</td>
</tr>
<tr>
<td>C1.9</td>
<td>Distanční mezílek</td>
<td>Distanční mezílek, dodávaný na přání, umístěný mezi provozním připojením a převodníkem. Je určen pro vysokoteplotní provedení přístroje. Každý segment je dlouhý 105 mm / 4,1". Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník</td>
<td>min-max: 0,0...2000 mm / 0,0...78,740" / 0,0...6,5617 ft</td>
<td>0 mm / 0° 1</td>
</tr>
<tr>
<td>C1.10</td>
<td>Referenční odchylka</td>
<td>Referenční odchylka vztahující se k referenčnímu bodu (vzdálenosti). Tato hodnota je kladná, nachází-li se referenční bod nad těsnici plochu příruby a záporná, nachází-li se pod ní. Podrobnosti viz Měření vzdáleností na straně 104. Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník</td>
<td>min-max: -5000,0+0...+5000,0 m / -196,85+03...+196,85+03" / -16404...+16404 ft</td>
<td>0 m / 0 ft</td>
</tr>
</tbody>
</table>
C1.11 Odchylka dna nádrže

Odchylka dna nádrže se vztahuje k referenčnímu bodu (výšce hladiny). Referenčním bodem pro tento parametr je dno nádrže (nastavené v menu C1.2 Výška nádrže). Tato hodnota je kladná, nachází-li se referenční bod pod dnem nádrže a záporná, nachází-li se nad ním. Podrobnosti viz Měření výšky hladiny na straně 105.

Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník

<table>
<thead>
<tr>
<th>Minimální hodnoty</th>
<th>Maximální hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5000,0 m / -196,85 +03¨</td>
<td>+5000,0 m / +196,85 +03¨ / -16404...+16404 ft</td>
</tr>
</tbody>
</table>

C2 Proces

C2.1 Rychlost sledování

V této položce menu je možno zadat maximální rychlost změny výšky hladiny v metrech nebo stopách za minutu. Měřená hodnota se pak nesmí měnit rychleji než zadanou rychlostí sledování.

Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník

<table>
<thead>
<tr>
<th>Minimální hodnoty</th>
<th>Maximální hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-03 m/min / 3,94-03 ft/min</td>
<td>500-03 m/min / 1,64042 ft/min</td>
</tr>
</tbody>
</table>

C2.2 Epsilon R média

Přístroj automaticky vypočítává výšku hladiny na základě hodnoty ε_r. Jestliže v menu C2.4 Režim měření zvolíte "TBF úplný" nebo "TBF auto", můžete zde pro dosažení přesnějších výsledků měření hodnotu permitivity zadat přímo.

Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník

<table>
<thead>
<tr>
<th>Minimální hodnoty</th>
<th>Maximální hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1...20</td>
<td>1,1...20</td>
</tr>
</tbody>
</table>

C2.3 Epsilon R atmos.

Důležitý parametr pro měření radarovými hladinoměry. Tato položku menu se používá zejména pro aplikace za vysokého tlaku nebo v nádržích s atmosférou obsahující určitý plyn. Pokud není permitivita plynu nad hladinou 1,0, zadejte zde hodnotu jeho ε_r jako relativní permitivitu ε_r atmosféry v nádrži.

Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník

<table>
<thead>
<tr>
<th>Minimální hodnoty</th>
<th>Maximální hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0...20</td>
<td>1,0...20</td>
</tr>
</tbody>
</table>

C2.4 Režim měření

Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník

<table>
<thead>
<tr>
<th>Příjímový</th>
<th>Příjímový plus</th>
<th>Příjímový</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0...20</td>
<td>1,0...20</td>
<td>1,0...20</td>
</tr>
</tbody>
</table>
Menu č. | Funkce | Popis funkcí | Seznam možných hodnot | Stand. nastavení
---|---|---|---|---
C2.5 | Detekce přeplnění | Je-li tato funkce aktivní, pak přístroj sleduje výšku hladiny i v mrtvé zóně. Hodnota výstupu zobrazena na obrazovce displeje zůstane na hodnotě odpovídající mrtvé vzdálenosti, ale chybové hlášení upozorní uživatele, že nádrž je příliš zaplněná. **Minimální přístupová úroveň pro změnu tohoto nastavení:** Odborník | Neaktivní, Aktivní | Neaktivní ①
C2.6 | Práh přeplnění | Pokud jste v položce menu C2.5 Detekce přeplnění nastavili "Aktivní", bude k dispozici i tato položka menu. Pokud přístroj nemůže snadno měřit v mrtvé vzdálenosti (viz položka menu C1.5), pak můžete upravit hodnotu prahu přeplnění. Tato hodnota se vyjadřuje v procentech amplitudy radarového signálu. Před změnou hodnoty doporučujeme konzultaci s dodavatelem přístroje. **Minimální přístupová úroveň pro změnu tohoto nastavení:** Odborník | min-max: 0,0...100,0% 10% | | Neaktivní, Aktivní | Neaktivní ①
C2.7 | Násob.odrazy aktiv. | Násobné odrazy způsobí zobrazení nižších měřených hodnot výšky hladiny. Příčinou vzniku násobných odrazů může být umístění přístroje v revizním otvoru nebo uprostřed kopulovité střechy a velká relativní permittivita média ($\varepsilon_r > 5$). Násobné odrazy může také způsobit velmi klidný povrch média nebo místě klenutá nebo rovná střecha. Pokud je tato funkce zapnutá, přístroj hledá první platný odraz pod provozním připojením. Ten se pak používá pro měření výšky hladiny v nádrži. Pokud tato funkce není zapnutá, přístroj hledá nejsilnější signál pod provozním připojením. **Minimální přístupová úroveň pro změnu tohoto nastavení:** Odborník | | Neaktivní, Aktivní | Neaktivní ①
C2.8 | Prázdné spektrum aktivní | Tato funkce umožňuje zapnout a vypnout filtr rušivých signálů. Rušivé signály jsou způsobeny pevnými nebo pohyblivými překážkami uvnitř nádrže. Před analýzou spektra provedte nejprve záznam prázdného spektra. Proveďte proceduru "Prázdn.spektrum" (A4.2) v menu Rychlé nastavení. **Minimální přístupová úroveň pro změnu tohoto nastavení:** Odborník | Neaktivní, Aktivní | Neaktivní |
C3 Přepočet

C3.1 Upravit tabulku

Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník | Ano, Ne | Ne |
|---|---|---|---|---|

C3.1.3 Zvolit přepočet

Pokud potřebujete vytvořit tabulku pro přepočet objemu, zadejte v této položce menu "Objem". Pokud potřebujete vytvořit tabulku pro přepočet hmotnosti, zadejte v této položce menu "Hmotnost". Pokud potřebujete vytvořit lineární tabulku, která zajistí, aby měřené hodnoty vždy odpovídaly referenčním hodnotám, zadejte v této položce menu "Linearizace".
Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník	Objem, Hmotnost, Linearizace	Objem

C3.2 Zadání tabulky

| C3.2.2 | Bod | Takto se přidá bod do přepočetní tabulky. Pokaždé, když vstoupíte do této položky menu "Objem", číslo se automaticky zvýší o 1 bod. Pokud potřebujete změnit údaje pro bod, změňte číslo bodu. Po stisknutí tlačítka [Enter] se dostanete na položku menu C3.2.4 Výška hlad.
Minimální přístupová úroveň pro spuštění procedury: Odborník	min-max: 001...050	001

| C3.2.4 | Výška hlad. | Zadejte hodnotu výšky hladiny pro bod zadáný v C3.2.2. Stiskněte [Enter] pro potvrzení a přechod na menu C3.2.5 Přepoč. hodnota.
Minimální přístupová úroveň pro spuštění procedury: Odborník	min-max: 0,0...100,0*03 mm / 0,0...3937,0¨	0,0 mm / 0,0¨

| C3.2.5 | Přepoč. hodnota | Zadejte přepočtenou hodnotu (objem, hmotnost nebo lineárnizovanou hodnotu) pro bod zadáný v C3.2.2. Stiskněte [Enter] pro potvrzení zadané přepočtené hodnoty a návrat k menu C3.2.
Minimální přístupová úroveň pro spuštění procedury: Odborník | min-max: Objem: 0,0...100,0*09 m³ / 0,0...26,417*12 gal
Hmotnost: 0,0...100,0*09 kg / 0,0...220,46*09 lb
Linearizace: 0,0...100,0*12 mm / 0,0...3,937*12¨ | Objem: 0,0 m² / 0,0 gal
Hmotnost: 0,0 kg / 0,0 lb
Linearizace: 0,0 mm / 0,0¨ |
|---|---|---|

C4 Výstup

C4.1 Proud.výstup 1
<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4.1.1</td>
<td>Proměn. na pr.výst.1</td>
<td>Z dostupných funkcí výstupu zvolte měřenou proměnnou, která bude přiřazena hodnotám proudového výstupu. Tato hodnota se neobzoruje v Provozním režimu. Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4.1.2</td>
<td>Rozsah 0%</td>
<td>Udává měřenou hodnotu odpovídající 0% na výstupu (funkce výstupu viz také položka menu C4.1.1 Proměn. na pr.výst.1). Výstup 0% = 4 mA. Na výstupu může být i proud nižší než 4 mA (<0%), pokud jste v menu C4.1.4 Rozsah proud.výst. zvolili "3,8-20,5 mA". Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník min-max: -4,910^6...+5,110^6 mm / -192,9110^3...+200,7910^3/-16076...+16732 ft 0,0 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4.1.3</td>
<td>Rozsah 100%</td>
<td>Udává měřenou hodnotu odpovídající 100% na výstupu (funkce výstupu viz také položka menu C4.1.1 Proměn. na pr.výst.1). Výstup 100% = 20 mA. Na výstupu může být i proud vyšší než 20 mA (>100%), pokud jste v menu C4.1.4 Rozsah proud.výst. zvolili "3,8-20,5 mA". Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník min-max: -4,910^6...+5,110^6 mm / -192,9110^3...+200,7910^3/-16076...+16732 ft C1.2 Výška hlad. - Č1.5 Mrtvá vzdálenost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4.1.4</td>
<td>Rozsah proud.výst.</td>
<td>V této položce menu se nastavují mezní hodnoty proudového výstupu na 1 ze 4 dostupných možností: standardní meze (4...20 mA), meze podle NAMUR NE 43 (3,8...20,5 mA), obrácené standardní meze podle NAMUR NE 43. Standardní meze použijte, pokud chcete, aby 0% na výstupu odpovídalo hodnotě 4 mA a 100% na výstupu hodnotě 20 mA. Použijte obrácené meze, pokud chcete, aby 0% na výstupu odpovídalo hodnotě 20 mA a 100% na výstupu hodnotě 4 mA. Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník 4-20 mA, 3,8-20,5 mA (NAMUR), 4-20 mA (obrácený), 3,8-20,5 mA (obrácený) 4-20 mA C1.2 Výška hlad. - Č1.5 Mrtvá vzdálenost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu č.</td>
<td>Funkce</td>
<td>Popis funkcí</td>
<td>Seznam možných hodnot</td>
<td>Stand. nastavení</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>C4.1.5</td>
<td>Chybová funkce</td>
<td>Nastavení chování proudového výstupu 1 při výskytu chyby. Pokud je v této položce menu zadáno "Vyp.", není na výstupu žádný signál (tento parametr není k dispozici, pokud je v C4.1.4 zadáno "3,8-20,5 mA" (NAMUR) nebo "3,8-20,5 mA (obrácený)"). Pokud je v této položce menu zadáno "Zachovat hodn.", na proudovém výstupu zůstane hodnota před výskytem chyby (tento parametr není k dispozici, pokud je v C4.1.4 zadáno "3,8-20,5 mA" (NAMUR) nebo "3,8-20,5 mA (obrácený)"). Pokud je v této položce menu zadáno "Nízký", nastaví se při výskytu chyby výstupní signál na 3,5 mA (standardní hodnota). Pokud je v této položce menu zadáno "Vysoký", nastaví se při výskytu chyby výstupní signál na 21,5 mA (standardní hodnota). Nastavení hodnoty nízkého chybového proudu můžete změnit v položce menu C4.1.7. Nastavení hodnoty vysokého chybového proudu můžete změnit v položce menu C4.1.8.</td>
<td>Vyp., Nízký, Vysoký, Zachovat hodn.</td>
<td>Zachovat hodn.</td>
</tr>
<tr>
<td>C4.1.7</td>
<td>Nízký chyb. proud</td>
<td>Tato položka menu je k dispozici, pokud je v C4.1.5 zadáno "Nízký". Můžete změnit hodnotu, na kterou se proudový výstup nastaví při výskytu chyby.</td>
<td>min-max: 3,5...3,6 mA</td>
<td>3,5 mA</td>
</tr>
<tr>
<td>C4.1.8</td>
<td>Vysoký chyb. proud</td>
<td>Tato položka menu je k dispozici, pokud je v C4.1.5 zadáno "Vysoký". Můžete změnit hodnotu, na kterou se proudový výstup nastaví při výskytu chyby.</td>
<td>min-max: 21,0...21,5 mA</td>
<td>21,5 mA</td>
</tr>
<tr>
<td>C4.1.9</td>
<td>Kalibrace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4.1.9.2</td>
<td>Nastavení 4mA</td>
<td>Použíjte tuto položku menu, pokud je proudový výstup přístroje nastaven na 4 mA, ale hodnota naměřená ve smyčce není 4 mA. Zadejte naměřenou hodnotu.</td>
<td>min-max: 0,0...25,0 mA</td>
<td>4 mA</td>
</tr>
<tr>
<td>C4.1.9.5</td>
<td>Nastavení 20mA</td>
<td>Použíjte tuto položku menu, pokud je proudový výstup přístroje nastaven na 20 mA, ale hodnota naměřená ve smyčce není 20 mA. Zadejte naměřenou hodnotu.</td>
<td>min-max: 0,0...25,0 mA</td>
<td>20 mA</td>
</tr>
</tbody>
</table>
C5 Komunikace

C5.1 HART

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Režim proud.smyčky</td>
<td>Nastavte v této položce menu "Zap.", pokud se má "Primární proměnná" pro proudový výstup 1 rovněž přenášet jako signál 4...20 mA. Pokud je v této položce menu nastaveno "Vyp.", signál 4...20 mA se nebude přenášet a spustí se režim HART® multi-drop. Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník</td>
<td>Zap., Vyp.</td>
<td>Zap.</td>
</tr>
</tbody>
</table>

C5.1.2 Identifikace

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volací adresa</td>
<td>Hodnota volací adresy větší než 0 spustí režim HART® multi-drop. Pokud spustíte režim HART® multi-drop, zůstane na proudovém výstupu konstantní hodnota 4 mA. Minimální přístupová úroveň pro změnu tohoto nastavení: Obsluha</td>
<td>000...063</td>
<td>0</td>
</tr>
<tr>
<td>Dlouhý tag</td>
<td>Použijte tuto položku menu pro nastavení dlouhého označení přístroje (měřicího okruhu). Označení může mít maximálně 32 znaků. Podrobnosti o dostupných znacích viz Funkce tlačítek na straně 65 (hodnoty v položkách menu).</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ident. výrobce</td>
<td>Jedná se o identifikační číslo, které výrobci přidělila HART Foundation. Pouze pro čtení</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Typ přístroje</td>
<td>Jedná se o číslo typu přístroje, které výrobci přidělila HART Foundation. Pouze pro čtení</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ident. přístroje</td>
<td>Jedná se o identifikační číslo přístroje, které výrobci přidělila HART Foundation. Znamená to, že HART Foundation zaregistrovala pro tento přístroj soubor DD (HART® device description). Pouze pro čtení</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Univerzální revize</td>
<td>Jedná se o verzi protokolu HART, kterou přístroj používá. Pouze pro čtení</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Revize zařízení</td>
<td>Jedná se o číslo revize souboru DD (HART® device description). Pouze pro čtení</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Revize software</td>
<td>Jedná se o číslo revize softwaru přístroje. Pouze pro čtení</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Revize hardware</td>
<td>Jedná se o číslo revize hardwaru přístroje. Pouze pro čtení</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Menu č.</td>
<td>Funkce</td>
<td>Popis funkčí</td>
<td>Seznam možných hodnot</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>C5.1.3</td>
<td>Info o přístroji</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5.1.3.1</td>
<td>Popis</td>
<td>V této položce menu můžete zadat krátký popis (maximálně 16 znaků) přístroje.</td>
<td>—</td>
</tr>
<tr>
<td>C5.1.3.2</td>
<td>Zpráva</td>
<td>V této položce menu můžete zadat doplnkové údaje (maximálně 32 znaků).</td>
<td>—</td>
</tr>
<tr>
<td>C5.1.3.3</td>
<td>Datum</td>
<td>V této položce menu můžete zadat datum (formát: rok-měsíc-den / RRRR-MM-DD)</td>
<td>—</td>
</tr>
<tr>
<td>C5.1.3.4</td>
<td>Nast.změny počítadla</td>
<td>Tato funkce počítá změny provedené v nastavení zařízení HART®.</td>
<td>Pouze pro čtení</td>
</tr>
<tr>
<td>C5.1.4</td>
<td>Proměnné HART</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5.1.4.1</td>
<td>Promě.nná pr.výst.1</td>
<td>Toto je první typ měření (měřená proměnná), který se zobrazí v ústředním rozhraní HART®. Zvolte ze seznamu.</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost</td>
</tr>
<tr>
<td>C5.1.4.2</td>
<td>HART SV/prom.pr.výst.2</td>
<td>Toto je druhý typ měření (měřená proměnná), který se zobrazí v ústředním rozhraní HART®. Zvolte ze seznamu.</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost</td>
</tr>
<tr>
<td>C5.1.4.3</td>
<td>Terciální prom.</td>
<td>Toto je třetí typ měření (měřená proměnná), který se zobrazí v ústředním rozhraní HART®. Zvolte ze seznamu.</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost</td>
</tr>
<tr>
<td>C5.1.4.4</td>
<td>Kvartér.prom.</td>
<td>Toto je čtvrtý typ měření (měřená proměnná), který se zobrazí v ústředním rozhraní HART®. Zvolte ze seznamu.</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost</td>
</tr>
<tr>
<td>C6</td>
<td>Displej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.1</td>
<td>Jazyk</td>
<td>Texty mohou být zobrazeny v jednom z jazyků uložených v paměti přístroje. Zvolte ze seznamu.</td>
<td>Angličtina, němčina, francouzština, italština, portugalská, španělština, čeština, polština, čínština (jižnějšená), japonská, rusština, turečtina</td>
</tr>
<tr>
<td>C6.2</td>
<td>Podsvícení</td>
<td>Pokud v této položce menu nastavíte "Aktivní", rozsvítí se při stisknutí tlačítka displeje a ve smyčce je proud vyšší než 6 mA.</td>
<td>Neaktivní, Aktivní</td>
</tr>
<tr>
<td>Menu č.</td>
<td>Funkce</td>
<td>Popis funkcí</td>
<td>Seznam možných hodnot</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>C6.3</td>
<td>Kontrast</td>
<td>Nastavení kontrastu obrazovky displeje. Zvolte jednu z úrovní od světle šedé (-10) po černou (+10).</td>
<td>min-max: -10...+10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td></td>
</tr>
<tr>
<td>C6.4 1.str.měř.hodn.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6.4.1</td>
<td>Funkce</td>
<td>Toto menu umožňuje nastavit způsob zobrazení údajů na obrazovce displeje v Provozním režimu. K dispozici jsou dvě stránky pro zobrazení měřených hodnot. Toto nastavení je pro první stránku.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td></td>
</tr>
<tr>
<td>C6.4.2</td>
<td>1.měř. proměnná</td>
<td>Zde se nastavuje měřená proměnná (typ měření) pro první hodnotu na stránce měřených hodnot.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td></td>
</tr>
<tr>
<td>C6.4.3</td>
<td>Rozsah 0%</td>
<td>Toto je hodnota odpovídající 0% grafického ukazatele (zobrazení) v Provozním režimu. Rozsah se vztahuje k typu měření (proměnné) nastavenému v C6.4.2 1.měř. proměnná. Tato položka menu je k dispozici pouze v případě, že jste v C6.4.1 Funkce zvolili "1 hodn. a graf.zobr." nebo "2 hodn. a graf.zobr.".</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td></td>
</tr>
<tr>
<td>C6.4.4</td>
<td>Rozsah 100%</td>
<td>Toto je hodnota odpovídající 100% grafického ukazatele (zobrazení) v Provozním režimu. Rozsah se vztahuje k typu měření (proměnné) nastavenému v C6.4.2 1.měř. proměnná. Tato položka menu je k dispozici pouze v případě, že jste v C6.4.1 Funkce zvolili "1 hodn. a graf.zobr." nebo "2 hodn. a graf.zobr.".</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td></td>
</tr>
<tr>
<td>C6.4.6</td>
<td>2.měř. proměnná</td>
<td>Zde se nastavuje měřená proměnná (typ měření) pro druhou hodnotu na stránce měřených hodnot. Tato položka menu je k dispozici pouze v případě, že jste v C6.4.1 Funkce zvolili "2 hodnoty", "2 hodn. a graf.zobr." nebo "3 hodnoty".</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost (2)</td>
</tr>
<tr>
<td>Menu č.</td>
<td>Funkce</td>
<td>Popis funkcí</td>
<td>Seznam možných hodnot</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>C6.4.8</td>
<td>3.měř. proměnná</td>
<td>Zde se nastavuje měřená proměnná (typ měření) pro třetí hodnotu na stránce měřených hodnot. Tato položka menu je k dispozici pouze v případě, že jste v C6.4.1 Funkce zvolili "3 hodnoty". Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost</td>
</tr>
</tbody>
</table>

C6.5 2.str.měř.hodn.

