Бесконтактный 24 ГГц радарный (FMCW) уровнемер

для измерения дистанции, уровня, объёма и массы жидкостей
Авторское право 2015 принадлежит
KROHNE Messtechnik GmbH - Ludwig-Krohne-Str. 5 - 47058 г. Дуйсбург (Германия)
1 Правила техники безопасности 6

1.1 История версий программного обеспечения .. 6
1.2 Назначение прибора .. 6
1.3 Сертификаты .. 7
1.4 Электромагнитная совместимость ... 7
1.5 Требования к радиопередающим / радиоприемным устройствам 8
 1.5.1 Требования для стран Европейского союза (ЕС) .. 8
 1.5.2 Требования для США и Канады .. 10
1.6 Указания изготовителя по технике безопасности ... 10
 1.6.1 Авторское право и защита информации .. 10
 1.6.2 Заявление об ограничении ответственности ... 11
 1.6.3 Ответственность за качество изделия и гарантийные обязательства 12
 1.6.4 Информация по документации .. 12
 1.6.5 Используемые предупреждающие знаки и графические обозначения 13
1.7 Указания по безопасности для обслуживающего персонала 14

2 Описание прибора 15

2.1 Комплект поставки .. 15
2.2 Описание прибора .. 17
2.3 Визуальный контроль .. 18
2.4 Типовые таблички ... 19
 2.4.1 Типовая табличка для приборов невзрыво защищённого исполнения 19

3 Монтаж 20

3.1 Указания по монтажу ... 20
3.2 Хранение ... 20
3.3 Транспортировка ... 21
3.4 Предмонтажная проверка .. 21
3.5 Подготовка резервуара перед установкой прибора ... 22
 3.5.1 Диапазоны давлений и температур .. 22
 3.5.2 Рекомендуемое монтажное положение ... 23
 3.5.3 Теоретические данные по гигиеническим применениям 24
3.6 Рекомендации по установке для жидкостей ... 25
 3.6.1 Общие требования ... 25
 3.6.2 Обсадные трубы (ускорительные трубы и выносные камеры) 26
3.7 Как установить прибор на резервуар .. 29
 3.7.1 Как установить прибор с фланцевым присоединением 29
 3.7.2 Как установить прибор с резьбовым технологическим присоединением 31
 3.7.3 Монтаж прибора с гигиеническим присоединением ... 33
 3.7.4 Как присоединить антенные удлинители .. 37
 3.7.5 Поворот или снятие преобразователя сигналов ... 39
 3.7.6 Как установить защитный козырёк на прибор .. 40
 3.7.7 Как открывать защитный козырёк .. 41

4 Электрический монтаж 42

4.1 Правила техники безопасности ... 42
4.2 Электрическое подключение: Выходы 1 и 2 ... 42
 4.2.1 Приборы невзрыво защищённого исполнения .. 43
 4.2.2 Приборы взрывозащищённого исполнения .. 44
4.3 Степень защиты ... 44
5 Пуско-наладочные работы

5.1 Перечень работ при вводе в эксплуатацию ... 47
5.2 Принципы управления прибором .. 47
5.3 Цифровой графический дисплей .. 48
 5.3.1 Расположение информации на экране локального дисплея ... 48
 5.3.2 Кнопки управления .. 48
 5.3.3 Окно справочной информации ... 48
 5.3.4 Как включить прибор .. 49
5.4 Удалённая связь с использованием PACTware™ ... 49
5.5 Удалённая связь с использованием диспетчера устройств AMS™ 50

6 Эксплуатация

6.1 Режимы пользователя ... 51
6.2 Режим "Оператор" .. 51
6.3 Режим "Супервизор" .. 53
 6.3.1 Общие указания ... 53
 6.3.2 Получение доступа в режим "Супервизор" ... 53
 6.3.3 Обзор меню ... 54
 6.3.4 Назначение кнопок управления .. 55
 6.3.5 Описание функций ... 58
6.4 Подробная информация о настройках прибора ... 75
 6.4.1 Защита настроек прибора ... 75
 6.4.2 Конфигурация сети .. 75
 6.4.3 Линеаризация ... 76
 6.4.4 Измерение дистанции .. 76
 6.4.5 Измерение уровня ... 77
 6.4.6 Настройка прибора на измерение объёма или массы .. 79
 6.4.7 Как отфильтровать сигналы помех .. 80
 6.4.8 Как правильно проводить измерения в резервуарах с изогнутыми или коническими днищами .. 81
6.5 Режим "Сервис" .. 62
6.6 Ошибки ... 63
 6.6.1 Общая информация ... 63
 6.6.2 Устранение ошибок .. 66

7 Техническое обслуживание

7.1 Регулярное техническое обслуживание .. 90
7.2 Как очищать верхнюю поверхность прибора ... 90
7.3 Как очищать рупорную антенну во время работы ... 91
7.4 Как заменять компоненты прибора .. 91
 7.4.1 Гарантия на сервисное обслуживание ... 91
 7.4.2 Замена крышки дисплея ... 92
 7.4.3 Замена блока электроники в сборе .. 94
 7.4.4 Замена клеммного картриджа .. 96
7.5 Доступность запасных частей .. 98
7.6 Доступность сервисного обслуживания ... 98
7.7 Возврат прибора изготовителю ... 98
 7.7.1 Информация общего характера .. 98
 7.7.2 Образец бланка, прилагаемого к прибору в случае возврата (для снятия копии) 99
7.8 Утилизация ... 99

8 Технические характеристики ... 100

 8.1 Принцип измерения .. 100
 8.2 Технические характеристики ... 101
 8.3 Выбор антенны ... 108
 8.4 Указания по максимальному рабочему давлению 109
 8.5 Габаритные размеры и вес ... 111

9 Описание интерфейса HART .. 123

 9.1 Общее описание ... 123
 9.2 История версий программного обеспечения 123
 9.3 Варианты подключения .. 124
 9.3.1 Двухточечное соединение - аналоговый / цифровой режим 124
 9.3.2 Многоточечное соединение (2-проводное подключение) 124
 9.4 Переменные HART® ... 125
 9.5 Полевой коммуникатор 375/475 (FC 375/475) 125
 9.5.1 Установка ... 125
 9.5.2 Использование .. 125
 9.6 Система управления устройствами (AMS) ... 126
 9.6.1 Установка ... 126
 9.6.2 Использование .. 126
 9.6.3 Параметры для базовой конфигурации ... 126
 9.7 Инструментальное средство управления полевыми устройствами / Драйвер типа устройства (FDT / DTM) ... 126
 9.7.1 Установка ... 126
 9.7.2 Использование .. 127
 9.8 Обзор пунктов меню HART® для базовых DD 127
 9.8.1 Обзор базовой структуры меню DD (расположение в структуре меню) 127
 9.8.2 Базовая структура меню DD (данные для настроек) 127
 9.9 Структура меню HART® для AMS .. 129
 9.9.1 Обзор структуры меню AMS (расположение в структуре меню) 129
 9.9.2 Структура меню AMS (детальное описание параметров) 130

10 Приложение .. 133

 10.1 Код заказа ... 133
 10.2 Список запасных частей ... 139
 10.3 Перечень комплектующих ... 142
 10.4 Глоссарий ... 144

11 Примечания .. 147
Таблица 1. История версий программного обеспечения

<table>
<thead>
<tr>
<th>Дата выпуска (блок электроники) [ГГГГ-ММ-ДД]</th>
<th>Блок электроники</th>
<th>Предусилитель</th>
<th>Версия DTM-драйвера</th>
<th>Аппаратное обеспечение</th>
<th>Уровень согласно NE 53</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-10-31</td>
<td>1.0.1.95</td>
<td>1.0.0.26</td>
<td>1.0.0.32</td>
<td>2139580100</td>
<td>не используется</td>
</tr>
<tr>
<td>2008-02-01</td>
<td>1.0.1.96</td>
<td>1.0.0.27</td>
<td>1.0.0.34</td>
<td>2139580100</td>
<td>3</td>
</tr>
</tbody>
</table>

Окончание производства процессорной платы (арт. 2138270200)

<table>
<thead>
<tr>
<th>Дата выпуска (блок электроники) [ГГГГ-ММ-ДД]</th>
<th>Блок электроники</th>
<th>Предусилитель</th>
<th>Версия DTM-драйвера</th>
<th>Аппаратное обеспечение</th>
<th>Уровень согласно NE 53</th>
</tr>
</thead>
</table>
| 2010-03-01 | 2.0.2.00
 1.0.2.00① | 1.0.0.28 | 1.0.0.35 | 4000659201② | 1 |
| 2010-05-01 | 2.0.2.01
 1.0.2.01① | 1.0.0.28 | 1.0.0.35 | 4000659201② | 3 |
| 2012-03-05 | 2.0.2.02
 1.0.2.02① | 1.0.0.28 | 1.0.0.36 | 4000659201② | 3 |
| 2012-03-05 | 2.0.2.03
 1.0.2.03① | 1.0.0.28 | 1.0.0.36 | 4000659201② | 3 |
| 2013-01-22 | 2.0.2.04
 1.0.2.04① | 1.0.0.28 | 1.0.0.37③ | 4000659201② | 3 |
| 2015-01-26 | S2.0.2.04/FastMotion④ | 1.0.0.28 | 1.0.0.37③ | 4000659201② | 2 |

1) Данная версия микропрограммного обеспечения блока электроники используется исключительно для обновлений прибора.
2) Возможно обновить аппаратное обеспечение (арт. 2139580100) с использованием версии микропрограммного обеспечения блока электроники 1.0.2.04.
3) Если операционная система Вашего компьютера Windows XP, установите DTM-драйвер версии 1.0.0.36. Если операционная система Вашего компьютера Windows 7, установите DTM-драйвер версии 1.0.0.37.
4) Микропрограммное обеспечение блока электроники версии S2.0.2.04 применимо только для опционального быстродействующего программного обеспечения. Все другие устройства используют микропрограммное обеспечение версии 2.0.2.04.

1.2 Назначение прибора

Данный радарный уровнемер предназначен для измерения дистанции, уровня, массы, объёма и коэффициента отражения жидкостей, паст и суспензий.

Его можно устанавливать на резервуарах, реакторах и открытых каналах.
1.3 Сертификаты

Правила техники безопасности

В соответствии с обязательствами по поддержке заказчика и обеспечению безопасности, устройство, описанное в настоящем документе, отвечает следующим требованиям техники безопасности:

- Директива по низковольтному оборудованию 2006/95/EC в сочетании с EN 61010-1 (2001г.). Часть директивы по низковольтному оборудованию 2006/95/EC, касающаяся безопасности, в сочетании с EN 61010-1 (2001г.).

Все приборы имеют маркировку CE и соответствуют требованиям стандарта NAMUR NE 21 и NE 43.

1.4 Электромагнитная совместимость

Конструкция прибора соответствует европейскому стандарту EN 61326-1.

Вы можете устанавливать прибор на неметаллические резервуары и резервуары, расположенные на открытом воздухе. Смотрите также Требования к радиопередающим / радиоприемным устройствам на странице 8. Это согласуется с требованиями к помехоустойчивости и излучению для промышленных условий.

Информация!

Процесс эксплуатации прибора соответствует нормам класса бытовых излучений (класс В) и требованиям к промышленной помехоустойчивости при условии, что антенна установлена в закрытом металлическом резервуаре.
1 Правила техники безопасности

1.5 Требования к радиопередающим / радиоприемным устройствам

1.5.1 Требования для стран Евросоюза (ЕС)

Официальное уведомление!
Данный уровнемер предназначен для установки на закрытые металлические резервуары и объекты, расположенные на открытом воздухе. Он соответствует требованиям директивы 1999/05/EC по радио- и телекоммуникационному оборудованию (R & TTE, Radio Equipment and Telecommunications Terminal Equipment) для использования в странах Евросоюза. Прибор работает с использованием частотного диапазона (24...26 ГГц), который не согласован в рамках EC.
В соответствии с параграфом 6.4 директивы по радио- и телекоммуникационному оборудованию, данный продукт маркируется знаком CE с указанием номера уполномоченного органа сертификации (0682) и идентификатором класса II (= предупреждающий символ). Информацию по условиям монтажа смотрите в стандартах EN 302372 и EN 302729.

![Типовая табличка]

Информация по сертификатам на радиопереходящие / радиоприемные устройства представлена на входящем в комплект поставки компакт-диске.

При установке прибора необходимо соблюдать следующие меры предосторожности:

Устройство соответствует требованиям стандарта ETSI EN 302 729 на оборудование радиопозиционного зондирования уровня (LPR)

Устройство может использоваться на открытых объектах, при условии что директива по радио- и телекоммуникационному оборудованию (1999/5/EC) и соответствующие стандарты приняты в стране, где устанавливается устройство.
В настоящее время, директива по радио- и телекоммуникационному оборудованию утверждена в следующих странах: Австрия, Бельгия, Дания, Финляндия, Франция, Германия, Греция, Исландия, Ирландия, Италия, Люксембург, Люксембург, Нидерланды, Норвегия, Португалия, Испания, Швеция, Великобритания, Чешская Республика, Эстония, Кипр, Латвия, Литва, Венгрия, Мальта, Польша, Словения, Словакия, Румыния и Болгария.

Монтаж прибора должен осуществляться персоналом, имеющим соответствующую квалификацию. Следуйте данным указаниям:

- Прибор следует устанавливать на стационарной позиции. Прибор должен располагаться по направлению вниз под постоянным углом.
- Прибор необходимо устанавливать на расстоянии не менее 4 км / 2,485 миль от радиоастрономических обсерваторий.
- Если прибор находится на расстоянии 4...40 км / 2,485...24,855 миль от радиоастрономических обсерваторий, не следует устанавливать его на высоте более 15 м / 49,21 фут над уровнем земли.

Осторожно!
При необходимости установки прибора на расстоянии менее, чем 4 км / 2,485 миль от радиоастрономических обсерваторий, необходимо сначала получить одобрение национального органа регулирования связи (например, Национальное агентство по частотам (Франция), Федеральное сетевое агентство ФРГ (Германия), Управление по делам радио, телевидения и предприятий связи (Великобритания) и т.д.).

Зоны радиомолчания: местоположения радиоастрономических обсерваторий в Европе и Северной Евразии

<table>
<thead>
<tr>
<th>Страна</th>
<th>Наименование обсерватории</th>
<th>Координаты</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Широта, φ</td>
<td>Долгота, λ</td>
</tr>
<tr>
<td>Финляндия</td>
<td>Медахови</td>
<td>60°13'04" с.ш.</td>
</tr>
<tr>
<td></td>
<td>Туорла</td>
<td>60°24'56" с.ш.</td>
</tr>
<tr>
<td>Франция</td>
<td>Плато Бурз</td>
<td>44°38'01" с.ш.</td>
</tr>
<tr>
<td></td>
<td>Флуарак</td>
<td>44°50'10" с.ш.</td>
</tr>
<tr>
<td>Германия</td>
<td>Эффельсберг</td>
<td>50°31'32" с.ш.</td>
</tr>
<tr>
<td>Венгрия</td>
<td>Пенц</td>
<td>47°47'22" с.ш.</td>
</tr>
<tr>
<td>Италия</td>
<td>Медичина</td>
<td>44°31'14" с.ш.</td>
</tr>
<tr>
<td></td>
<td>Ното</td>
<td>36°52'34" с.ш.</td>
</tr>
<tr>
<td>Латвия</td>
<td>Сардиния</td>
<td>39°29'50" с.ш.</td>
</tr>
<tr>
<td>Польша</td>
<td>Вентспилс</td>
<td>57°33'12" с.ш.</td>
</tr>
<tr>
<td>Россия</td>
<td>Краков - Форт Скала</td>
<td>50°03'18" с.ш.</td>
</tr>
<tr>
<td></td>
<td>Торунь - Пивница</td>
<td>52°54'48" с.ш.</td>
</tr>
<tr>
<td>Испания</td>
<td>Дмитров</td>
<td>56°26'00" с.ш.</td>
</tr>
<tr>
<td></td>
<td>Калыгин</td>
<td>57°13'22" с.ш.</td>
</tr>
<tr>
<td></td>
<td>Пушкино</td>
<td>54°49'00" с.ш.</td>
</tr>
<tr>
<td></td>
<td>Зеленчукская</td>
<td>43°49'53" с.ш.</td>
</tr>
<tr>
<td>Испания</td>
<td>Иебес</td>
<td>40°31'27" с.ш.</td>
</tr>
<tr>
<td></td>
<td>Робледо</td>
<td>40°25'38" с.ш.</td>
</tr>
<tr>
<td>Швейцария</td>
<td>Блейен</td>
<td>47°20'26" с.ш.</td>
</tr>
<tr>
<td>Швеция</td>
<td>Онсала</td>
<td>57°23'45" с.ш.</td>
</tr>
</tbody>
</table>
1.5.2 Требования для США и Канады

Официальное уведомление!
Данный радарный уровномер соответствует разделу 15 правил FCC (Федеральная Комиссия по Связи - государственное агентство США, занимающееся регулированием в области передачи по кабельным линиям и радиоканалам) и RSS-210 для канадской промышленности. В соответствии с ними, при эксплуатации данного оборудования нужно соблюдать следующие два условия:

1. Данное оборудование не должно создавать вредных помех.
2. Данное оборудование должно быть адаптировано к приёму различных помех, в том числе к тем, которые могут вызывать нарушения работоспособности.

Изменения или модификации данного устройства, не одобренные его изготовителем, аннулируют разрешения FCC и IC на эксплуатацию данного прибора.

Правовая информация по данному вопросу приведена на заводской наклейке, расположенной на задней стороне прибора.

Информация по сертификатам на радиопередающие / радиоприёмные устройства представлена на входящем в комплект поставки компакт-диске.

1.6 Указания изготовителя по технике безопасности

1.6.1 Авторское право и защита информации

Данные, представленные в настоящем документе, подбирались с большой тщательностью. Тем не менее, мы не гарантируем, что его информационное наполнение не содержит ошибок, является полным или актуальным.

Информационное наполнение и иные материалы в составе настоящего документа являются объектами авторского права. Участие третьих лиц также признается таковым. Воспроизведение, переработка, распространение и иное использование в любых целях сверх того, что разрешено авторским правом, требует письменного разрешения соответствующего автора и/или изготовителя.

Изготовитель во всех случаях старается соблюсти авторское право других лиц и ограждать на работы, созданные внутри компании, либо на доступные для общего пользования труды, не охраняемые авторским правом.

Подборка персональных данных (таких как названия, фактические адреса, либо адреса электронной почты) в документации изготовителя по возможности всегда осуществляется на добровольной основе. Исходя из целесообразности, мы при любых обстоятельствах стараемся использовать продукты и услуги без предоставления таких-либо персональных данных.

Подчеркиваем, что передача данных по сети Интернет (например, при взаимодействии посредством

<table>
<thead>
<tr>
<th>Страна</th>
<th>Наименование обсерватории</th>
<th>Широта, φ</th>
<th>Долгота, λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Великобритания</td>
<td>Кембридж</td>
<td>52°09'59" с.ш.</td>
<td>00°02'20" в.д.</td>
</tr>
<tr>
<td></td>
<td>Дарнхелл</td>
<td>53°09'22" с.ш.</td>
<td>02°32'03" з.д.</td>
</tr>
<tr>
<td></td>
<td>Джодрелл Бэнк</td>
<td>53°14'10" с.ш.</td>
<td>02°18'26" з.д.</td>
</tr>
<tr>
<td></td>
<td>Нокин</td>
<td>52°47'24" с.ш.</td>
<td>02°59'45" з.д.</td>
</tr>
<tr>
<td></td>
<td>Пикмир</td>
<td>53°17'18" с.ш.</td>
<td>02°26'38" з.д.</td>
</tr>
</tbody>
</table>
электронной почты), может подразумевать бреши в системе безопасности. Обеспечение полноценной защиты таких данных от несанкционированного доступа третьих лиц не всегда представляется возможным.

Настоящим строго воспрещается использование контактных данных, публикуемых в рамках наших обязательств печатать выходные данные, в целях отправки нам любой информации рекламного или информационного характера, если таковая не была запрошена нами напрямую.

1.6.2 Заявление об ограничении ответственности

Изготовитель не несет ответственность за всякий ущерб любого рода, возникший в результате использования его изделия, включая прямые, косвенные, случайные, присуждаемые в порядке наказания и последующие убытки, но не ограничиваясь ими.

Настоящее заявление об ограничении ответственности не применяется в случае, если изготовитель действовал намеренно либо проявил грубую небрежность. В случае, если любая применяемая правовая норма не допускает таких ограничений по подразумеваемым гарантиям, либо не предусматривает исключения ограничения определенного ущерба. Вы можете, если данная правовая норма распространяется на Вас, не подпадать под действие некоторых или всех перечисленных выше заявлений об ограничении ответственности, исключений или ограничений.

На любой приобретенный у изготовителя продукт распространяются гарантийные обязательства согласно соответствующей документации на изделие, а также положениям и условиям нашего договора о купле-продаже.

Производитель оставляет за собой право вносить в содержание своих документов, в том числе и в настоящее заявление об ограничении ответственности, изменения любого рода, в любой момент времени, на любых основаниях, без предварительного уведомления и в любом случае не несет никакой ответственности за возможные последствия таких изменений.
1 Правила техники безопасности

1.6.3 Ответственность за качество изделия и гарантийные обязательства

Ответственность за надлежащее использование устройства в соответствии с его функциональным назначением возлагается на пользователя. Изготовитель не признает никакой ответственности за последствия ненадлежащего применения со стороны пользователя. Некорректный монтаж и эксплуатация устройств (систем) с нарушением установленных режимов влечет за собой утрату гарантии. При этом действуют соответствующие «Типовые положения и условия», которые формируют основу договора купли-продажи.

1.6.4 Информация по документации

Во избежание травмирования пользователя или вывода прибора из строя следует в обязательном порядке прочесть содержащиеся в настоящем документе материалы и соблюдать действующие государственные стандарты, требования, нормы и правила техники безопасности, в том числе и по предупреждению несчастных случаев.

Если настоящий документ составлен на иностранном языке, при возникновении сложностей с пониманием данного текста, мы рекомендуем обратиться за содействием в ближайшее региональное представительство. Производитель не несет ответственности за любой ущерб или вред, вызванный некорректной интерпретацией положений настоящего документа.

Настоящий документ предоставляется с целью оказания содействия в организации такого эксплуатационного режима, который позволит безопасно и эффективно применять данный прибор. Кроме того, в документе приводятся требующие особого внимания аспекты и предупредительные меры по обеспечению безопасности, которые представлены ниже в виде графических символов-пиктограмм.
1.6.5 Используемые предупреждающие знаки и графические обозначения

Предупреждения относительно безопасного пользования обозначаются следующими символами.

Опасность!
Настоящая информация относится к непосредственным рискам при работе с электричеством.

Опасность!
Данный предупреждающий знак относится к непосредственной опасности получения ожогов в результате контакта с источником тепла или с горячими поверхностями.

Опасность!
Данный предупреждающий знак относится к непосредственным рискам, возникающим при эксплуатации этого измерительного прибора во взрывоопасных зонах.

Опасность!
В обязательном порядке соблюдайте данные предупреждения. Даже частичное несоблюдение этого предупреждающего знака может повлечь за собой серьезный ущерб здоровью вплоть до летального исхода. Кроме того, имеет место риск возникновения серьезных неисправностей самого измерительного прибора, либо элементов технических сооружений и технологического оборудования пользователя.

Внимание!
Пренебрежение данным предостережением относительно безопасного пользования и даже частичное его несоблюдение представляют серьезную опасность для здоровья. Кроме того, имеет место риск возникновения серьезных неисправностей самого измерительного прибора, либо элементов технических сооружений и технологического оборудования пользователя.

Осторожно!
Несоблюдение настоящих указаний может повлечь за собой серьезные неисправности самого измерительного прибора, либо элементов технических сооружений и технологического оборудования пользователя.

Информация!
Данные указания содержат важную информацию по погрузочно-разгрузочным работам, переноске и обращению с прибором.

Официальное уведомление!
Настоящее примечание содержит информацию по законодательно установленным предписаниям и стандартам.

- **ОБРАЩЕНИЕ С ПРИБОРОМ**
Данный символ обозначает все указания к действиям и операциям, которые пользователю надлежит выполнять в определенной предписанной последовательности.

- **РЕЗУЛЬТАТ**
Настоящий символ относится ко всем важным последствиям совершенных ранее действий и операций.
1.7 Указания по безопасности для обслуживающего персонала

Внимание!
Как правило, допускается монтировать, вводить в действие, эксплуатировать и обслуживать производимые изготовителем измерительные устройства исключительно силами уполномоченного на эти виды работ персонала, прошедшего соответствующее обучение.
Настоящий документ предоставляется с целью оказания содействия в организации такого эксплуатационного режима, который позволит безопасно и эффективно применять данный прибор.
2.1 Комплект поставки

Информация!
Сверьте с упаковочной ведомостью на предмет получения груза в полной комплектации в соответствии с заказанными позициями.

Комплект поставки - рупорная антенна

Рисунок 2-1: Комплект поставки - рупорная антенна
1. Преобразователь сигналов и антенна в компактном исполнении
2. Антенные удлинители (опционально)
3. Руководство по быстрому запуску
4. Компакт-диск (содержит руководство по эксплуатации, руководство по быстрому запуску, технические данные, а также соответствующее программное обеспечение)

Комплект поставки - каплевидная антенна

Рисунок 2-2: Комплект поставки - каплевидная антенна
1. Преобразователь сигналов и антенна в компактном исполнении
2. Антенные удлинители (опционально) и уплотнительное кольцо для каждого антенного удлинителя
3. Руководство по быстрому запуску
4. Компакт-диск (содержит руководство по эксплуатации, руководство по быстрому запуску, технические данные, а также соответствующее программное обеспечение)
2 Описание прибора

Комплект поставки - гигиеническая антенна

Рисунок 2-3: Комплект поставки - гигиеническая антенна

1. Преобразователь сигналов и антенна в компактном исполнении
2. Руководство по быстрому запуску
3. Компакт-диск (содержит руководство по эксплуатации, руководство по быстрому запуску, технические данные, а также соответствующее программное обеспечение)

Информация!
Специальный инструмент и обучение не требуются!
2.2 Описание прибора

Данный прибор представляет собой 24 ГГц радарный FMCW уровнемер. Измерение осуществляется по бесконтактной технологии с питанием от 2-проводного контура. Прибор предназначен для измерения дистанции, уровня, массы, объёма и коэффициента отражения жидкостей, паст и шламов.

Для передачи и приёма радиосигнала от поверхности продукта в приборе используются специальные антенны. Доступны несколько типов антенны. Благодаря этому прибор подходит для измерения большинства продуктов даже в сложных условиях. Также смотрите Технические характеристики на странице 100.

Прибор снабжен мастером установки, электронными платами и функциями онлайн-поддержки.

Как правило, для установки, настройки и управления прибором данное руководство по эксплуатации не требуется.

Для возможности применения во взрывоопасных зонах прибор может быть заказан со специальными опциями.

Доступные выходные сигналы:
• 1 выход: 4...20 мА (HART)
• 2 выхода: 4...20 мА (HART) + 4...20 мА
• 2 выхода: 16 мА (HART) + 4...20 мА с программным ускорением (5 измерений за секунду)

Доступны следующие комплектующие:
• Защита от атмосферных воздействий из нержавеющей стали.
• RS232 / HART®-модем (VIATOR).
• USB / HART®-модем.

Информация!
Дополнительные данные о комплектующих смотрите в разделе Перечень комплектующих на странице 142.
2.3 Визуальный контроль

Внимание!
Если стекло дисплея разбито, не трогайте его.

Информация!
Тщательно обследуйте картонную тару на наличие повреждений или признаков небрежного обращения. Проинформируйте о повреждениях перевозчика и региональный офис фирмы-изготовителя.

Рисунок 2-4: Визуальный контроль
1. Типовая табличка (подробные данные смотрите в разделе Типовая табличка для приборов неэлектрозащищённого исполнения на странице 19)
2. Параметры технологического присоединения (тип размер и номинальное давление, тип материала и номер плавки)
3. Данные по материалу уплотнительной прокладки – смотрите нижеследующий рисунок

Рисунок 2-5: Символы материала уплотнительной прокладки (на боковой стороне технологического присоединения)
1. EPDM
2. Kalrez® 6375

Если прибор поставляется с уплотнительной прокладкой из фторкаучука FKM/FPM, то на боковой стороне технологического присоединения символ не указывается.

Информация!
Обратите внимание на типовую табличку прибора и убедитесь в том, что поставленный прибор соответствует заказанным спецификациям. Проверьте правильность напряжения питания, значение которого выбито на типовой табличке.

Информация!
Сравните характеристики материала, указанные на боковой стороне технологического присоединения, с данными заказа.
2.4 Типовые таблички

Информация!
Обратите внимание на типовую табличку прибора и убедитесь в том, что поставленный прибор соответствует заказанным спецификациям. Проверьте правильность напряжения питания, значение которого выбито на типовой табличке.

2.4.1 Типовая табличка для приборов невзрывозащищённого исполнения

Рисунок 2-6: Типовая табличка прибора невзрывозащищённого исполнения

1. Стрелка-индикатор, указывающая на кабельный ввод / типоразмер кабельного ввода. Уполномоченный орган для получения разрешений в области радиосвязи.
2. Версия аппаратного обеспечения / Версия программного обеспечения
3. Номинальное напряжение для эксплуатации. Дополнительные данные смотрите в разделе Приборы невзрывозащищённого исполнения на странице 43.
4. Степень пылевлагозащиты IP (в соответствии с EN 60529 / IEC 60529)
5. Номер технологической позиции заказчика
6. Дата изготовления
7. Номер заказа
8. Код типа (определяется при заказе)
9. Название и номер модели
10. Наименование и адрес завода-изготовителя
3 Монтаж

3.1 Указания по монтажу

Информация!
Тщательно обследуйте картонную тару на наличие повреждений или признаков небрежного обращения. Проинформируйте о повреждениях перевозчика и региональный офис фирмы-изготовителя.

Информация!
Сверьтесь с упаковочной ведомостью на предмет получения груза в полной комплектации в соответствии с заказанными позициями.

Информация!
Обратите внимание на типовую табличку прибора и убедитесь в том, что поставленный прибор соответствует заказанным спецификациям. Проверьте правильность напряжения питания, значение которого выбито на типовой табличке.

3.2 Хранение

Внимание!
Не храните прибор в вертикальном положении. Это может вызвать повреждение антенны, после которого прибор будет работать некорректно.

Рисунок 3-1: Условия хранения

1. Не храните прибор в вертикальном положении.
2. Положите прибор на бок. Рекомендуется хранить прибор в заводской упаковке.
3. Диапазон температур хранения: -40...+85°C / -40...+185°F

- Храните прибор в сухом, защищённом от пыли, месте.
- Не допускайте попадания солнечных лучей на преобразователь сигналов.
- Храните прибор в оригинальной упаковке.
3.3 Транспортировка

Рисунок 3-2: Как поднимать прибор

1. Прежде чем поднять прибор с помощью подъёмника, снимите преобразователь сигналов.

Внимание!
Поднимайте прибор осторожно, чтобы не повредить антенну.

3.4 Предмонтажная проверка

Информация!
Для правильной установки прибора необходимо соблюдать указанные ниже меры предосторожности.

- Убедитесь, что со всех сторон достаточно места для обслуживания прибора.
- Защитите преобразователь сигналов от воздействия прямых солнечных лучей. При необходимости установите кожух для защиты от атмосферных воздействий.
- Обратите внимание, чтобы преобразователь сигналов не подвергался сильным вибрациям. Приборы прошли испытания на устойчивость к вибрации в соответствии с требованиям EN 50178 и IEC 60068-2-6.
3.5 Подготовка резервуара перед установкой прибора

Осторожно!
Чтобы избежать ошибок измерения и неправильного функционирования устройства, соблюдайте следующие меры предосторожности.

3.5.1 Диапазоны давлений и температур

Рисунок 3-3: Диапазоны давлений и температур

1. Температура на фланце
 Уплотнительная прокладка из FKM/FPM: -40...+200°C / -40...+390°F; Уплотнительная прокладка из Kalrez® 6375: -20...+200°C / -4...+390°F
 Зависит от типа антенны. Обратитесь к нижеследующей таблице.
 Приборы взрывозащищённого исполнения: смотрите дополнительное руководство для взрывозащищённых версий

2. Температура окружающей среды для функционирования дисплея
 -20...+60°C / -4...+140°F
 Если температура окружающей среды находится вне данных пределов, то экран дисплея автоматически отключается.
 Приборы невзрывозащищённого исполнения:
 -20...+80°C / -40...+175°F
 Приборы взрывозащищённого исполнения: смотрите дополнительное руководство для взрывозащищённых версий

3. Температура окружающей среды
 Приборы невзрывозащищённого исполнения: -40...+80°C / -40...+175°F
 Приборы взрывозащищённого исполнения: смотрите дополнительное руководство для взрывозащищённых версий

4. Рабочее давление
 Зависит от типа антенны. Обратитесь к нижеследующей таблице.

Внимание!
Температура на технологическом присоединении должна соответствовать температурному диапазону для материала уплотнительной прокладки. Диапазон рабочего давления зависит от используемого технологического присоединения и температуры на фланце.

<table>
<thead>
<tr>
<th>Тип антенны</th>
<th>Максимальная температура на технологическом присоединении</th>
<th>Максимальное рабочее давление</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[°C]</td>
<td>[°F]</td>
</tr>
<tr>
<td>Каплевидная из полипропилена</td>
<td>+100</td>
<td>+210</td>
</tr>
<tr>
<td>Каплевидная из ПТФЭ</td>
<td>+150</td>
<td>+300</td>
</tr>
<tr>
<td>Гигиеническая</td>
<td>+150</td>
<td>+300</td>
</tr>
<tr>
<td>Рупорная / Рупорная из листового металла</td>
<td>+150 (+200)</td>
<td>+300 (+390)</td>
</tr>
</tbody>
</table>

1. Стандартная макс. температура на технологическом присоединении: +150°C / +300°F. Опциональная макс. температура на технологическом присоединении: +200°C / +390°F.
2. Стандартное рабочее давление: 40 бар изб / 580 фунт/кв.дюйм изб. Опциональное макс. рабочее давление: 100 бар изб / 1450 фунт/кв.дюйм изб.
3.5.2 Рекомендуемое монтажное положение

Осторожно!
Необходимо следовать данным рекомендациям, чтобы обеспечить правильные измерения.

Рисунок 3-4: Рекомендуемое расположение патрубка для жидкостей, паст и суспензий
1. Патрубки для рупорной антенны DN40 или DN50, или пищевой антенны DN50
2. Патрубки для рупорной антенны DN80, DN100, DN150 или DN200, а также каплевидной антенны DN80 или DN150
3. Высота резервуара
4. Диаметр резервуара
5. Минимальное расстояние от патрубка до стенки резервуара: 1/7 × высота резервуара
6. Минимальное расстояние от стенки резервуара до стенки резервуара: 1/10 × диаметр резервуара
7. Минимальное расстояние от патрубка до стенки резервуара: 1/3 × диаметр резервуара

Информация!
По возможности, не устанавливайте патрубок по осевой линии резервуара.

Осторожно!
Не устанавливайте прибор рядом с линией подачи продукта в емкость. Если поток подаваемого продукта будет попадать на антенну, то измерения будут производиться неправильно. Если поток подаваемого продукта будет находиться в области действия сигнала или проходить непосредственно под антенной, то измерения будут производиться неправильно.
На одном резервуаре может работать более одного FMCW радарного уровнемера.

3.5.3 Теоретические данные по гигиеническим применениям

Чтобы упростить очистку антенны, прикрепите устройство на небольшую бобышку.

Рисунок 3-5: Линия подачи продукта.
① Прибор установлен в правильном месте
② Прибор расположен слишком близко к линии подачи продукта

Рисунок 3-6: На одном резервуаре может использоваться более одного FMCW радарного уровнемера

Рисунок 3-7: Требования к гигиеническим применением
① Максимальная высота технологического присоединения: 50 мм / 2"
3.6 Рекомендации по установке для жидкостей

3.6.1 Общие требования

Информация!

Рекомендуется конфигурировать прибор, когда резервуар пуст.

Рисунок 3-8: Общие рекомендации по установке

1. Не отклоняйте прибор по вертикали больше, чем на 2°
2. Если в зоне действия луча радара находится слишком много внутренних конструкций, то рекомендуется выполнить запись спектра пустой емкости (дополнительные данные смотрите в разделе Как отфильтровать сильные помехи на странице 80), или установить выносную камеру или успокоительную трубу.
3. Макс. 2,5 мм / 0,1" для жидкостей с высокой диэлектрической постоянной
4. Изогнутые и конические днища резервуаров. Данные по точной настройке прибора смотрите в разделе Как правильно проводить измерения в резервуарах с изогнутыми или коническими днищами на странице 81.
5. Радиус радарного луча для рупорной антенны DN40 увеличивается на 180 мм/м или 2,15'/фут (10°)
 Радиус радарного луча для рупорной антенны DN50 или пилотной антенны DN50 увеличивается на 130 мм/м или 1,55'/фут (7,5°)
 Радиус радарного луча для рупорной антенны DN80 увеличивается на 90 мм/м или 1,1'/фут (5°)
 Радиус радарного луча для рупорной антенны DN100 или каплевидной антенны DN80 увеличивается на 70 мм/м или 0,83'/фут (4°)
 Радиус радарного луча для рупорной антенны DN150 увеличивается на 52,5 мм/м или 0,63'/фут (3°)
 Радиус радарного луча для каплевидной антенны DN150 или рупорной антенны DN200 увеличивается на 35 мм/м или 0,42'/фут (2°)
3.6.2 Обсадные трубы (успокоительные трубы и выносные камеры)

Используйте обсадную трубу в следующих случаях:
- При наличии в резервуаре пены с высокой электропроводностью.
- Для жидкостей с очень неспокойной поверхностью.
- В резервуарах с большим количеством внутренних конструкций.
- При измерении уровня жидкости в резервуаре с плавающей крышей (нефтехимическая промышленность).
- При монтаже прибора на горизонтальном цилиндрическом резервуаре (смотрите конец данного раздела)

Рисунок 3-9: Рекомендации по установке для обсадных труб (успокоительные трубы и выносные камеры)

1. Установка на успокоительной трубе
2. Установка на выносной камере
3. Вентиляционное отверстие
4. Уровень жидкости

Осторожно!
- Обсадная труба должна быть электропроводящей.
- Внутренний диаметр обсадной трубы должен быть больше диаметра антенны, но не более, чем на 5 мм / 0,2” (для жидкостей с высокой диэлектрической проницаемостью)
- Обсадная труба должна быть прямой. Ее внутренний диаметр не должен меняться более, чем на 1 мм / 0,04”, начиная от технологического присоединения прибора и до нижнего конца.
- Обсадные трубы должны быть установлены вертикально.
- Рекомендуемая шероховатость поверхности: ≤0,1 мм / 0,004”.
- Только для успокоительных труб: конец успокоительной трубы должен быть открыт.
- Убедитесь, что на нижнем конце обсадной трубы нет никаких отложений.
- Убедитесь, что в обсадной трубе находится жидкий продукт.
Успокоительные трубы – общие положения

Установка на резервуарах, содержащих одну жидкость и пену
- Просверлите вентиляционное отверстие (не более $\varnothing 10$ мм / $0.4^"$) в успокоительной трубе выше максимального уровня продукта.
- Удалите заусенцы с отверстия.