<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis fungce</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6.5.1</td>
<td>Toto menu umožňuje nastavit způsob zobrazení údajů na obrazovce displeje v Provozním režimu. K dispozici jsou dvě stránky pro zobrazení měřených hodnot. Toto nastavení je pro druhou stránku. Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel</td>
<td>1 hodnota, 1 hodn.a graf.zobr., 2 hodnoty, 2 hodn.a graf.zobr., 3 hodnoty</td>
<td>3 hodnoty</td>
<td></td>
</tr>
</tbody>
</table>

C6.5.2

<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis fungce</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
</table>

C6.5.3

<p>| Rozsah 0% | Toto je hodnota odpovídající 0% grafického ukazatele (zobrazení) v Provozním režimu. Rozsah se vztahuje k typu měření (proměnné) nastavenému v C6.5.2 1.měř. proměnná. Tato položka menu je k dispozici pouze v případě, že jste v C6.5.1 Funkce zvolili "1 hodn. a graf.zobr." nebo "2 hodn. a graf.zobr.". Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel | Víz "Popis funkci" | Víz "Popis funkci" |</p>
<table>
<thead>
<tr>
<th>Menu č.</th>
<th>Funkce</th>
<th>Popis funkčí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6.5.4</td>
<td>Rozsah 100%</td>
<td>Toto je hodnota odpovídající 100% grafického ukazatele (zobrazení) v Provozním režimu. Rozsah se vztahuje k typu měření (proměnné) nastavenému v C6.5.2. Tato položka menu je k dispozici pouze v případě, že jste v C6.5.1 Funkce zvolili “1 hodn. a graf.zobr.” nebo “2 hodn. a graf.zobr.”.</td>
<td>Viz "Popis funkci".</td>
<td>Viz "Popis funkci".</td>
</tr>
<tr>
<td>C6.5.6</td>
<td>2.měř. proměnná</td>
<td>Zde se nastavuje měřená proměnná (typ měření) pro druhou hodnotu na stránce měřených hodnot. Tato položka menu je k dispozici pouze v případě, že jste v C6.5.1 Funkce zvolili “2 hodnoty”, “2 hodn. a graf.zobr.” nebo “3 hodnoty”.</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost ②</td>
<td>Výška hlad.</td>
</tr>
<tr>
<td>C6.5.8</td>
<td>3.měř. proměnná</td>
<td>Zde se nastavuje měřená proměnná (typ měření) pro třetí hodnotu na stránce měřených hodnot. Tato položka menu je k dispozici pouze v případě, že jste v C6.5.1 Funkce zvolili “3 hodnoty”.</td>
<td>Výška hlad., Vzdálenost, Hodn.ze snímače, Odrazivost ②</td>
<td>Odrazivost</td>
</tr>
</tbody>
</table>
C7 Přístroj

C7.1 Informace

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.1.1</td>
<td>Tag</td>
<td>Pouze pro čtení</td>
<td>TANK01 1</td>
</tr>
<tr>
<td>C7.1.2</td>
<td>Výrobní číslo</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.3</td>
<td>Název přístroje</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.4</td>
<td>Číslo V</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.5</td>
<td>Revize elektroniky</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.6</td>
<td>Revize software</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.7</td>
<td>Výr.č. elektroniky</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.8</td>
<td>Datum výroby</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.9</td>
<td>Datum kalibrace</td>
<td>Pouze pro čtení</td>
<td>—</td>
</tr>
</tbody>
</table>

C7.2 Ochrana

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Popis funkcí</th>
<th>Seznam možných hodnot</th>
<th>Stand. nastavení</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.2.1</td>
<td>Přihlášení</td>
<td>4místné heslo v hexadecimálním tvaru</td>
<td>Viz "Popis funkce"</td>
</tr>
<tr>
<td>C7.2.2</td>
<td>Změna hesla</td>
<td>4místné heslo v hexadecimálním tvaru</td>
<td>Viz "Popis funkce"</td>
</tr>
<tr>
<td>C7.2.3</td>
<td>Vymazání hesla</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Provoz

- **OPTIWAVE 6400 C**
- www.krohne.com 11/2017 - 4006442701 - MA OPTIWAVE 6400 R01 cs

C7.3 Chyby

C7.3.1 Náhled zprávy

Pouze pro čtení

C7.3.2 Mapování chyb

C7.3.2.1 Snímač informace

Zde je možno změnit kód chyby, který je přiřazen dané události.

Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel

Bez, Informace (I), Požadována údržba (M), Mimo specifikaci (S), Kontrola funkce (C), Porucha (F)

Informace

C7.5 Jednotky

C7.5.1 Délka

Jednotka délky zobrazená v Provozním režimu. Pokud nastavíte tuto položku menu na "Uživ." (uživatelská jednotka délky), zadejte parametry v položkách menu C7.5.2.1 až C7.5.2.3.

Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel

m, cm, mm, ft, in, Uživ.

m

C7.5.2 Uživatel.délka

C7.5.2.1 Text

Zadejte text (maximálně 8 znaků) pro uživatelskou jednotku délky.

—

Uživ.

C7.5.2.2 Odchylka

Zadejte hodnotu odchylky.

—

0,0 m

C7.5.2.3 Koeficient

Zadejte koeficient. Vynásobením měřené hodnoty tímto koeficientem se m (metry) přečtou na uživatelskou jednotku délky.

—

1,0

C7.5.3 Objem

Jednotka objemu zobrazená v Provozním režimu, pokud jste v menu C3 Přepočet zadali tabulku objemu. Pokud nastavíte tuto položku menu na "Uživatel objem" (uživatelská jednotka objemu), zadejte parametry v položkách menu C7.5.4.1 až C7.5.4.3.

Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel

m³, L, hL, in³, ft³, gal, ImpGal, yd³, bbl, bbl (pivo, US), Uživatel.objem

m³

C7.5.4 Uživatel.objem

C7.5.4.1 Text

Zadejte text (maximálně 8 znaků) pro uživatelskou jednotku objemu.

—

Uživ.

C7.5.4.2 Odchylka

Zadejte hodnotu odchylky.

—

0,0 m³

C7.5.4.3 Koeficient

Zadejte koeficient. Vynásobením měřené hodnoty tímto koeficientem se m³ (metry krychlové) přečtou na uživatelskou jednotku objemu.

—

1,0
Menu č.	Funkce	Popis funkcí	Seznam možných hodnot	Stand. nastavení
C7.5.5 | Hmotnost | Jednotka hmotnosti zobrazená v Provozním režimu, pokud jste v menu C3 Přepočet zadali tabulku hmotnosti. Pokud nastavíte tuto položku menu na "Uživatel.hmot." (uživatelská jednotka hmotnosti), zadejte parametry v položkách menu C7.5.6.1 až C7.5.6.3. **Minimální přístupová úroveň pro změnu tohoto nastavení: Uživatel** | kg, t, lb, tn.sh., tn.l., Uživatel.hmot. | kg

C7.5.6 Uživatel.hmot.

C7.5.6.1 Text | Zadejte text (maximálně 8 znaků) pro uživatelskou jednotku objemu. | — | Uživ. |
C7.5.6.2 Odchylka | Zadejte hodnotu odchylky. | — | 0,0kg |
C7.5.6.3 Koeeficient | Zadejte koeeficient. Vynásobením měřené hodnoty tímto koeeficientem se kg (kilogramy) přepočtu na uživatelskou jednotku hmotnosti. | — | 1,0 |

C7.6 Standard z výroby

C7.6.1 Reset na stand.výr.? | Pokud v tomto menu zadáte "Ano", přístroj se vrátí k původnímu nastavení parametrů z výrobního závodu. **Minimální přístupová úroveň pro změnu tohoto nastavení: Odborník** | Ano, Ne | Ne |

1. Pokud hodnota nebo parameter nejsou uvedeny v objednávce zákazníka

2. "Linear.výš.hlad." a "Lineáriz.vzdál." jsou k dispozici, pokud jste vytvořili lineární tabulku v menu C3 Přepočet. "Objem" a "Volný objem" jsou k dispozici, pokud jste vytvořili přepočetní tabulku výška hladiny-objem v menu C3 Přepočet. "Hmotnost" a "Volná hmotnost" jsou k dispozici, pokud jste vytvořili přepočetní tabulku výška hladiny-hmotnost v menu C3 Přepočet.

6.4 Další informace o nastavení přístroje v Režimu nastavení

6.4.1 Standardní nastavení

Použijte tuto proceduru (polažku menu A4.1 Stand. nastavení) pro změnu jednotek délky, typu nádrže, výšky nádrže, měřené proměnné na proudovém výstupu, 0% rozsahu, 100% rozsahu, rozsahu proudového výstupu a chybové funkce. Hodnoty a parametry, které je možno změnit, jsou zobrazeny mezi znaky « ... » na následujících obrázcích. Stiskněte tlačítko ve správném pořadí:

Upozornění!

Tuto proceduru je nutno provést před prvním použitím přístroje. Nastavení provedená v této proceduře mají vliv na provoz a výkon přístroje.

Informace!

Proudový výstup a nastavení displeje

Pokud postupujete podle procedury Stand. nastavení, pak měřená hodnota na první stránce displeje (v Provozním režimu) automaticky převezme parametry a hodnoty z nastavení proudového výstupu (měřenou proměnnou, rozsah 0% a 100%). Na první stránce měřených hodnot se standardně zobrazí "jedna hodnota a grafické zobrazení". Pokud si přejete zobrazovat jednu nebo více měřených proměnných, které se liší od měřené proměnné na proudovém výstupu, změňte nastavení menu C6.4 1.str.měř.hodn. a C6.5 2.str.měř.hodn.. Podrobnosti viz Popis funkcí na straně 75 – tabulka menu C. Úplné nastavení (C6 Displej).
Postup

<table>
<thead>
<tr>
<th>Obrazovka displeje</th>
<th>Kroky</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzdálenost</td>
<td>2 × [>] a [▼]. Pokud zadáváte předdefinované (standardní) heslo: 2 × [>], 5 × [▲].</td>
<td>Standardní obrazovka. Stiskněte tato tlačítka a spusťte proceduru Standardního nastavení. Vstupte do Režimu nastavení a přejděte na položku menu A3 Přihlášení.</td>
</tr>
<tr>
<td>Jednotka délky</td>
<td>[▼] a 2 × [>]</td>
<td>Zadejte heslo aktuálně používané pro přístupovou úroveň "Odborník". Pokud zadáváte předdefinované (standardní) heslo, zadejte "0058".</td>
</tr>
<tr>
<td>Typ nádrže</td>
<td>[▲] nebo [▼] pro volbu typu nádrže (Rovný povrch, Mírný svah nebo Prudký svah).</td>
<td>Jednotka délky. Zvolte ze seznamu parametrů.</td>
</tr>
<tr>
<td>Proudový výstup</td>
<td>[▲] nebo [▼] pro volbu typu měření (proměnné) (Vzdálenost, Výška hlad., Hodn. ze snímače nebo Odrazivost, Objem (Hmotnost).</td>
<td>Proměnná pro proudový výstup 1. Výrobce nastaví před expedicí proměnnou proudového výstupu (pro proudový výstup 1) na "Vzdálenost". Pokud je potřeba měřit objem, volný objem, hmotnost nebo volnou hmotnost, viz Jak nastavit přístroj pro měření objemu nebo hmotnosti na straně 108.</td>
</tr>
</tbody>
</table>

Diagram

![Diagram](image-url)
<table>
<thead>
<tr>
<th>Obrazovka displeje</th>
<th>Kroky</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozsah 0%</td>
<td>[>] pro změnu polohy kurzoru.</td>
<td>Rozsah 0%. V tomto kroku se zadává hodnota proměnné odpovídající 0% na výstupu. Viz následující obrázky. Pokud je položka menu A4.1.3.1 Proměn. na pr.výst. nastavena na "Výška hlad.", na obrázku ① je zobrazena poloha 0% na výstupu jako výška hladiny nad dnem nádrže. Pokud je položka menu A4.1.3.1 Proměn. na pr.výst. nastavena na "Vzdálenost", na obrázku ② je zobrazena poloha 0% na výstupu jako vzdálenost od těsnicí lišty příruby nebo dorazu závitu provozního připojení.</td>
</tr>
<tr>
<td>0.00000 m</td>
<td>[▼] pro snížení hodnoty (nebo posun desetinné četky o jedno místo vlevo) nebo [►] pro zvýšení hodnoty (nebo posun desetinné četky o jedno místo vpravo).</td>
<td></td>
</tr>
<tr>
<td>[-4900.0...+5100.0]</td>
<td>[◄] pro potvrzení.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obrazovka displeje</th>
<th>Kroky</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozsah 100%</td>
<td>[>] pro změnu polohy kurzoru.</td>
<td>Rozsah 100%. V tomto kroku se zadává hodnota proměnné odpovídající 100% na výstupu. Viz následující obrázky. Na obrázku ① je zobrazeno nastavení pro výšku hladiny. Na obrázku ② je zobrazeno nastavení pro vzdálenost. Viz následující obrázky. Pokud je položka menu A4.1.3.1 Proměn. na pr.výst. nastavena na "Výška hlad.", na obrázku ① je zobrazena poloha 100% na výstupu jako výška hladiny nad dnem nádrže. Pokud je položka menu A4.1.3.1 Proměn. na pr.výst. nastavena na "Vzdálenost", na obrázku ② je zobrazena poloha 100% na výstupu jako vzdálenost od těsnicí lišty příruby nebo dorazu závitu provozního připojení.</td>
</tr>
<tr>
<td>0.00000 m</td>
<td>[▼] pro snížení hodnoty (nebo posun desetinné četky o jedno místo vlevo) nebo [►] pro zvýšení hodnoty (nebo posun desetinné četky o jedno místo vpravo).</td>
<td></td>
</tr>
<tr>
<td>[-4900.0...+5100.0]</td>
<td>[◄] pro potvrzení.</td>
<td></td>
</tr>
</tbody>
</table>
Obrazovka displeje

<table>
<thead>
<tr>
<th>Kroky</th>
<th>Popis</th>
</tr>
</thead>
</table>
| • [▲] nebo [▼] pro volbu rozsahu proudového výstupu (3,8-20,5 mA (NAMUR), 4-20 mA, 3,8-20,5 mA (obrácený) nebo 4-20 mA (obrácený)).
• [●] pro potvrzení. | Rozsah proudového výstupu. V tomto menu se přizpůsobí hodnoty výstupního proudu měřicímu rozsahu mezi hodnotami 0% a 100%, které byly zadány v krocích "Rozsah 0%" a "Rozsah 100%". Pokud nastavíte tuto položku menu na "4-20 mA" nebo "3,8-20,5 mA":
• Rozsah 0% = 4 mA
• Rozsah 100% = 20 mA
Pokus nastavíte tuto položku menu na "3,8-20,5 mA (obrácený)" nebo "3,8-20,5 mA (obrácený)":
• Rozsah 0% = 20 mA
• Rozsah 100% = 4 mA. |
| • [▲] nebo [▼] pro volbu chybové funkce (Vyp., Zachovat hodn., Vysoký nebo Nízký).
• [●] pro potvrzení. | Chybová funkce. Nastavení chování proudového výstupu 1 při výskytu chyby.
Pokus je v této položce menu zadáno "Vyp.", není na výstupu žádný signál (tento parametr není k dispozici, pokud je v C4.1.4 zadáno "3,8-20,5 mA" (NAMUR) nebo "3,8-20,5 mA (obrácený)"). Pokud je v této položce menu zadáno "Zachovat hodn.", na proudovém výstupu zůstane hodnota před výskytem chyby (tento parametr není k dispozici, pokud je v C4.1.4 zadáno "3,8-20,5 mA" (NAMUR) nebo "3,8-20,5 mA (obrácený)"). Pokud je v této položce menu zadáno "Nízký", nastaví se při výskytu chyby výstupní signál na 3,5 mA (standardní hodnota). Pokud je v této položce menu zadáno "Vysoký", nastaví se při výskytu chyby výstupní signál na 21,5 mA (standardní hodnota). |
| • [▲] nebo [▼] pro volbu, zda uložit či neuložit nastavení (Ano, Ne nebo Zpět).
• [●] pro potvrzení. | Obrazovka s dotazem Uložit nastavení?.
Po zadání "Ano" se nastavené parametry uloží a na výstupu se zpět do Provozního režimu. Po zadání "Ne" se změny v nastavení přístroje zruší a vrátíte se zpět do Provozního režimu. Po zadání "Zpět" zůstane v Režimu nastavení. |
| • 3 × [●] pro potvrzení. | Obrazovka displeje

Obrazovka displeje

<table>
<thead>
<tr>
<th>Krok</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proudový výstup 1 A4.1,35</td>
<td></td>
</tr>
</tbody>
</table>
• [▲] nebo [▼] pro volbu chybové funkce (Vyp., Zachovat hodn., Vysoký nebo Nízký).
• [●] pro potvrzení.
3 × [●] pro potvrzení. |

6.4.2 Záznam prázdného spektra

Procedura záznamu spektra prázdné nádrže je velmi důležitá pro správnou funkci přístroje. Doporučujeme, aby byla nádrž před prováděním procedury prázdna nebo zaplněna po minimum.

Použijte tuto proceduru (položka menu A4.2 Prázd.spektrum), pokud se v nádrži nacházejí pohyblivé a nepohyblivé objekty, které mohou způsobit rušivé signály. Přístroj provede "snímkování" (vyhledání) objektů v nádrži, které nemění svou polohu ve svislém směru (topný had, míchadla, palivový systém apod.) a zaznamená zjištěné údaje. Přístroj pak může tyto údaje použít pro filtrování naměřených hodnot (prázdné spektrum).

Pokud je filtrování signálu pomocí prázdného spektra zapnuto (položka menu C2.8 Prázd.spektrum je nastavena na "Aktivní"), budou rušivé (parazitní) signály potlačeny.
Upozornění!
Nádrž musí být prázdná nebo zaplněná po minimum.

Informace!
Jelikož přístroj ůduje o prázdném spektru zaznamenává a ukládá, není nutno provádět tuto proceduru znovu po vypnutí a zapnutí přístroje.

Před provedením záznamu spektra prázdné nádrže nejprve hladinoměr namontujte na nádrž. Další podrobnosti o montáži přístroje viz Montáž na straně 23.

Hodnoty a parametry, které je možno změnit, jsou zobrazeny mezi znaky « ... » na následujících obrázcích. Stiskněte tlačítka ve správném pořadí:

Postup

<table>
<thead>
<tr>
<th>Obrazovka displeje</th>
<th>Kroky</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank01 Vzdálenost</td>
<td>2 × [>]</td>
<td>Standardní obrazovka. Vstupte do Režimu nastavení a přejděte na položku menu A3 Přihlášení.</td>
</tr>
<tr>
<td>Rychlé nastavení</td>
<td>Pokud zadáváte předdefinované (standardní) heslo:</td>
<td>Zadejte heslo aktuálně používané pro přístupovou úroveň "Odborník". Pokud zadáváte předdefinované (standardní) heslo, zadejte "0058".</td>
</tr>
<tr>
<td>Heslo? [*]**</td>
<td>2 × [>]</td>
<td></td>
</tr>
<tr>
<td>Záznam spektra</td>
<td>[>] nebo [>] pro volbu typu prázdného spektra (Uplné (průměr), Uplné (max.), Částečné (průměr), Částečné (max.).)</td>
<td>Stiskněte tato tlačítka pro spuštění procedury Záznam spektra (Prázdné spektrum). Typ prázdného spektra. Zvolte ze seznamu parametrů. Pokud můžete zcela vyprázdnit nádrž, nastavte tuto položku menu na "Uplné, průměr" nebo "Uplné, max.". Pokud nádrž není možno zcela vyprázdnit, nastavte tuto položku menu na "Částečné, průměr" nebo "Částečné, max.".</td>
</tr>
<tr>
<td>Typ prázdn. spektra</td>
<td>[>]</td>
<td>Pokud používáte dmýchadlo pro zmenšení sypného úhlu média, nastavte Typ prázdn.spektra na "Částečné, max.".</td>
</tr>
<tr>
<td>Upplné, prům.</td>
<td>2 × [>]</td>
<td></td>
</tr>
<tr>
<td>Obrazovka displeje</td>
<td>Kroky</td>
<td>Popis</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Záznam spektra</td>
<td>[>] pro změnu polohy kurzoru.</td>
<td>Částečná vzdálenost. Pokud jste nastavili Typ prázd.spektra na "Částečně, průměr" nebo "Částečně, max.", musíte v této proceduře provést jeden krok navíc. Musíte zadat "částečnou vzdálenost", která musí být menší nebo rovna vzdálenosti od těsnici lišty příruby nebo dorazu závitu provozního připojení k povrchu měřeného média. POZOR! Pokud je "částečná vzdálenost" větší než vzdálenost k povrchu měřeného média, přístroj do filtru zahrne i signál od hladiny a nebude pak měřit výšku hladiny média správně.</td>
</tr>
<tr>
<td></td>
<td>[>] pro snížení hodnoty (nebo posun desetinné tečky o jedno místo vlevo) nebo [<] pro zvýšení hodnoty (nebo posun desetinné tečky o jedno místo vpravo).</td>
<td>• [>] pro potvrzení. Zkontrolujte, že je nádrž prázdná nebo obsahuje jen minimální množství měřeného média. Zapněte a spusťte všechny pohyblivé objekty v síle.</td>
</tr>
<tr>
<td>Záznam spektra</td>
<td>[<] pro potvrzení.</td>
<td>Graf s výsledky záznamu prázdného spektra.</td>
</tr>
<tr>
<td>Záznam spektra</td>
<td>[>] pro potvrzení.</td>
<td>Graf s výsledky záznamu prázdného spektra.</td>
</tr>
<tr>
<td>Záznam spektra</td>
<td>[>] pro potvrzení.</td>
<td></td>
</tr>
</tbody>
</table>
6.4.3 Konfigurace pro síť HART®

<table>
<thead>
<tr>
<th>Obrazovka displeje</th>
<th>Kroky</th>
<th>Popis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neaktivní</td>
<td>![Symbol] pro potvrzení.</td>
<td></td>
</tr>
<tr>
<td>Prázné spektrum...</td>
<td>![Symbol] pro potvrzení.</td>
<td></td>
</tr>
<tr>
<td>AKTIVNÍ</td>
<td>![Symbol] pro volbu "Ano nebo Zpět".</td>
<td>Obrazovka s dotazem Uložit nastavení?. Po zadání "Ano" se nastavené parametry uloží do následné použití a vratíte se zpět do Režimu nastavení. Po zadání "Zpět" zůstane v Režimu nastavení.</td>
</tr>
</tbody>
</table>

Informace!

Podrobnosti viz Sítě na straně 49.

Pro předávání informací zařízením kompatibilním s rozhraním HART® používá přístroj komunikaci HART®. Může být provozován v režimu point-to-point nebo multi-drop. Přístroj bude komunikovat v režimu multidrop, pokud změníte volaci adresu.

Upozornění!

Ujistěte se, že adresa přístroje není shodná s adresou jiného zařízení v síti multi-drop.

Informace!

Zkontrolujte, zda je položka menu C5.1.1 Režim proud.smyčky nastavena na "Zap.".

Jak změnit režim point-to-point na multi-drop

- Vstupte do Režimu nastavení.
- Stiskněte 2 × ![Symbol], 3 × ![Symbol], 2 × ![Symbol] a 2 × ![Symbol] pro přechod na položku menu C5.1.2.1 Volací adresa.
- Zadejte heslo aktuálně používané pro přístupovou úroveň "Odborník". Pokud zadáváte předdefinované (standardní) heslo, zadejte "0058". Stiskněte ![Symbol] pro potvrzení.
- Zadejte hodnotu v rozmezí 001 až 063 a stiskněte ![Symbol] pro potvrzení.
- Stiskněte několikrát ![Symbol], dokud se nedostanete zpět na obrazovku s dotazem **Uložit nastavení**?
- Stiskněte ![Symbol] nebo ![Symbol] pro přechod na volbu "Ano" a stiskněte ![Symbol].
- Výstup je nastaven na režim multi-drop. Proudový výstup je nastaven na hodnotu 4 mA. Tato hodnota se v režimu multi-drop nemění.