Установка на резервуарах, содержащих одну и более жидкость без образования пены
- Просверлите вентиляционное отверстие (не более $\varnothing 10$ мм / $0.4^"$) в успокоительной трубе выше максимального уровня продукта.
- Просверлите 1 или более отверстий для циркуляции жидкости в успокоительной трубе (при наличии более 1 жидкости в резервуаре).
- Данные отверстия улучшают циркуляцию жидкости между успокоительной трубой и резервуаром.
- Удалите заусенцы с отверстия.

Успокоительные трубы: плавающие крыши
Если прибор предназначен для установки на резервуар с плавающей крышкой, то установите его на успокоительную трубу.

Рисунок 3-10: Плавающие крыши
1. Осадок
2. Поддерживающие опоры
3. Успокоительная труба
4. Плавающая крыша
5. Измеряемая среда
6. Резервуар
Успокоительные трубы: горизонтальные цилиндрические резервуары
Рекомендуется устанавливать прибор на успокоительной трубе в следующих случаях:

- при монтаже на горизонтальном цилиндрическом резервуаре,
- при монтаже на металлическом резервуаре,
- при измерении продуктов с высокой диэлектрической проницаемостью и
- при установке в центре резервуара.

Рисунок 3-11: Горизонтальные цилиндрические резервуары

1) Прибор установлен без успокоительной трубы. Появляются многократно отражённые помехи. См. ниже ПРЕДОСТЕРЕЖЕНИЕ.
2) Прибор установлен в успокоительную трубу и производит правильные измерения.

Осторожно!
Если прибор монтируется на горизонтальный резервуар цилиндрической формы, содержащий жидкость с высокой диэлектрической постоянной, без использования успокоительной трубы, не устанавливайте прибор на центральной линии резервуара. Такая установка может вызвать многократно отражённые сигналы помех, наличие которых приведёт к неправильным измерениям. Используйте функцию Многокр. отраж-я в режиме Супервизор > Расшир. настройки > Монтаж прибора для минимизации эффекта многократных отражений. Дополнительные данные в разделе Описание функций на странице 58 (C. Расшир. настройки).
Выносные камеры
Установка рядом с резервуарами, содержащими одну жидкость и пену
- Верхнее технологическое присоединение выносной камеры должно располагаться выше максимального уровня жидкости.
- Нижнее технологическое присоединение выносной камеры должно располагаться ниже минимально измеряемого уровня жидкости.

Установка рядом с резервуарами, содержащими более одной жидкости
- Верхнее технологическое присоединение выносной камеры должно располагаться выше максимального уровня жидкости.
- Нижнее технологическое присоединение выносной камеры должно располагаться ниже минимально измеряемого уровня жидкости.
- Необходимо установить дополнительные технологические присоединения по всей длине выносной камеры, чтобы улучшить циркуляцию жидкостей.

Рисунок 3-12: Рекомендации по установке для выносных камер, содержащих более одной жидкости
1 Выносная камера
2 Дополнительное технологическое присоединение

3.7 Как установить прибор на резервуар
3.7.1 Как установить прибор с фланцевым присоединением
Необходимое оборудование:
- Устройство
- Уплотнительная прокладка (не входит в комплект поставки)
- Гайки и болты (не входят в комплект поставки)
- Гаечный ключ (не входит в комплект поставки)
Требования к фланцевым присоединениям

Если антенна меньше, чем технологическое присоединение:
- Убедитесь в том, что фланец на установочном патрубке расположен по уровню.
- Убедитесь, что используется уплотнительная прокладка, подходящая для фланца и для технологического процесса.
- Правильно расположите уплотнительную прокладку на поверхности фланца патрубка.
- Осторожно опустите антенну в резервуар.
- Затяните болты фланцевого присоединения.

При монтаже прибора соблюдайте все необходимые нормы и правила, определяющие усилие затяжки фланцевого присоединения.

Необходимое оборудование:
- Шестигранный ключ на 3 мм (не входит в комплект поставки)
Внимание!
Если Вы крепите антенну в условиях замкнутого пространства, убедитесь в хорошем притоке воздуха в данной зоне. Удостоверьтесь, что лицо, находящееся вне резервуара, сможет всегда Вас услышать.

Если антенна больше, чем технологическое присоединение:
• Убедитесь в том, что фланец на установочном патрубке расположен по уровню.
• Открутите стопорный винт антенны снизу фланца.
• Отсоедините антенную от фланца.
• Правильно расположите уплотнительную прокладку на поверхности фланца патрубка.
• Осторожно установите прибор на фланец резервуара. Не присоединяйте пока фланец прибора к резервуару.
• Прикрепите антенну к прибору изнутри резервуара. Поднимитесь наверх резервуара.
• Приподнимите прибор. Установите стопорный винт антенны ниже фланца. Затяните стопорный винт антенны.
• Осторожно установите прибор на фланец резервуара. Затяните болты фланцевого присоединения.

3.7.2 Как установить прибор с резьбовым технологическим присоединением

Необходимое оборудование:
• Устройство
• Уплотнительная прокладка для присоединения G 1½ (не входит в комплект поставки)
• Гаечный ключ на 50 мм / 2’ (не входит в комплект поставки)

Требования к резьбовым присоединениям

Если антенна меньше, чем технологическое присоединение:
• Убедитесь, что присоединение резервуара расположено по уровню.
• Убедитесь, что используется уплотнительная прокладка, подходящая для присоединения и для технологического процесса.
• Правильно расположите уплотнительную прокладку.
• Осторожно опустите антенну в резервуар.
• Чтобы прикрепить прибор к технологическому присоединению, прокрутите резьбовое присоединение на корпусе.
• Плотно завяжите присоединение.

При монтаже прибора соблюдайте все необходимые нормы и правила, определяющие усилия затяжки присоединения.
Необходимое оборудование:

- Шестигранный ключ на 3 мм (не входит в комплект поставки)

Внимание!
Если Вы крепите антенну в условиях ограниченного пространства, убедитесь в хорошем притоке воздуха в данной зоне. Убедитесь, что лицо, находящееся вне резервуара, всегда Вас хорошо слышит.

Информация!
Если антенна больше, чем технологическое присоединение, рекомендуется использовать антенны удлинитель. Может оказаться, что не окажется достаточно места, для того чтобы затянуть стопорный винт антенны.

Если антенна больше, чем технологическое присоединение:

- Убедитесь, что присоединение резервуара расположено по уровню.
- Открутите стопорный винт антенны с антенного удлинителя.
- Отсоедините антенну от антенного удлинителя.
- Правильно расположите уплотнительную прокладку.
- Осторожно установите прибор на технологическое присоединение резервуара. Не присоединяйте пока резьбовое присоединение к резервуару.
- Прикрепите антенну к антенному удлинителю изнутри резервуара.
- Поднимитесь наверх резервуара. Приподнимите прибор.
- Подсоедините стопорный винт антенны к антенному удлинителю. Затяните стопорный винт антенны.
- Прикрепите прибор к технологическому присоединению резервуара. Плотно завинтите присоединение.
Если технологическое присоединение прибора меньше, чем технологическое присоединение на резервуаре:

- Убедитесь, что присоединение резервуара расположено по уровню.
- Используйте пластину с отверстием или любой другой подходящий способ, чтобы подогнать прибор к резервуару.
- Правильно расположите уплотнительную прокладку.
- Осторожно опустите антенну в резервуар.
- При необходимости, прокрутите резьбовое присоединение на корпусе, чтобы закрепить прибор на пластине.
- Плотно завинтите присоединение.

3.7.3 Монтаж прибора с гигиеническим присоединением

Информация!
Чтобы упростить очистку антенны, прикрепите устройство на небольшую бобышку.

BioControl®
Необходимое оборудование:
- Прибор с адаптером BioControl®
- Болты для фланцевого присоединения
- Гаечный ключ (не входит в комплект поставки)

При монтаже прибора соблюдайте все необходимые нормы и правила, определяющие усилие затяжки фланцевого присоединения.
Tri-Clamp®

Необходимое оборудование:
• Прибор с адаптером Tri-Clamp®
• Уплотнительная прокладка (не входит в комплект поставки)
• Ленточный хомут (не входит в комплект поставки)

Монтаж прибора с присоединением Tri-Clamp®
• Убедитесь, что присоединение резервуара расположено по уровню.
• Убедитесь, что используется уплотнительная прокладка, подходящая для присоединения и для технологического процесса.
• Правильно расположите уплотнительную прокладку.
• Осторожно опустите прибор с адаптером Tri-Clamp® на технологическое присоединение резервуара.
• Закрепите ленточный хомут на технологическом присоединении.
• Затяните ленточный хомут.
DIN 11851
Необходимое оборудование:

- Прибор с адаптером DIN 11851
- Уплотнительная прокладка (не входит в комплект поставки)
- Гайка по DIN 11851

Монтаж прибора с присоединением по DIN 11851

- Убедитесь, что присоединение резервуара расположено по уровню.
- Убедитесь, что используется уплотнительная прокладка, подходящая для присоединения и для технологического процесса.
- Правильно расположите уплотнительную прокладку.
- Осторожно опустите прибор с адаптером по DIN 11851 на технологическое присоединение резервуара.
- Чтобы прикрепить прибор к резервуару, прокрутите гайку на технологическом присоединении прибора.
- Плотно завинтите присоединение.

⚠ При монтаже прибора соблюдайте все необходимые нормы и правила, определяющие усилие затяжки присоединения.
SMS
Необходимое оборудование:
- Прибор с адаптером по SMS-стандарту
- Уплотнительная прокладка (не входит в комплект поставки)
- Гайка по SMS-стандарту

Рисунок 3-20: Присоединение по SMS-стандарту
1. Бобышка резервуара
2. Гайка для присоединения по SMS-стандарту

Монтаж прибора с присоединением SMS
- Убедитесь, что присоединение резервуара расположено по уровню.
- Убедитесь, что используется уплотнительная прокладка, подходящая для присоединения и для технологического процесса.
- Правильно расположите уплотнительную прокладку.
- Осторожно опустите прибор с адаптером SMS на технологическое присоединение резервуара.
- Чтобы прикрепить прибор к резервуару, завинтите гайку на технологическом присоединении прибора.
- Плотно завинтите присоединение.
- При монтаже прибора соблюдайте все необходимые нормы и правила, определяющие усилие затяжки присоединения.
Монтаж

VARIVENT®
Необходимое оборудование:
• Прибор с адаптером VARIVENT®
• Хомут (не входит в комплект поставки)

Рисунок 3-21: Присоединение VARIVENT®
① Бобышка резервуара (устройство доступа VARIVENT® – не входит в комплект поставки)

Монтаж прибора с присоединением VARIVENT®
• Убедитесь, что присоединение резервуара расположено по уровню.
• Опустите прибор с адаптером VARIVENT® на технологическое присоединение резервуара.
• Закрепите хомут на технологическом присоединении.
• Затяните хомут.

3.7.4 Как присоединить антенны удлинители

Рупорная антенна - антенны удлинители

Необходимое оборудование:
• Шестигранный ключ на 3 мм (не входит в комплект поставки)

• Присоедините антенны удлинители ① ниже фланца.
• Присоедините антенну ②.
• Убедитесь в том, что антенны удлинители полностью вставлены в ответную часть.
• Затяните стопорные винты ③ с помощью шестигранныго ключа на 3 мм.
• В случае присоединения большего или меньшего количества удлинителей, указанного в первоначальном заказе, скорректируйте значение длины антенного удлинителя в режиме Супервайзер. Перейдите по адресу Супервайзер > Расшир. настройки > Установка > Удлинитель антен.

Проведите настройку с помощью дисплея или с использованием протокола HART® (PACTware™). Антенный удлинитель = длина антенного удлинителя × количество удлинителей.
• В случае изменения значения для антенного удлинителя в режиме Супервизор измените также значение блок-дистанции. Перейдите по адресу Супервизор > Расшир. настройки > Установка > Блок-дистанция.

Проведите настройку с помощью дисплея или с использованием протокола HART® (PACTware™). Минимальная блок-дистанция = длина антенны + (длина антенного удлинителя × количество удлинителей) + 0,1 м / 4⁻.

Каплевидная антенна - антенные удлинители

![Diagram of antenna and extenders](image)

Информация! Каплевидная антенна: Антенные удлинители могут быть присоединены только ниже тех фланцев, которые не имеют опциональной подфланцевой пластины из полипропилена/ПТФЭ

Осторожно! Каплевидная антенна: Убедитесь, что к прибору с каплевидной антенной присоединено не более 5 антенных удлинителей. При наличии более 5 антенных удлинителей, показания прибора будут некорректными.

Убедитесь, что по одному уплотнительному кольцу 4 установлено в паз на верхней части каждого антенного удлинителя.

Необходимый инструмент (не входит в комплект поставки):
• Динамометрический ключ 200 Нм (для головки каплевидной антенны в сборе H30)
• Шестигранный ключ на 3 мм.

• Выньте уплотнительные кольца из пластикового пакетика, входящего в комплект поставки прибора. Установите по одному уплотнительному кольцу 4 в паз на верхней части каждого антенного удлинителя.
• Присоедините антенные удлинители 1 ниже фланца.
• Присоедините антенну 2. Закрутите антенну с помощью динамометрического ключа, применив усилие 200 Нм ±10 Нм.
• Убедитесь в том, что антенные удлинители полностью вставлены в ответную часть.
• Затяните стопорные винты 3 с помощью шестигранного ключа на 3 мм.
• В случае присоединения большего или меньшего количества удлинителей, указанного в первоначальном заказе, скорректируйте значение длины антенного удлинителя в режиме Супервизор. Перейдите по адресу Супервизор > Расшир. настройки > Установка > Удлинитель антен.

Проведите настройку с помощью дисплея или с использованием протокола HART® (PACTware™). Антенный удлинитель = длина антенного удлинителя × количество удлинителей.

• В случае изменения значения для антенного удлинителя в режиме Супервизор измените также значение блок-дистанции. Перейдите по адресу Супервизор > Расшир. настройки > Установка > Блок-дистанция.
Проведите настройку с помощью дисплея или с использованием протокола HART® (PACTware™). Минимальная блок-дистанция = длина антенны + (длина антенного удлинителя × количество удлинителей) + 0,1 м / 4°.

3.7.5 Поворот или снятие преобразователя сигналов

Информация! Преобразователь сигналов может поворачиваться на 360°. Преобразователь сигналов может быть снят с технологического присоединения без остановки технологического процесса.

Рисунок 3-24: Поворот или снятие преобразователя сигналов

1. Инструмент: Шестигранный ключ на 5 мм (не входит в комплект поставки)
2. Защитный колпачок для волноводного отверстия на верхней части технологического присоединения в сборе (не входит в комплект поставки)

Осторожно! Если возникла необходимость в снятии преобразователя сигналов, обязательно закройте защитным колпачком волноводное отверстие в верхней части технологического присоединения в сборе.
Когда преобразователь сигналов установлен на технологическое присоединение, затяните стопорный винт.
3.7.6 Как установить защитный козырёк на прибор

Необходимое оборудование:
- Устройство.
- Защитный козырёк (опционально).
- Ключ на 10 мм (не входит в комплект поставки).

Габаритные размеры защитного козырья указаны на странице 111.

Рисунок 3-25: Установка защитного козырька

- Открутите гайки кронштейна на защитном козырьке.
- Снимите кронштейн.
- Опустите защитный козырёк на прибор.
- Поверните защитный козырёк таким образом, чтобы отверстие под ключ смотрело вперёд.
- Закрепите кронштейн.
- Поднимите защитный козырёк наверх стойки корпуса.
- Удерживайте защитный козырёк в правильном положении и затяните гайки кронштейна.
3.7.7 Как открывать защитный козырёк

Необходимое оборудование:

- Защитный козырёк, прикрепленный к прибору.
- Большая шлицевая отвертка (не входит в комплект поставки).

Рисунок 3-26: Как открывать защитный козырёк

1. Защитный козырёк в закрытом положении
2. Защитный козырёк в открытом положении. Минимальный зазор на передней части прибора: 300 мм / 12".

- Вставьте большую шлицевую отвёртку в отверстие под ключ на передней стороне защитного козырька. Поверните отвёртку против часовой стрелки.
- Потяните верхнюю часть защитного козырька вверх и вперёд.
- Так вы откроете крышку защитного козырька.
4 Электрический монтаж

4.1 Правила техники безопасности

Опасность!
Проведение любых работ, связанных с электрическим монтажом оборудования, допускается только при отключенном электропитании. Обратите внимание на значения напряжения, приведенные на типовой табличке прибора!

Опасность!
Соблюдайте действующие в стране нормы и правила работы и эксплуатации электроустановок!

Опасность!
На приборы, которые эксплуатируются во взрывоопасных зонах, распространяются дополнительные нормы безопасности. Обратитесь к документации на приборы взрывозащищённого исполнения.

Внимание!
Региональные правила и нормы по охране труда подлежат неукоснительному соблюдению. К любым видам работ с электрическими компонентами средства измерений допускаются исключительно специалисты, прошедшие соответствующее обучение.

Информация!
Обратите внимание на типовую табличку прибора и убедитесь в том, что поставленный прибор соответствует заказанным спецификациям. Проверьте правильность напряжения питания, значение которого выбито на типовой табличке.

4.2 Электрическое подключение: Выходы 1 и 2

Рисунок 4-1: Электрическое подключение

1. Крышка клеммного отсека
2. Выход 1: токовый выход -
3. Выход 1: токовый выход +
4. Клемма заземления на корпусе
5. Выход 2: токовый выход - (опционально)
6. Выход 2: токовый выход + (опционально)
7. Клемма заземления между технологическим присоединением и преобразователем сигналов
Выход 1 используется для питания прибора и обмена данными по HART®-протоколу. Если прибор имеет опциональный второй токовый выход, используйте дополнительный источник питания для выхода 2.

Настройка:
- Снимите крышку клеммного отсека 1 с корпуса.
- Подключите провода к прибору. Соблюдайте требования национальных правил по установке электрооборудования.
- Убедитесь, что полярность подключения правильная.
- Подсоедините провод заземления к 4 или 7. Обе клеммы одинаковы с технической точки зрения.

4.2.1 Приборы невзрывозащищённого исполнения

Рисунок 4-2: Электрическое подключение для невзрывозащищённых приборов (стандартное программное обеспечение)

1. Напряжение питания
2. Резистор для связи по HART®-протоколу
3. Выход 1: 14...30 В пост. тока при выходном токе 22 мА на клеммах
4. Выход 2: 10...30 В пост. тока при выходном токе 22 мА на клеммах

Рисунок 4-3: Электрическое подключение для невзрывозащищённых приборов (с опциональным программным ускорением)

1. Напряжение питания
2. Резистор для связи по HART®-протоколу
3. Выход 1: 14...30 В пост. тока при постоянном выходном токе 16 мА на клеммах
4. Выход 2: 10...30 В пост. тока при выходном токе 22 мА на клеммах
4 Электрический монтаж

4.2.2 Приборы взрывозащищённого исполнения

Опасность!

Электрические данные для приборов, эксплуатирующихся во взрывоопасных зонах, содержатся в соответствующих сертификатах взрывозащиты и дополнительных инструкциях (ATEX, IECEx, FM, CSA и т.д.). Данная документация имеется на компакт-диске, входящем в комплект поставки прибора, или может быть бесплатно загружена с интернет-сайта изготовителя ("Документация и ПО").

4.3 Степень защиты

Информация!

Прибор удовлетворяет всем требованиям класса защиты IP 66 / IP67. Он также отвечает всем требованиям стандарта NEMA тип 4X (корпус) и тип 6Р (антенна).

Опасность!

Убедитесь, что все кабельные уплотнения водонепроницаемы.

![Изображение монтажа](image.jpg)

Рисунок 4-4: Монтаж в соответствии со степенью пылевлагозащиты IP67

- Убедитесь, что уплотнительные прокладки не имеют повреждений.
- Убедитесь, что электрические кабели не повреждены.
- Убедитесь, что электрические кабели соответствуют требованиям национальных правил по установке электрооборудования.
- Кабель должен быть проложен так, чтобы перед прибором образовалась петля для защиты от попадания влаги в корпус.
- Затяните кабельные уплотнения ②.
- Закройте неиспользуемые кабельные вводы заглушками ③.
4.4 Промышленные сети

4.4.1 Общая информация

Прибор использует для связи HART®-протокол. Данный протокол соответствует стандарту HART® Communication Foundation. Прибор может быть подключен с помощью двухточечного присоединения. Кроме того, он может быть включен в сегмент многоточечной промышленной сети, содержащей до 15 приборов.

На заводе прибор настраивается на обмен данными в сети с двухточечным подключением. Информацию о том, как сменить режим двухточечного подключения на многоточечный сетевой режим, смотрите в разделе Конфигурация сети на странице 75.

4.4.2 Двухточечное подключение к промышленной сети

Рисунок 4-5: Двухточечное подключение (для приборов невзрывозащищённого исполнения)

1. Адрес прибора (0 при двухточечном подключении)
2. 4...20 mA + HART®
3. Резистор для связи по HART®-протоколу
4. Напряжение питания
5. HART®-модем
6. Коммуникационное программное обеспечение HART®
4.4.3 Многоточечное подключение к промышленной сети

Рисунок 4-6: Сеть с многоточечным подключением (для приборов невзрывозащищённого исполнения)

1. Адрес прибора (n+1 при многоточечном подключении)
2. Адрес прибора (1 при многоточечном подключении)
3. 4 mA + HART®
4. Резистор для связи по HART®-протоколу
5. Напряжение питания
6. HART®-модем
7. Коммуникационное программное обеспечение HART®
5.1 Перечень работ при вводе в эксплуатацию

Перед включением питания убедитесь:

- Все контактирующие с измеряемой средой части (антенна, фланец и уплотнительные прокладки) устойчивы к измеряемой среде в резервуаре?
- Соответствует ли информация на типовой табличке преобразователя сигналов рабочим условиям?
- Правильно ли установлен прибор на резервуар?
- Соответствуют ли все электрические присоединения требованиям национальных правил по установке электрооборудования? Используйте кабели, соответствующие установленным кабельным вводам.

Опасность!
Перед включением прибора убедитесь в правильности напряжения питания и полярности подключения.

Опасность!
Убедитесь в том, что исполнение прибора и его монтаж соответствуют требованиям взрывозащиты.

5.2 Принципы управления прибором

Считывать показания и настраивать прибор можно следующим образом:

- При помощи цифрового графического дисплея (опционально).
- Подключив прибор к системе или к компьютеру с ПО PACTware™. Можно загрузить драйвер Device Type Manager (DTM) с нашего интернет-сайта. Кроме того, он также имеется на компакт-диске, входящем в комплект поставки прибора.
- Подключив прибор к системе или к компьютеру с ПО AMS™. Можно загрузить файл с описанием прибора (DD) с нашего интернет-сайта. Кроме того, он также имеется на компакт-диске, входящем в комплект поставки прибора.
- При помощи портативного HART®-коммуникатора. Можно загрузить файл с описанием прибора (DD) с нашего интернет-сайта. Кроме того, он также имеется на компакт-диске, входящем в комплект поставки прибора.
5.3 Цифровой графический дисплей

5.3.1 Расположение информации на экране локального дисплея

Рисунок 5-1: Расположение информации на экране локального дисплея

1. Символ погрешности
2. Номер технологической позиции или название меню
3. Выбранный пункт меню (текст, выделенный серым, выбрать нельзя)
4. [►]/[▼]: перемещение вверх/вниз
5. Кнопки управления (смотрите таблицу ниже)

5.3.2 Кнопки управления

<table>
<thead>
<tr>
<th>Кнопка управления</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>►►</td>
<td>Вправо ►</td>
</tr>
<tr>
<td>◄►</td>
<td>Ввод ▲</td>
</tr>
<tr>
<td>◄►</td>
<td>Вниз [▼]</td>
</tr>
<tr>
<td>◄►</td>
<td>Вверх [▲]</td>
</tr>
<tr>
<td>◄► + ◄►</td>
<td>Выход ► + [▲]</td>
</tr>
</tbody>
</table>

Данные о функциональном назначении кнопок смотрите в разделе Режим "Оператор" на странице 51.

5.3.3 Окно справочной информации

В режиме супервизора на экране локального дисплея может отображаться информация, помогающая Вам в настройке прибора. Если в течение 30 секунд не будет нажата ни одна кнопка, то появится сообщение со справочной информацией. В нём будут разъясняться, что это за меню и какие функции имеют параметры. Одновременно нажмите ► и [▲] (Выход), чтобы вернуться в меню. Если в течение следующих 30 секунд не будет активированы кнопки дисплея, то сообщение появится вновь.
5.3.4 Как включить прибор

- Подключите преобразователь сигналов к источнику питания.
- Подайте электропитание.

 Через 30 секунд на экране отобразится надпись "загрузка", "запуск", после чего появится экран, выбранный по умолчанию.

- На приборе будут отображаться данные измерений.

 Измерения производятся в соответствии с требованиями, указанными в спецификации.

Осторожно!
Если производитель получил данные по условиям установки прибора, то показания на дисплее будут правильными. В противном случае обратитесь к процедуре быстрого запуска на странице 58.

5.4 Удалённая связь с использованием PACTware™

Программное обеспечение PACTware™ позволяет легко просматривать данные измерения на компьютере (ПК), а также удалённо настраивать прибор. PACTware™ является общедоступным программным обеспечением с открытой конфигурацией для всех полевых приборов. Оно использует технологию FDT (Field Device Tool = Полевой инструментарий для устройств). Технология FDT определяет стандарты обмена данными между системой управления и полевыми измерительными приборами. Данный стандарт соответствует IEC 62453. Полевые измерительные приборы могут быть легко интегрированы в систему управления. Инсталляция поддерживается удобным в использовании мастером настройки.

Установите следующее программное обеспечение и оборудование:

- Microsoft® .NET Framework версия 1.1 или более поздняя версия.
- PACTware.
- HART®-модем (USB, RS232...).
- Соответствующий DTM-драйвер для прибора.

Программное обеспечение и инструкция по установке имеются на компакт-диске, входящем в комплект поставки.

Также можно загрузить последнюю версию PACTware™ и DTM-драйвера с интернет-сайта компании.

5.5 Удалённая связь с использованием диспетчера устройств AMS™

Диспетчер устройств AMS™ является промышленным инструментальным программным средством управления ресурсами (PAM). Его задачи:

- Сохранение конфигурационных настроек для каждого прибора.
- Поддержка приборов с протоколом HART®.
- Сохранение и считывание данных технологического процесса.
- Сохранение и считывание диагностической информации о состоянии прибора.
- Помощь при планировании профилактического обслуживания установки для минимизации времени простоя.

Файл DD-драйвера содержится на компакт-диске, входящем в состав поставки прибора. Он также может быть загружен с веб-сайта компании.
6.1 Режимы пользователя

Оператор

В этом режиме на дисплее отображаются данные измерений. Дополнительные данные в разделе Режим "Оператор" на странице 51.

Супервизор

Этот режим используется для первоначальной настройки, просмотра параметров, создания таблиц преобразования в объём или массу, настройки пороговых значений при применениях в сложных рабочих условиях. Дополнительные сведения о получении доступа в меню "Супервизор" в разделе Защита настроек прибора на странице 75. Дополнительные сведения о параметрах меню в разделе Описание функций на странице 58.

6.2 Режим "Оператор"

Оператор может выбрать, какая информация будет отображаться на экране дисплея.

В данном разделе разъясняется:

- Что означает каждая кнопка в режиме оператора.
- Какую специальную функцию выполняет каждая кнопка при удержании её в нажатом положении более 1 секунды.
- Как переходить от одного информационного экрана к другому.

Некоторые данные (объём, масса и т.д.) доступны, только если прибор правильно настроен супервизором, смотрите описание ниже.

Функциональное назначение кнопок управления в режиме оператора

<table>
<thead>
<tr>
<th>Кнопка управления</th>
<th>Описание</th>
<th>Стандартная функция</th>
<th>"Горячая клавиша"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вправо</td>
<td>Вход в режим программирования 1<sup>1</sup></td>
<td>Изменяет вид отображения 1</td>
<td>Вход в режим редактирования окна сигналов 2<sup>3</sup></td>
</tr>
<tr>
<td>Ввод</td>
<td>Вход в режим редактирования окна сигналов 3<sup>3</sup></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Вниз</td>
<td>Основной экран получает статус экрана по умолчанию 4<sup>3</sup></td>
<td>Изменяет измеряемый параметр 4</td>
<td>—</td>
</tr>
<tr>
<td>Вверх</td>
<td>—</td>
<td>Изменяет измеряемый параметр 4</td>
<td>Язык меню изменится на английский 5<sup>4</sup></td>
</tr>
<tr>
<td>Esc (Выход)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. Значение, значение и рисунок, или значение и гистограмма
2. Нажмите и удерживайте данную кнопку в течение 1 секунды
3. Нажмите данную кнопку после выбора окна сигналов. Подробная информация представлена в разделе "Эксплуатация: Как настроить прибор для отслеживания достоверного сигнала уровня или уровня раздела фаз".
4. Уровень, дистанция, объём и т.д.
5. Нажмите и удерживайте данную кнопку в течение 1 секунды
6. Нажмите и удерживайте данную кнопку в течение 3 секунд. Повторное нажатие этой кнопки возвратит к первоначальному языку.
Окна в режиме оператора

<table>
<thead>
<tr>
<th>Окно с текстом и иконкой</th>
<th>Перейти к</th>
<th>Окно с процентным значением токового выхода</th>
<th>Перейти к</th>
<th>Текстовое окно</th>
<th>Перейти к</th>
</tr>
</thead>
<tbody>
<tr>
<td>[▲]</td>
<td>[▲]</td>
<td>[▲]</td>
<td>[▲]</td>
<td>> (Текст и иконка)</td>
<td></td>
</tr>
<tr>
<td>Уровень</td>
<td>[▶]</td>
<td>Уровень</td>
<td>[▶]</td>
<td>></td>
<td>Уровень</td>
</tr>
<tr>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>> (Текст и иконка)</td>
<td></td>
</tr>
<tr>
<td>Дистанция</td>
<td>[▶]</td>
<td>Дистанция</td>
<td>[▶]</td>
<td>Дистанция</td>
<td>[▶]</td>
</tr>
<tr>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>> (Текст и иконка)</td>
<td></td>
</tr>
<tr>
<td>Объём ①</td>
<td>[▶]</td>
<td>Объём ①</td>
<td>[▶]</td>
<td>Объём ①</td>
<td>[▶]</td>
</tr>
<tr>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>> (Текст и иконка)</td>
<td></td>
</tr>
<tr>
<td>Масса ②</td>
<td>[▶]</td>
<td>Масса ②</td>
<td>[▶]</td>
<td>Масса ②</td>
<td>[▶]</td>
</tr>
<tr>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>> (Текст и иконка)</td>
<td></td>
</tr>
<tr>
<td>Незаполненный объём ①</td>
<td>[▶]</td>
<td>Незаполненный объём ①</td>
<td>[▶]</td>
<td>Незаполненный объём ①</td>
<td>[▶]</td>
</tr>
<tr>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>> (Текст и иконка)</td>
<td></td>
</tr>
<tr>
<td>В начало списка</td>
<td>[▼]</td>
<td>[▼]</td>
<td>[▼]</td>
<td>В начало списка</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td>[▲] / [▼]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Этот параметр доступен, только если была создана таблица преобразования для объёма. Смотрите меню быстрой настройки для преобразования в режиме супервизора.
2. Этот параметр доступен, только если была создана таблица преобразования для массы. Смотрите меню быстрой настройки для преобразования в режиме супервизора.
3. В данном окне отображается графическая зависимость дискретных сигналов отражённых радиоволн по отношению к дистанции. Данный график используется для контроля отражённых сигналов, измеренных прибором. Нажмите [▶], чтобы передвинуть курсор от одного пика сигнала к другому.
6.3 Режим "Супервизор"

6.3.1 Общие указания

Настройка прибора производится в режиме Супервизор. Вы можете:

- Использовать меню Быстр. настройка, для того чтобы быстро сконфигурировать прибор. Более подробное описание пунктов меню быстрой настройки смотрите в разделе Описание функций на странице 58 (Таблица А. Быстр. настройка).
- Использовать меню Расшир. настройки, для того чтобы изменить отдельные позиции в конфигурации прибора. Более подробное описание пунктов меню смотрите в разделе Описание функций на странице 58 (Таблица С. Расшир. настройка).
- Сохранять Быстрые ссылки на пункты меню, которые регулярно используются. Подробные сведения о быстрых ссылках (пункты меню с A.2 по A.6) смотрите в разделе Описание функций на странице 58 (Таблица С. Быстр. настройка).
- Описание процедуры поиска и устранения ошибок приведено в меню Тест. Дополнительные сведения смотрите в разделе Описание функций на странице 58 (Таблица В. Тест).

6.3.2 Получение доступа в режим "Супервизор"

Выполните следующие шаги:

- Нажмите и удерживайте кнопку [>] в течение одной секунды.
 На экране появится окно авторизации.
- Нажмите кнопку [▲] или [▼], чтобы выбрать Супервизор из списка.
- Нажмите кнопку [●].
 На экране появится окно, в котором необходимо ввести пароль.
- Введите пароль. Заводской пароль: [>, [●], [▼], [▲], [>], [●]].
 На экране прибора отобразится сообщение "Вход в систему OK", а затем появится главное меню для режима "Супервизор".

Вы можете изменить пароль для режима "Супервизор" (пункт меню С.5.2.2). Дополнительные сведения смотрите в разделе Описание функций на странице 58 (Таблица С. Расшир. настройки).

Главное меню содержит:
- Меню быстрой настройки.
- Меню тестирования.
- Меню расширенных настроек.

В режиме "Супервизор" доступ в "сервисное меню" заблокирован. Меню, которые могут быть выбраны, обозначены шрифтом чёрного цвета. Меню, доступ к которым заблокирован, выделены серым цветом.

При возврате в меню оператора доступ в меню "Супервизор", без необходимости ввода пароля заново, сохраняется в течение 30 минут.
6.3.3 Обзор меню

A Быстр. настройка

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Режим настройки</td>
</tr>
<tr>
<td>A.2</td>
<td>Быстрая ссылка 1 (по умолчанию: Сведен об ошибках)</td>
</tr>
<tr>
<td>A.3</td>
<td>Быстрая ссылка 2 (по умолчанию: Кач.-во измерения)</td>
</tr>
<tr>
<td>A.4</td>
<td>Быстрая ссылка 3 (по умолчанию: Язык)</td>
</tr>
<tr>
<td>A.5</td>
<td>Быстрая ссылка 4 (по умолчанию: Единица длины)</td>
</tr>
<tr>
<td>A.6</td>
<td>Быстрая ссылка 5 (по умолчанию: Режим дисплея)</td>
</tr>
</tbody>
</table>

B Тест

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Тест</td>
</tr>
<tr>
<td>B.2</td>
<td>Информация</td>
</tr>
</tbody>
</table>

C Расшир. настройки

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>Монтаж прибора</td>
</tr>
<tr>
<td>C.3</td>
<td>Выход 1 (HART)</td>
</tr>
<tr>
<td>C.4</td>
<td>Выход 2 (пассив.) ①</td>
</tr>
<tr>
<td>C.5</td>
<td>Настройка прибора</td>
</tr>
<tr>
<td>C.6</td>
<td>Сброс</td>
</tr>
</tbody>
</table>

① Опционально

Информация!

Приборы с опцией программного ускорения:

Пункты в меню C.3 Выход 1 (HART) доступны, однако функции заблокированы и изменения не оказывают влияния на работу прибора. На выходе 1 установлен ток 16 мА (HART). На выходе 2 ток составляет 4...20 мА или 3,8...20,5 мА.
6.3.4 Назначение кнопок управления

Навигация по меню

<table>
<thead>
<tr>
<th>Кнопка управления</th>
<th>Описание</th>
<th>Функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вправо</td>
<td>Ввод</td>
<td>—</td>
</tr>
<tr>
<td>Вниз</td>
<td>Вверх</td>
<td>Пролистывание пунктов меню вниз списка</td>
</tr>
<tr>
<td>Вверх</td>
<td>Ввод</td>
<td>—</td>
</tr>
<tr>
<td>Esc (Выход)</td>
<td>Возвращение на предыдущий уровень меню</td>
<td></td>
</tr>
</tbody>
</table>
Перечень параметров в пунктах меню

Рисунок 6-2: Перечень параметров в пунктах меню

1. Панель выбора параметров
2. Наименование меню
3. Используемые параметры

При выборе пункта меню с перечнем параметров открывается следующий вид. Функциональное назначение кнопок приведено в следующей таблице:

Функциональное назначение кнопок управления в пунктах меню с перечнем параметров

<table>
<thead>
<tr>
<th>Кнопка управления</th>
<th>Описание</th>
<th>Функция</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Вправо</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Ввод</td>
<td>Выбор параметра и возврат к меню</td>
</tr>
<tr>
<td></td>
<td>Вниз</td>
<td>Пролистывание пунктов меню вниз списка</td>
</tr>
<tr>
<td></td>
<td>Вверх</td>
<td>Пролистывание пунктов меню вверх списка</td>
</tr>
<tr>
<td>Esc (Выход)</td>
<td>Возврат к меню 1</td>
<td></td>
</tr>
</tbody>
</table>

1. При этом выбор нового параметра игнорируется.
Значения в пунктах меню

Рисунок 6-3: Значения в пунктах меню
1. Максимальное значение
2. Минимальное значение
3. Курсор на цифре, которая должна быть изменена
4. Наименование меню
5. Иллюстрация пункта меню
6. Сообщение об ошибке

При выборе пункта меню, в котором указано значение, открывается следующий вид.
Функциональное назначение кнопок приведено в следующей таблице:

Функциональное назначение кнопок управления в пунктах меню, в которых указаны значения

<table>
<thead>
<tr>
<th>Кнопка управления</th>
<th>Описание</th>
<th>Функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вправо</td>
<td>Ввод</td>
<td>Вход</td>
</tr>
<tr>
<td>Вниз</td>
<td>Вниз</td>
<td>Уменьшает цифровое значение</td>
</tr>
<tr>
<td>Вверх</td>
<td>Вверх</td>
<td>Увеличивает цифровое значение</td>
</tr>
<tr>
<td>Выход</td>
<td>Выход</td>
<td>Возврат к меню 1</td>
</tr>
</tbody>
</table>

1. При этом выбор нового параметра игнорируется.
При удержании данных кнопок в нажатом положении в течение 1 секунды, они получают функции "горячих клавиш".