Jak změnit režim multidrop na point-to-point

- Vstupte do Režimu nastavení.
- Stiskněte 2 × ![Symbol], 3 × ![Symbol], 2 × ![Symbol] a 2 × ![Symbol] pro přechod na položku menu C5.1.2.1 Volací adresa.
• Zadejte heslo aktuálně používané pro přístupovou úroveň "Odborník". Pokud zadáváte předdefinované (standardní) heslo, zadejte "0058". Stiskněte [+] pro potvrzení.
• Zadejte hodnotu 000 a pak potvrďte stisknutím [→].
• Stiskněte několikrát [●], dokud se nedostanete zpět na obrazovku s dotazem Uložit nastavení?.
• Stiskněte [▲] nebo [▼] pro přechod na volbu "Ano" a stiskněte [←].

Výstup je nastaven na režim point-to-point. Hodnoty na výstupu se změní na rozsah 4...20 mA nebo 3,8...20,5 mA (v závislosti na nastavení v položce menu C4.1.4 Rozsah proud.výst.).

6.4.4 Měření vzdálenosti

Pokud je položka menu C4.1.1 Proměn. na pr.výst.1 (proměnná na proudovém výstupu 1) nastavena na "Vzdálenost", je na výstupu přístroje hodnota proudu vztažená k měřené vzdálenosti.

Na obrazovce displeje se mohou zobrazovat hodnoty naměřené vzdálenosti, pokud je v jedné nebo více položkách "měř.proměnná" menu C6.4 1.str.měř.hodn. nebo C6.5 2.str.měř.hodn. zadáno "Vzdálenost.

Položky vztahující se k měření vzdálenosti jsou následující:
• Menu Proud výstup 1 (C4.1)
• Výška nádrže (C1.2)
• Mrtvá vzdálenost (C1.5)
• Referenční odchylka (C1.10)
• Údaje zobrazené na displeji v Provozním režimu: menu 1.str.měř.hodn. (C6.4)
• Údaje zobrazené na displeji v Provozním režimu: menu 2.str.měř.hodn. (C6.5)

Pro měření vzdálenosti je referenčním bodem těsnici lišta příruby (0 m / 0 ft / 0¨). Poloha měřícího rozsahu (definovaná nastavením funkcí Rozsah 0% a Rozsah 100%) je vztažena k tomuto referenčnímu bodu. Při nastavování rozsahu pro signál proudového výstupu v menu C4.1 Proud výstup 1 můžete použít "standardní rozsah" nebo "obrácený rozsah". U standardního rozsahu odpovídá měřené hodnotě Rozsah 0% hodnota proudového výstupu 4 mA a měřené hodnotě Rozsah 100% odpovídá hodnota proudového výstupu 20 mA. U obráceného rozsahu odpovídá měřené hodnotě Rozsah 0% hodnota proudového výstupu 20 mA a měřené hodnotě Rozsah 100% odpovídá hodnota proudového výstupu 4 mA.

Můžete změnit referenční bod, od kterého je vzdálenost měřena. Použijte tuto položku menu:
• Referenční odchylka (C1.10)

Informace!

Položka menu C1.10 Referenční odchylka
Pokud posunete referenční bod nad příruby, nezapoměňte připojit hodnotu zadanou v položce menu C1.10 Referenční odchylka ke vzdálenosti při zadávání položek menu C4.1.2 Rozsah 0% a C4.1.3 Rozsah 100%. Pokud posunete referenční bod pod příruby, odečtěte hodnotu zadanou v položce menu C1.10 Referenční odchylka od vzdálenosti při zadávání položek menu C4.1.2 Rozsah 0% a C4.1.3 Rozsah 100%.
Upozornění!
Pokud je položka menu C4.1.1 Proměn. na pr.výst.1 nastavena na "Vzdálenost" a položka C4.1.2 Rozsah 0% (standardní rozsah) na hodnotu v mrtvé vzdálenosti, pak přístroj nebude schopen využít celý rozsah proudového výstupu.

Podrobnosti o položkách menu viz Popis funkcí na straně 75 – tabulka menu C. Úplné nastavení.

Informace!
Grafické zobrazení v Provozním režimu
Na obou stránkách měřených hodnot v Provozním režimu může být na ploch nastaveno grafické zobrazení (bargraph) měřených hodnot (nastavte C6.4.1 / C6.5.1 (Funkce) na "1 hodon.a graf.zobr." nebo "2 hodon.a graf.zobr."). Standardně grafické zobrazení (bargraph) na 1. stránce měřených hodnot vyjadřuje hodnotu, ke které se vztahuje měřicí rozsah definovaný v menu C4.1 Proud.výstup 1. Grafické zobrazení v Provozním režimu však je možno přidat i jinému měřicímu rozsahu a měřené proměnné. Podrobnosti viz Popis funkci na straně 75 – tabulka menu C. Úplné nastavení (C6 Displej). Rozsah grafického zobrazení je vztahen k parametrům zadaným v položkách menu C6.4.2 a C6.5.2 (1.měřená proměnná) a menu C1 Instalační parametry. Pokud změníte položku C1.10 Referenční odchylka, pak doporučujeme ve stejném měře rovněž změnit položky C6.4.3 / C6.5.3 (Rozsah 0%) a C6.4.4 / C6.5.4 (Rozsah 100%).

6.4.5 Měření výšky hladiny
Pokud je položka menu Proměn. na pr.výst.1 (proměnná na proudovém výstupu 1) nastavena na "Výška hlad.", je na výstupu přístroje hodnota proudu vztažená k měřené výšce hladiny.
Na obrazovce displeje se mohou zobrazovat hodnoty naměřené výšky hladiny, pokud je v jedné nebo více položkách "měř,.proměnná" menu C6.4 1.str.měř.hodn. nebo C6.5 2.str.měř.hodn. zadáno "Výška hlad.".

Položky vztahující se k měření výšky hladiny jsou následující:

- Menu Proud.výstup 1 (C4.1)
- Výška nádrže (C1.2)
- Mrtvá vzdálenost (C1.5)
- Odchylka dna nádrže (C1.11)
- Údaje zobrazené na displeji v Provozním režimu: menu 1.str.měř.hodn. (C6.4)
- Údaje zobrazené na displeji v Provozním režimu: menu 2.str.měř.hodn. (C6.5)

Pro měření výšky hladiny je referenčním bodem (0 m / 0 ft / 0") dno nádrže (zadané v položce menu C1.2 Výška nádrže). Poloha měřícího rozsahu (definovaná nastavením funkcí Rozsah 0% a Rozsah 100%) je vztáhena k tomuto referenčnímu bodu. Při nastavování rozsahu pro signál proudového výstupu v menu C4.1 Proud.výstup 1 můžete použít "standardní rozsah" nebo "obrácený rozsah". U standardního rozsahu odpovídá měřené hodnotě Rozsah 0% hodnota proudového výstupu 4 mA a měřené hodnotě Rozsah 100% odpovídá hodnota proudového výstupu 20 mA. U obráceného rozsahu odpovídá měřené hodnotě Rozsah 0% hodnota proudového výstupu 20 mA a měřené hodnotě Rozsah 100% odpovídá hodnota proudového výstupu 4 mA.

Můžete změnit referenční bod, od kterého je výška hladiny měřena. Použijte tuto položku menu:
- Odchylka dna nádrže (C1.11)

Informace!

C1.11 Odchylka dna nádrže
Pokud posunete odchylku dna nádrže pod dno nádrže, připočtěte hodnotu zadanou v položce menu C1.11 Odchylka dna nádrže k výšce hladiny při zadávání položek menu C4.1.2 Rozsah 0% a C4.1.3 Rozsah 100%. Pokud posunete odchylku dna nádrže nad dno nádrže, odečtěte hodnotu zadanou v položce menu C1.11 Odchylka dna nádrže od výšky hladiny při zadávání položek menu C4.1.2 Rozsah 0% a C4.1.3 Rozsah 100%.

Upozornění!
Pokud je položka menu C4.1.1 Proměn. na pr.výst.1 nastavena na "Výška hlad." a položka C4.1.3 Rozsah 100% (standardní rozsah) na hodnotu v mrtvé vzdálenosti, pak přístroj nebude schopen využít celý rozsah proudového výstupu.
Podrobnosti o položkách menù viz Popis funkcí na straně 75 – tabulka menù C. Úplné nastavení.

Informace!

Grafické zobrazení v Provozním režimu

Na obou stránkách měřených hodnot v Provozním režimu může být na přání nastaveno grafické zobrazení (bargraph) měřených hodnot (nastavte C6.4.1 / C6.5.1 (Funkce) na “1 hodn.a graf.zobr.” nebo “2 hodn.a graf.zobr.”). Standardně grafické zobrazení (bargraph) na 1. stránce měřených hodnot vyjadřuje hodnotu, ke které se vztahuje měřicí rozsah definovaný v menü C4.1 Proud.výstup 1. Grafické zobrazení v Provozním režimu však je možno přiřadit i jinému měřícímu rozsahu a měřené proměnné. Podrobnosti viz Popis funkcí na straně 75 – tabulka menù C. Úplné nastavení (C6 Display). Rozsah grafického zobrazení je vztázen k parametřům zadaným v položkách menù C6.4.2 a C6.5.2 (1.měřená proměnná) a menü C1 Instalační parametry. Pokud změníte položku C1.11 Odchylka dna nádrže, pak doporučujeme ve stejné mře rovněž změnit položky C6.4.3 / C6.5.3 (Rozsah 0%) a C6.4.4 / C6.5.4 (Rozsah 100%).
6.4.6 Jak nastavit přístroj pro měření objemu nebo hmotnosti

Upozornění!
Zadávejte data v číselném pořadí (podle čísel dvojic v přepočetní tabulce 01, 02, atd.)

Jak připraví přepočetní tabulku
- Vstupte do Režimu nastavení.
- Stiskněte 2 × [Abedo], 6 × [Abedo], 3 × [Abedo] a 3 × [Abedo] pro přechod na C7.5.1 Jednotka délky.
- Vyberte jednotku délky, kterou budete v tabulce používat, pomocí [Abedo] a [Abedo].
- Pokud potřebujete vytvořit tabulku hodnot objemu, stiskněte [Abedo] pro návrat na úroveň submenu a pak stiskněte 2 × [Abedo] a [Abedo] pro přechod na C7.5.3 Objem.
- Vyberte jednotku objemu, kterou budete v tabulce používat, pomocí [Abedo] a [Abedo].
- Stiskněte 2 × [Abedo] pro přechod na úroveň submenu "C7" a pak 2 × [Abedo] a 2 × [Abedo] pro přechod na položku C7.2.1 Příhlášení. Zadejte heslo aktuálně používané pro přístupovou úroveň "Odborník". Pokud zadáváte předdefinované (standardní) heslo, zadejte "0058".
- Stiskněte 3 × [Abedo] pro přechod na úroveň submenu "C" a pak 4 × [Abedo], 2 × [Abedo] pro přechod na položku C3.1 Upravit tabulku, kde vymažete údaje z převodní tabulky (Vymazat tabulku?), kterou přístroj právě používá. Nastavte volbu "Ano" pomocí [Abedo] a [Abedo], údaje budou vymazány.
- Výběr varianty přepočetní tabulky (objem, hmotnost, linearizace) proveděte stisknutím [Abedo] a pak [Abedo] a [Abedo].
- Stiskněte [Abedo] pro vytvoření přepočetní tabulky.
- Zadejte hodnotu výšky hladiny a stiskněte [Abedo].
- Zadejte přepočtenou hodnotu a stiskněte [Abedo] pro přechod na úroveň submenu.
- Stiskněte [Abedo] pro přechod na zadání následujícího bodu (02, 03, ..., 50) v tabulce.
- Opakujte poslední 3 kroky, dokud není zadána celá tabulka.
- Když je tabulka kompletní, stiskněte několikrát [Abedo], dokud se nedostanete zpět na obrazovku s dotazem "Uložit nastavení?".

Pokud stisknete [Abedo] na volbě "Ano", přístroj uloží zadané údaje v přepočetní tabulce a vrátí se do Provozního režimu.

Přístroj bude zobrazovat přesnější hodnoty objemu nebo hmotnosti, jestliže zadáte co nejvíce dvojic hodnot v následujících oblastech:
- zaoblené povrchy
- náhle změny průřezu.

Viz také následující obrázek:
Jak vymazat tabulku hodnot objemu nebo hmotnosti

- Vstupte do Režimu nastavení.
- Stiskněte 2 × [▲], [▼], 2 × [▲] a 2 × [▼] pro přechod na C3.1.1 Vymazat tabulku?.
- Pro vymazání hodnot v přepočetní tabulce (Vymazat tabulku?), kterou přístroj právě používá, zvolte v této položce menu "Ano" stisknutím [▲] a [▼].
- Stiskněte několikrát [►], dokud se nedostanete zpět na obrazovku s dotazem "Uložit nastavení?".
- Přístroj vás vyzve k uložení nebo zrušení všech zadaných hodnot. Stiskněte [▲] nebo [▼] a zvolte Ano, Ne nebo Zpět. Po volbě Zpět se přístroj vrátí zpět do Režimu nastavení. Na obrazovce nastavené na "Ano" (potvrdit) nebo "Ne" (odmítnout) stiskněte [◄] pro potvrzení vaší volby.

Pokud stisknete [◄] na volbě "Ano", přístroj vymaže údaje zadané v přepočetní tabulce a vrátí se do Provozního režimu.
6.4.7 Jak správně měřit v silech s klenutým nebo kuželovitým dnem

Pokud je přístroj instalován v sile s klenutým nebo kuželovitým dnem, může se stát, že nebude moci najít dno síla. Tvar dna síla způsobuje zpomalení odrazu radarového signálu a přístroj pak zobrazí chybové hlášení "Measurement is lost in the tank bottom" (= ztráta signálu u dna).

K nalezení zpožděného odrazu radarového signálu je možno posunout referenční bod dna nádrže. Dodržujte následující pokyny:

- Změřte skutečnou výšku nádrže nějakou jinou metodou měření.
- Vyprázdněte sílo.
- Vstupte do Režimu nastavení a přejděte na položku C1.2 Výška nádrže. Stiskněte tlačítko [>].
- Zadejte heslo aktuálně používané pro přístupovou úroveň "Odborník". Pokud zadáváte předdefinované (standardní) heslo, zadejte "0058". Stiskněte [+] a pak [>].
- Zvyšte hodnotu výšky nádrže v položce menu C1.2 Výška nádrže. Zadaná hodnota musí být minimálně o 20% větší než skutečná výška nádrže.
- V Provozním režimu přejděte na stránku měřených hodnot, na které je zobrazena vzdálenost. Poznamenejte si vzdálenost odrazu naměřenou přístrojem.
- Zadejte vypočtený rozdíl jako zápornou hodnotu.
- Záporná hodnota posune referenční bod nad dno síla (jak je nastaveno v položce menu C1.2 Výška nádrže).
- Stiskněte [+] 2 × [>] a [>] pro přechod na C1.2 Výška nádrže.
- Stiskněte [+] a zadejte hodnotu vzdálenosti, která se zobrazila v Provozním režimu.
- Zvolte Ano a stiskněte [<].

Informace!
Podrobnosti o položkách menu viz Popis funkcí na straně 75 – tabulka C: Úplné nastavení.

6.4.8 Jak vytvořit filtr k odstranění rušivých signálů

Jestliže přístroj měří výšku hladiny v síle s vnitřní zástavbou (žebřík, vzpěry apod.), pak tyto objekty mohou způsobit rušivé (parazitní) signály. Pro potlačení těchto rušivých signálů můžete použít funkci záznamu prázdného spektra (menu A4.2) v menu Quick Setup (Rychlé nastavení).

Informace!
Doporučujeme provádět záznam prázdného spektra v okamžiku, kdy se v síle nenachází měřené médium a všechny pohyblivé součásti jsou v provozu.
Obrázek 6-10: Jak vytvořit filtr k odstranění rušivých signálů

1. Silo bez měřeného média před záznamem a použitím prázdného spektra (s grafickým zobrazením odrazů)
2. Silo s částí měřeného média před záznamem a použitím prázdného spektra (s grafickým zobrazením odrazů)
3. Silo s částí měřeného média po záznamu a použití prázdného spektra (s grafickým zobrazením odrazů)
4. Umístění vzpěry
5. Signály od dna sila
6. Signály od vzpěry (rušivé signály) před provedením záznamu prázdného spektra
7. Signál od měřené sypké látky před provedením záznamu prázdného spektra
8. Odražený signál v případě, že přístroj používá údaje ze záznamu prázdného spektra. Přístroj používá pro měření vzdálenosti pouze odrazy od povrchu měřené pevné látky.

• Po vstupu do Režimu nastavení nastavte přístupovou úroveň na "Odborník". Další podrobnosti o tomto postupu viz Ochrana konfigurace přístroje (přístupové úrovně) na straně 62.
• Stiskněte [▼], [▲], [▼] a [▲] pro přechod na položku menu A4.2 Prázd.n spektrum.
• Stiskněte [▼] pro spuštění procedury záznamu prázdného spektra. Podrobnosti viz Záznam prázdného spektra na straně 100. Stiskněte [▼] na konci každého kroku této procedury, přejdete tak k dalšímu kroku.

Informace!
Podrobnosti o záznamech prázdného spektra – tabulka menu A. Rychlé nastavení (položka menu A4.2).
6.5 Stavová (chybová) hlášení a diagnostické informace

Stav přístroje a chybové hlášení se v Provozním režimu zobrazují na stavové stránce a v Režimu nastavení v položce menu "C7.3.1 Náhled zprávy". Zobrazená hlášení odpovídají požadavkům NAMUR Guidelines NE 107. Chybové hlášení jsou rozdělena do skupin podle stavu, každá z nich s jedním stavovým signálem. 16 skupin stavů má pevně stanovený stavový signál, 8 skupin má stavový signál nastavitelný. Skupiny stavů jsou dále rozděleny do 4 skupin: Snímač, Elektronika, Nastavení a Proces.

Každé stavové hlášení (nebo stavový signál) má specifický symbol, určený podle NAMUR Guidelines. Tento symbol se zobrazuje spolu s hlášením.

Informace!
Zobrazují se názvy skupin stavů a symbol stavového signálu (F/S/M/C). Podrobnosti viz následující tabulka.

Stavová hlášení (NAMUR NE 107)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Písmeno</th>
<th>Zpráva</th>
<th>Popis a vliv na přístroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>F</td>
<td>Porucha</td>
<td>Měření není možné.</td>
</tr>
<tr>
<td>🔴</td>
<td>S</td>
<td>Mimo specifikaci</td>
<td>Měřené hodnoty jsou k dispozici, ale nejsou již dostatečně přesné. Proveďte kontrolu.</td>
</tr>
<tr>
<td>🔴</td>
<td>M</td>
<td>Požadována údržba</td>
<td>Měřené hodnoty jsou dosud přesné, avšak brzy se tento stav může změnit.</td>
</tr>
<tr>
<td>🔴</td>
<td>C</td>
<td>Kontrola funkce</td>
<td>Je aktivní testovací funkce. Zobrazená hodnota neodpovídá skutečně měřené hodnotě.</td>
</tr>
<tr>
<td>🔴</td>
<td>I</td>
<td>Informace</td>
<td>Toto stavové hlášení nemá vliv na měřené hodnoty.</td>
</tr>
</tbody>
</table>

Provozní režim: symbol stavu přístroje

Pokud se změní stav přístroje, zobrazí se v Provozním režimu symbol stavu v levém horním rohu obrazovky displeje:

![Obrázek 6-11: Stav přístroje: Provozní režim](image_url)

① Symbol stavu přístroje (NAMUR NE 107)
Provozní režim: stavová hlášení přístroje

V Provozním režimu je rovněž k dispozici stavová stránka. Na této stránce se zobrazuje seznam krátkých chybových hlášení a aktuální stav přístroje. Pro přechod na stavovou stránku přístroje v Provozním režimu stiskněte [▲] nebo [▼].

Obrázek 6-12: Stav přístroje: Provozní režim - stavová stránka přístroje

2. Symbol stavu přístroje (NAMUR NE 107)

Režim nastavení: stavová hlášení přístroje

Stav přístroje a chybová hlášení se v Režimu nastavení zobrazují v položce menu "C7.3.1 Náhled zpráv". V horní části menu se zobrazuje seznam krátkých chybových hlášení.

Pro výběr ze seznamu chybových hlášení stiskněte tlačítko [▲] nebo [▼].

Obrázek 6-13: Stav přístroje a chybová hlášení (C7.3.1 Náhled zpráv)

2. Symbol stavu přístroje (NAMUR NE 107)
3. Chybové hlášení

Pak stiskněte tlačítko [▶] pro zobrazení podrobností.