Функции "горячих клавиш" в режиме "Супервизор"

<table>
<thead>
<tr>
<th>Кнопка</th>
<th>Описание</th>
<th>Функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вправо</td>
<td>Создание быстрой ссылки</td>
<td></td>
</tr>
<tr>
<td>Ввод</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Вниз</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Вверх</td>
<td>Отображение информации на экране на английском языке</td>
<td>②</td>
</tr>
<tr>
<td>Esc (Выход)</td>
<td>Возврат в режим оператора</td>
<td></td>
</tr>
</tbody>
</table>

① Выберите пункт из меню расширенных настроек.
② Нажмите и удерживайте кнопку в течение 3 секунд.

Сохранение настроек

- После изменения параметров в необходимых пунктах меню нажмите кнопку [Esc], чтобы сохранить новые параметры.
- Одновременно нажмите [>] и [<], чтобы вернуться к окну Сохранение настроек.
- Прибор запросит у Вас сохранить или отменить настройки. Выберите Сохранить, чтобы сохранить новые настройки, или Отменить, чтобы отклонить их.

Дисплей возвратится в режим оператора.

6.3.5 Описание функций

A. Быстр. настройка

<table>
<thead>
<tr>
<th>№ меню</th>
<th>Шаг</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
</table>

A.1 Режим настройки

A.1.1 Полная Выполняются шаги, указанные в режимах настройки условий монтажа прибора, спектра пустой ёмкости, преобразования и выходных сигналов.

A.1.2 Установка Процедура для описания резервуара и его содержимого.

1 Тип присоединения Материал резервуара. Металл. ёмкость, Пласт. ёмкость, Откр. простр. Металл. ёмкость

2 Высота ёмкости / Диапазон измер-я "Высота ёмкости" - это расстояние от уплотнительной поверхности фланца, присоединяемого к резервуару / конца резьбы до дна резервуара. "Диапазон измер-я" (только для "Откр. простр.") - это максимальная дистанция, которую может измерить прибор. Мин. - макс.: 0,20...80 м / 0,66...262 фут 20 м

www.krohne.com 09/2015 - 4004008702 - MA OPTIWAVE 7300 R08 ru
<table>
<thead>
<tr>
<th>№ меню</th>
<th>Шаг</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A</td>
<td></td>
<td>Тип применения</td>
<td>Условия, в которых применяется прибор. Если поверхность продукта спокойная, выберите "Рез-хранения". Если на поверхности есть возмущения, выберите "Технол. емкость". Если на поверхности есть воронки и пена, выберите "Мешалка". Если прибор установлен на успокоительной трубе, выберите "...+Усп. тр.".</td>
<td>Технол. емкость, Рез-хранения, Мешалка, Т.ёмк.+usp. тр., Р.хран.+usp. тр., Меш.+usp. труба</td>
<td>Без волнения, Среднее волнение, Сильное волнение</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Условия, в которых применяется прибор. Только для применений на открытом воздухе. Если поверхность продукта спокойная, выберите "Без волнения". Если на поверхности есть возмущения, выберите "Среднее волнение". Если на поверхности продукта есть пузырьки, а также воронки и пена, выберите "Сильное волнение".</td>
<td></td>
<td>Без волнения</td>
</tr>
<tr>
<td>4A</td>
<td></td>
<td>Ду усп. трубы</td>
<td>Внутренний диаметр успокоительной трубы. Шаг 4 доступен, только если в шаге 3 выбрана настройка "...+Усп. тр.".</td>
<td>мин.-макс.: 8...200 мм / 0,31…7,88" 100 мм / 3,94"</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td></td>
<td>Длина усп. трубы</td>
<td>Высота успокоительной трубы. Шаг 4 доступен, только если в шаге 3 выбрана настройка "...+Усп. тр.".</td>
<td>мин.-макс.: 0...80 м / 0…262 фут 10 м / 32,81 фут</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Блок-дистанция</td>
<td>Зона, определяемая пользователем, где измерения невозможны. Рекомендуется задать размер блок-дистанции не менее 100 мм / 4" от антенны.</td>
<td>мин.-макс.: антенный удлинитель (C.1.6) + 50 мм / 2"высота емкости (C.1.2)</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Обзор настроек</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Необходимо сохранить или отметить текущие изменения, перед тем как продолжить.</td>
<td>Сохранить, Отменить</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.3</td>
<td></td>
<td>Спектр пустой емкости</td>
<td>Неподвижные и подвижные объекты в резервуаре являются причиной возникновения сигналов помех. Для правильного измерения содержимого резервуара, необходимо их отфильтровать.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ меню</td>
<td>Шаг</td>
<td>Функция</td>
<td>Описание функций</td>
<td>Выбор из списка</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Вы полностью заполнили резервуар?</td>
<td>Если резервуар полностью заполнен, то выполнение данной процедуры невозможно. Резервуар должен быть или частично заполненный, или пустой.</td>
<td>Да, Нет</td>
<td>Да</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Все подвижные части в резервуаре, например, мешалки, приведены в движение?</td>
<td>Рекомендуется включить мешалки и другое подвижное оборудование, чтобы отфильтровать все сигналы помех.</td>
<td>Да, Нет</td>
<td>Да</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ваш резервуар частично заполнен или пустой?</td>
<td>Если резервуар заполнен частично, то при фильтровании сигнала прибор должен учитывать содержимое резервуара.</td>
<td>Част. заполнен, Пустой</td>
<td>Част. заполнен</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Дистанция</td>
<td>Если резервуар заполнен частично, введите значение более короткой дистанции, чем расстояние между фланцем и содержимым резервуара.</td>
<td>мин. / макс.: 0...высота ёмкости</td>
<td>10 м / 32,808 фут</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Использовать для запуска усреднённое или максимальное значение?</td>
<td>Используйте усреднённое значение только для резервуаров с неподвижными объектами. Используйте максимальное значение для резервуаров с множеством элементов или подвижными объектами.</td>
<td>Средний, Максимальный</td>
<td>Средний</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Выполняется запись спектра пустой ёмкости</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>График спектра пустой ёмкости</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Сохранить спектр?</td>
<td>В случае сохранения этих данных, прибор будет использовать их при измерении содержимого резервуара.</td>
<td>Сохранить, Отменить</td>
<td>Сохранить</td>
<td></td>
</tr>
</tbody>
</table>

A.1.4 Преобразование

Процедура настройки прибора для отображения результатов измерений в единицах объёма, массы или в пользовательских единицах измерения.

Подменю Подменю преобразования [Объём]

1 Использовать собственную единицу измерения? | Выберите "Нет". | Да, Нет | Нет |
<p>| 2 Ед. длины таблицы | м, см, мм, дюйм, фут, произ. ед. изм. | м |
| 3 Выберите Объём / Масса | Выберите "Объём". | Объём, Масса |</p>
<table>
<thead>
<tr>
<th>№ меню</th>
<th>Шаг</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Форма резервуара</td>
<td>Данный подпрограмма позволяет рассчитать объём резервуара по указанным здесь данным. Для этого необходимо указать форму резервуара, его высоту, ширину и длину.</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ед. преобразов-я</td>
<td>Отображаемая в режиме оператора единица измерения.</td>
<td>м³, л, галлон США, галлон англ., фут³, баррель</td>
<td>м³</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Таблица объёма</td>
<td>Таблица, которая преобразует измеренный уровень в объём продукта. С помощью кнопок [▲] или [▼] выберите строку, а затем нажмите [►], чтобы изменить значения, автоматически отображаемые на экране прибора.</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Подменю
<table>
<thead>
<tr>
<th>Подменю преобразования [Масса]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Использовать собственную единицу измерения?</td>
<td>Да, Нет</td>
</tr>
<tr>
<td>2 Ед. длины таблицы</td>
<td>м, см, мм, дюйм, фут, произв. ед. изм.</td>
</tr>
<tr>
<td>3 Выберите Объём / Масса</td>
<td>Выберите "Масса".</td>
</tr>
<tr>
<td>4 Использовать плотность продукта?</td>
<td>Да, Нет</td>
</tr>
<tr>
<td>5 Плотность вещ-ва</td>
<td>Мастер настройки добавляет этот шаг, если Вы выбрали "Да" в шаге 4.</td>
</tr>
<tr>
<td>6 Форма резервуара</td>
<td>Мастер настройки добавляет этот шаг, если Вы выбрали "Да" в шаге 4. Данный подпрограмма позволяет рассчитать объём резервуара по указанным здесь данным. Для этого необходимо указать форму резервуара, его высоту, ширину и длину.</td>
</tr>
<tr>
<td>7 Ед. преобразов-я</td>
<td>Единица преобразования задаётся как объём, если указана плотность продукта. В противном случае выберите единицу массы.</td>
</tr>
<tr>
<td>№ меню</td>
<td>Шаг</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Подменю

Подменю преобразования [Произв. ед. изм.]

<table>
<thead>
<tr>
<th>№</th>
<th>Шаг</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Использовать собственную единицу измерения?</td>
<td>Выберите "Да".</td>
<td>Да, Нет</td>
<td>Нет</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Польз. ед. длины</td>
<td>Нестандартная единица длины для таблицы преобразования. Она устанавливается пользователем с правами супервизора.</td>
<td>ПРОИЗВ. ЕД. ДЛИНЫ</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Соотн. польз. ед.</td>
<td>Коэффициент преобразования между единицей длины, выбранной в пункте С.5.1.4 (единица длины), и единицей длины в пункте С.5.1.7 (единица длины пользователя). Это соотношение кратно 1 мм.</td>
<td>мин.-макс.: 1...99999</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Ед.преобраз-ия польз.</td>
<td>Нестандартная единица преобразования для таблицы преобразования. Она устанавливается пользователем с правами супервизора.</td>
<td>ПРОИЗВ. ЕД. ПРЕОБРАЗ.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Кол-во записей</td>
<td>Количество строк в таблице преобразования.</td>
<td>мин.-макс.: 0...50</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Табл. Объём/Масса</td>
<td>Таблица, которая преобразует измеренный уровень в другой физический параметр. С помощью кнопок [▲] или [▼] выберите строку, а затем нажмите [►], чтобы изменить значения, автоматически отображаемые на экране прибора.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Необходимо сохранить или отменить текущие изменения, перед тем как продолжить. | Сохранить, Отменить | Сохранить |
<table>
<thead>
<tr>
<th>№ меню</th>
<th>Шаг</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.5</td>
<td>Выходы</td>
<td>Для описания характеристик выходных сигналов выполните следующую процедуру.</td>
<td>Уровень, Дистанция, Объём (Масса), Незаполн. объём (Незаполн. масса), Отражение</td>
<td>Уровень</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Выход 1: Функция выхода</td>
<td>Выберите измеряемый параметр для масштабирования значения токового выхода (выход 1). Этот параметр не отображается на дисплее прибора в режиме оператора.</td>
<td>Уровень, Дистанция, Объём (Масса), Незаполн. объём (Незаполн. масса), Отражение</td>
<td>Уровень</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Выход 1 (HART): <Функция> 4 mA</td>
<td>Значение измеряемого параметра для 4 mA (выход 1).</td>
<td>мин.-макс.: 0...20 м / 0...65,62 фут</td>
<td>0 м / 0 фут</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Выход 1 (HART): <Функция> 20 mA</td>
<td>Значение измеряемого параметра для 20 mA (выход 1).</td>
<td>мин.-макс.: 0...90 м / 0...295,29 фут</td>
<td>Зависит от функции выходного сигнала</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Диапазон выхода</td>
<td>Настройка стандартного или расширенного эффективного диапазона выходного сигнала 1.</td>
<td>3,8…20,5 mA (NAMUR), 4…20 mA</td>
<td>4…20 mA</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Реакция на ошибку</td>
<td>Настройка параметров токового выхода 1 при возникновении ошибки. Удерживать означает, что выходной ток фиксируется на том значении, при котором возникла ошибка. Функция Удерживать недоступна, если диапазон выходного сигнала 3,8…20,5 mA (NAMUR).</td>
<td>3,6 mA, 22 mA, Удерживать (только для диапазона 4…20 mA)</td>
<td>22 mA</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Выход 1 (HART): HART адрес</td>
<td>Каждый HART®-адрес выше 0 активирует многоканальный HART®-режим. Значение токового выхода устанавливается на постоянное значение 4 mA.</td>
<td>мин.-макс.: 0...15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Функция выхода 2</td>
<td>Выберите измеряемый параметр для масштабирования значения токового выхода (выход 2). Этот параметр не отображается на дисплее прибора в режиме оператора.</td>
<td>Уровень, Дистанция, Объём (Масса), Незаполн. объём (Незаполн. масса), Отражение</td>
<td>Уровень</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Выход 2 (Пассив.): <Функция> 4 mA</td>
<td>Значение измеряемого параметра для 4 mA (выход 2).</td>
<td>мин.-макс.: 0...20 м / 0...65,62 фут</td>
<td>0 м / 0 фут</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Выход 2 (Пассив.): <Функция> 20 mA</td>
<td>Значение измеряемого параметра для 20 mA (выход 2).</td>
<td>мин.-макс.: 0...90 м / 0...295,29 фут</td>
<td>Зависит от функции выходного сигнала</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Диап. выхода OP2</td>
<td>Настройка стандартного или расширенного эффективного диапазона выходного сигнала 2.</td>
<td>3,8…20,5 mA (NAMUR), 4…20 mA</td>
<td>4…20 mA</td>
<td></td>
</tr>
<tr>
<td>№ меню</td>
<td>Шаг</td>
<td>Функция</td>
<td>Описание функций</td>
<td>Выбор из списка</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Устр. ошибки ОР24</td>
<td>Настройка параметров токового выхода 2 при возникновении ошибки. "Удерживать" означает, что выходной ток фиксируется на том значении, при котором возникла ошибка. Функция "Удерживать" недоступна, если диапазон выходного сигнала 3,8…20,5 мА (NAMUR).</td>
<td>3,6 мА, 22 мА, Удерживать (только для диапазона 4…20 мА)</td>
<td>22 мА</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Обзор настроек</td>
<td>Только для чтения</td>
<td>Функция "Удерживать" недоступна, если диапазон выходного сигнала 3,8…20,5 мА (NAMUR).</td>
<td></td>
</tr>
</tbody>
</table>

A.2 Быстрая ссылка 1

A.2 Быстрая ссылка 1 Прямая ссылка на пункт меню расширенных настроек | Выделите функцию в меню расширенных настроек, затем нажмите и удерживайте кнопку [>] в течение 1 секунды. Таким образом Вы можете сохранить до 5 функций. | Сведения об ошибках |

A.3 Быстрая ссылка 2

A.3 Быстрая ссылка 2 Прямая ссылка на пункт меню расширенных настроек | Выделите функцию в меню расширенных настроек, затем нажмите и удерживайте кнопку [>] в течение 1 секунды. Таким образом Вы можете сохранить до 5 функций. | Качество измерения |

A.4 Быстрая ссылка 3

A.4 Быстрая ссылка 3 Прямая ссылка на пункт меню расширенных настроек | Выделите функцию в меню расширенных настроек, затем нажмите и удерживайте кнопку [>] в течение 1 секунды. Таким образом Вы можете сохранить до 5 функций. | Язык |

A.5 Быстрая ссылка 4

A.5 Быстрая ссылка 4 Прямая ссылка на пункт меню расширенных настроек | Выделите функцию в меню расширенных настроек, затем нажмите и удерживайте кнопку [>] в течение 1 секунды. Таким образом Вы можете сохранить до 5 функций. | Единица длины |
A.6 Быстрая ссылка 5

<table>
<thead>
<tr>
<th>№ меню</th>
<th>Шаг</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.6</td>
<td></td>
<td>Быстрая ссылка 5</td>
<td>Прямая ссылка на пункт меню расширенных настроек</td>
<td>Введите функцию в меню расширенных настроек, затем нажмите и удерживайте кнопку [>] в течение 1 секунды. Таким образом Вы можете сохранить до 5 функций.</td>
<td>Режим дисплея</td>
</tr>
</tbody>
</table>

1. Данный диапазон зависит от других функций, заданных пользователем.
2. Данное значение зависит от других функций, заданных пользователем.
3. Этот шаг игнорируется, если Вы используете режим настройки "Полная".
4. Если устройство оснащено опцией программного ускорения, то этапы с 1 по 6 данной процедуры доступны, однако функции заблокированы и изменения не оказывают влияния на работу прибора.
5. Опционально.