Obrázek 6-14: Popis chyby (C7.3.1 Náhled zpráv)

2. Popis chyby

V případě, že přístroj zobrazí chybové hlášení, můžete najít více podrobností o problému a návrh na jeho řešení v následující tabulce.
Popis chyb a jejich náprava

<table>
<thead>
<tr>
<th>Typ stavu</th>
<th>Chybové hlášení</th>
<th>Popis</th>
<th>Náprava chyby</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Snímač</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrupt Sensor Parameter (Váda parametru sním.)</td>
<td>Chyba v paměti snímače.</td>
<td>Vypněte a znovu zapněte přístroj. Pokud se hlášení zobrazí znovu, kontaktujte dodavatele.</td>
</tr>
<tr>
<td></td>
<td>Microwave Tuning Voltage Error (Chyba nastav. mikrovln. napětí)</td>
<td>Chyba mikrovlnné části přístroje.</td>
<td>Vypněte a znovu zapněte přístroj.</td>
</tr>
<tr>
<td></td>
<td>Elektronika</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fatal Converter Error (DM) (Vážná chyba převod. (DM))</td>
<td>Došlo k poruše elektroniky nebo hardwaru.</td>
<td>Vypněte a znovu zapněte přístroj. Pokud se hlášení zobrazí znovu, kontaktujte dodavatele.</td>
</tr>
<tr>
<td></td>
<td>Fatal Converter Error (Vážná chyba převod. (CO))</td>
<td>Došlo k poruše elektroniky nebo hardwaru.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fatal Converter Error (Generic) (Vážná chyba převod. (obecná))</td>
<td>Došlo k poruše elektroniky nebo hardwaru.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO Safety Reaction (Bezpečnost. reakce pr. výst.)</td>
<td>Bezpečnostní reakce proudového výstupu. Toto chybové hlášení se zobrazí, pokud je na proudovém výstupu méně než 3,6 mA nebo více než 21 mA.</td>
<td>Zkontrolujte, zda se nezobrazují jiná chybové hlášení.</td>
</tr>
<tr>
<td></td>
<td>Power Supply Error (Chyba napájení)</td>
<td>Vnitřní napájecí napětí je příliš nízké pro napájení snímače.</td>
<td>Zkontrolujte elektrické připojení napájecího napětí nebo vyměňte převodník.</td>
</tr>
<tr>
<td></td>
<td>Max. Number of Restarts (Max. počet restartů)</td>
<td>Přístroj nemůže spustit režim měření po určitém počtu vypnutí a opětovných zapnutí.</td>
<td>Provedte kontrolu napájecího zdroje.</td>
</tr>
<tr>
<td>Typ stavu</td>
<td>Chybové hlášení</td>
<td>Popis</td>
<td>Náprava chyby</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F</td>
<td>Nastavení</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inconsistent NVRAM (Nekonzistence NVRAM)</td>
<td>Chybné parametry v paměti přístroje.</td>
<td>Vypněte a znovu zapněte přístroj. Pokud se hlášení zobrazí znovu, kontaktujte dodavatele.</td>
</tr>
<tr>
<td></td>
<td>Incons. Sensor Calibration (Nekonzistent.kalibr.sním.)</td>
<td>Chybné kalibráční údaje v modulu snímače.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neshoda NVRAM</td>
<td>Výrobní číslo displeje neodpovídá výrobnímu číslu modulu elektroniky.</td>
<td>Ujistěte se, že verze modulu displeje odpovídá verzi modulu elektroniky. Přejděte do menu Úplné nastavení > Přístroj > Informace a poznamenejte si údaje uvedené v položkách menu C7.1.5 Revize elektroniky a C7.1.6 Revize software. V případě potřeby kontaktujte dodavatele.</td>
</tr>
<tr>
<td></td>
<td>Conv. NVRAM Layout Error (Chyba NVRAM převod.)</td>
<td>Chybné parametry v paměti přístroje.</td>
<td>Vypněte a znovu zapněte přístroj. Pokud se hlášení zobrazí znovu, kontaktujte dodavatele.</td>
</tr>
<tr>
<td></td>
<td>Disp. NVRAM Layout Error (Chyba NVRAM displeje)</td>
<td>Chybné údaje po aktualizaci firmware.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Elektronika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ stavu</td>
<td>Chybové hlášení</td>
<td>Popis</td>
<td>Náprava chyby</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Current Out. Sim. Active (Aktiv. simul.proud.výst.)</td>
<td>Přístroj simuluje hodnotu proudového výstupu, která je zadána v položce menu B1.2 Výstup. Rozsah hodnot pro testování výstupu je 3,6...21,5 mA.</td>
<td>Ukončete test stisknutím "Enter".</td>
</tr>
<tr>
<td></td>
<td>HART Sim. Active (Aktiv simulace HART)</td>
<td>Přístroj simuluje měřenou hodnotu. Pro simulaci měřených hodnot můžete použít rozhraní HART®. Použijte rozhraní HART® ku k ukončení testu.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCO Simulation Active (Akt. simul. proud. výst.)</td>
<td>Přístroj simuluje hodnotu proudového výstupu zadanou v submenu B1 Simulace (vzdálenost, výška hladiny, volný objem, volná hmotnost, lineárizovaná vzdálenost, objem, hmotnost nebo lineárizovaná výška hladiny).</td>
<td>Ukončete test stisknutím "Enter".</td>
</tr>
<tr>
<td></td>
<td>SysMon Simulation Active (Aktiv. simul. syst. monit.)</td>
<td>Systémový monitor provádí simulaci hodnoty proudového výstupu přístroje.</td>
<td>Restartujte přístroj.</td>
</tr>
<tr>
<td>S Snímač</td>
<td>Sensor Voltage Low (Nízké napáj. nap. sním.)</td>
<td>Napájecí napětí přívaděné do snímače je příliš nízké.</td>
<td>Provedte kontrolu napájacího zdroje.</td>
</tr>
<tr>
<td></td>
<td>Peak Lost (Level Lost) (Ztráta maxima signálu (hladiny))</td>
<td>V očekávaném okně signálu nebyl již dlouho (>20 s) nalezen žádný signál.</td>
<td>Zkontrolujte, zda je montáž přístroje provedena podle pokynů v příručce. Anténa musí být ve správné poloze a nesmí být umístěna nad vnitřní zástavbou v síle. Případné upravte nastavení přístroje a znovu provedte záznam prázdného spektra. Pokud se hlášení zobrazí znovu, kontaktujte dodavatele.</td>
</tr>
<tr>
<td></td>
<td>Overfill (Přeplnění)</td>
<td>Maximum signálu je v mrtvé vzdálenosti (viz položka menu C1.5 Mrtvá vzdálenost). Silo je pravděpodobně přilší plné.</td>
<td>Zkontrolujte, zda je přístroj správně nastaven a zda jsou provozní podmínky ve stanovených mezích.</td>
</tr>
</tbody>
</table>
S Proces

<table>
<thead>
<tr>
<th>Typ stavu</th>
<th>Chybové hlášení</th>
<th>Popis</th>
<th>Náprava chyby</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>CO Saturated Low (Dolní přesyc.proud.výst.) ②</td>
<td>Měřená hodnota je nižší než minimální hodnota rozsahu pro proudový výstup. Hodnota proudového výstupu nemůže být nižší než stanovená dolní mez rozsahu, a proto již neodpovídá aktuální měřené hodnotě.</td>
<td>Zkontrolujte provozní podmínky a minimum rozsahu pro proudový výstup.</td>
</tr>
<tr>
<td></td>
<td>CO Saturated High (Horní přesyc.proud.výst.) ②</td>
<td>Měřená hodnota je vyšší než maximální hodnota rozsahu pro proudový výstup. Hodnota proudového výstupu nemůže být vyšší než stanovená horní mez rozsahu, a proto již neodpovídá aktuální měřené hodnotě.</td>
<td>Zkontrolujte provozní podmínky a minimum rozsahu pro proudový výstup.</td>
</tr>
</tbody>
</table>

M Snímač

<table>
<thead>
<tr>
<th>Typ stavu</th>
<th>Chybové hlášení</th>
<th>Popis</th>
<th>Náprava chyby</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bad Measurement Quality (Old Measurement) (Špatná kvalita měření (Stará měř.hodnota))</td>
<td>Měřená hodnota není správná, a nezměnila se již déle než 10 sekund.</td>
<td>Zkontrolujte, zda je montáž přístroje provedena podle pokynů v příručce. Pokud se hlášení zobrazí znovu, kontaktujte dodavatele.</td>
</tr>
<tr>
<td></td>
<td>Empty Spectrum invalid (Neplatné prázdné spektrum)</td>
<td>Záznam prázdného spektra není v souladu s aktuálními provozními podmínkami (např. byla provedena změna výšky nádrže).</td>
<td>Provedte nový záznam prázdného spektra.</td>
</tr>
<tr>
<td>Typ stavu</td>
<td>Chybové hlášení</td>
<td>Popis</td>
<td>Náprava chyby</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>M</td>
<td>Informace o snímači</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed Sensor Input Test (Neúsp. test vstupu sním.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bad Spectrum Quality (Špatná kvalita spektra)</td>
<td>Došlo k velké změně intenzity signálu.</td>
<td>Zkontrolujte, zda je montáž přístroje provedena podle pokynů v příručce. Pokud se hlášení opakuje, doporučujieme použít pro přístroj větší anténu.</td>
</tr>
<tr>
<td></td>
<td>Peak Lost in Tank Bottom (Ztráta signálu u dna)</td>
<td>Došlo ke ztrátě signálu blízko dna nádrže. K zobrazení tohoto hlášení může docházet u nádrží s kónickým dnem nebo u kulových nádrží.</td>
<td>Po naplnění nádrže přístroj opět začne měřit výšku hladiny média. Pokud se zobrazuje toto hlášení, kontaktujte dodavatele.</td>
</tr>
<tr>
<td></td>
<td>Sensor Reference out of range (Reference snímače mimo rozsah)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XCO out of bounds (Oscilátor mimo meze)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microwave Lock Error (Chyba mikrovl. propusti)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microwave Sweep Duration Error (Chyba doby mikrovl. zdvihu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microwave Supply Voltage Error (Chyba napáj. mikrovl. části)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. DM = data manager (správce dat)
2. CO = proudový výstup
3. Toto chybové hlášení se zobrazuje u přístrojů v režimu SIL. CO = proudový výstup.
7.1 Pravidelná údržba

7.1.1 Základní pokyny

Za běžných provozních podmínek není nutno provádět pravidelnou údržbu. Případnou údržbu musí provádět pouze kvalifikovaný personál (nejlépe pracovníci výrobce nebo autorizovaná servisní organizace).

Informace!
Další podrobnosti o pravidelných prohlídkách a postupech při údržbě přístrojů se schválením do nebezpečných prostorů (Ex), případně jiným typem schválení, najdete v příslušném doplňkovém návodu.

7.1.2 Údržba O-kroužků víčka krytu

Při každém sejmutí a následném nasazení víčka displeje ① nebo víčka ② komory svorkovnice na krytu převodníku provedte kontrolu O-kroužků, zda jsou dostatečně promazány, poškozená těsnění vyměňte. Podrobnosti o výměně O-kroužků viz Náhradní díly na straně 166.

Obrázek 7-1: Údržba O-kroužků

① Víčko displeje
② Víčko komory svorkovnice
Upozornění!
Použijte univerzální mazivo, vhodné pro rozsah provozních teplot, při kterých je O-kroužek používán, a které splňuje následující požadavky:
• Použití v rozsahu teplot -40...+130°C / -40...+266°F bez změny vlastností maziva a poškození nebo změny vlastnosti O-kroužku
• Bez silikonu
• Dostatečná přílišnovost
• S obsahem derivátů lithia
• Odolnost vůči vodě
• Kompatibilita s daným materiálem O-kroužku

7.1.3 Jak očistit povrch přístroje

Výstraha!
Na přístroji by se neměla vytvořit vrstva prachu vyšší než 5 mm/0,2". Nashromážděný prach je v potenciálně výbušné atmosféře možným zdrojem vznícení.

Nebezpečí!
Rizikovou částí, která může způsobit vytvoření elektrostatického náboje, je šedý plastový ochranný kryt.

Dodržujte tyto pokyny:
• Udržujte závity víčka komory svorkovnice v čistotě.
• Případné nečistoty z přístroje odstraňte. Plastový ochranný kryt otřete vlhkým hadříkem.

7.1.4 Jak čistit trychtýřové antény za provozu

Pro aplikace, ve kterých může docházet ke kondenzaci vlhkosti nebo k vytváření nánosů, je k dispozici provedení s proplachem pro kovové trychtýřové antény. Proplachujte anténu v pravidelných intervalech, aby vnitřní povrch antény zůstal čistý a přístroj měřil správně. Podrobnosti o rozměrech viz Rozměry a hmotnosti na straně 141 (Provedení s proplachem).

Výstraha!
Proplachujte anténu suchým plynem, který je k dispozici blízko umístění přístroje.

Upozornění!
Proplachujte anténu v pravidelných intervalech, aby vnitřní povrch antény zůstal čistý a přístroj měřil správně.

Podrobnosti viz následující tabulka.
Jak používat proplach

<table>
<thead>
<tr>
<th>Provozní podmínky</th>
<th>Jak používat proplach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebezpečí vzniku nánosů na anténě</td>
<td>Proplachujte v pravidelných intervalech. Použijte stlačený vzduch, dusík, příp. jiný plyn vhodný pro danou aplikaci, max. tlak 6 bar / 87 psi.</td>
</tr>
<tr>
<td>Vytváření nánosů na anténě</td>
<td>Proplachujte v pravidelných intervalech. Použijte kapalinu (horkou vodu, rozpouštědlo nebo jinou kapalinu vhodnou pro danou aplikaci) k rozpuštění nánosů vytvořených na vnitřním povrchu antény.</td>
</tr>
</tbody>
</table>

7.2 Servisní záruky

Výstraha!
Inspekci a opravy přístroje smí provádět pouze oprávněné osoby. V případě problémů s přístrojem kontaktujte nejbližší pobočku výrobce.

Servis prováděný uživatelem je vzhledem k poskytovaným zárukám omezen na:
- Demontáž a montáž přístroje.
- Náhrada převodníku signálu jiných radarových hladinoměrů: demontáž převodník signálu hladinoměru OPTIWISE 6300 a jejich náhrada převodníkem signálu hladinoměru OPTIWISE 6400. Postup viz Náhrada převodníku hladinoměru OPTIWISE 6300 převodníkem signálu hladinoměru OPTIWISE 6400 na straně 122.

Podrobnosti o přípravě přístroje před zasláním zpět výrobci viz Zaslání přístroje zpět výrobci na straně 125.
7.3 Náhrada převodníku hladinoměru OPTIWAY 6300 převodníkem signálu hladinoměru OPTIWAY 6400

Informace!
Provedte následující 4 procedury tak, jak následují v číselném pořadí.

Potřebné vybavení

Obrázek 7-2: Potřebné vybavení

1. Klíč s vnějším šestihranem 5 mm (není součástí dodávky)
2. Radarový hladinoměr OPTIWAY 6300
4. Příručky pro oba přístroje (dodané na DVD-ROM)

Upozornění!
OPTIWAY 6300:
Poznamenejte si výrobní číslo uvedené na štítku hladinoměru OPTIWAY 6300. Zašlete toto číslo spolu s objednávkou převodníku signálu hladinoměru OPTIWAY 6400.
Nezapomeňte si rovněž uložit záznam konfigurace (nastavení) hladinoměru OPTIWAY 6300. Tyto údaje obsahují základní nastavení (výška nádrže, mrtvá vzdálenost atd.), informace o výstupech, nastavení displeje a přepočetní tabulku. Tyto údaje najdete v menu Supervisor (Odborník).

Procedura 1: záznam výrobního čísla přístroje (radarového hladinoměru OPTIWAY 6300) a objednání převodníku signálu hladinoměru OPTIWAY 6400

• Zjistěte výrobní číslo ze štítku hladinoměru OPTIWAY 6300.
• Poznamenejte si toto číslo.
• Vytvořte objednávku na převodník signálu hladinoměru OPTIWAY 6400. Převodník hladinoměru OPTIWAY 6400 musí být objednán s adaptérem pro těsnící systém hladinoměru OPTIWAY 6300.
Procedura 2: jak demontovat převodník signálu (radarového hladinoměru OPTIWAVE6300)

Informace!
Podrobnosti o postupu elektrického připojení viz Elektrické připojení: 2vodičové, napájení po smyčce na straně 44.

- Vypněte hladinoměr OPTIWAVE 6300.
- Sejměte víčko komory svorkovnice a povolte kabelové vývody.
- Odšroubujte pojistný šroub na spodní straně převodníku pomocí klíče s vnějším šestihranem 5 mm.
- Demontujte převodník z provozního připojení.
Procedura 3: jak namontovat převodník signálu hladinoměru OPTIWAVE 6400

Informace!
Podrobnosti o postupu elektrického připojení viz Elektrické připojení: 2vodičové, napájení po smyčce na straně 44.

- Přiložte převodník signálu hladinoměru OPTIWAVE 6400 k těsnícímu systému hladinoměru OPTIWAVE 6300. Dbejte na to, aby byly obě součásti (prevodník a těsnící systém) správně spojeny (zapadly do sebe).
- Utáhněte pojistný šroub na spodní straně převodníku signálu klíčem s vnějším šestihranem 5 mm.
- Sejměte víčko komory svorkovnice a povolte kabelové vývodky.
- Zasuňte vodiče do komory svorkovnice. Připojte vodiče ke svorkám.
- Nasadte víčko komory svorkovnice. Utáhněte řádně vývodky.
Procedura 4: nastavení konfigurace přístroje (OPTIWAVE 6400)

- Procedura Rychlé nastavení viz Standardní nastavení na straně 97. Další podrobnosti o nastavení přístroje viz Provoz na straně 57.

Upozornění!
Před výměnou převodníku za nový jste si poznamenali údaje o nastavení hladinoměru OPTIWAVE 6300. Nezapomeňte zadat tyto údaje do menu v Režimu nastavení převodníku pro OPTIWAVE 6400.

7.4 Dostupnost náhradních dílů

Výrobce se řídi zásadou, že kompatibilní náhradní díly pro každý přístroj nebo jeho důležité příslušenství budou k dispozici po dobu 3 let od ukončení výroby tohoto přístroje.

Toto opatření platí pouze pro tyčástí přístrojů, které se mohou poškodit nebo zničit za běžného provozu.

7.5 Zajištění servisu

Výrobce poskytuje zákazníkům i po uplynutí záruční doby rozsáhlou servisní podporu. Ta zahrnuje opravy, údržbu, technickou podporu a školení.

Informace!
Podrobnosti si, prosím, vyžádejte v nejbližší pobočce výrobce.

7.6 Zaslání přístroje zpět výrobci

7.6.1 Základní informace

Tento přístroj byl pečlivě vyroben a vyzkoušen. Při montáži a provozování přístroje v souladu s tímto návodem se mohou problémy vyskytnout jen velmi zřídka.

Výstraha!
Jestliže přesto potřebujete vrátit přístroj k přezkoušení nebo opravě, věnujte, prosím, náležitou pozornost následujícím informacím:
- Vzhledem k zákonným nařízením na ochranu životního prostředí a předpisům pro bezpečnost a ochranu zdraví může výrobce přijmut k testování nebo opravě pouze ty přístroje, které neobsahují žádné zbytky nebezpečných pro osoby nebo životní prostředů.
- To znamená, že výrobce může provádět servis pouze u přístrojů, ke kterým je přiloženo následující osvědčení (viz dále) potvrzující, že zacházení s přístrojem je bezpečné.

Výstraha!
Jestliže byl přístroj použit pro měření média jedovatého, žíravého, radioaktivního, hoňlavého nebo ohrožujícího životní prostředí, postupujte, prosím, následovně:
- pečlivě zkontrolujte a případně propláchněte nebo neutralizujte vnitřní i vnější povrch přístroje tak, aby neobsahoval žádné nebezpečné látky,
- přiložte k přístroji osvědčení, ve kterém uvedete měřené médium a potvrdíte, že zacházení s přístrojem je bezpečné.
7.6.2 Formulář (k okopírování) přikládaný k přístrojům zasílaným zpět výrobci

_Upozornění!
Aby nedošlo k ohrožení našich servisních pracovníků, musí být tento formulář umístěn na vnější straně obalu s vráceným přístrojem._

<table>
<thead>
<tr>
<th>Společnost:</th>
<th>Adresa:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oddělení:</td>
<td>Jméno:</td>
</tr>
<tr>
<td>Telefon:</td>
<td>Faxové číslo a/nebo e-mailová adresa:</td>
</tr>
</tbody>
</table>

Číslo zakázky výrobce nebo výrobní číslo:

Tento přístroj byl provozován s následujícím médium:

<table>
<thead>
<tr>
<th>Toto médium je:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>radioaktivní</td>
<td></td>
</tr>
<tr>
<td>nebezpečné životnímu prostředí</td>
<td></td>
</tr>
<tr>
<td>jedovaté</td>
<td></td>
</tr>
<tr>
<td>Žíravé</td>
<td></td>
</tr>
<tr>
<td>hořlavé</td>
<td></td>
</tr>
<tr>
<td>Zkontrolovali jsme, že přístroj neobsahuje žádné zbytky tohoto média.</td>
<td></td>
</tr>
<tr>
<td>Přístroj jsme důkladně propláchli a neutralizovali.</td>
<td></td>
</tr>
</tbody>
</table>

Potvrzujeme, že přístroj neobsahuje žádné zbytky média, které by mohly ohrozit osoby nebo životní prostředí.

Datum: Podpis:
Razítko:

www.krohne.com 11/2017 - 4006442701 - MA OPTIWAVE 6400 R01 cs
7.7 Nakládání s odpady

Právní upozornění!
Nakládání s odpady se řídí platnými předpisy v dané zemi.

Tříděný sběr OEEZ (odpadních elektrických a elektronických zařízení) v Evropské unii:

V souladu se Směrnicí 2012/19/EU nesmí být po skončení jejich životnosti umístěny do netříděného odpadu přístroje pro monitorování a kontrolu, označené symbolem OEEZ. Uživatel musí OEEZ odevzdat k recyklaci na označeném sběrném místě nebo je zaslat zpět naši nejblíží pobočce nebo autorizovanému zástupci.
8.1 Měřicí princip

Radarový signál je vysílán anténou, odráží se od povrchu měřeného média a je přijat zpět za čas t. Využívá se princip FMCW (Frequency Modulated Continuous Wave = frekvenčně modulované spojité vlnění).

Radar na principu FMCW vysílá vysokofrekvenční signál, jehož frekvence ve fázi měření lineárně roste (tzv. frekvenční zdvih). Vyslaný signál se odráží od povrchu měřeného média a je přijat zpět se zpožděním t. Zpoždění t=2d/c, kde d je vzdálenost od povrchu měřeného média a c je rychlost světla v atmosféře nad měřeným médiem.

Pro další zpracování signálu se vypočítá rozdílová frekvence Δf z okamžité vysílané frekvence a přijaté frekvence. Rozdílová frekvence je přímo úměrná vzdálenosti od povrchu média. Velká rozdílová frekvence odpovídá velké vzdálenosti a naopak. Tato rozdílová frekvence Δf se pak rychlou Fourierovou transformací (FFT) převádí na frekvenční spektrum, ze kterého se vypočítává vzdálenost. Výška hladiny se vypočte z rozdílu mezi výškou nádrže a měřenou vzdáleností.
Režímy měření

Přímý režim ("Direct" mode)
Režim měření: přístroj používá pro sledování výšky hladiny nejsilnější radarový signál.

Přímý režim Plus ("Direct Plus" mode)
Pokud se předpokládá, že se v měřicím rozsahu mohly vyskytnout rušivé signály silnější než signál od hladiny, zvolte režim "Přímý (Direct) Plus". Po zvolení režimu "Přímý (Direct) Plus" se přístroj "uzamkně" na signálu od hladiny a sleduje změny její výšky. Jestliže pak přístroj najde v síle silnější odražené signály, bude sledovat nejsilnější signál jen v úzké oblasti kolem prvního nalezeného signálu a bude ignorovat ostatní odražené signály. Rušivý signál se nesmí nacházet příliš blízko užitného signálu od hladiny.

Upozornění!
REŽIM "DIRECT PLUS" (PRIMY PLUS)
Je velmi důležité zadat správnou hodnotu relativní permitivity v položce menu C2.2 Epsilon R Product (Er MER.MEDIA). Pokud tato hodnota není správná, přístroj nebude měřit výšku hladiny přesně.
8.2 Technické údaje

Informace!
- Následující údaje platí pro standardní aplikace. Jestliže potřebujete další podrobnosti týkající se Vaší speciální aplikace, kontaktujte, prosím, nejbližší pobočku naší firmy.
- Další dokumentaci (certifikáty, výpočetní programy, software, ...) a kompletní dokumentaci k přístroji je možno zdarma zkopírovat ze internetových stránek (Downloadcenter).

Měřící komplet

<table>
<thead>
<tr>
<th>Měřící princip</th>
<th>Hladinoměr s 2vodičovým připojením, napájený ze smyčky, radar na principu FMCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozsah frekvence</td>
<td>Pásmo K (24...26 GHz)</td>
</tr>
<tr>
<td>Max. vyzařovány výkon (EIRP)</td>
<td>(< -41,3,\text{dBm podle ETSI EN 307 372 (TLPR) a ETSI EN 302 729 (LPR)})</td>
</tr>
<tr>
<td>Rozsah aplikací</td>
<td>Měření výšky hladiny prášků a granulátů</td>
</tr>
<tr>
<td>Primární měřená hodnota</td>
<td>Vzdálenost a odrazivost</td>
</tr>
<tr>
<td>Sekundární měřená hodnota</td>
<td>Výška hladiny, objem a hmotnost</td>
</tr>
</tbody>
</table>

Provedení

<table>
<thead>
<tr>
<th>Konstrukce</th>
<th>Měřící komplet se skládá ze snímače (antény) a převodníku signálu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doplnky</td>
<td>Integrovaný LCD displej (-20...+70°C / -4...+158°F); je-li teplota prostory mimo tyto meze, může dojít k vypnutí displeje</td>
</tr>
<tr>
<td></td>
<td>Rovná prodloužení antény (délka 105 mm / 4,1")</td>
</tr>
<tr>
<td></td>
<td>Max. délka prodloužení pro kovovou trnýťovou anténou: 1050 mm / 41,3"</td>
</tr>
<tr>
<td></td>
<td>Max. délka prodloužení pro kapkovou anténou: 525 mm / 20,7"</td>
</tr>
<tr>
<td></td>
<td>Proplach pro kovové trnýťové antény (dodáván s připojením ¼ NPTF)</td>
</tr>
<tr>
<td></td>
<td>Přírubu z PP zkosená o 2" (pro všechny antény)</td>
</tr>
<tr>
<td></td>
<td>Ochranný kryt proti povětrnostním vlivům</td>
</tr>
<tr>
<td>Max. měřicí rozsah (anténa)</td>
<td>Kovová trnýťová, DN80 (3") : 25 m / 82 ft</td>
</tr>
<tr>
<td></td>
<td>Kovová trnýťová, DN100 (4") : 40 m / 131,2 ft</td>
</tr>
<tr>
<td></td>
<td>Kovová trnýťová, DN150 (6") : 80 m / 262,5 ft</td>
</tr>
<tr>
<td></td>
<td>Kovová trnýťová, DN200 (8") : 100 m / 328 ft</td>
</tr>
<tr>
<td></td>
<td>Kapková z PP nebo PTFE, DN80 (3") : 25 m / 82 ft</td>
</tr>
<tr>
<td></td>
<td>Kapková z PP nebo PTFE, DN100 (4") : 40 m / 131,2 ft</td>
</tr>
<tr>
<td></td>
<td>Kapková z PP nebo PTFE, DN150 (6") : 100 m / 328,1 ft</td>
</tr>
<tr>
<td></td>
<td>Víz také "Přesnost měření" na straně 137</td>
</tr>
<tr>
<td>Min. výška nádrže</td>
<td>1 m / 40"</td>
</tr>
<tr>
<td>Doporučená minimální mrtvá vzdálenost</td>
<td>Délka prodloužení antény + délka antény + 0,3 m / 12"</td>
</tr>
</tbody>
</table>
| Vyzařovací úhel (anténa) | Kovová trychtýřová, DN 80 (3°): 9°
| | Kovová trychtýřová, DN 100 (4°): 8°
| | Kovová trychtýřová, DN150 / 6°: 6°
| | Kovová trychtýřová, DN200 / 8°: 5°
| | Kapková z PP, DN80 / 3°: 9°
| | Kapková z PP, DN100 / 4°: 7°
| | Kapková z PP, DN150 / 6°: 5°
| | Kapková z PTFE, DN80 / 3°: 8°
| | Kapková z PTFE, DN100 / 4°: 7°
| | Kapková z PTFE, DN150 / 6°: 4° |

| Displej a uživatelské rozhraní | Displej | Prosvětlený displej z kapalných krystalů
| | 128 × 64 bodů v 64 stupních šedi se 4 tlačítka |
| Uživatelské jazyky | Angličtina, francouzština, němčina, španělština, portugalština, japonská, čínština (zjednodušená), ruština, čeština, polština a turečtina |

| Přesnost měření |
| Rozlišení | 1 mm / 0,04°
| Opakovatelnost | ±1 mm / ±0,04°
| Chyba měření | Standard: ±2 mm / ±0,8°, pro vzdálenost ≤ 10 m / 33 ft; ±0,02% z měřené vzdálenosti, pro vzdálenost > 10 m / 33 ft. Podrobnosti viz Přesnost měření na stráně 137.

| Referenční podmínky podle EN 61298-1 |
| Teplota | +15...+25°C / +59...+77°F
| Tlak | 1013 mbar ±50 mbar / 14,69 psia ±0,73 psi
| Relativní vlhkost vzduchu | 60% ±15%
| Měřený předmět | Kovová deska v bezodrazové komoře. Přístroj má předepsané nastavení.

| Provozní podmínky |
| Teplota |
| Teplota prostředí | -40...+80°C / -40...+176°F
| Ex: viz doplněk montážního a provozního předpisu pro provedení Ex nebo certifikát přezkoušení typu
| Relativní vlhkost | 0...99%
| Teplota při skladování | -40...+85°C / -40...+185°F
|
Technické údaje

| **Teplota u provozního připojení** (vyšší teploty na požádání) | **Kovová trychtýřová anténa:**
| -50...+130°C / -58...+266°F (provozní teplota v místě provozního připojení hladinoměru musí být v souladu s povoleným rozsahem teplot pro materiál těsnění. Viz "Materiálové provedení" v této tabulce.)
| Ex: viz doplněk montážního a provozního předpisu pro provedení Ex nebo certifikát přezkoušení typu
| **Kapková anténa (PTFE):**
| -50...+130°C / -58...+266°F (provozní teplota v místě provozního připojení hladinoměru musí být v souladu s povoleným rozsahem teplot pro materiál těsnění. Viz "Materiálové provedení" v této tabulce.)
| Ex: viz doplněk montážního a provozního předpisu pro provedení Ex nebo certifikát přezkoušení typu
| **Kapková anténa (PP):**
| -40...+100°C / -40...+212°F (provozní teplota v místě provozního připojení hladinoměru musí být v souladu s povoleným rozsahem teplot pro materiál těsnění. Viz "Materiálové provedení" v této tabulce.)
| Ex: viz doplněk montážního a provozního předpisu pro provedení Ex nebo certifikát přezkoušení typu

| **Tlak** | **Provozní tlak**
| -1...16 barg / -14,5...232 psig
| Závisí na použitém provozním připojení a teplotě u provozního připojení. Podrobnosti viz Údaje o maximálním provozním tlaku na straně 139.

Další podmínky

| **Relativní permitivita (ε_r)** | ≥1,4
| **Ochrana krytím** | IEC 60529: IP66 / IP68 (0,1 barg / 1,45 psig)
| NEMA 250: NEMA typ 6 - 6P (kryt) a typ 6P (anténa)
| **Maximální rychlost změny** | 60 m/min / 196 ft/min

Podmínky pro montáž

| **Rozměr provozního připojení** | Jmenovitá světlost (DN) provozního připojení by měla být větší nebo rovna průměru antény.
| Je-li jmenovitá světlost (DN) menší než anténa, pak:
| – provedte úpravu přístroje pro větší provozní připojení na nádrži (například pomocí plechu s otvorem) nebo
| – použijte stejně provozní připojení, ale před montáží na nádrž odmontujte anténu a připevněte ji k hladinoměru zevněj nádrže.
| **Umístění provozního připojení** | Ujistěte se, že přímo pod provozním připojením hladinoměru se nenachází žádné překážky (vnitřní zástavba). Podrobnosti viz Montáž na straně 23.
| **Rozměry a hmotnosti** | Údaje o rozměrech a hmotnostech viz Rozměry a hmotnosti na straně 141.

Materiálové provedení

| **Kryt** | Hliník s polyesterovým nátěrem
| Na přání: korozivzdorná ocel (1.4404 / 316L) – jen přístroje do normálního prostředí (bez Ex). Schválení pro nebezpečné prostory (Ex) bude k dispozici ve druhém čtvrtletí 2018.
| **Materiály ve styku s médiem, včetně antény** | Kovová trychtýřová anténa: korozivzdorná ocel (1.4404 / 316L)
| Kapková anténa: PTFE; PP
| Provozní připojení | Korozivzdorná ocel (1.4404 / 316L)

132

www.krohne.com 11/2017 - 4006442701 - MA OPTIWAVE 6400 R01 cs
Technické údaje

<table>
<thead>
<tr>
<th>Těsnění (a O-kroužky pro variantu prodloužení antény s těsněním)</th>
<th>Kapková anténa z PTFE: FKM/FPM (-40...+130°C / -40...+266°F); Kalrez® 6375 (-20...+130°C / -4...+266°F); EPDM (-50...+130°C / -58...+266°F) ①</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapková anténa z PP: FKM/FPM (-40...+100°C / -40...+212°F); Kalrez® 6375 (-20...+100°C / -4...+212°F); EPDM (-40...+100°C / -40...+212°F) ①</td>
<td></td>
</tr>
<tr>
<td>Kovová trchtyřová anténa: FKM/FPM (-40...+130°C / -40...+266°F); Kalrez® 6375 (-20...+130°C / -4...+266°F); EPDM (-50°C...+130°C / -58°C...+266°F)</td>
<td></td>
</tr>
</tbody>
</table>

Těsnicí systém (vlnovod)

PEI (-50...+130°C / -58...+266°F)

Toto je maximální možný rozsah. Mezní hodnoty teploty pro těsnicí systém musí být v souladu s povolým rozsahem teplot pro materiál těsnění a příslušný typ antény.

Kabelová vývodka

Standard: není součástí dodávky

Na přání: plast (bez Ex: černá, Ex i: modrá); poniklovaná mosaz; korozivzdorná ocel; M12 (4kolíkový konektor)

Ochranný kryt proti povětrnostním vlivům (na přání)

Korozivzdorná ocel (1.4404 / 316L)

Provozní připojení

Závitové

G 1 A...1½ A (ISO 228); 1...1½ NPT (ASME B1.20.1)

Přírubové připojení

EN 1092-1

Nízkotlaký přírubový adaptér: DN80...200 / PN01; Standardní příruba: DN80...200 / PN10, PN16 a PN40 (typ B1); jiné na požádání

Alternativní těsnicí plocha pro standardní příruba: typ A

ASME B16.5

Nízkotlaký přírubový adaptér: 3¨...8¨ / 150 lb (max. 15 psig); Standardní příruba: 3¨...8¨ / 150 lb RF a 300 lb RF; jiné na požádání

Alternativní těsnicí plocha pro standardní příruba: FF (Flat Face)

JIS B2220

80...200A / 10K RF; jiné na požádání

Jiné

Jiné na požádání

Elektrické připojení

Napájecí napětí

Svorky výstupu – bez Ex / Ex i:
12...30 Vss; min./max. hodnota pro výstup 21,5 mA na svorkách

Svorky výstupu – Ex d:
16...36 Vss; min./max. hodnota pro výstup 21,5 mA na svorkách

Maximální proud

21,5 mA

Zátěž proudového výstupu

Bez Ex / Ex i: R_L [Ω] ≤ ((U_{ext} -12 V)/21,5 mA). Podrobnosti viz Minimální napájecí napětí na straně 138.

Ex d: R_L [Ω] ≤ ((U_{ext} -16 V)/21,5 mA). Podrobnosti viz Minimální napájecí napětí na straně 138.

Závit pro vývodu

Standard: M20×1,5; na přání: ½ NPT

Kabelová vývodka

Standard: není součástí dodávky

Na přání: M20×1,5 (průměr kabelu: 7...12 mm / 0,28...0,47¨); jiné jsou k dispozici na požádání

Max. průřez vodičů ve svorkách
0,5...3,31 mm² (AWG 20...12)
Technické údaje

OPTIWISE 6400 C

Technické údaje

134

www.krohne.com 11/2017 - 4006442701 - MA OPTIWISE 6400 R01 cs

Vstup a výstup

<table>
<thead>
<tr>
<th>Proudový výstup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Výstupní signál</td>
<td>Standard: 4…20 mA</td>
</tr>
<tr>
<td></td>
<td>Na přání: 3,8…20,5 mA podle NAMUR NE 43; 4…20 mA (obrácený); 3,8…20,5 mA (obrácený) podle NAMUR NE 43</td>
</tr>
<tr>
<td>Typ výstupu</td>
<td>Pasivní</td>
</tr>
<tr>
<td>Rozlišení</td>
<td>±5 μA</td>
</tr>
<tr>
<td>Vliv teploty</td>
<td>Obvykle 50 ppm/K</td>
</tr>
<tr>
<td>Chybový proud</td>
<td>Vysoký: 21,5 mA; Nízký: 3,5 mA podle NAMUR NE 43</td>
</tr>
</tbody>
</table>

HART®

Popis	Digitální signál přenášený se signálem proudového výstupu (protokol HART®) ②
Verze	7.4
Zátěž	≥ 250 Ω
Digitální vliv teploty	Max. ±15 mm / 0,6° pro celý rozsah teplot
Provoz v režimu Multi-drop	Ano. Proudový výstup = 4 mA. Volací adresu přístroje je možno zadat v režimu nastavení (1...63).
Dostupné ovladače	FC475, AMS, PDM, FDT/DTM

Schválení a certifikáty

CE

<table>
<thead>
<tr>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tento přístroj splňuje příslušné požadavky směrnic EU. Výrobce potvrzuje zdárné provedení zkoušek umístěním značky CE na výrobku.</td>
</tr>
<tr>
<td>Další podrobnosti o směrnicích EU a evropských normách, které se na tento přístroj vztahují, jsou uvedeny v EU Prohlášení o shodě. Tuto dokumentaci najdete na DVD-ROM přiloženém k přístroji nebo ji lze zdarma zkopírovat z našich internetových stránek.</td>
</tr>
<tr>
<td>Odolnost vůči vibracím</td>
</tr>
</tbody>
</table>

Ochrana proti výbuchu

<table>
<thead>
<tr>
<th>ATEX (EU schválení typu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 1/2 G Ex iia IIC T6...T* Ga/Gb; ③</td>
</tr>
<tr>
<td>II 1/2 D Ex iia IIC T85°C...T°C Da/Db; ④</td>
</tr>
<tr>
<td>II 1/2 G Ex db ia IIC T6...T* Ga/Gb; ③</td>
</tr>
<tr>
<td>II 1/2 D Ex ia tb IIC T85°C...T°C Da/Db ④</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATEX (schválení typu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 3 G Ex nA IIC T6...T* Gc; ③</td>
</tr>
<tr>
<td>II 3 G Ex ic IIC T6...T* Gc; ③</td>
</tr>
<tr>
<td>II 3 D Ex ic IIC T85°C...T°C Dc ④</td>
</tr>
</tbody>
</table>

IECEx

<p>| Ex ia IIC T6...T Ga/Gb; ③* |
| Ex ia IIIc T85°C...T°C Da/Db; ④ |
| Ex db ia IIC T6...T Ga/Gb; ③* |
| Ex ia tb IIIc T85°C...T°C Da/Db; ④ |
| Ex ic IIC T6...T Gc; ③* |
| Ex ic IIIc T85°C...T°C Gc ④ |</p>
<table>
<thead>
<tr>
<th>cQPSus</th>
<th>Klasifikace divizí</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XP, I, Div 1, GPS ABCD, T6...Tx – k dispozici od září 2017;</td>
</tr>
<tr>
<td></td>
<td>DIP, Class II, III, Div 1, GPS EFG, T85°C...T°C – k dispozici od září 2017;</td>
</tr>
<tr>
<td></td>
<td>IS, Class I, Div 1, GPS ABCD, T6...Tx;</td>
</tr>
<tr>
<td></td>
<td>IS, Class II, III, Div 1, GPS EFG, T85°C...T°C;</td>
</tr>
<tr>
<td></td>
<td>NI, Class I, Div 2, GPS ABCD, T6...Tx – k dispozici od září 2017;</td>
</tr>
<tr>
<td></td>
<td>NI, Class II, III, Div 2, GPS EFG, T85°C...T°C – k dispozici od září 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klasifikace zón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I, Zone 1, AEx db ia [ia Ga] IIC T6...T* Gb (US) – anténa vhodná pro zónu 0 – k dispozici od září 2017;</td>
</tr>
<tr>
<td>Ex db ia [Ex ia Ga] IIC T6...T* (Kanada) – anténa vhodná pro zónu 0 – k dispozici od září 2017;</td>
</tr>
<tr>
<td>Class I, Zone 0, AEx ia IIC T6...T* Ga (US);</td>
</tr>
<tr>
<td>Ex ia IIC T6...T* Ga (Kanada);</td>
</tr>
<tr>
<td>Class I, Zone 2, AEx nA IIC T6...T* Gc (US);</td>
</tr>
<tr>
<td>Ex nA IIC T6...T* Gc (Kanada);</td>
</tr>
<tr>
<td>Zone 20, AEx ia IIIC T85°C...T°C Da (US);</td>
</tr>
<tr>
<td>Ex ia IIIC T85°C...T°C Da (Kanada);</td>
</tr>
<tr>
<td>Zone 21, AEx ia ia [ia Da] IIIC T85°C...T°C Db (US) – anténa vhodná pro zónu 20 – k dispozici od září 2017</td>
</tr>
<tr>
<td>Ex ia ia [Ex ia Da] IIIC T85°C...T°C Db (Kanada) – anténa vhodná pro zónu 20 – k dispozici od září 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEPSI (k dispozici od září 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ia IIC T~T6 Ga/Gb;</td>
</tr>
<tr>
<td>Ex d ia IIC T~T6 Ga/Gb;</td>
</tr>
<tr>
<td>Ex iaD 20/21 T85°C...T°C IP6X;</td>
</tr>
<tr>
<td>Ex iaD tD A20/A21 T85°C...T°C IP6X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EAC-EX (k dispozici od listopadu 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga/Gb Ex ia IIC T6...T*;</td>
</tr>
<tr>
<td>Ex ia IIIC T85°C...T°C Da/Db;</td>
</tr>
<tr>
<td>Ga/Gb Ex d ia IIC T6...T*;</td>
</tr>
<tr>
<td>Ex ia tb IIIC T85°C...T°C Da/Db;</td>
</tr>
</tbody>
</table>

Další normy a schválení

Elektromagnetická kompatibilita

EU: Směrnice pro elektromagnetickou kompatibilitu (EMC)

Schválení pro radiokomunikace

EU: Směrnice pro rádiová zařízení (RED)

Předpisy FCC: Část 15

Industry Canada: RSS-211

Elektrická bezpečnost

EU: v souladu s bezpečnostní částí Směrnic pro zařízení nízkého napětí (LVD)

USA a Kanada: v souladu s požadavky NEC a CEC pro instalaci v normálním prostředí
<table>
<thead>
<tr>
<th>NAMUR</th>
<th>NAMUR NE 21 Elektromagnetická kompatibilita (EMC) zařízení pro průmyslové procesy a laboratoře</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAMUR NE 43 Normalizace úrovní signálu pro signalizaci chyb digitálních snímačů</td>
</tr>
<tr>
<td></td>
<td>NAMUR NE 53 Software a hardware pro zařízení procesní instrumentace a zařízení</td>
</tr>
<tr>
<td></td>
<td>pro zpracování signálu s digitální elektronikou</td>
</tr>
<tr>
<td></td>
<td>NAMUR NE 107 Vlastní kontrola a diagnostika zařízení procesní instrumentace</td>
</tr>
<tr>
<td>Speciální konstrukce</td>
<td>Na přání: ASME B31.3</td>
</tr>
</tbody>
</table>

1. Kalrez® je registrovanou ochrannou známkou firmy DuPont Performance Elastomers L.L.C.
2. HART® je registrovanou ochrannou známkou HART Communication Foundation
3. T* = T5 nebo T4. Další podrobnosti viz příslušný certifikát přezkoušení typu (Ex).
4. T°C = 100°C nebo 130°C. Další podrobnosti viz příslušný certifikát přezkoušení typu (Ex).
8.3 Přesnost měření

Pro určení chyby měření v určité vzdálenosti od vysílače (antény) použijte následující grafy.

Obrázek 8-2: Chyba měření (graf závislosti chyby měření v mm na měřené vzdálenosti v m)
X: měřená vzdálenost od dorazu závitu nebo těsnici plochy přírubě provozního připojení [m]
Y: Chyba měření [+yy mm / -yy mm]
1 Minimálně doporučená mrtvá vzdálenost = délka prodloužení antény + délka antény + 300 mm

Obrázek 8-3: Chyba měření (graf závislosti chyby měření v palcích (inches) na měřené vzdálenosti ve ft)
X: měřená vzdálenost od dorazu závitu nebo těsnici plochy příruby provozního připojení [ft]
Y: chyba měření [+yy inches / -yy inches]
1 Minimálně doporučená mrtvá vzdálenost = délka prodloužení antény + délka antény + 11,81¨

Informace!
Pro určení chyby měření v určité vzdálenosti od antény viz Technické údaje na straně 130 (chyba měření).
8.4 Minimální napájecí napětí

Použijte tyto grafy k určení minimálního napájecího napětí pro danou zátěž proudového výstupu.

Obrázek 8-4: Minimální napájecí napětí pro proudový výstup 21.5 mA na svorkách výstupu (přístroje do normálního prostředí a pro nebezpečné prostory (Ex i / IS))

X: Napájecí napětí U_{Vss}
Y: Zátěž proudového výstupu R_L [Ω]

Obrázek 8-5: Minimální napájecí napětí pro proudový výstup 21.5 mA na svorkách výstupu (pro nebezpečné prostory (Ex d / XP/NI))

X: Napájecí napětí U_{Vss}
Y: Zátěž proudového výstupu R_L [Ω]
8.5 Údaje o maximálním provozním tlaku

Výstraha!
Ujistěte se, že hladinoměry jsou používány v souladu s doporučenými provozními podmínkami.

Obrázek 8-6: Závislost maximálního tlaku na teplotě (EN 1092-1), přírubové a závitové připojení, ve °C a barg

Obrázek 8-7: Závislost maximálního tlaku na teplotě (EN 1092-1), přírubové a závitové připojení, ve °F a psig

1. Provozní tlak, p [barg]
2. Teplota u provozního připojení T [°C]
3. Provozní tlak, p [psig]
4. Teplota u provozního připojení T [°F]
5. Závitové připojení, G (ISO 228-1)
7. Přírubové připojení PN16
Informace!

Certifikace CRN (k dispozici od září 2017)

Přístroje s provozním připojením podle norem ASME mohou být na přání dodány s certifikátem CRN. Tato certifikace je nezbytná pro všechny přístroje instalované na tlakových nádržích na území Kanady.