B. Тест

<table>
<thead>
<tr>
<th>№ меню</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.1</td>
<td>Отобразить вых. 1</td>
<td>Индикация значения тока на аналоговом выходе 1 в [мА]. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения в пункте меню B.1.2 не оказывают влияния на работу прибора. Ток на выходе 1 установлен на постоянное значение 16 мА (HART).</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td>B.1.2</td>
<td>Настройка вых. 1</td>
<td>Настройка аналогового выходного сигнала 1 на тестовое значение в [мА], выбираемое из списка. Выходной сигнал начнет выдавать выбранное значение тока, независимо от измеренного значения. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора.</td>
<td>3,6, 4, 6, 8, 10, 12, 14, 16, 18, 20 или 22 мА 4 мА</td>
<td></td>
</tr>
<tr>
<td>B.1.3</td>
<td>Отобразить вых. 2</td>
<td>Индикация значения тока на аналоговом выходе 2 в [мА].</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td>B.1.4</td>
<td>Настройка вых. 2</td>
<td>Настройка аналогового выходного сигнала 2 на тестовое значение в [мА], выбираемое из списка. Выходной сигнал начнет выдавать выбранное значение тока, независимо от измеренного значения.</td>
<td>3,6, 4, 6, 8, 10, 12, 14, 16, 18, 20 или 22 мА 4 мА</td>
<td></td>
</tr>
<tr>
<td>B.1.5</td>
<td>Внутренний тест</td>
<td>Запускается аппаратная диагностика прибора. Результаты тестирования отображаются на дисплее.</td>
<td>Только для чтения</td>
<td></td>
</tr>
</tbody>
</table>
B.2 Информация

<table>
<thead>
<tr>
<th>№ меню</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2.1</td>
<td>Выходы</td>
<td>Настройки аналоговых выходных сигналов. К ним относятся назначенные функции, шкала 4...20 мА, ток ошибки и параметры HART®-протокола.</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td>B.2.2</td>
<td>15-минутный транд</td>
<td>Индикация значений выходного сигнала за последние 15 минут. Журнал обновляется каждые 10 секунд и отображается в виде графика.</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td>B.2.3</td>
<td>ID прибора</td>
<td>Индикация заказного номера прибора, V-кода, сервисного номера, данных по сертификатам взрывозащиты, версий программного обеспечения процессора, сопроцессора и блока цифровой обработки сигналов.</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td>B.2.4</td>
<td>Итог настройки</td>
<td>Индикация параметров, заданных в меню быстрой настройки.</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td>B.2.5</td>
<td>№ техн. позиции</td>
<td>Индикация номера технологической позиции, а также его актуализация.</td>
<td>?</td>
<td>TAGNO012 34567890</td>
</tr>
<tr>
<td></td>
<td>Температура</td>
<td>Температура внутри блока электроники. Если температура ниже -20°C / -4°F или выше +60°C / +140°F, то экран дисплея автоматически отключается.</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Свед. об ошибках</td>
<td>Журнал регистрации ошибок прибора. Для просмотра подробной информации по ошибке прокрутите список до нужной позиции и нажмите кнопку []. Если в режиме оператора появился значок, указывающий на наличие ошибки, то после открытия журнала он пропадёт.</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Качество измерения</td>
<td>Актуальное состояние ошибок прибора. Наличие "галочки" рядом с ошибкой в списке означает, что ошибка активна и может иметь нежелательное влияние на работу прибора.</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td>B.2.7</td>
<td>Польз. ед. длины</td>
<td>Нестандартная единица длины для таблицы преобразования. Она устанавливается пользователем с правами супервизора. Перейдите по адресу Супервизор > Расшир. настройки > Настройка прибора > Настройки дисплея > Польз. ед. длины или следуйте инструкциям в меню настройки Преобразование.</td>
<td>Только для чтения</td>
<td></td>
</tr>
<tr>
<td>B.2.9</td>
<td>Ед.преобраз-ия польз.</td>
<td>Нестандартная единица преобразования для таблицы преобразования. Она устанавливается пользователем с правами супервизора. Перейдите по адресу Супервизор > Расшир. настройки > Настройка прибора > Настройки дисплея > Ед.преобраз-ия польз. или следуйте инструкциям в меню настройки Преобразование.</td>
<td>Только для чтения</td>
<td></td>
</tr>
</tbody>
</table>

1 Опция программного ускорения: Ток на выходе 1 установлен на постоянное значение 16 мА (HART).
C. Расшир. настройки

<table>
<thead>
<tr>
<th>№ меню</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1.1</td>
<td>Тип присоединения</td>
<td>Тип присоединения на резервуаре для прибора.</td>
<td>Метал. ёмкость, Пласт. ёмкость, Откр. простр.</td>
<td>Метал. ёмкость</td>
</tr>
<tr>
<td>C.1.2</td>
<td>Высота ёмкости / Диапазон измер-я</td>
<td>"Высота ёмкости" - это расстояние от уплотнительной поверхности фланца, присоединяемого к резервуару / конца резьбы до дна резервуара. "Диапазон измер-я" (только для "Откр. простр.") - это максимальная дистанция, которую может измерить прибор.</td>
<td>мин.-макс.: 0,20...80 м / 0,66...262 фут</td>
<td>20 м / 65,61 фут</td>
</tr>
<tr>
<td>C.1.3</td>
<td>Тип применения</td>
<td>Условия, в которых применяется прибор. Если поверхность продукта спокойная, выберите "Рез-р хранения". Если на поверхности есть возмущения, выберите "Технол. ёмкость". Если на поверхности есть воронки или пены, выберите "Мешалка". Если прибор установлен на успокоительной трубе, выберите "...+Усп. тр.".</td>
<td></td>
<td>Без волнения, Среднее волнение, Сильное волнение</td>
</tr>
<tr>
<td>C.1.4</td>
<td>Длина усп. трубы</td>
<td>Высота успокоительной трубы. Данный пункт доступен, только если в пункте C.1.3 Тип применения выбрана настройка "...+Усп. тр.".</td>
<td>мин.-макс.: 0...80 м / 0...262 фут</td>
<td>10 м / 32,81 фут</td>
</tr>
<tr>
<td>C.1.5</td>
<td>Ду усп. трубы</td>
<td>Внутренний диаметр успокоительной трубы. Данный пункт доступен, только если в пункте C.1.3 Тип применения выбрана настройка "...+Усп. тр.".</td>
<td>мин.-макс.: 8...200 мм / 0,31...7,88"</td>
<td>100 мм / 3,94"</td>
</tr>
<tr>
<td>C.1.6</td>
<td>Удлинитель антен.</td>
<td>Опциональный антенный удлинитель. Присоединяются между фланцем и антенной. Длина каждой части 105 мм / 4,1".</td>
<td>мин.-макс.: 0...5000,00 мм / 0...196,85"</td>
<td>0 мм / 0"</td>
</tr>
<tr>
<td>C.1.7</td>
<td>Дист. вставка</td>
<td>Опциональная дистанционная вставка между преобразователем сигналов и технологическим присоединением.</td>
<td>мин.-макс.: 0...5000,00 мм / 0...196,85"</td>
<td>0 мм / 0"</td>
</tr>
<tr>
<td>C.1.8</td>
<td>Обнар. переполн.</td>
<td>Если данная функция активирована, прибор будет отслеживать уровень даже в зоне блок-дистанции. Отображаемый выходной сигнал остаётся зафиксированным на значении блок-дистанции, но сообщение об ошибке предупредит пользователя, что резервуар переполнен.</td>
<td>Да, Нет</td>
<td>Нет</td>
</tr>
<tr>
<td>№ меню</td>
<td>Функция</td>
<td>Описание функции</td>
<td>Выбор из списка</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C.1.9</td>
<td>Блок-дистанция</td>
<td>Расстояние от фланца до верхней границы измерительного диапазона (зона, определяемая пользователем, где измерения невозможны). Рекомендуется задать размер блок-дистанции не менее 100 мм / 4' от антенны. Если дистанция до продукта будет меньше блок-дистанции, прибор будет продолжать отображать значение блок-дистанции.</td>
<td>мин.-макс.: антенный удлинитель (C.1.6) + 50 мм / 2’...высота ёмкости (C.1.2)</td>
<td>0,5 м / 1,6 фут</td>
</tr>
<tr>
<td>C.1.10</td>
<td>См. точки отсчёта</td>
<td>Смещение связано с точкой отсчёта для дистанции. Данное значение положительно, когда точка отсчёта находится выше уплотнительной поверхности фланца прибора, и отрицательно, когда ниже. Дополнительные данные в разделе Измерение дистанции на странице 76.</td>
<td>мин.-макс.: -высота ёмкости...50 м / -высота ёмкости... ...164,05 фут</td>
<td>0 м / 0 фут</td>
</tr>
<tr>
<td>C.1.11</td>
<td>См. дна ёмкости</td>
<td>Смещение связано с точкой отсчёта для уровня. Точкой отсчёта прибора для этого параметра является дно резервуара (настройка в пункте меню C.1.2.0). Данное значение положительно, когда точка отсчёта находится ниже дна резервуара, и отрицательно, когда выше. Дополнительные данные в разделе Измерение уровня на странице 77.</td>
<td>мин.-макс.: -высота ёмкости...3000 м / -высота ёмкости...9843 фут</td>
<td>0 м / 0 фут</td>
</tr>
<tr>
<td>C.1.12</td>
<td>Постоян. времени</td>
<td>С помощью этой функции прибор обрабатывает несколько значений измерения, что позволяет отфильтровать отклонения. Увеличение постоянной времени приводит к сглаживанию показаний, уменьшение - делает их более грубыми.</td>
<td>мин.-макс.: 1…100 с (секунды)</td>
<td>3 с</td>
</tr>
<tr>
<td>C.1.13</td>
<td>Режим измерения</td>
<td>Прибор использует диэлектрическую постоянную (εr) содержащегося в резервуаре продукта для отслеживания уровня. Этот пункт меню установлен по умолчанию на "Прямое измерение" для продуктов с εr>1,6. Если значение εr низкое, то используйте режим "Частично TBF". Если значение εr очень низкое (<1,5), то используйте режим "Полный TBF".</td>
<td>Прямое измерение, Частично TBF, Полный TBF</td>
<td>Прямое измерение</td>
</tr>
<tr>
<td>C.1.14</td>
<td>Ег продукта</td>
<td>Автоматическое вычисление уровня продукта на основе εr продукта. При выборе "Частично TBF" или "Полный TBF" в пункте меню C.1.13 можно изменить данное значение вручную для подстройки показаний.</td>
<td>мин.-макс.: 1,01…99,90</td>
<td>4</td>
</tr>
<tr>
<td>№ меню</td>
<td>Функция</td>
<td>Описание функций</td>
<td>Выбор из списка</td>
<td>По умолчанию</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>C.1.15</td>
<td>Скорость отслеж-я</td>
<td>Данная функция устанавливает максимальную скорость изменения уровня. Измеренное значение не может изменяться быстрее, чем скорость отслеживания. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора.</td>
<td>мин.-макс.: 0,001…10,000 м/мин / 0,003…32,8 фут/мин</td>
<td>0,5 м/мин / 1,64 фут/мин</td>
</tr>
<tr>
<td>C.1.16</td>
<td>Многокр. отраж-я</td>
<td>Многократные отражения могут привести к занижению показаний прибора. Объекты в резервуаре, острые углы, монтаж прибора на длинном патрубке или по центру куполообразной крыши могут стать причиной возникновения многократных отражений сигнала. Очень спокойная поверхность продукта, плоская или слабо выпуклая крыша резервуара также могут вызвать многократные отражения сигнала.</td>
<td>Да, Нет</td>
<td>Нет</td>
</tr>
<tr>
<td>C.1.17</td>
<td>СпПЕ Вкл./Откл.</td>
<td>Данная функция запускает и останавливает фильтрацию сигналов помех. Сигналы помех являются результатом наличия неподвижных или подвижных конструкций внутри резервуара. Если необходимо выполнить анализ спектра, то следует прежде записать спектр пустой ёмкости. Для этого в меню быстрой настройки выберите пункт "Спектр пуст. ёмкity." (A.1.3.0).</td>
<td>Вкл., Откл.</td>
<td>Откл.</td>
</tr>
<tr>
<td>C.1.19</td>
<td>Ед. изм. таблицы</td>
<td>Подменю для преобразования значений уровня в значения объёма или массы.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.1.19.1</td>
<td>Ед. длины таблицы</td>
<td>Единица длины, используемая в таблице преобразования. Если выбрана "Произв. ед. изм.", то прибор использует название единицы, заданное в пункте меню C.5.1.7.</td>
<td>м, см, мм, дюйм, фут, произв. ед. изм.</td>
<td>м</td>
</tr>
<tr>
<td>C.1.19.2</td>
<td>Ед. преобразов-я</td>
<td>Единица объёма или массы, используемая в таблице преобразования. Если выбрана "Произв. ед. изм.", то прибор использует название единицы, заданное в пункте меню C.5.1.9.</td>
<td>м³, л, галлон США, галлон англ., фут³, баррель, тонна, кг, тонна США, тонна англ., произв. ед. изм.</td>
<td>м³</td>
</tr>
<tr>
<td>C.1.20</td>
<td>Плотность вещ-ва</td>
<td>Значение параметра, отличное от 0, которое используется вместе с таблицей преобразования объёма для вычисления массы продукта. Этот пункт меню недоступен, если выбрана единица массы.</td>
<td>0…20000 кг/м³</td>
<td>0 кг/м³</td>
</tr>
<tr>
<td>C.1.21</td>
<td>Табл. Объём / Масса</td>
<td>Прибор использует эту табліцу для отображения данных по объёму и массе. Укажите число записей в таблице. Нажмите [•]. Затем укажите уровень и соответствующее ему значение объёма / массы продукта.</td>
<td>Количество записей мин.-макс.: 0...50</td>
<td>Нет таблицы. Единицы измерения для таблицы выбираются в пунктах меню C.1.19.1 и C.1.19.2.</td>
</tr>
</tbody>
</table>
Табл. линеариз.
Прибор использует эту таблицу для повышения точности измерений по месту эксплуатации. Укажите число записей в таблице. Наполните резервуар. Проведите контрольное измерение и введите правильное значение рядом с показаниями прибора. Дополнительные данные в разделе Линеаризация на странице 76.

<table>
<thead>
<tr>
<th>№ меню</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>С.1.22</td>
<td>Табл. линеариз.</td>
<td>Прибор использует эту таблицу для повышения точности измерений по месту эксплуатации. Укажите число записей в таблице. Наполните резервуар. Проведите контрольное измерение и введите правильное значение рядом с показаниями прибора. Дополнительные данные в разделе Линеаризация на странице 76.</td>
<td>Количество записей мин.-макс.: 0...50</td>
<td>0</td>
</tr>
</tbody>
</table>

C.3 Выход 1 (HART)

<table>
<thead>
<tr>
<th>Функция выхода</th>
<th>Описание</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.3.1</td>
<td>Функция выхода</td>
<td>Выберите измеряемый параметр для масштабирования значений токового выхода. Этот параметр не отображается на дисплее прибора в режиме оператора. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора. <sup>1</sup></td>
<td>Уровень, Дистанция, Объём (Масса), Незаполн. объём (Незаполн. масса), Отражение</td>
</tr>
<tr>
<td>C.3.2</td>
<td>Значение для 4 мА</td>
<td>Значение измеряемого параметра для 4 мА. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора. <sup>1</sup></td>
<td>мин.-макс.: 0 м / 0 фут</td>
</tr>
<tr>
<td>C.3.3</td>
<td>Знач. для 20 мА</td>
<td>Значение измеряемого параметра для 20 мА. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора. <sup>1</sup></td>
<td>Зависит от функции выходного сигнала</td>
</tr>
<tr>
<td>C.3.4</td>
<td>Диапазон выхода</td>
<td>Настройка стандартного или расширенного эффективного диапазона выходного сигнала 1. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора. <sup>1</sup></td>
<td>мин.-макс.: 3,8...20,5 мА (NAMUR), 4...20 мА</td>
</tr>
<tr>
<td>C.3.5</td>
<td>Реакция на ошибку</td>
<td>Настройка параметров токового выхода 1 при возникновении ошибки. "Удерживать" означает, что выходной ток фиксируется на том значении, при котором возникла ошибка. Функция "Удерживать" недоступна, если диапазон выходного сигнала 3,8...20,5 мА (NAMUR). Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора. <sup>1</sup></td>
<td>3,6 мА, 22 мА, Удерживать</td>
</tr>
<tr>
<td>№ меню</td>
<td>Функция</td>
<td>Описание функций</td>
<td>Выбор из списка</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Задержка действия ошибки</td>
<td>Временная задержка, после которой выходной сигнал принимает значение сигнала ошибки. Это значение указывает на наличие ошибки измерения. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора. ①</td>
<td>мин-макс.: 0…900 с (секунды)</td>
</tr>
<tr>
<td>C.3.6</td>
<td>HART адрес</td>
<td>Каждый HART®-адрес выше 0 активирует многоканальный HART®-режим. Значение токового выхода устанавливается на постоянное значение 4 мА. Если устройство оснащено опцией программного ускорения, то данный пункт меню доступен, однако функция заблокирована и изменения не оказывают влияния на работу прибора. ①</td>
<td>мин-макс.: 0…15</td>
</tr>
</tbody>
</table>

C.4 Выход 2 (пассив.)

<table>
<thead>
<tr>
<th>№ меню</th>
<th>Функция выхода</th>
<th>Описание</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.4.1</td>
<td>Функция выхода</td>
<td>Выберите измеряемый параметр для масштабирования значений токового выхода. ④</td>
<td>Уровень, Дистанция, Объём (Масса), Незаполн. объём (Незаполн. масса), Отражение</td>
<td>Уровень</td>
</tr>
<tr>
<td>C.4.2</td>
<td>Значение для 4 мА</td>
<td>Укажите значение измеряемого параметра для 4 мА. ④</td>
<td>мин-макс.: ②</td>
<td>0 м / 0 фут</td>
</tr>
<tr>
<td>C.4.3</td>
<td>Значение для 20 мА</td>
<td>Укажите значение измеряемого параметра для 20 мА. ④</td>
<td>мин-макс.: ③</td>
<td>Зависит от функции выходного сигнала</td>
</tr>
<tr>
<td>C.4.4</td>
<td>Диапазон выхода</td>
<td>Настройка стандартного или расширенного эффективного диапазона выходного сигнала 2. ⑤</td>
<td>мин-макс.: 3,8...20,5 мА (NAMUR), 4...20 мА</td>
<td>4...20 мА</td>
</tr>
<tr>
<td>C.4.5</td>
<td>Реакция на ошибку</td>
<td>Настройка параметров токового выхода 2 при возникновении ошибки. "Удерживать" означает, что выходной ток фиксируется на том значении, при котором возникла ошибка. Вариант "Удерживать" не доступен, если диапазон выходного сигнала 3,8...20,5 мА (NAMUR). ④</td>
<td>3,6 мА, 22 мА, Удерживать</td>
<td>22 мА</td>
</tr>
<tr>
<td></td>
<td>Задержка действия ошибки</td>
<td>Время, после которого прибор выдаёт сообщение об ошибке измерения. Данное значение настраивается в меню для выходного сигнала 1. ⑥</td>
<td>Только для чтения</td>
<td>Смотрите функцию C.3.5</td>
</tr>
</tbody>
</table>
C.5 Настройка прибора

<table>
<thead>
<tr>
<th>№ меню</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.5.1</td>
<td>Настройки дисплея</td>
<td>Для настройки дисплея на отображение необходимой Вам информации обратитесь к данным пунктам меню.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.5.1.1</td>
<td>Язык</td>
<td>Информация может отображаться на любом из 9 языков, доступных в меню. Если необходимо быстро изменить язык дисплея на английский, в режиме оператора нажмите и удерживайте в течение 3 секунд кнопку [▲].</td>
<td>Английский, Французский, Немецкий, Итальянский, Японский, Китайский (упрощённый), Португальский, Русский, Испанский</td>
<td></td>
</tr>
</tbody>
</table>
| C.5.1.2 | Режим дисплея | Состояние экрана дисплея изменяется по истечении времени, заданного в пункте C.5.1.3. (время задержки).
Заблокировать отключает данную функциональную возможность,
Авт. отключение отключает дисплей, а **Экран по умолч.** отобразит выбранный по умолчанию экран. Чтобы установить экран по умолчанию, в режиме оператора нажмите и удерживайте в течение секунды кнопку [▼]. | | |
<p>| C.5.1.3 | Время-я задержка | Время, по истечении которого дисплей переключится в состояние, установленное в пункте C.5.1.2 (Режим дисплея). | 1, 3, 5, 10 (минуты) | 1 |
| C.5.1.4 | Единица длины | Отображаемая в режиме оператора единица измерения длины. | м, см, мм, дюйм, фут, фут-дойм-1/16дойм, фут-дойм-1/32дойм, произв. ед. изм. | м |
| C.5.1.5 | Единица объёма | Отображаемая в режиме оператора единица измерения объёма. | м³, л, галлон США, галлон англ., фут³, баррель | м³ |
| C.5.1.6 | Единица массы | Отображаемая в режиме оператора единица измерения массы. | тонна, кг, тонна США, тонна англ. | кг |
| C.5.1.7 | Польз. ед. длины | Нестандартная единица длины для таблицы преобразования. Она устанавливается пользователем с правами супервизора. | | ПРОИЗВ. ЕД. ДЛИНЫ |
| C.5.1.8 | Соотн. польз. ед. | Коэффициент преобразования между единицей длины, выбранной в пункте C.5.1.4 (единица длины), и единицей длины в пункте C.5.1.7 (Польз. ед. длины). Это соотношение кратно 1 мм. | мин.-макс.: 1…99999 | 1 |
| C.5.1.9 | Ед. преобраз-я польз. | Нестандартная единица преобразования для таблицы преобразования. Она устанавливается пользователем с правами супервизора. | | ПРОИЗВ. ЕД. ПРЕОБРАЗ. |</p>
<table>
<thead>
<tr>
<th>№ меню</th>
<th>Функция</th>
<th>Описание функций</th>
<th>Выбор из списка</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.5.2</td>
<td>Пароли</td>
<td>Для изменения паролей пользователей обратитесь к данным пунктам меню.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5.2.2</td>
<td>Супервизор</td>
<td>Этот пункт позволяет изменить пароль пользователя с правами супервизора. Нажмите 6 кнопок на клавиатуре в любой последовательности. Это будет новый пароль. Чтобы подтвердить новый пароль, введите его повторно.</td>
<td>[>] [^] [▼] [▲]</td>
<td></td>
</tr>
<tr>
<td>C.6</td>
<td>Сброс</td>
<td>Сброс прибора на настройки по умолчанию.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.6.2</td>
<td>Очистить журнал ошибок</td>
<td>Удаление записи об ошибке в пункте меню В.2.6. Нажмите кнопку [▼] для подтверждения.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.6.3</td>
<td>Перезапуск</td>
<td>Данный пункт меню перезагрузит прибор, если он функционирует неправильно. Нажмите кнопку [▼] для подтверждения.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Опция программного ускорения: Ток на выходе 1 установлен на постоянное значение 16 mA (HART).
2) Единицы измерения и диапазон измерения зависят от функции выходного сигнала, выбранной единицы длины и объёма. Смотрите также таблицу возможных настроек параметров для 4 mA в данном разделе.
3) Единицы измерения и диапазон измерения зависят от функции выходного сигнала, выбранной единицы длины и объёма. Смотрите также таблицу возможных настроек параметров для 20 mA в данном разделе.
4) Эта функция применима только к прибору с двумя выходами.
5) Данная функция применима только к прибору с двумя выходами.