Obrázek 8-8: Závislost maximálního tlaku na teplotě (ASME B16.5), přírubové a závitové připojení, ve °C a barg

Obrázek 8-9: Závislost maximálního tlaku na teplotě (ASME B16.5), přírubové a závitové připojení, ve °F a psig

1. Provozní tlak, p [barg]
2. Teplota u provozního připojení T [°C]
3. Provozní tlak, p [psig]
4. Teplota u provozního připojení T [°F]
6. Přírubové připojení Class 150
8.6 Rozměry a hmotnosti

Kovové trychtýřové antény se závitovým připojením

![Trychtýřová anténa se závitovým připojením](image.png)

Obrázek 8-10: Kovové trychtýřové antény se závitovým připojením G nebo NPT

Informace!
- Kabelové vývodky jsou dodávány na požadání pro přístroje ve standardním, Ex i a Ex d provedení.
- Průměr vnějšího pláště kabelu musí být 7…12 mm nebo 0,28…0,47¨.
- Kabelové vývodky pro přístroje certifikované podle cQPSus si zajišťuje uživatel.
- Ochranný kryt proti povětrnostním vlivům je pro všechny typy přístrojů dodáván jako doplněk na přání.

Kovové trychtýřové antény se závitovým připojením: rozměry v mm

<table>
<thead>
<tr>
<th>Provedení trychtýřové antény</th>
<th>Rozměry [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>DN80/3¨</td>
<td>151</td>
</tr>
<tr>
<td>DN100/4¨</td>
<td>151</td>
</tr>
<tr>
<td>DN150/6¨</td>
<td>151</td>
</tr>
<tr>
<td>DN200/8¨</td>
<td>151</td>
</tr>
</tbody>
</table>

① Toto je rozměr bez prodloužení antény. Může být použito maximálně 10 prodloužení antény. Každé prodloužení antény má délku 105 mm.

Kovové trychtýřové antény se závitovým připojením: rozměry v inches

<table>
<thead>
<tr>
<th>Provedení trychtýřové antény</th>
<th>Rozměry [inches]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>DN80/3¨</td>
<td>5,94</td>
</tr>
<tr>
<td>DN100/4¨</td>
<td>5,94</td>
</tr>
<tr>
<td>DN150/6¨</td>
<td>5,94</td>
</tr>
<tr>
<td>DN200/8¨</td>
<td>5,94</td>
</tr>
</tbody>
</table>

Provedení kovové trychtýřové antény s přírubovým připojením

Obrázek 8-11: Kovové trychtýřové antény s přírubovým připojením

1. Kovová trychtýřová anténa s přírubovým připojením
2. Kovová trychtýřová anténa s nízkotlakým přírubovým adaptérem připevněným k závitovému připojení
3. Kovová trychtýřová anténa s přírubovým připojením a přírubou zkosenou o 2°

Informace!
- Kabelové vývodky jsou dodávány na požádání pro přístroje ve standardním, Ex i a Ex d provedení.
- Průměr vnějšího pláště kabelu musí být 7…12 mm nebo 0,28…0,47¨.
- Kabelové vývodky pro přístroje certifikované podle cQPSus si zajišťuje uživatel.
- Ochranný kryt proti povětrnostním vlivům je pro všechny typy přístrojů dodáván jako doplněk na přání.
Kovové trychtýřové antény s přírubovým připojením: rozměry v mm

<table>
<thead>
<tr>
<th>Provedení trychtýřové antény</th>
<th>Rozměry [mm]</th>
<th>³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>151</td>
<td>215</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>151</td>
<td>215</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>151</td>
<td>215</td>
</tr>
<tr>
<td>DN200/8"</td>
<td>151</td>
<td>215</td>
</tr>
</tbody>
</table>

1. Maximální rozměr
3. Pokud má přístroj přírubu zkosenou o 2°.

Kovové trychtýřové antény s přírubovým připojením: rozměry v inches

<table>
<thead>
<tr>
<th>Provedení trychtýřové antény</th>
<th>Rozměry [inches]</th>
<th>³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>5,94</td>
<td>8,46</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>5,94</td>
<td>8,46</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>5,94</td>
<td>8,46</td>
</tr>
<tr>
<td>DN200/8"</td>
<td>5,94</td>
<td>8,46</td>
</tr>
</tbody>
</table>

1. Maximální rozměr
2. Toto je maximální rozměr bez prodloužení antény. Může být použito maximálně 10 prodloužení antény. Každé prodloužení antény má délku 4,1".
3. Pokud má přístroj přírubu zkosenou o 2°.
Kapkové antény se závitovým připojením

Informace!
- Kabelové vývodky jsou dodávány na požádání pro přístroje ve standardním, Ex i a Ex d provedení.
- Průměr vnějšího pláště kabelu musí být 7…12 mm nebo 0,28…0,47¨.
- Kabelové vývodky pro přístroje certifikované podle cQPSus si zajišťuje uživatel.
- Ochranný kryt proti povětrnostním vlivům je pro všechny typy přístrojů dodáván jako doplněk na přání.

Kapkové antény se závitovým připojením: rozměry v mm

<table>
<thead>
<tr>
<th>Provedení kapkové antény</th>
<th>Rozměry [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>DN80/3¨</td>
<td>151</td>
</tr>
<tr>
<td>DN100/4¨</td>
<td>151</td>
</tr>
<tr>
<td>DN150/6¨</td>
<td>151</td>
</tr>
</tbody>
</table>

Kapkové antény se závitovým připojením: rozměry v inches

<table>
<thead>
<tr>
<th>Provedení kapkové antény</th>
<th>Rozměry [inches]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>DN80/3¨</td>
<td>5,94</td>
</tr>
<tr>
<td>DN100/4¨</td>
<td>5,94</td>
</tr>
<tr>
<td>DN150/6¨</td>
<td>5,94</td>
</tr>
</tbody>
</table>

Kapkové antény s přírubovým připojením

Obrázek 8-13: Kapkové antény s přírubovým připojením

1. Kapková anténa s přírubovým připojením
2. Kapková anténa s přírubovým připojením a ochranným povlakem příruby
3. Kapková anténa s připojením nízkotlakým přírubovým adaptérem
4. Kapková anténa s přírubovým připojením a přírubou zkosenou o 2°

Informace!
- Kabelové vývodky jsou dodávány na požádání pro přístroje ve standardním, Ex i a Ex d provedení.
- Průměr vnějšího pláště kabelu musí být 7...12 mm nebo 0,28...0,47".
- Kabelové vývodky pro přístroje certifikované podle cQPSus si zajišťuje uživatel.
- Ochranný kryt proti povětrnostním vlivům je pro všechny typy přístrojů dodáván jako doplněk na přání.

Kapkové antény s přírubovým připojením: rozměry v mm

<table>
<thead>
<tr>
<th>Provedení kapkové antény</th>
<th>Rozměry [mm]</th>
<th>°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>151</td>
<td>215</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>151</td>
<td>215</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>151</td>
<td>215</td>
</tr>
</tbody>
</table>

1. Maximální rozměr
3. Pokud má přístroj ochranný povlak příruby z PP, pak f = 20 mm. Pokud má přístroj přírubu zkosenou o 2°, pak f = 10 mm.
4. Pokud má přístroj přírubu zkosenou o 2°, pak g = 2".

Kapkové antény s přírubovým připojením: rozměry v inches

<table>
<thead>
<tr>
<th>Provedení kapkové antény</th>
<th>Rozměry [inches]</th>
<th>°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>5,94</td>
<td>8,46</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>5,94</td>
<td>8,46</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>5,94</td>
<td>8,46</td>
</tr>
</tbody>
</table>

1. Maximální rozměr
2. Toto je maximální rozměr bez prodloužení antény. Může být použito maximálně 5 prodloužení antény. Každé prodloužení antény má délkou 4,1".
3. Pokud má přístroj ochranný povlak příruby z PP, pak f = 0,79". Pokud má přístroj přírubu zkosenou o 2°, pak f = 0,39".
4. Pokud má přístroj přírubu zkosenou o 2°, pak g = 2".
Provedení s proplachem

Obrázek 8-14: Provedení s proplachem
1 Závitové připojení G ¼ pro proplach (zátku dodává výrobce)

Informace!
Proplach antény
Tato varianta je k dispozici pro všechny kovové antény. Přírubové připojení musí mít jmenovitý tlak PN01, PN16 nebo PN40 (EN 1092-1), nebo Class 150 nebo 300 (ASME B16.5).

Provedení s ochranným krytem proti povětrnostním vlivům

Obrázek 8-15: Provedení s ochranným krytem proti povětrnostním vlivům
1 Pohled zepředu (se zavřeným ochranným krytem)
2 Levá strana (se zavřeným ochranným krytem)
3 Pohled zezadu (se zavřeným ochranným krytem)

Ochranný kryt proti povětrnostním vlivům: rozměry a hmotnosti

<table>
<thead>
<tr>
<th></th>
<th>Rozměry</th>
<th>Hmotnost [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a [mm]</td>
<td>b [mm]</td>
</tr>
<tr>
<td>Ochranný kryt proti povětrnostním vlivům</td>
<td>177</td>
<td>6,97</td>
</tr>
</tbody>
</table>
Hmotnost převodníku

<table>
<thead>
<tr>
<th>Typ krytu</th>
<th>Hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompaktní provedení, hliníkový kryt</td>
<td>2,1</td>
</tr>
<tr>
<td>Kompaktní provedení, kryt z korozivzdorné oceli</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Hmotnosti pro varianty antény

<table>
<thead>
<tr>
<th>Varianta antény</th>
<th>Min./Max. hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[kg]</td>
</tr>
</tbody>
</table>

Standardní varianty, bez převodníku

<table>
<thead>
<tr>
<th>Varianta antény</th>
<th>Min./Max. hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kovová trychtýfová anténa DN80 / 3" s provozním připojením, standardní délka ①</td>
<td>2,5...58,9</td>
</tr>
<tr>
<td>Kovová trychtýfová anténa DN100 / 4" s provozním připojením, standardní délka ①</td>
<td>2,6...59</td>
</tr>
<tr>
<td>Kovová trychtýfová anténa DN150 / 6" s provozním připojením, standardní délka ①</td>
<td>3...59,4</td>
</tr>
<tr>
<td>Kovová trychtýfová anténa DN200 / 8" s provozním připojením, standardní délka ①</td>
<td>3,7...60</td>
</tr>
<tr>
<td>Kapková anténa z PP DN80 s provozním připojením, standardní délka ①</td>
<td>2,7...59,1</td>
</tr>
<tr>
<td>Kapková anténa z PP DN100 s provozním připojením, standardní délka ①</td>
<td>3,1...59,5</td>
</tr>
<tr>
<td>Kapková anténa z PP DN150 s provozním připojením, standardní délka ①</td>
<td>4,5...60,9</td>
</tr>
<tr>
<td>Kapková anténa z PTFE DN80 s provozním připojením, standardní délka ①</td>
<td>3,1...59,2</td>
</tr>
<tr>
<td>Kapková anténa z PTFE DN100 s provozním připojením, standardní délka ①</td>
<td>3,8...60,2</td>
</tr>
<tr>
<td>Kapková anténa z PTFE DN150 s provozním připojením, standardní délka ①</td>
<td>7,2...63,6</td>
</tr>
</tbody>
</table>

Varianty prodloužení antény

<table>
<thead>
<tr>
<th>Varianty prodloužení antény</th>
<th>Hmotnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rovné prodloužení, délka 105 mm ②</td>
<td>+0,92</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 210 mm ②</td>
<td>+1,84</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 315 mm ②</td>
<td>+2,76</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 420 mm ②</td>
<td>+3,68</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 525 mm ②</td>
<td>+4,60</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 630 mm ③</td>
<td>+5,52</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 735 mm ③</td>
<td>+6,44</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 840 mm ③</td>
<td>+7,36</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 945 mm ③</td>
<td>+8,28</td>
</tr>
<tr>
<td>Rovné prodloužení, délka 1050 mm ③</td>
<td>+9,20</td>
</tr>
</tbody>
</table>

Další varianty

Varianty s ochranným povlakem příruby, kapková anténa DN80 z PP	+0,1	+0,22
Varianty s ochranným povlakem příruby, kapková anténa DN100 z PP	+0,2	+0,44
Varianty s ochranným povlakem příruby, kapková anténa DN150 z PP	+0,3	+0,66
Varianty s ochranným povlakem příruby, kapková anténa DN80 z PTFE	+0,3	+0,66
Varianty s ochranným povlakem příruby, kapková anténa DN100 z PTFE	+0,5	+1,10
Varianty s ochranným povlakem příruby, kapková anténa DN150 z PTFE	+0,7	+1,54

① Standardní délka = bez prodloužení antény
② Tato varianta je k dispozici pro kovové trychtýfové a kapkové antény
③ Tato varianta je k dispozici pro kovové trychtýfové antény
9.1 Základní popis

Protokol HART® je otevřený digitální komunikační protokol pro průmyslové použití. Jeho použití je zdarma. Je součástí software obsaženého v převodnicích signálu zařízení kompatibilních s protokolem HART.

Protokol HART® je podporován 2 skupinami zařízení: řídícími zařízeními a zařízeními procesní instrumentace. Existují 2 druhy řídících zařízení (Master): počítačové pracovní stanice (Primary Master) a ruční komunikátory (Secondary Master). Tato zařízení mohou být používána jak ve velinech, tak na jiných místech. Zařízení procesní instrumentace HART® jsou snímače, převodníky a akční členy. Tato zařízení mohou mít 2vdíčové a 4vdíčové připojení a mohou být např. v jiskrově bezpečném provedení pro použití v prostředí s nebezpečím výbuchu.

Pro zařízení kompatibilní s protokolem HART se používají 2 provozní režimy: point-to-point a multi-drop.

Pokud je přístroj používán v režimu point-to-point, pak protokol HART® používá k superpozici digitálního signálu na výstupní signál 4...20 mA metodu Bell 202 Frequency Shift Keying (FSK, klíčování frekvenčním posuvem). Přijímaný přístroj vysílá a přijímá digitální signály, které odpovídají protokolu HART® a zároveň vysílá analogový signál. K přenosovému kabelu může být připojen pouze 1 přístroj.

Pokud je přístroj používán v režimu multi-drop, síť používá pouze digitální signál, který je v souladu s protokolem HART®. Proudivá smyčka je nastavena na 4 mA. K přenosovému kabelu může být připojeno maximálně 63 zařízení.

V ručních komunikátorech a zařízeních procesní instrumentace je modem FSK nebo HART® již integrovaný. Pro počítačové pracovní stanice je potřebný externí modem. Externí modem se připojuje k sériovému rozhraní nebo k rozhraní USB.
9.2 Historie softwaru

Informace!
V tabulce níže je "x" pozice pro případnou vicemístnou alfanumerickou kombinaci v závislosti na konkrétní verzi.

<table>
<thead>
<tr>
<th>Datum vydání</th>
<th>Přístroje</th>
<th>HART®</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Revize zařízení</td>
</tr>
<tr>
<td>2016-04</td>
<td>Všechny revize</td>
<td>1</td>
</tr>
</tbody>
</table>

Identifikační kódy HART® a označení revizí

ID výrobce: 69 (0x45)
Rozšířený typ přístroje: 0x45b9
Revize zařízení: 1
Revize DD: 1
Verze DD (NAMUR): 01.11
Univerzální revize HART®: 7.4
FC 475 system SW.Rev.: ≥ 3.7
Verze AMS: ≥ 11.1
Verze PDM: ≥ 6.0
Verze FDT: ≥ 1.2

9.3 Varianty připojení

Převodník signálu je 2vodičové zařízení s proudovým výstupem 4...20 mA a rozhraním HART®.

- **Režim Multi-Drop je podporován**
 V komunikačním systému Multi-Drop je více než 1 zařízení připojeno ke společnému přenosovému kabelu.
- **Režim Burst není podporován**

Komunikace HART® může být používána dvěma způsoby:
- jako připojení Point-to-Point a
- jako připojení Multi-Drop s 2vodičovým připojením.

9.3.1 Připojení point-to-point – analogové/digitální režim

Připojení Point-to-Point mezi převodníkem signálu a řídící jednotkou HART® (Master).

Proudový výstup přístroje je pasivní.

Také viz Zapojení point-to-point na straně 49.
9.3.2 Připojení Multi-drop (2vodičové připojení)

Může být připojeno paralelně až 63 zařízení (tento převodník signálu a jiná zařízení HART®).

Obrázek sítě v režimu multi-drop viz Sítě multi-drop na straně 50.

Údaje o komunikaci v režimu multi-drop, viz Konfigurace pro sítě HART® na stráně 103.

9.4 Proměnné zařízení HART®

<table>
<thead>
<tr>
<th>Proměnná zařízení HART®</th>
<th>Kód</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>hodnota ze snímače</td>
<td>0</td>
<td>lineární</td>
</tr>
<tr>
<td>výška hladiny</td>
<td>1</td>
<td>lineární</td>
</tr>
<tr>
<td>vzdálenost</td>
<td>2</td>
<td>lineární</td>
</tr>
<tr>
<td>odrazivost</td>
<td>3</td>
<td>lineární</td>
</tr>
<tr>
<td>linearizovaná výška hladiny</td>
<td>4</td>
<td>lineární</td>
</tr>
<tr>
<td>přepočtený objem</td>
<td>5</td>
<td>lineární</td>
</tr>
<tr>
<td>přepočtená hmotnost</td>
<td>6</td>
<td>lineární</td>
</tr>
<tr>
<td>linearizovaná vzdálenost</td>
<td>7</td>
<td>lineární</td>
</tr>
<tr>
<td>přepočtený volný objem</td>
<td>8</td>
<td>lineární</td>
</tr>
<tr>
<td>přepočtená volná hmotnost</td>
<td>9</td>
<td>lineární</td>
</tr>
</tbody>
</table>

1 Tato proměnná zařízení HART® je k dispozici, pokud jste v menu pro přepočet vytvořili linearizační tabulku
2 Tato proměnná zařízení HART® je k dispozici, pokud jste v menu pro přepočet vytvořili přepočetní tabulku

Dynamické proměnné HART® - PV (Primary Variable, primární proměnná), SV (Secondary Variable, sekundární proměnná), TV (Third Variable, třetí proměnná) a QV (Fourth Variable, čtvrtá proměnná) mohou být přiřazeny kterékoliv proměnné daného přístroje.

Dynamická proměnná HART® PV je vždy spojena s proudovým výstupem HART®, který je přiřazen např. výšce hladiny.

9.5 Komunikátor Field Communicator 475 (FC 475)

Field Communicator je ruční komunikátor od firmy Emerson Process Management určený pro konfiguraci zařízení HART® a Foundation Fieldbus. Pro integraci různých zařízení do komunikátoru se používají popisy zařízení (Device Descriptions - DD).

9.5.1 Instalace

Upozornění!
Ruční komunikátor nelze použít pro správné nastavení konfigurace, ovládání a odečet hodnot z přístroje, pokud není nainstalován soubor popisu (Device Description - DD).

Systémové a softwarové požadavky na ruční komunikátor
- Systémová karta s "Easy Upgrade Option"
- Field Communicator Easy Upgrade Programming Utility
- Soubor popisu přístroje HART® (DD)

Podrobnosti viz návod Field Communicator User’s Manual.
9.5.2 Provoz

Informace!

Ruční komunikátor neumožňuje vstup do servisního menu. Simulace je možná pouze pro proudové výstupy.

Ruční komunikátor a místní displej s tlačítky používají pro ovládání přístroje téměř shodné postupy. Nápověda online pro každou položku menu se odkazuje na číslo funkce daného menu na displeji přístroje. Ochrana změny nastavení je shodná s ochranou na displeji přístroje.

Ruční komunikátor vždy ukládá kompletní konfiguraci pro komunikaci s AMS.

9.6 Asset Management Solutions (AMS®)

Asset Management Solutions Device Manager (AMS®) je program pro PC od firmy Emerson Process Management, který je určen pro konfiguraci a ovládání zařízení HART®, PROFIBUS a Foundation Fieldbus. Pro integraci různých zařízení do AMS® se používají popisy zařízení (Device Descriptions - DD).

9.6.1 Instalace

Přečtěte si prosím informace v souboru “README.txt”, který je součástí instalační sady Installation Kit.

Pokud soubor popisu Device Description ještě nebyl nainstalován, nainstalujte sadu Installation Kit HART® AMS. Tento soubor s příponou .exe je umístěn na DVD-ROM dodávaném s přístrojem. Soubor je rovněž možno zkopírovat z našich internetových stránek.

Pokyny pro instalaci jsou uvedeny v příručce "AMS Intelligent Device Manager Books Online" v kapitole "Basic AMS Functionality > Device Configurations > Installing Device Types > Procedures > Install device types from media".

9.6.2 Provoz

Informace!

Podrobnosti viz Struktura menu HART® pro AMS na straně 153.

9.6.3 Parametry pro základní konfiguraci

Vzhledem k požadavkům a konvencím systému AMS není ovládání převodníku pomocí tohoto systému a pomocí optických senzorů totožné. Parametry servisního menu nejsou podporovány a simulace je možná pouze pro proudové výstupy. Nápověda online pro každý parametr obsahuje číslo funkce a odkaz na displej přístroje.
9.7 Field Device Tool / Device Type Manager (FDT / DTM)

Field Device Tool Container (FDT Container) je program pro PC, který je určen pro konfiguraci zařízení HART®, PROFIBUS a Foundation Fieldbus. Pro konfiguraci zařízení používá FDT container příslušný soubor Device Type Manager (DTM).

9.7.1 Instalace

Před spuštěním provozu přístroje je nutno do programu Field Device Tool Container nainstalovat soubor Device Type Manager (DTM). Tento soubor s příponou .msi je umístěn na DVD-ROM dodávaném s přístrojem. Rovněž si jej můžete zkopírovat z našich internetových stránek. Pokyny pro instalaci a konfiguraci dat jsou uvedeny v dokumentaci na DVD-ROM dodávaném spolu s přístrojem nebo v části "Download" na internetových stránkách.

9.7.2 Provoz

DTM a místní displej s tlačítky používají pro ovládání přístroje téměř shodné postupy. Podrobnosti viz Provoz na straně 57.

9.8 Process Device Manager (PDM)

Process Device Manager (PDM) je program pro PC od firmy Siemens, který je určen pro konfiguraci zařízení HART® a PROFIBUS. Pro integraci různých zařízení do PDM se používají popisy zařízení (Device Descriptions - DD).

9.8.1 Instalace

Nainstalujte soubory popisu (DD) umístěné ve složce Device Install HART® PDM. To je nutno provést pro každý typ zařízení, které je používáno spolu se systémem SIMATIC PDM. Tato složka je k dispozici ke stažení z internetových stránek nebo na DVD-ROM dodávaném spolu s přístrojem.

Pokud používáte PDM verze 5.2, viz manuál k PDM, kapitola 11.1 - Install device / Integrate device into SIMATIC PDM with Device Install.