Допустимые настройки параметров для 4 mA на выходах 1 и 2

<table>
<thead>
<tr>
<th>Функция выходного сигнала</th>
<th>Минимальное значение</th>
<th>Максимальное значение</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень</td>
<td>0 м</td>
<td>Значение <20 mA для параметра Уровень</td>
<td>0 м</td>
</tr>
<tr>
<td>Объём</td>
<td>0,00 м³</td>
<td>Значение <20 mA для параметра Объём</td>
<td>0 м³</td>
</tr>
<tr>
<td>Масса</td>
<td>0,00 кг</td>
<td>Значение <20 mA для параметра Масса</td>
<td>0 кг</td>
</tr>
<tr>
<td>Дистанция</td>
<td>0 м</td>
<td>Значение <20 mA для параметра Дистанция</td>
<td>0 м</td>
</tr>
<tr>
<td>Незаполн. объём</td>
<td>0,00 м³</td>
<td>Значение <20 mA для параметра Незаполненный объём</td>
<td>0 м³</td>
</tr>
<tr>
<td>Незаполненная масса</td>
<td>0,00 кг</td>
<td>Значение <20 mA для параметра Незаполненная масса</td>
<td>0 кг</td>
</tr>
</tbody>
</table>

Информация!
Опция программного ускорения: Эти зависимости данных применимы только к выходному сигналу 2.
Допустимые настройки параметров для 20 мА на выходах 1 и 2

<table>
<thead>
<tr>
<th>Функция выходного сигнала</th>
<th>Минимальное значение</th>
<th>Максимальное значение</th>
<th>По умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень</td>
<td>Значение >4 мА для параметра Уровень</td>
<td>Высота резервуара + TBO + RO ¹</td>
<td>Высота резервуара + TBO + BD ²</td>
</tr>
<tr>
<td>Объём</td>
<td>Значение >4 мА для параметра Объём</td>
<td>Макс. значение в таблице объёма</td>
<td>Макс. значение в таблице объёма</td>
</tr>
<tr>
<td>Масса</td>
<td>Значение >4 мА для параметра Масса</td>
<td>Макс. значение в таблице массы</td>
<td>Макс. значение в таблице массы</td>
</tr>
<tr>
<td>Дистанция</td>
<td>Значение >4 мА для параметра Дистанция</td>
<td>Высота резервуара + TBO + RO ¹</td>
<td>Высота резервуара + RO ³</td>
</tr>
<tr>
<td>Незаполн. объём</td>
<td>Значение >4 мА для параметра Незаполненный объём</td>
<td>Макс. значение в таблице объёма</td>
<td>Макс. значение в таблице объёма</td>
</tr>
<tr>
<td>Незаполненная масса</td>
<td>Значение >4 мА для параметра Незаполненная масса</td>
<td>Макс. значение в таблице массы</td>
<td>Макс. значение в таблице массы</td>
</tr>
</tbody>
</table>

1. RO = Смещение точки отсчёта (C1.10). TBO = Смещение дна резервуара (C.1.11).
2. BD = Блок-дистанция (C.1.9). TBO = Смещение дна резервуара (C.1.11).
3. RO = Смещение точки отсчёта (C1.10).

Информация!
Опция программного ускорения: Эти зависимости данных применимы только к выходному сигналу 2.
6.4 Подробная информация о настройках прибора

6.4.1 Защита настроек прибора

Меню Пароли позволяет изменить пароль пользователя с правами супервизора.

Изменение пароля для супервизора

- Перейдите по адресу Супервизор > Расшир. настройки > Настройка прибора > Пароли > Супервизор.
- Введите новый пароль, состоящий из 6 символов (для этого нажмите любые из 4 кнопок в произвольной последовательности).
- Повторно введите новый 6-значный пароль.

Если повтор пароля оказался неверным, то на дисплее отобразится сообщение об ошибке "Пароль отклонён". В этом случае одновременно нажмите кнопки [>] и [▲] и повторите ещё раз ввод нового 6-значного пароля.

- Одновременно нажмите [>] и [▲] (Выход), чтобы вернуться в диалоговое окно "Сохранить настройки".
- Выберите Сохранить и нажмите [▲].
 - Прибор вернётся в режим оператора.

Информация!
Запишите измененный пароль в безопасном месте. Если пароль забыт, то необходимо связаться с поставщиком оборудования.

6.4.2 Конфигурация сети

Информация!
Дополнительные данные смотрите в разделе Промышленные сети на странице 45.

Информация!
Эти действия не применимы к приборам с опцией программного ускорения.

Прибор использует HART®-протокол, чтобы передать данные в оборудование, совместимое с HART®. При этом он работает или в режиме с двухточечным подключением, или в режиме с многооточечным подключением. Прибор переходит в многооточечный режим, если изменить HART®-адрес выхода 1.

Изменение режима работы в сети с двухточечным подключением на многооточечный режим

- Войдите в режим "Супервизор".
- Перейдите по адресу Расшир. настройки > Выход 1 (HART) > HART адрес.
- Введите значение от 1 до 15 и нажмите [▲] для подтверждения (смотрите предупреждение ниже).
- Нажмите кнопки отмены ([>] + [▲]) до появления экрана сохранения/отмены.
- Выберите "Сохранить".
- Нажмите [▲].
 - Выход 1 переключится на многооточечный режим. Токовый выход настроен на 4 мА. Данное значение в многооточечном режиме работы не меняется.

Осторожно!
Убедитесь, что все другие приборы в многооточечной сети имеют отличный от данного прибора адрес.
Изменение многоточечного режима работы в сети на режим с двухточечным подключением

- Войдите в режим "Супервизор".
- Перейдите по адресу Расшир. настройки > Выход 1 (HART) > HART адрес.
- Введите значение 0 и нажмите [↵] для подтверждения.
- Нажимайте кнопки отмены ([>] + [▲]) до появления экрана сохранения/отмены.
- Выберите "Сохранить".
- Нажмите [↵].

Выход 1 переключится на режим работы с двухточечным подключением. Токовый выход изменится на диапазон 4...20 мА или 3,8...20,5 мА (данный диапазон устанавливается по адресу Расшир. настройки > Выход 1 (HART) > Диапазон выхода).

6.4.3 Линеаризация

Таблица линеаризации (пункт меню С.1.22) используется для повышения точности результатов измерений.

- Перейдите по адресу Супервизор > Расшир. настройки > Монтаж прибора > Табл. линеариз..
- Введите количество контрольных точек (до 50 точек). Нажмите [↵].

На экране появится таблица линеаризации со значениями по умолчанию.
- Для ввода новых данных нажмите [>] . Показания прибора отображаются во второй строке Измеренная дист.
- Наполните резервуар до одного из указанных уровней.
- Произведите необходимые эталонные измерения. Внесите эти данные в строку Реальная дист..
- Повторите эти действия, пока все ячейки таблицы линеаризации не будут заполнены.
- Нажмите [↵].
- Одновременно нажмите [>] и [▲] (Выход), чтобы вернуться к окну "Сохранение настроек".
- Выберите Сохранить и нажмите [↵].

Прибор вернётся в режим оператора.

6.4.4 Измерение дистанции

Прибор отображает измеренную дистанцию, когда в качестве функции выходного сигнала установлена "Дистанция".

При измерении дистанции используются следующие пункты меню:

- Функция выхода (C.3.1 или C.4.1)
- Высота ёмкости (C.1.2)
- Блок-дистанция (C.1.9)

Используйте уплотнительную поверхность фланца в качестве точки отсчёта для значений выходного тока 4 и 20 мА. Значения выходного тока 4 и 20 мА соответствуют минимальному и максимальному значению диапазона измерения.

Можно изменить точку отсчёта, от которой измеряется дистанция. Используйте этот пункт меню:

- См. точки отсчёта (C.1.10)
Информация!
Если вы перемещаете точку отсчёта выше фланца, то добавьте это значение к значению дистанции для настроек выходного тока 4 и 20 мА. Если вы перемещаете точку отсчёта ниже фланца, то вычтите это значение из значения дистанции для настроек выходного тока 4 и 20 мА.

Осторожно!
Если значение дистанции для 4 мА будет находиться в области блок-дистанции, то прибор не сможет использовать полный диапазон токового выхода.

Дополнительные сведения о параметрах меню смотрите в раздел Описание функций на странице 58, таблица С. Расшир. настройки.

6.4.5 Измерение уровня

Прибор отображает измеренный уровень, когда в качестве функции выходного сигнала установлен "Уровень".

При измерении уровня используются следующие пункты меню:
- Функция выхода (C.3.1 или C.4.1)
- Высота ёмкости (C.1.2)
- Блок-дистанция (C.1.9)

Используйте дно резервуара в качестве точки отсчёта для значений выходного тока 4 и 20 мА. Значения выходного тока 4 и 20 мА соответствуют минимальному и максимальному значению диапазона измерения.
Можно изменить точку отсчёта, от которой измеряется уровень. Используйте этот пункт меню:

- Смещение дна резервуара (С.1.11)

Информация!
Если вы перемещаете точку отсчёта ниже дна резервуара, то добавьте это значение к значению уровня для настроек выходного тока 4 и 20 мА. Если вы перемещаете точку отсчёта выше дна резервуара, то вычтите это значение из значения уровня для настроек выходного тока 4 и 20 мА.

Осторожно!
Если значение дистанции для 20 мА будет находиться в области блок-дистанции, то прибор не сможет использовать полный диапазон токового выхода.

Рисунок 6-5: Измерение уровня

1. Смещение дна резервуара (С.1.11)
2. Высота ёмкости (С.1.2)
3. Блок-дистанция (С.1.9)
4. Максимально эффективный диапазон измерения
5. Значение для 20 мА (С.3.3 или С.4.3)
6. Значение для 4 мА (С.3.2 или С.4.2)
7. Неизмеряемая зона

Дополнительные сведения о параметрах меню смотрите в разделе Описание функций на странице 58, таблица С. Расшир. настройки.
6.4.6 Настройка прибора на измерение объёма или массы

Прибор можно настроить на измерение объёма или массы. В меню прибора Быстрая настройка можно ввести градуировочную таблицу вместимости в таблицу преобразования.

Создание таблицы объёма или массы.
- Перейдите по адресу Супервизор > Быстр. настройка > Режим настройки > Преобразование.
- Выполните все действия процедуры настройки.

Прибор может создавать до 50 пар записей в таблице преобразования (уровень - объём или уровень - масса). Точкой отсчёта для таблицы является дно резервуара (задаётся в пункте меню С.1.2 Высота ёмкости).

Информация!
Также можно создать индивидуально задаваемые единицы длины и преобразования (произвольные единицы измерения) при выполнении процедуры настройки в меню Преобразование.

Информация!
При создании таблицы преобразования увеличьте число записей для тех частей резервуара, которые имеют:
- Искривления профиля поверхности.
- Резкие изменения сечения.

Это обеспечит более точное измерение объёма.

Рисунок 6-6: Графическое представление точек для таблицы объёма или массы
1 Резервуар с контрольными точками
2 Математическая модель резервуара с точками на графике
6.4.7 Как отфильтровать сигналы помех

Если прибор измеряет уровень в резервуаре с внутренними конструкциями (мешалки, балки, обогревающие трубы и т.п.), то эти объекты могут стать причиной появления сигналов помех. Для их устранения можно использовать функцию спектра пустой ёмкости (пункт меню А.1.3) в меню быстрой настройки.

Информация!
Рекомендуется выполнить сканирование спектра пустой ёмкости, когда резервуар пуст, а все подвижные элементы (мешалка и т.п.) находятся в движении..

Рисунок 6.7: Как отфильтровать сигналы помех

1. Пустой резервуар перед сканированием спектра пустой ёмкости прибором (отображается диаграмма отражений)
2. Частично заполненный резервуар перед сканированием спектра пустой ёмкости прибором (отображается диаграмма отражений)
3. Частично заполненный резервуар после сканирования спектра пустой ёмкости прибором (отображается диаграмма отражений)
4. Расположение лопастей мешалки
5. Сигнал от дна резервуара
6. Сигналы помех от лопастей мешалки до сканирования прибором спектра пустой ёмкости
7. Сигналы плохого качества (смешанные) от жидкости и лопастей мешалки до сканирования прибором спектра пустой ёмкости
8. Отражённый сигнал, если прибор использует данные сканирования спектра пустой ёмкости. Для измерения дистанции прибор использует только отражённые от поверхности жидкости сигналы.

- Получите доступ к Основному меню в режиме супервизора.
 Дополнительные данные в разделе Получение доступа в режим "Супервизор" на странице 53.
- Перейдите по адресу Основное меню > Быстр. настройка > Режим настройки > Спектр пуст. ёмк..
 Ёмкость полностью заполнена? Выберите Да или Нет и затем нажмите [▲].
 Если выберите ДА, то прибор не будет осуществлять сканирование пустой емкости. Опустошите емкость и повторите процедуру.
- Все подвижные элементы в движении? Выберите Да или Нет и затем нажмите [▲].
- Ваш резервуар частично заполнен или пустой? Выберите Част. заполнен или Пустой и затем нажмите [▲].
 Использовать для записи Усреднённое oder Максимальное значение? Выберите Средний или Максимальный и затем нажмите [▲].
 Используйте максимальное значение для резервуаров с подвижными элементами. Используйте усреднённое значение для резервуаров без подвижных элементов. Прибор выполнит сканирование спектра пустой ёмкости и затем отобразит результаты в окне сигналов.
- Нажмите [▲]. Сохранить спектр пустой ёмкости? Выберите Да или Нет и затем нажмите [▲].
6.4.8 Как правильно проводить измерения в резервуарах с изогнутыми или коническими днищами

Если прибор установлен на резервуаре с изогнутым или коническим дном, то может сложиться, что он не сможет найти дно. Форма дна резервуара обуславливает запоздалое отражение сигнала, а прибор отображает сообщение об ошибке "Сигнал потерян на дне резервуара".

Чтобы найти запоздалое отражение сигнала, можно использовать функцию смещения дна резервуара. Выполните следующее:

- Опустошите резервуар.
- Увеличьте значение высоты резервуара в пункте меню С.1.2.
- Находясь в режиме оператора, перейдите к окну сигналов.
- На отображаемой диаграмме представлены отражения.
- Чтобы передвинуть курсор на отражение с максимальной амплитудой (указано в дБ), нажмите кнопку [►].
- Запишите значение дистанции отражения, измеренное прибором.
- Дистанция до отражения будет новой высотой резервуара.
- Выведите дистанцию до отражения из действительной высоты резервуара.
- Перейдите по адресу Супервизор > Расшир. настройки > Монтаж прибора > См. дна ёмкости.
- Введите вычисленную разность в качестве отрицательного значения.
- Отрицательное значение сместит точку отсчёта выше дна резервуара (как указано в пункте меню С.1.2 Высота ёмкости).
- Нажмите [◄].
- Одновременно нажмите [►] и [◄] (Выйти), чтобы вернуться в диалоговое окно "Сохранить настройки".
- Выберите Сохранить и нажмите [◄].
- Прибор вернётся в режим оператора.

Информация!

Подробную информацию по сканированию спектра пустой ёмкости смотрите в разделе Описание функций на странице 58 - таблица А. Быстр. настройка (пункт меню А.1.3).
6.5 Режим "Сервис"

В этом режиме специалисты по сервисному обслуживанию могут изменять расширенные настройки, в особенности для сложных условий применения.

Осторожно!
Если Вы не являетесь авторизованным сервисным специалистом, не изменяйте в сервисном режиме никаких значений в пунктах меню.

Вход в сервисный режим защищен паролем. Только прошедший обучение персонал имеет доступ к паролю сервисного меню. За дополнительной информацией обратитесь в ближайшее региональное представительство компании.
6.6 Ошибки

6.6.1 Общая информация

Индикация ошибок
Когда прибор определяет ошибку, в левом верхнем углу экрана дисплея появляется символ ошибки.

Войдите в режим "Супервизор", чтобы:
- Выполнить проверку на наличие ошибок или
- Получить детальную информацию об ошибке в журнале ошибок.
Проверка качества измерения

- Войдите в режим "Супервизор".
- Перейдите по адресу Тест > Информация > Качество измерения.

- Актуальное состояние ошибок прибора. Наличие "галочки" рядом с ошибкой в списке означает, что ошибка активна и может иметь нежелательное влияние на работу прибора.
- Информация о мерах по устранению ошибки в разделе Устранение ошибок на странице 86.

Рисунок 6-10: Качество измерения в режиме "Супервизор"

1. Тип ошибки
2. Ошибка "активна"
Расположение журнала регистрации ошибок

- Войдите в режим "Супервизор".
- Перейдите по адресу Тест > Информация > Свед-я об ошибках.
- Используйте кнопки [▼] и [▲] для прокрутки перечня ошибок. На каждой странице экрана одновременно отображается 5 сообщений об ошибках.