Pokud používáte PDM verze 6.0, viz manuál k PDM, kapitola 13 - Integrating devices.

Další podrobnosti viz soubor "readme.txt". Tento soubor je součástí sady Installation Kit.

9.8.2 Provoz

Informace

Podrobnosti viz Struktura menu HART® pro PDM na straně 157.

Mezi názvy položek menu v software pro SIMATIC PDM a názvy položek menu zobrazených na displeji přístroje se mohou objevit rozdíly. Viz nápověda online pro SIMATIC PDM, kde lze najít číslo funkce pro každou položku menu. Toto číslo funkce odpovídá číslu funkce v menu přístroje.

Použijte stejný postup pro zajištění ochrany parametrů v menu Supervisor (Odborník).
9.9 Struktura menu HART® pro AMS

Zkratky pro následující tabulky:
- Opt Optional - na přání, závisí na provedení a konfiguraci přístroje
- Rd Read only - pouze pro čtení

9.9.1 Přehled menu pro AMS (pozice ve struktuře menu)

<table>
<thead>
<tr>
<th>Configure / Setup</th>
<th>Quick Setup</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application</td>
</tr>
<tr>
<td>Full Setup</td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hart</td>
<td></td>
</tr>
<tr>
<td>ServiceOpt</td>
<td>Calibration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information</td>
<td></td>
</tr>
<tr>
<td>Device Diagnostics</td>
<td>Device Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actual Values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test/Reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information</td>
<td></td>
</tr>
<tr>
<td>Process Variables</td>
<td>Measured Values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inputs/Outputs</td>
<td></td>
</tr>
</tbody>
</table>
9.9.2 Struktura menu pro AMS (podrobnosti pro nastavení)

Configure / Setup

<table>
<thead>
<tr>
<th>Quick Setup</th>
<th>General</th>
<th>Language / Tag / Long Tag</th>
<th>Security</th>
<th>Login / Change Password / Reset Passwords / Lock Status<sup>Rd</sup> / Lock / Unlock Device / Write Protect<sup>Rd</sup> / (De)activate Write Protection / Unlock Extended Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td></td>
<td>Unit Length / Unit Volume / Unit Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>Assistant</td>
<td>Standard Setup / Record Empty Spectrum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full Setup</th>
<th>Process</th>
<th>Install. Parameters</th>
<th>Tank Type / Tank Height / Blocking Distance / Time Constant / Antenna Type / Antenna Extension / Distance Piece / Reference Offset / Tank Bottom Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tracking Velocity / Epsilon R Product / Epsilon R Gas / Measuring Mode / Overfill Detection / Overfill Threshold<sup>Opt</sup> / Mult. Refl. Enable / Empty Spectrum Enable / Min. Peak Required / Min Plausibility Window</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Select Conversion / Entry Count<sup>Rd</sup> / Conversion Table</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Full Setup</th>
<th>Output</th>
<th>General</th>
<th>Type IO channel A<sup>Rd</sup> / Type IO Channel B<sup>Rd</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current Output 1</td>
<td>Current Out 1 Variable / 0% Range / 100% Range / Current Out Range / Error Function / Low Error Current / High Error Current / D/A Trim PV<sup>Opt</sup></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full Setup</th>
<th>Display</th>
<th>General</th>
<th>Language / Backlight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Measurement Page</td>
<td>Function / 1st Value Variable / Format 1st Value / 2nd Value Variable<sup>Opt</sup> / Format 2nd Value<sup>Opt</sup> / 3rd Value Variable<sup>Opt</sup> / Format 3rd Value<sup>Opt</sup> / 0% Range<sup>Opt</sup> / 100% Range<sup>Opt</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd Measurement Page</td>
<td>Function / 1st Value Variable / Format 1st Value / 2nd Value Variable<sup>Opt</sup> / Format 2nd Value<sup>Opt</sup> / 3rd Value Variable<sup>Opt</sup> / Format 3rd Value<sup>Opt</sup> / 0% Range<sup>Opt</sup> / 100% Range<sup>Opt</sup></td>
<td></td>
</tr>
<tr>
<td>Full Setup</td>
<td>Device</td>
<td>Information</td>
<td>Tag<sup>Rd</sup> / Long Tag<sup>Rd</sup> / Serial Number<sup>Rd</sup> / Manufacturer<sup>Rd</sup> / Device Name<sup>Rd</sup> / V Number<sup>Rd</sup> / Electronic Revision<sup>Rd</sup> / Field Device Revision<sup>Rd</sup> / Software Revision<sup>Rd</sup> / Hardware Revision<sup>Rd</sup> / Electronics Serial No.<sup>Rd</sup> / Production Date<sup>Rd</sup></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Security</td>
<td>Login / Change Password / Reset Passwords / Lock Status<sup>Rd</sup> / Lock / Unlock Device / Write Protect<sup>Rd</sup> / (De)activate Write Protection / Unlock Extended Range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Units</td>
<td>Unit Length / Unit Volume / Unit Mass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Log</td>
<td>Operating Time<sup>Rd</sup> / Reset Log-Messages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Factory Default</td>
<td>Reset To Fact. Default</td>
</tr>
<tr>
<td>Full Setup</td>
<td>HART</td>
<td>Identification & Info</td>
<td>Loop current Mode / Online Mode / Poll Address / Tag / Long Tag / Manufacturer<sup>Rd</sup> / Model<sup>Rd</sup> / Device Id<sup>Rd</sup> / Universal Rev<sup>Rd</sup> / Field Device Rev<sup>Rd</sup> / DD-Version<sup>Rd</sup> / Descriptor / Message / Date / Final assembly number / Configuration change count<sup>Rd</sup> / Software Rev<sup>Rd</sup> / Hardware rev<sup>Rd</sup> / Write Protect<sup>Rd</sup> / Number of request preambles<sup>Rd</sup> / Number of response preambles<sup>Rd</sup></td>
</tr>
<tr>
<td>Service</td>
<td>Calibration</td>
<td>Calibration</td>
<td>Current Output 1</td>
</tr>
<tr>
<td>Sensor</td>
<td></td>
<td>Sensor</td>
<td>Manual Correction Offset / Manual Correction Factor / Correction Offset<sup>Rd</sup> / Correction Factor<sup>Rd</sup> / Correction Offset Extended<sup>Rd, Opt</sup> / Correction Factor Extended<sup>Rd, Opt</sup></td>
</tr>
</tbody>
</table>
Device Diagnostics

<table>
<thead>
<tr>
<th>Device Status</th>
<th>Condensed Status (NE 107)</th>
<th>Condensed Status (NE 107)</th>
<th>Device Simulation Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Device Status</td>
<td>Ext. Device Status</td>
<td>Write Protect</td>
</tr>
<tr>
<td>Additional</td>
<td>Device Status Simulation</td>
<td>Failure (F)</td>
<td>Function Check (C)</td>
</tr>
<tr>
<td>Cluster Check</td>
<td>Cluster Number</td>
<td>Failed Cluster Check</td>
<td></td>
</tr>
</tbody>
</table>

Actual Values

<table>
<thead>
<tr>
<th>Operating Time</th>
<th>Sensor Value</th>
<th>Media Level</th>
<th>Distance</th>
<th>Reflection</th>
<th>Level Linearization</th>
<th>Volume</th>
<th>Mass</th>
<th>Distance Linearization</th>
<th>Ullage</th>
<th>Ullage Mass</th>
<th>Sensor Temp</th>
<th>Converter Temp</th>
</tr>
</thead>
</table>

Simulation

<table>
<thead>
<tr>
<th>Process Variables</th>
<th>Simulation Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Status</td>
<td>Enable/Disable Status Simulation</td>
</tr>
<tr>
<td>I/O</td>
<td>Status Simulation Opt</td>
</tr>
<tr>
<td>Loop Test</td>
<td></td>
</tr>
</tbody>
</table>

Test / Reset

| Device Reset | Reset Configuration Changed Flag |

Information

| Tag | Long Tag | Serial Number | Manufacturer | Device Name | V Number | Electronic Revision | Field Device Revision | Software Revision | Hardware Revision | Electronics Serial No. | Production Date | Calibration Date | Operating Time |

Process variables

<table>
<thead>
<tr>
<th>Sensor Value</th>
<th>Media Level</th>
<th>Distance</th>
<th>Reflection</th>
<th>Level Linearization</th>
<th>Volume</th>
<th>Mass</th>
<th>Distance Linearization</th>
<th>Ullage</th>
<th>Ullage Mass</th>
<th>Sensor Temp</th>
<th>Converter Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>PV % Range</td>
<td>PV output current</td>
<td>SV</td>
<td>TV</td>
<td>QV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.10 Struktura menu HART® pro PDM

Zkratky pro následující tabulky:
- **Opt** Optional - na přání, závisí na provedení a konfiguraci přístroje
- **Rd** Read only - pouze pro čtení
- **Cust** Custody lock protection - ochrana (uzamčení) pro fakturační měřidla
- **Loc** Local PDM (místní pro PDM), ovlivňuje pouze PDM views

9.10.1 Přehled menu pro PDM (pozice ve struktuře menu)

Přehled: Menu Device

<table>
<thead>
<tr>
<th>Quick Setup</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Units</td>
</tr>
<tr>
<td></td>
<td>Application Assistant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full Setup</th>
<th>Process</th>
<th>Install. Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conversion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current Output 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Measurement Page</td>
</tr>
<tr>
<td></td>
<td>2nd Measurement Page</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Units</td>
</tr>
<tr>
<td></td>
<td>Log</td>
</tr>
<tr>
<td></td>
<td>Factory Default</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HART</th>
<th>Identification & Info</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Service</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensor</td>
</tr>
</tbody>
</table>

Přehled: Menu View

<table>
<thead>
<tr>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input / Outputs</td>
</tr>
</tbody>
</table>

Přehled: Diagnosis

<table>
<thead>
<tr>
<th>Device Status</th>
<th>Condensed Status (NE 107)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Additional</td>
</tr>
<tr>
<td></td>
<td>Cluster Check</td>
</tr>
</tbody>
</table>

| Actual Values |
9.10.2 Struktura menu pro PDM (podrobnosti pro nastavení)

Menu Device

- **Download To Device...**
- **Upload To PG/PC...**

Quick Setup

<table>
<thead>
<tr>
<th>General</th>
<th>Language / Tag / Long Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>Login / Change Password / Reset Passwords / Lock Status<sup>Rd</sup> / Lock/Unlock Device / Write Protect<sup>Rd</sup> / (De)activate Write Protection / Unlock Extended Range</td>
</tr>
<tr>
<td>Units</td>
<td>Unit Length / Unit Volume / Unit Mass</td>
</tr>
<tr>
<td>Application Assistant</td>
<td>Standard Setup / Record Empty Spectrum</td>
</tr>
</tbody>
</table>

Full Setup

<table>
<thead>
<tr>
<th>Process</th>
<th>Install. ParametersTank Type / Tank Height / Blocking Distance / Time Constant / Antenna Type / Antenna Extension / Distance Piece / Reference Offset / Tank Bottom Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion</td>
<td>Select Conversion / Entry Count<sup>Rd</sup> / Conversion Table</td>
</tr>
<tr>
<td>Output</td>
<td>GeneralType IO channel A<sup>Rd</sup> / Type IO Channel B<sup>Rd</sup></td>
</tr>
<tr>
<td>Current Output 1</td>
<td>Current Out 1 Variable / 0% Range / 100% Range / Current Out Range / Error Function / Low Error Current / High Error Current / D/A Trim PV<sup>Opt</sup></td>
</tr>
<tr>
<td>Display</td>
<td>GeneralLanguage / Backlight</td>
</tr>
<tr>
<td>1st Measurement Page</td>
<td>Function / 1st Value Variable / Format 1st Value / 2nd Value Variable<sup>Opt</sup> / Format 2nd Value<sup>Opt</sup> / 3rd Value Variable<sup>Opt</sup> / Format 3rd Value<sup>Opt</sup> / 0% Range<sup>Opt</sup> / 100% Range<sup>Opt</sup></td>
</tr>
<tr>
<td>2nd Measurement Page</td>
<td>Function / 1st Value Variable / Format 1st Value / 2nd Value Variable<sup>Opt</sup> / Format 2nd Value<sup>Opt</sup> / 3rd Value VariableOpt / Format 3rd Value<sup>Opt</sup> / 0% Range<sup>Opt</sup> / 100% Range<sup>Opt</sup></td>
</tr>
</tbody>
</table>
Device Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>/ Tag / Serial Number</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>/ Device Name / V Number</td>
</tr>
<tr>
<td>Electronic Revision</td>
<td>/ Field Device Revision / Software Revision</td>
</tr>
<tr>
<td>Hardware Revision</td>
<td>/ Hardware Revision / Electronics Serial No.</td>
</tr>
<tr>
<td>Production Date</td>
<td></td>
</tr>
</tbody>
</table>

Security

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>/ Change Password / Reset Passwords / Change Security</td>
</tr>
<tr>
<td>Lock Status</td>
<td>/ Lock/Unlock Device / Write Protect</td>
</tr>
<tr>
<td>(De)activate Write Protection</td>
<td>/ Unlock Extended Range</td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Length</td>
<td>/ Unit Volume / Unit Mass</td>
</tr>
</tbody>
</table>

Log

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Time</td>
<td>/ Reset Log-Messages</td>
</tr>
</tbody>
</table>

Factory Default

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset To Fact. Default</td>
<td></td>
</tr>
</tbody>
</table>

HART Identification & Info

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop current Mode</td>
<td>/ Online Mode / Poll Address</td>
</tr>
<tr>
<td>Tag</td>
<td>/ Long Tag / Manufacturer / Device Id</td>
</tr>
<tr>
<td>Model</td>
<td>/ Universal Rev / Field Device Rev / DD-Version</td>
</tr>
<tr>
<td>Message</td>
<td>/ Date / Final assembly number / Configuration change count</td>
</tr>
<tr>
<td>/ Software Rev / Hardware rev</td>
<td>/ Write Protect</td>
</tr>
<tr>
<td>/ Number of request preambles / Number of response preambles</td>
<td></td>
</tr>
</tbody>
</table>

Service

Calibration

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Manual Correction Offset / Manual Correction Factor /</td>
</tr>
<tr>
<td></td>
<td>Correction Offset Extended / Correction Factor Extended /</td>
</tr>
</tbody>
</table>

Measurement Value

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Value</td>
<td>/ Media Level / Distance / Reflection / Level Linearization</td>
</tr>
<tr>
<td></td>
<td>/ Volume / Mass / Distance Linearization / Ullage /</td>
</tr>
<tr>
<td></td>
<td>Ullage Mass</td>
</tr>
</tbody>
</table>

Input / Outputs

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>/ PV % Range / PV output current / SV / TV / QV</td>
</tr>
</tbody>
</table>
Diagnosis

Device Status

<table>
<thead>
<tr>
<th>Condensed Status (NE 107)</th>
<th>Condensed Status (NE 107)Rd / Device Simulation ActiveRd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Device StatusRd / Ext. Device StatusRd / Write ProtectRd / Device Diagnostic Status 0Rd / Device Diagnostic Status 1Rd / AO SaturatedRd / AO FixedRd</td>
</tr>
<tr>
<td>Additional</td>
<td>Device Status SimulationRd / Failure (F)Rd / Function Check (C)Rd / Out of Specification (S)Rd / Maintenance Required (M)Rd / Electronics InformationRd / Sensor InformationRd</td>
</tr>
<tr>
<td>Cluster Check</td>
<td>Cluster NumberRd / Failed Cluster CheckRd</td>
</tr>
</tbody>
</table>

Actual Values

Simulation

<table>
<thead>
<tr>
<th>Process Variables</th>
<th>Simulation Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Status</td>
<td>Enable/Disable Status Simulation / Status SimulationOpt</td>
</tr>
<tr>
<td>I/O</td>
<td>Loop Test</td>
</tr>
</tbody>
</table>

Test / Reset

<table>
<thead>
<tr>
<th>Device Reset / Reset Configuration Changed Flag</th>
</tr>
</thead>
</table>

Information

| TagRd / Long TagRd / Serial NumberRd / ManufacturerRd / Device NameRd / V NumberRd / Electronic RevisionRd / Field Device RevisionRd / Software RevisionRd / Hardware RevisionRd / Electronics Serial No.Rd / Production DateRd / Calibration DateRd / Operating TimeRd |
10.1 Objednací číslo
Kompletní objednací kód získáte zvolením příslušné varianty v každém sloupci.

<table>
<thead>
<tr>
<th>VFDC</th>
<th>4</th>
<th>0</th>
<th>Radarový hladinoměr OPTIWAVE 6400 C na principu FMCW s frekvencí 24 GHz pro měření sypkých látek ve formě granulátu nebo kusů (do 16 barg (232 psig) a 130°C (266°F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Místní předpisy</td>
<td>1</td>
<td>Evropa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Čína</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Kanada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Brazílie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Austrálie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Rusko</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Kazachstán</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Bělorusko</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Celý svět</td>
<td></td>
</tr>
<tr>
<td>Schválení pro prostory s nebezpečím výbuchu (Ex)</td>
<td>0</td>
<td>Bez</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ATEX II 1/2 G Ex ia iIC T6…T4 Ga/Gb + II 1/2 D Ex ia iIC T85°C…T100°C nebo T85°C…T130°C Da/Db</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>ATEX II 1/2 GD Ex db ia iIC T6…T4 Ga/Gb + II 1/2 D Ex ia tb IIIIC T85°C…T100°C nebo T85°C…T130°C Da/Db</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ATEX II 3 G Ex ic iIC T6…T4 Gc + II 3 D Ex ic IIIIC T85°C…T100°C nebo T85°C…T130°C Dc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ATEX II 3 G Ex nA T6…T4 Gc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>NEPSI Ex ia iIC T6…T4 Ga/Gb + Ex iaD 20/21 T85°C…T100°C nebo T85°C…T130°C IP6X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>NEPSI Ex d ia iIC T6…T4 Ga/Gb + Ex iaD tD A20/A21 T85°C…T100°C nebo T85°C…T130°C IP6X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>cQPSus IS CL I/II/III DIV 1 GP A-G + CL I Z0 AEx ia/Ex ia IIC T6…T4 Ga + Z20 AEx ia/Ex ia IIIIC T85°C…T100°C nebo T85°C…T130°C Da</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>cQPSus XP-IS/DIP CL I DIV 1 GP A-G + CL I Z1 AEx db/Ex db ia iIC T6…T4 Gb + Z21 AEx ia tb/Ex ia ia tb IIIIC T85°C…T100°C nebo T85°C…T130°C Db</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>cQPSus NI CL I/II/III DIV 2 GP A-G + CL I Z2 AEx nA/Ex nA nA iIC T6…T4 Gc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>IECEx Ex ia iIC T6…T4 Ga/Gb + Ex ia IIIIC T85°C…T100°C nebo T85°C…T130°C Da/Db</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>IECEx Ex d ia iIC T6…T4 Ga/Gb + Ex ia tb IIIIC T85°C…T100°C nebo T85°C…T130°C Da/Db</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>IECEx Ex ic iIC T6…T4 Gc + Ex ic IIIIC T85°C…T100°C nebo T85°C…T130°C Dc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>EAC Ex Ga/Gb Ex ia T6…T4 + Ex ia IIIIC T85°C…T100°C nebo T85°C…T130°C Da/Db</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>EAC Ex Ga/Gb Ex d ia T6…T4 + Ex ia tb IIIIC T85°C…T100°C nebo T85°C…T130°C Da/Db</td>
<td></td>
</tr>
<tr>
<td>Spec. konstrukce</td>
<td>0</td>
<td>Bez</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CRN / ASME B31.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ASME B31.3</td>
<td></td>
</tr>
<tr>
<td>Provedení převodníku (materiál krytu / krytí)</td>
<td>2</td>
<td>C / Kompaktní provedení (hliníkový kryt – IP66/68 0,1 barg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>C / Kompaktní provedení (kryt z korozivzdorné oceli – IP66/68 0,1 barg)</td>
<td></td>
</tr>
</tbody>
</table>
Výstupy

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2vodičový / 4...20mA, pasivní, HART®</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Závit pro vývodku / kabelová vývodka

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M20×1,5 / bez</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M20×1,5 / 1 × plastová + zátka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M20×1,5 / 1 × z poniklované mosazi + zátka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M20×1,5 / 1 × z korozivzdorné oceli + zátka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>M20×1,5 / 1 × M12 (4kolíkový konektor) + zátka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M20×1,5 / 2 × plastová</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>M20×1,5 / 2 × z poniklované mosazi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>M20×1,5 / 2 × z korozivzdorné oceli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>M20×1,5 / 2 × M12 (4kolíkový konektor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>½ NPT / bez</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>½ NPT / 1 × z poniklované mosazi + zátka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>½ NPT / 1 × z korozivzdorné oceli + zátka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>½ NPT / 2 × z poniklované mosazi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>½ NPT / 2 × z korozivzdorné oceli</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displej

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez (bez displeje, víčko bez okénka)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Zásuvný displej (víčko s okénkem)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displej – Jazyk pro zobrazení textů

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angličtina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Němčina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Francouzština</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Italština</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Španělština</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Portugalská</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Japonština</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Čínská (zjednodušená)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Ruština</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Čeština</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Turečtina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Polština</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provozní podmínky (tlak, teplota, materiál a poznámky / Procesní těsnění)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1...16 barg (-14,5...232 psig) / -40°C...+130°C (-40°F...+266°F) / FKM/FPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1...16 barg (-14,5...232 psig) / -50°C...+130°C (-58°F...+266°F) / EPDM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1...16 barg (-14,5...232 psig) / -20°C...+130°C (-4°F...+266°F) / Kalrez® 6375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VFDC 4 0 0 1

Objednací číslo (dokončení celého čísla na následujících stranách)
Anténa (typ, materiál, schválení pro radiokomunikace)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez</td>
</tr>
<tr>
<td>4</td>
<td>Kovová trychtýřová, DN80 (3”) / kor. ocel 316L / LPR</td>
</tr>
<tr>
<td>5</td>
<td>Kovová trychtýřová, DN100 (4”) / kor. ocel 316L / LPR</td>
</tr>
<tr>
<td>6</td>
<td>Kovová trychtýřová, DN150 (6”) / kor. ocel 316L / LPR</td>
</tr>
<tr>
<td>7</td>
<td>Kovová trychtýřová, DN200 (8”) / kor. ocel 316L / LPR</td>
</tr>
<tr>
<td>A</td>
<td>Kapková, DN80 (3”) / PP / LPR</td>
</tr>
<tr>
<td>B</td>
<td>Kapková, DN100 (4”) / PP / LPR</td>
</tr>
<tr>
<td>C</td>
<td>Kapková, DN150 (6”) / PP / LPR</td>
</tr>
<tr>
<td>E</td>
<td>Kapková, DN80 (3”) / PTFE / LPR</td>
</tr>
<tr>
<td>F</td>
<td>Kapková, DN100 (4”) / PTFE / LPR</td>
</tr>
<tr>
<td>G</td>
<td>Kapková, DN150 (6”) / PTFE / LPR</td>
</tr>
</tbody>
</table>

Prodloužení antény / Ochranný povlak příruby

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez</td>
</tr>
<tr>
<td>1</td>
<td>Prodloužení</td>
</tr>
<tr>
<td>2</td>
<td>105 mm (4”) / kor. ocel 316L</td>
</tr>
<tr>
<td>3</td>
<td>210 mm (8”) / kor. ocel 316L</td>
</tr>
<tr>
<td>4</td>
<td>315 mm (12”) / kor. ocel 316L</td>
</tr>
<tr>
<td>5</td>
<td>420 mm (17”) / kor. ocel 316L</td>
</tr>
<tr>
<td>6</td>
<td>525 mm (21”) / kor. ocel 316L</td>
</tr>
<tr>
<td>7</td>
<td>630 mm (24”) / kor. ocel 316L pro kovové trychtýřové antény</td>
</tr>
<tr>
<td>8</td>
<td>735 mm (29”) / kor. ocel 316L pro kovové trychtýřové antény</td>
</tr>
<tr>
<td>9</td>
<td>840 mm (33”) / kor. ocel 316L pro kovové trychtýřové antény</td>
</tr>
<tr>
<td>A</td>
<td>945 mm (37”) / kor. ocel 316L pro kovové trychtýřové antény</td>
</tr>
<tr>
<td>B</td>
<td>1050 mm (41”) / kor. ocel 316L pro kovové trychtýřové antény</td>
</tr>
</tbody>
</table>

Provozní připojení: Rozměr / Jmenovitý tlak / Těsnicí plocha příruby

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez</td>
</tr>
<tr>
<td>1</td>
<td>ISO 228 (závitové připojení)</td>
</tr>
<tr>
<td>2</td>
<td>F P 0 G 1 A</td>
</tr>
<tr>
<td>3</td>
<td>G P 0 G 1¼ A</td>
</tr>
<tr>
<td>4</td>
<td>ASME B1.20.1 (závitové připojení)</td>
</tr>
<tr>
<td>5</td>
<td>F A 0 1 NPT</td>
</tr>
<tr>
<td>6</td>
<td>G A 0 1½ NPT</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Nízkotlaký přírubový adaptér podle EN (přišroubovaný k připojení G 1½A)</td>
</tr>
<tr>
<td>8</td>
<td>L C 7 DN80 PN01</td>
</tr>
<tr>
<td>9</td>
<td>M C 7 DN100 PN01</td>
</tr>
<tr>
<td>10</td>
<td>P C 7 DN150 PN01</td>
</tr>
<tr>
<td>11</td>
<td>R C 7 DN200 PN01</td>
</tr>
</tbody>
</table>

VFDC

| | 4 | 0 | 0 | 1 | 0 |

Objednací číslo (dokončení celého čísla na následujících stranách)
Nízktlaký přírubový adaptér podle ASME (přírubový k připojení 1½ NPT)

L	1	B	3"	150 lb	15 psig max.
M	1	B	4"	150 lb	15 psig max.
P	1	B	6"	150 lb	15 psig max.
R	1	B	8"	150 lb	15 psig max.

Příruby podle EN 1092-1

L	D	1	DN80 PN10 – Typ B1
L	E	1	DN80 PN16 – Typ B1
L	G	1	DN80 PN40 – Typ B1
M	D	1	DN100 PN10 – Typ B1
M	E	1	DN100 PN16 – Typ B1
M	G	1	DN100 PN40 – Typ B1
P	D	1	DN150 PN10 – Typ B1
P	E	1	DN150 PN16 – Typ B1
P	G	1	DN150 PN40 – Typ B1
R	D	1	DN200 PN10 – Typ B1
R	E	1	DN200 PN16 – Typ B1

Příruby podle ASME B16.5

L	1	A	3"	150 lb RF
L	2	A	3"	300 lb RF
M	1	A	4"	150 lb RF
M	2	A	4"	300 lb RF
P	1	A	6"	150 lb RF
P	2	A	6"	300 lb RF
R	1	A	8"	150 lb RF

Příruby podle JIS B2220

L	U	P	80A JIS 10K RF
M	U	P	100A JIS 10K RF
P	U	P	150A JIS 10K RF
R	U	P	200A JIS 10K RF

Alternativní těsnicí plochy přírub

- Příruby podle EN 1092-1
 - 7 Typ A (hladká lišta)
- Příruby podle ASME B16.5
 - B FF (hladká lišta)

VFDC | 4 | 0 | 0 | 1 | 0 | **Objednací číslo (dokončení celého čísla na následujících stranách)**
Kalibrační protokol

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez: přesnost ±2 mm (±0,08")</td>
</tr>
<tr>
<td>1</td>
<td>Kalibrační protokol ±2 mm (±0,08") do 10 m (32,81 ft), 2 body</td>
</tr>
<tr>
<td>2</td>
<td>Kalibrační protokol ±2 mm (±0,08") do 10 m (32,81 ft), 5 bodů</td>
</tr>
<tr>
<td>3</td>
<td>Kalibrační protokol ±2 mm (±0,08") do 10 m (32,81 ft), 5 bodů podle požadavků zákazníka, min. ≥ 400 mm (16")</td>
</tr>
</tbody>
</table>

Doplňky

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez</td>
</tr>
<tr>
<td>2</td>
<td>Proplach (jen pro kovové trčtvýřové antény)</td>
</tr>
</tbody>
</table>

Příslušenství / Štítek s označením

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bez</td>
</tr>
<tr>
<td>1</td>
<td>Ochranný kryt proti povětrnostním vlivům</td>
</tr>
<tr>
<td>2</td>
<td>Adaptér pro těsnící systém OPTIWAVE 6300 C</td>
</tr>
<tr>
<td>3</td>
<td>Štítek z korozivzd. oceli s označením (max. 18 znaků)</td>
</tr>
<tr>
<td>5</td>
<td>Ochr. kryt proti povětrnost. vlivům + Adaptér pro těs. systém OPTIWAVE 6300 C</td>
</tr>
<tr>
<td>6</td>
<td>Ochr. kryt proti povětrnost. vlivům + Štítek z kor. oceli s označením (max. 18 znaků)</td>
</tr>
<tr>
<td>7</td>
<td>Ochr. kryt proti povětrnost. vlivům + Štítek z kor. ocelí s označením (min. ≥ 400 mm (16")</td>
</tr>
<tr>
<td>8</td>
<td>Štítek z korozivzd. oceli s označením (max. 18 znaků) + Adaptér pro těs. systém OPTIWAVE 6300 C</td>
</tr>
<tr>
<td>A</td>
<td>Ochr. kryt proti povětrnost. vlivům + příruba zkosená o 2°</td>
</tr>
<tr>
<td>B</td>
<td>Ochr. kryt proti povětrnost. vlivům + Štítek z kor. ocelí s označením (18 znaků) + příruba zkosená o 2°</td>
</tr>
<tr>
<td>C</td>
<td>Štítek z kor. oceli s označením (18 znaků) + příruba zkosená o 2°</td>
</tr>
</tbody>
</table>

VFDC

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Objednací číslo

1. K dispozici od září 2017
2. K dispozici od září 2017. DIP = Dust Ignition Proof (s ochranou proti vznícení prachu).
3. K dispozici od listopadu 2017
5. Pro kovové trčtvýřové a kapkové antény
6. LPR (radar pro sondování výšky hladiny) = anténu můžete umístit v uzavřené nádrži nebo ve venkovním prostoru, anténa však musí směřovat dolů. Neumístujte radary LPR blízko citlivých zařízení (např. radioastronomických observatoří). TLPR (radar pro sondování výšky hladiny v nádrži) = anténu musíte umístit v uzavřené nádrži.
7. Pokud má přístroj kapkovou anténu z PP, je příruba zkosená o 2° vyrobena z PP. Pokud je anténa vyrobena z jiného materiálu, je příruba zkosená o 2° vyrobena z PTFE.
10.2 Náhradní díly

K tomuto přístroji jsou dodávány náhradní díly. Při objednávání mechanických náhradních dílů prosím uvádějte referenční čísla z následující tabulky. Při objednávání elektronických náhradních dílů viz Objednací číslo na straně 161 a použijte objednací číslo VFDC.

Mechanické náhradní díly

<table>
<thead>
<tr>
<th>Popis</th>
<th>Množství</th>
<th>Referenční číslo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antény</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kovová trychtýlová, DN80 / 3"</td>
<td>1</td>
<td>XFDX070300</td>
</tr>
<tr>
<td>Kovová trychtýlová, DN100 / 4"</td>
<td>1</td>
<td>XFDX070400</td>
</tr>
<tr>
<td>Kovová trychtýlová, DN150 / 6"</td>
<td>1</td>
<td>XFDX070500</td>
</tr>
<tr>
<td>Kovová trychtýlová, DN200 / 8"</td>
<td>1</td>
<td>XFDX070600</td>
</tr>
<tr>
<td>Kapková z PP, DN80 / 3"</td>
<td>1</td>
<td>XFDX070700</td>
</tr>
<tr>
<td>Kapková z PP, DN100 / 4"</td>
<td>1</td>
<td>XFDX070800</td>
</tr>
<tr>
<td>Kapková z PP, DN150 / 6"</td>
<td>1</td>
<td>XFDX070900</td>
</tr>
<tr>
<td>Kapková z PTFE, DN80 / 3"</td>
<td>1</td>
<td>XFDX071000</td>
</tr>
<tr>
<td>Kapková z PTFE, DN100 / 4"</td>
<td>1</td>
<td>XFDX071100</td>
</tr>
<tr>
<td>Kapková z PTFE, DN150 / 6"</td>
<td>1</td>
<td>XFDX071200</td>
</tr>
<tr>
<td>Těsnění pro kapkové antény</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Těsnění z FKM/FPM pro anténu + prodloužení antény</td>
<td>5</td>
<td>XFDX080100</td>
</tr>
<tr>
<td>Těsnění z EPDM pro anténu + prodloužení antény</td>
<td>5</td>
<td>XFDX080200</td>
</tr>
<tr>
<td>Těsnění z Kalrez® 6375 pro anténu + prodloužení antény</td>
<td>5</td>
<td>XFDX080300</td>
</tr>
<tr>
<td>Prodloužení antény z korozivzdorné oceli 316L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 mm / 4"</td>
<td>1</td>
<td>XFDX090100</td>
</tr>
<tr>
<td>210 mm / 8"</td>
<td>1</td>
<td>XFDX090200</td>
</tr>
<tr>
<td>315 mm / 12"</td>
<td>1</td>
<td>XFDX090300</td>
</tr>
<tr>
<td>420 mm / 17"</td>
<td>1</td>
<td>XFDX090400</td>
</tr>
<tr>
<td>525 mm / 21"</td>
<td>1</td>
<td>XFDX090500</td>
</tr>
<tr>
<td>630 mm / 25"</td>
<td>1</td>
<td>XFDX090600</td>
</tr>
<tr>
<td>735 mm / 29"</td>
<td>1</td>
<td>XFDX090700</td>
</tr>
<tr>
<td>840 mm / 33"</td>
<td>1</td>
<td>XFDX090800</td>
</tr>
<tr>
<td>945 mm / 37"</td>
<td>1</td>
<td>XFDX090900</td>
</tr>
<tr>
<td>1050 mm / 41"</td>
<td>1</td>
<td>XFDX091000</td>
</tr>
<tr>
<td>Příruba zkosená o 2°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN80 / 3"</td>
<td>1</td>
<td>XFDX100100</td>
</tr>
<tr>
<td>DN100 / 4"</td>
<td>1</td>
<td>XFDX100200</td>
</tr>
<tr>
<td>DN150 / 6"</td>
<td>1</td>
<td>XFDX100300</td>
</tr>
<tr>
<td>DN200 / 8"</td>
<td>1</td>
<td>XFDX100400</td>
</tr>
</tbody>
</table>
Jiné náhradní díly

Obrázek 10-1: Jiné náhradní díly

1. Pojistka víčka
2. Víčko komory svorkovnice
3. Těsnění pro víčko komory svorkovnice 2
4. Modul svorkovnice
5. Kabelová vývodka
6. Převodník signálu
7. Modul displeje
8. Těsnění pro víčko displeje 9 nebo víčko bez průzoru 1
9. Víčko displeje
10. Propojovací modul
11. Víčko bez průzoru
12. Pant
13. Plastový ochranný kryt pro víčko displeje 9

<table>
<thead>
<tr>
<th>Popis</th>
<th>Množství</th>
<th>Referenční číslo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hliníkové víčko bez průzoru (11) + těsnění (8) + pojistka víčka (1)</td>
<td>1</td>
<td>XFDX010100</td>
</tr>
<tr>
<td>Víčko bez průzoru z korozivzd. oceli (11) + těsnění (8) + pojistka</td>
<td>1</td>
<td>XFDX010200</td>
</tr>
<tr>
<td>víčka (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hliníkové víčko displeje (9) + těsnění (8)</td>
<td>1</td>
<td>XFDX010300</td>
</tr>
<tr>
<td>Víčko displeje z korozivzd. oceli (9) + těsnění (8)</td>
<td>1</td>
<td>XFDX010400</td>
</tr>
<tr>
<td>Popis</td>
<td>Množství</td>
<td>Referenční číslo</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Hliníkové víčko komory svorkovnice (2) + těsnění (3) + pojistka víčka (1)</td>
<td>1</td>
<td>XFDX010500</td>
</tr>
<tr>
<td>Víčko komory svorkovnice z korozivzd. oceli (2) + těsnění (3) + pojistka víčka (1)</td>
<td>1</td>
<td>XFDX010600</td>
</tr>
<tr>
<td>Plastový ochranný kryt pro víčko displeje (13) + pant (12)</td>
<td>2</td>
<td>XFDX010700</td>
</tr>
<tr>
<td>Sada těsnicích O-kroužků (3) + (8)</td>
<td>5</td>
<td>XFDX010800</td>
</tr>
</tbody>
</table>

Displej

<table>
<thead>
<tr>
<th>Modul displeje (7)</th>
<th>1</th>
<th>XFDX020100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul displeje (7) + hliníkové víčko displeje (9) + těsnění (8)</td>
<td>1</td>
<td>XFDX020200</td>
</tr>
<tr>
<td>Modul displeje (7) + víčko displeje z korozivzd. oceli (9) + těsnění (8)</td>
<td>1</td>
<td>XFDX020300</td>
</tr>
<tr>
<td>Propojovací modul (10)</td>
<td>1</td>
<td>XFDX020400</td>
</tr>
</tbody>
</table>

Deska řídicího modulu elektroniky (back end)

| Převodník signálu, 2vodičový, HART® (6) | 1 | XFDA030100 |

Modul svorkovnice

<table>
<thead>
<tr>
<th>Modul svorkovnice, bez Ex (GP) nebo Ex i (IS) (4)</th>
<th>1</th>
<th>XFDX040100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul svorkovnice Ex d (XP)</td>
<td>1</td>
<td>XFDX040200</td>
</tr>
</tbody>
</table>

Kabelová vývodka / závit pro vývodu

<table>
<thead>
<tr>
<th>Kabelová vývodka / M20×1,5, plastová, černá, bez Ex (GP) (5)</th>
<th>10</th>
<th>XFDX050100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabelová vývodka / M20×1,5, plastová, modrá, Ex i (IS) (5)</td>
<td>10</td>
<td>XFDX050200</td>
</tr>
<tr>
<td>Kabelová vývodka / M20×1,5, z poniklované mosazi, Ex d (XP) (5)</td>
<td>5</td>
<td>XFDX050300</td>
</tr>
<tr>
<td>Kabelová vývodka / M20×1,5, z korozivzdorné oceli, Ex d (XP) (5)</td>
<td>2</td>
<td>XFDX050400</td>
</tr>
<tr>
<td>Kabelová vývodka / M20×1,5, z poniklované mosazi, bez Ex (GP) / Ex i (IS) (5)</td>
<td>5</td>
<td>XFDX050500</td>
</tr>
<tr>
<td>Kabelová vývodka / M20×1,5, z korozivzdorné oceli, bez Ex (GP) / Ex i (IS) (5)</td>
<td>2</td>
<td>XFDX050600</td>
</tr>
<tr>
<td>Konektor M12×1 (4kolíkový konektor) (5)</td>
<td>5</td>
<td>XFDX050700</td>
</tr>
<tr>
<td>Kabelová vývodka / ½ NPT, z poniklované mosazi, Ex d (5)</td>
<td>5</td>
<td>XFDX050800</td>
</tr>
<tr>
<td>Kabelová vývodka / ½ NPT, z poniklované mosazi, cQPSus (5)</td>
<td>5</td>
<td>XFDX050900</td>
</tr>
<tr>
<td>Kabelová vývodka / ½ NPT, z korozivzdorné oceli, bez Ex (GP) / Ex i (5)</td>
<td>2</td>
<td>XFDX051000</td>
</tr>
<tr>
<td>Kabelová vývodka / ½ NPT, z korozivzdorné oceli, Ex d (5)</td>
<td>2</td>
<td>XFDX051100</td>
</tr>
<tr>
<td>Kabelová vývodka / ½ NPT, z korozivzdorné oceli, cQPSus (5)</td>
<td>2</td>
<td>XFDX051200</td>
</tr>
</tbody>
</table>
10.3 Příslušenství

K tomuto přístroji je dodáváno příslušenství. Při objednávání příslušenství prosím uvádějte následující referenční čísla:

Obrázek 10-2: Příslušenství

1 Ochranný kryt proti povětrnostním vlivům
2 Převodník RS232 / HART
3 Převodník USB / HART
4 Přípravek na demontáž displeje, magnetické pero a klíč na víčka

<table>
<thead>
<tr>
<th>Součást</th>
<th>Popis</th>
<th>Množství</th>
<th>Referenční číslo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ochranný kryt proti povětrnostním vlivům</td>
<td>1</td>
<td>XFDX060100</td>
</tr>
<tr>
<td>2</td>
<td>Převodník RS232 / HART</td>
<td>1</td>
<td>XFDX060200</td>
</tr>
<tr>
<td>3</td>
<td>Převodník USB / HART</td>
<td>1</td>
<td>XFDX060300</td>
</tr>
<tr>
<td>4</td>
<td>Přípravek na demontáž displeje, magnetické pero a klíč na víčka</td>
<td>5</td>
<td>XFDX060400</td>
</tr>
<tr>
<td>—</td>
<td>Napájecí zdroj USB / 24 Vss</td>
<td>1</td>
<td>XFDX060500</td>
</tr>
</tbody>
</table>
10.4 Slovníček pojmů

D

Device Type Manager. Ovladač pro použití v programu PACTware™. Obsahuje všechny parametry a funkce přístroje.

E

Elektromagnetická kompatibilita (EMC)

Definuje, do jaké míry přístroj ovlivňuje nebo je ovlivňován ostatními zařízeními, která generují za provozu elektromagnetická pole. Podrobnosti viz evropská norma EN 61326-1.

F

FMCW

Technologie frekvenčně modulovaného spojitého radarového vlnění. Signál je vysílán nepřetržitě, avšak jeho frekvence je modulována, obvykle v lineárních frekvenčních přebězích, následujících po sobě v čase (frekvenční zdvih).

H

Hmotnost

Celková hmotnost obsahu síla.

K

Kapková anténa

Anténa nové generace vyráběná z PP nebo PTFE. Má tvar rotačního elipsoidu umožňujícího přesnější vysílání radarového signálu.

O

Objem

Celkový objem média v síle.

P

PACTware™

Software, který umožňuje ovládání a nastavení konfigurace hladinoměru ze vzdálené pracovní stanice. Není nutno používat software pro sběrnice ani programy vyvinuté výrobcem.

Převodník signálu

Elektronická součást hladinoměru určená k úpravě, filtrování a zobrazení měřeného signálu. Identifikuje a měří výšku hladiny v síle.
Přímý Plus

Přímý Plus je alternativní režim měření. Pokud se předpokládá, že by se v měřicím rozsahu mohly vyskytnout rušivé signály sílnejší než signál od hladiny, zvolte režim "Přímý Plus". Po zvolení režimu "Přímý Plus" se přístroj "uzamkne" na signálu od hladiny a sleduje změny její výšky. Jestliže pak přístroj naříží v šířce sílnejší odražené signály, bude sledovat nejsilnejší signál již v úzké oblasti kolem prvního nalezeného signálu a bude ignorovat ostatní odražené signály. Rušivý signál se nesmí nacházet příliš blízko užitečného signálu od hladiny.

Prostředí s nebezpečím výbuchu

Prostor, ve kterém se vyskytuje potenciálně výbušná atmosféra. V tomto prostoru smí montovat a obsluňovat přístroje pouze speciálně školený personál. Přístroj musí být objednán v příslušném provedení. Přístroj musí mít schválení (ATEX, IECEx, cQPSus, FM, CSA, NEPSI atd.) v souladu s klasifikací prostředí v místě aplikace. Další podrobnosti jsou uvedeny v návodech označených Ex a v příslušných EC certifikátech přezkoušení typu.

R

Radarové odrazy

Signály odražené od povrchu (hladiny) médií v síle.

Relativní permitivita

Elektrická vlastnost měřeného médií. Rovněž označována jako εr, DK a dieléktrická konstanta. Tato konstanta udává intenzitu vlnění odraženého zpět do převodníku hladinoměru.

Rušivé signály

Falešné odrazy radarového signálu, které obvykle vznikají odrazem od vnitřní zástavby v nádrži.

T

Trychtýřová anténa

Běžná anténa pro většinu aplikací. Používá se pro řízené vysílání a přijím radarových signálů.

V

Volný objem

Nezaplněný objem. Viz nákresy na konci této kapitoly.

Výška hladiny

Vzdálenost mezi dnem síla (definována uživatelem) a povrchem (hladinou) horního média (výška síla – vzdálenost). Viz nákresy na konci této kapitoly.

Vzdálenost

Vzdálenost od těsnicí lišty příruby k hladině nebo povrchu měřeného média (pro 1 médium) nebo horního média (pro 2 nebo více médií). Viz nákresy na konci této kapitoly.
Obrázek 10-3: Definice pojmů: vzdálenost

① Vzdálenost
② Mrtvá vzdálenost
③ Těsnicí lišta příruby
④ Plyn (vzduch)
⑤ Výška nádrže
⑥ Volný objem nebo hmotnost

Obrázek 10-4: Definice pojmů: výška hladiny

① Výška hladiny
② Objem nebo hmotnost
KROHNE – Měřicí přístroje a systémy

- Průtok
- Výška hladiny
- Teplota
- Tlak
- Procesní analyzátory
- Služby

Centrála KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Německo)
Tel.: +49 203 301 0
Fax: +49 203 301 10389
info@krohne.com

Aktuální seznam všech kontaktních adres firmy KROHNE najdete na:
www.krohne.com