Рисунок 6-11: Журнал ошибок в режиме супервайзера

1. Тип ошибки
2. Краткое описание ошибки
3. Панель выбора
Получение детальной информации об ошибке (функция журнала ошибок)
• Выберите запись об ошибке и нажмите [+] для получения детальной информации об ошибке.
• Пример типичной информации об ошибке приведён на рисунке ниже.
• Информация о мерах по устранению ошибки в разделе Устранение ошибок на странице 86.

Рисунок 6-12: Описание ошибки
1. Описание ошибки
2. Время, прошедшее с момента возникновения ошибки, в формате Дни:Часы:Минуты:Секунды
3. Тип ошибки

Время, прошедшее с момента возникновения ошибки, указывается в формате Дни:Часы:Минуты:Секунды. Ошибка сохраняется в долговременной памяти прибора с интервалом 1 час. Оно включает только то время, когда прибор включен. После включения прибора счётчик времени продолжает отсчёт.

После просмотра записи ошибки символ ошибки на экране дисплея исчезает.

6.6.2 Устранение ошибок

Типы сообщений об ошибках

<table>
<thead>
<tr>
<th>Тип ошибки</th>
<th>Код ошибки</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ошибка</td>
<td>E</td>
<td>Если сообщение об ошибке отображается в журнале ошибок (punkt меню B.2.6), то измеренное значение неправильное. Выходной ток принимает значение, установленное в пунктах меню C.3.5 Реакция на ошибку (Выход 1) и C.4.5 Реакция на ошибку (Выход 2). Дополнительные сведения в разделе Описание функций на странице 58, таблица C. Расшир. настройки.</td>
</tr>
<tr>
<td>Предупреждение</td>
<td>W</td>
<td>Если предупреждение не исчезает, то измерения больше не являются правильными.</td>
</tr>
</tbody>
</table>
Описание ошибок и действия по их устранению

<table>
<thead>
<tr>
<th>Сообщение об ошибке</th>
<th>Код ошибки</th>
<th>Описание</th>
<th>Действия по устранению</th>
</tr>
</thead>
<tbody>
<tr>
<td>Токовый выход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Предельное максимальное значение токового выхода</td>
<td>W</td>
<td>Ток на выходе имеет максимальное значение (20 или 20,5 мА), потому что измеренное значение находится вне диапазона измерения.</td>
<td>Наполните резервуар или удалите некоторое количество содержимого, пока уровень продукта не окажется в пределах установленного диапазона.</td>
</tr>
<tr>
<td>Предельное минимальное значение токового выхода</td>
<td>W</td>
<td>Ток на выходе имеет минимальное значение (4 или 3,8 мА), потому что измеренное значение находится вне диапазона измерения.</td>
<td>Наполните резервуар или удалите некоторое количество содержимого, пока уровень продукта не окажется в пределах установленного диапазона.</td>
</tr>
<tr>
<td>Внешние воздействия</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура вне диапазона для NAND Flash</td>
<td>W</td>
<td>Температура окружающей среды находится вне допустимого диапазона. Это могло вызвать потери или повреждение данных.</td>
<td>Обесточьте прибор на период времени, пока температура не вернется в заданный диапазон. Если проблема не исчезает, обратитесь к поставщику оборудования.</td>
</tr>
<tr>
<td>Самотестирование</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ош. при самотест.</td>
<td>E</td>
<td>Во время самотестирования прибора произошёл сбой. Это может произойти, если температура окружающей среды не находится в диапазоне -40...+80°C / -40...+175°F.</td>
<td>Подключите к прибору питание, когда температура окружающей среды будет в пределах -40...+80°C / -40...+175°F. Если прибор функционирует некорректно, обратитесь к поставщику оборудования.</td>
</tr>
<tr>
<td>Одна из электронных плат неисправна.</td>
<td></td>
<td>Замените блок электроники. Дополнительные данные в разделе Замена блока электроники в сборе на странице 94.</td>
<td></td>
</tr>
<tr>
<td>Статус измерения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Устаревшее измер.</td>
<td>W</td>
<td>Это временное сообщение об ошибке. Если прибор не начнёт производить измерения в пределах ограниченного промежутка времени, то отображаемое измеренное значение вскоре станет неверным. Возможно, что напряжение слишком низкое. Если сообщение "Плохое качество спектра" не исчезает, то прибор отображает также и данное сообщение.</td>
<td>Проверьте напряжение питания на клеммах прибора. Смотрите также сообщение об ошибке "Плохое качество спектра".</td>
</tr>
<tr>
<td>Уровень достиг блок-дистанции (переполнение резервуара)</td>
<td>W</td>
<td>Уровень находится в области блок-дистанции. Существует риск перелива продукта и/или залывки прибора.</td>
<td>Удалите некоторое количество содержимого, пока уровень продукта не опустится ниже блок-дистанции.</td>
</tr>
</tbody>
</table>
Измерение вблизи дна ёмк. потеряно

Последнее действительное значение измерения было получено прибором вблизи дна резервуара, но прибор больше не может найти сигнал. Если прибор установлен на резервуаре с изогнутым (по DIN 28011 или аналогичному стандарту) или коническим дном, то может сложиться, что он не сможет найти дно резервуара. Форма дна резервуара обуславливает запоздалое отражение сигнала, а прибор отображает сообщение об ошибке "Сигнал потерян на дне резервуара". Прибор будет отображать значение измерения на дне резервуара.

Следуйте инструкциям на странице 81.

Отказ электроники

Ошибка теста СВЧ

Если проблема не исчезает, обратитесь к поставщику оборудования или замените блок электроники. Дополнительные данные в разделе Замена блока электроники в сборе на странице 94.

Отказ периферии

Если проблема не исчезает, обратитесь к поставщику оборудования или замените блок электроники. Дополнительные данные в разделе Замена блока электроники в сборе на странице 94.

Пик и спектр

Низкое качество спектра

Слабое качество спектра. Если это сообщение появляется ненадолго, то это не оказывает влияния на характеристики прибора. Если сообщение отображается постоянно, то значения измерения могут быть неправильными. Тогда появится сообщение об ошибке "Измеренное значение устарело". Возможными причинами являются пена, завихрения, возмущённая поверхность продукта и внутренние элементы резервуара.

Проверьте прибор, резервуар и условия применения. Перенастройте прибор и запишите новый спектр пустой ёмкости. Следуйте инструкциям на странице 80. При необходимости, обратитесь к поставщику оборудования.
<table>
<thead>
<tr>
<th>Сообщение об ошибке</th>
<th>Код ошибки</th>
<th>Описание</th>
<th>Действия по устранению</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ошибочный СпПЕ</td>
<td>W</td>
<td>Спектр пустой ёмкости, сохраненный в приборе, не соответствует условиям установки. Это сообщение появляется, если были внесены изменения в настройки прибора (высота ёмкости и т.п.). Записанный спектр пустой ёмкости не будет использоваться до тех пор, пока отображается это сообщение об ошибке.</td>
<td>Проверьте прибор, резервуар и условия применения. Перенастройте прибор и запишите новый спектр пустой ёмкости. Следуйте инструкциям на странице 80. При необходимости, обратитесь к поставщику оборудования.</td>
</tr>
<tr>
<td>Нет приемлемого пикового значения</td>
<td>W</td>
<td>В пределах окна достоверности (отделяющего рабочий сигнал от сигналов помех) пик сигнала не обнаружен. Измерение выполняется неправильно. Прибор будет автоматически расширять это окно для поиска достоверного сигнала.</td>
<td>Проверьте прибор, резервуар и условия применения. Перенастройте прибор и запишите новый спектр пустой ёмкости. Следуйте инструкциям на странице 80. При необходимости, обратитесь к поставщику оборудования.</td>
</tr>
</tbody>
</table>

Ошибка программного обеспечения

| Невозможно загрузить микропрограммное обеспечение процессора цифровой обработки сигнала | E | Не удалось загрузить микропрограммное обеспечение на плату процессора цифровой обработки сигнала. | Перезагрузите прибор. Если проблема не исчезает, обратитесь к поставщику оборудования или замените блок электроники. Дополнительные данные в разделе Замена блока электроники в сборе на странице 94. |
7.1 Регулярное техническое обслуживание

При обычных условиях эксплуатации проведение регулярного технического обслуживания не требуется. При необходимости, техническое обслуживание может быть проведено уполномоченным персоналом (от компании-изготовителя или специалистами, уполномоченными компанией-изготовителем).

Информация!
Подобная информация по проведению регулярных проверок и технического обслуживания приборов взрывозащищённого исполнения представлена в соответствующих дополнительных инструкциях.

7.2 Как очищать верхнюю поверхность прибора

Внимание!
Следите за тем, чтобы на верхней поверхности прибора не скапливался слой пыли более 5 мм / 0,2". В зонах с потенциально взрывоопасной атмосферой это может служить источником воспламенения.

Опасность!
Существует опасность разряда статического электричества от синего пластикового солнцезащитного козырька.

Следуйте данным указаниям:
• Резьба крышки от клеммного отсека должна быть чистой.
• В случае скопления на приборе загрязнений, проведите его очистку. Пластиковый солнцезащитный козырёк следует протирать влажной тканью.
7.3 Как очищать рупорную антенну во время работы

При наличии вероятности образования отложений можно использовать опцию очистки для рупорных антенн.

Внимание!
Производите очистку антенны сухим газом или жидкостью, подходящими для данного технологического процесса.

Осторожно!
Производите периодическую очистку антенны для обеспечения чистоты внутренней поверхности и точности измерений, производимых прибором.

Дополнительная информация приведена в нижеследующей таблице:

<table>
<thead>
<tr>
<th>Рабочие условия</th>
<th>Как производить очистку</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прибор холоднее, чем другие элементы рабочего процесса. Существует вероятность образования конденсата на антенне.</td>
<td>Непрерывная подача. Используйте газ под низким давлением для удаления конденсата с антенны.</td>
</tr>
<tr>
<td>Существует риск отложений на антенне</td>
<td>Периодическая очистка. Используйте сжатый воздух, азот или другой газ, подходящий к условиям применения, под давлением до 6 бар / 87 фунт/ка. дюйм.</td>
</tr>
<tr>
<td>Отложения или риск появления отложений на антенне</td>
<td>Периодическая очистка. Используйте жидкость (горячую воду, растворитель или другую жидкость, подходящую к условиям применения), чтобы растопить отложившийся продукт на поверхности антенны.</td>
</tr>
</tbody>
</table>

7.4 Как заменять компоненты прибора

7.4.1 Гарантия на сервисное обслуживание

Для большинства применений нет необходимости в техническом обслуживании.

Ограниченное техническое обслуживание прибора, проводимое заказчиком по гарантии, включает в себя следующее:

- Снятие и установка корпуса преобразователя сигналов. Дополнительные данные смотрите в разделе Поворот или снятие преобразователя сигналов на странице 39.
- Снятие и установка модуля электроники в сборе.
- Снятие и установка клеммного картиджка.
- Снятие и установка крышки дисплея.

Корпус преобразователя сигналов может быть отсоединен от фланцевого присоединения при рабочих условиях.

Только уполномоченные специалисты по сервисному обслуживанию могут проводить ремонт прибора.
7.4.2 Замена крышки дисплея

Рисунок 7-1: Снятие крышки дисплея прибора
Необходимый инструмент (не входит в комплект поставки):
- Звездообразная отвёртка Т8.
- Шестигранный ключ на 3 мм (для шага 2 и 4).

Внимание!
Отключите прибор от питания

Снятие дисплея
1. Используя звездообразную отвёртку Т8, открутите 2 винта на шарнирной петле синего солнцезащитного козырька. Снимите солнцезащитный козырёк.
2. Открутите винт, фиксирующий крышку дисплея. Откройте дисплей.
3. Отключите соединительный шлейф от модуля процессора.
 ➤ Не отключайте соединительный шлейф от модуля дисплея.
4. Открутите 2 винта, крепящие модуль дисплея к корпусу преобразователя сигналов.
5. Сохраните оставшийся корпус и уберите его на хранение. Убедитесь, что верхняя часть корпуса закрыта защитной крышкой.
6. Отправьте модуль дисплея в уполномоченное представительство компании для технического обслуживания.

Установка дисплея
- Установите дисплей. Закрутите 2 винта на корпусе.
- Подключите соединительный шлейф к модулю процессора.
 ➤ Убедитесь в правильном положении разъёма. Не прилагайте излишних усилий при подсоединении шлейфа.
- Закройте дисплей. Закрутите винт на дисплее.
- Установите солнцезащитный козырёк. Закрутите 2 винта, крепящие солнцезащитный козырёк к корпусу преобразователя сигналов.
7.4.3 Замена блока электроники в сборе

Рисунок 7-2: Снятие блока электроники в сборе
Необходимый инструмент (не входит в комплект поставки):

- Шестигранный ключ на 3 мм (для шага 1 и 4).

Снятие модуля процессора и ВЧ модуля

1. Открутите винт дисплея. Откройте дисплей.
2. Отсоедините штекерный разъём питания от блока электроники.
3. Отключите соединительный шлейф дисплея от модуля процессора.
4. Открутите 2 винта, как показано на рисунке.
 Не открывайте другие винты. Это может привести к разъединению блока электроники на 2 части. Извлечение этих частей из корпуса станет затруднительным.
5. Извлеките модуль процессора и ВЧ модуль из корпуса прибора. Отправьте модуль электроники в уполномоченное представительство компании для проведения технического обслуживания.

Установка модуля процессора и ВЧ модуля

- Откройте дисплей.
- Установите блок электроники в корпус. Убедитесь, что коаксиальный разъём правильно вставлен в ответную часть.
- Закрутите 2 винта, крепящие блок электроники к нижней части корпуса преобразователя сигналов.
- Подключите соединительный шлейф дисплея к модулю процессора.
- Подключите разъём питания к модулю процессора.
- Закройте дисплей. Закрутите винт на дисплее.
7.4.4 Замена клеммного картриджа

Рисунок 7-3: Снятие клеммного картриджа
Необходимый инструмент (не входит в комплект поставки):

- Шестигранный ключ на 2,5 мм для (окрашенных) корпусов из алюминия; Шестигранный ключ на 3 мм для корпусов из нержавеющей стали (для шага 1).
- Маленькая шлицевая отвертка (для шага 3).
- Звездообразная отвёртка T10 (для шага 5).
- Шестигранный ключ на 2,5 мм (для шага 6).

Внимание!
Отключите прибор от питания.

Снятие клеммного картриджа

1. Открутите стопорный винт крышки клеммного отсека.
2. Снимите крышку клеммного отсека.
3. Отсоедините 2 провода от блока питания.
4. Снимите пластиковую крышку клеммного отсека.
5. Открутите винт заземления клеммного картриджа.
6. Открутите 2 винта, как показано на рисунке.
7. Отключите соединительный шлейф от клеммного картриджа.
8. Извлеките клеммный картридж из корпуса преобразователя сигналов. Отправьте его в уполномоченное представительство компании для технического обслуживания.

Внимание!
Если при установке клеммного картриджа соединительные провода будут перекрывать отверстия для винтов, существует опасность повреждения проводов.

Установка клеммного картриджа

- Подключите соединительный шлейф к клемменному картриджу.
- Проведите провода в вырез ниже разъёма клеммного картриджа.
- Проверьте клеммный картридж один раз, для того чтобы скрутить провода между собой.
- Вставьте клеммный картридж в корпус преобразователя сигналов. Убедитесь, что соединительные провода располагаются вдали от отверстий для винтов.
- Закрутите 2 винта, крепящие клеммный картридж к корпусу.
- Прикрутите клемму заземления к корпусу соответствующим винтом, входящим в комплект поставки.
- Установите пластиковую крышку клеммного отсека.
- Подключите 2 провода блока питания. Убедитесь, что полярность подключения правильная.
- Закройте крышку клеммного отсека.
- Тую затяните стопорный винт на крышке.

Внимание!
Отключите прибор от питания.
7.5 Доступность запасных частей

Изготовитель придерживается основополагающего принципа, согласно которому функционально оправданный набор необходимых запасных частей для каждого измерительного прибора или всякого важного дополнительного устройства должен быть доступен для заказа в период, равный 3 годам после поставки последней партии данного типа оборудования.

Настоящая норма распространяется исключительно на запасные части, которые подвергаются износу при нормальных условиях эксплуатации.

7.6 Доступность сервисного обслуживания

Производитель предлагает целый ряд услуг по поддержке заказчика в период после истечения гарантийного срока. Под этими услугами подразумевается ремонт, техническая поддержка и обучение.

Информация!
Более подробную информацию можно получить в ближайшем региональном представительстве фирмы.

7.7 Возврат прибора изготовителю

7.7.1 Информация общего характера

Изготовитель тщательно подошел к процессам производства и испытаний данного измерительного прибора. При условии, что в ходе монтажа и в период эксплуатации соблюдаются положения настоящего руководства по эксплуатации, вероятность возникновения каких-либо проблем незначительна.

Осторожно!
Тем не менее, в случае необходимости возврата прибора для обследования и ремонтных работ просьба в обязательном порядке обратить внимание на следующие положения:

- Согласно нормативным актам по охране окружающей среды и положениям законодательства по гигиене труда и технике безопасности на производстве, производитель уполномочен производить обработку, диагностику и ремонт возвратных устройств только в случае, если таковые эксплуатировались на рабочих продуктах, не представляющих опасности для персонала и окружающей среды.
- Это означает, что изготовитель вправе производить сервисное обслуживание данного устройства исключительно при условии, если к комплекту сопроводительной документации приложен приведенный далее сертификат (смотрите следующий раздел), подтверждающий безопасность эксплуатации прибора.

Осторожно!
Если прибор эксплуатировался на токсичных, едких, легковоспламеняющихся, либо вступающих в опасные соединения с водой средах, просим:

- проверить и обеспечить, при необходимости, за счет проведения промывки или нейтрализации, очистку всех полостей прибора от таких опасных веществ,
- приложить к комплекту сопроводительной документации на прибор сертификат, подтверждающий безопасность эксплуатации устройства, и указать в нем используемый рабочий продукт.
Техническое обслуживание 7

7.7.2 Образец бланка, прилагаемого к прибору в случае возврата (для снятия копии)

Осторожно!
Во избежание любого риска для наших сотрудников по сервисному обслуживанию доступ к данному заполненному бланку должен быть обеспечен без необходимости открытия упаковки с возвращённым прибором.

<table>
<thead>
<tr>
<th>Организация:</th>
<th>Адрес:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отдел:</td>
<td>Ф.И.О.:</td>
</tr>
<tr>
<td>Тел.:</td>
<td>Факс и/или Email:</td>
</tr>
<tr>
<td>№ заказа изготовителя или серийный №:</td>
<td></td>
</tr>
</tbody>
</table>

Данный прибор эксплуатировался на следующей рабочей среде:

<table>
<thead>
<tr>
<th>Данная среда:</th>
<th>радиоактивна</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>вступает в опасные соединения с водой</td>
</tr>
<tr>
<td></td>
<td>токсична</td>
</tr>
<tr>
<td></td>
<td>является едким веществом</td>
</tr>
<tr>
<td></td>
<td>огнеопасна</td>
</tr>
</tbody>
</table>

Подтверждаем, что все полости прибора проверены и не содержат таких веществ.

Подтверждаем проведение промывки и нейтрализации всех полостей устройства.

Настоящим подтверждаем, что при возврате прибора любые оставшиеся в нём вещества и субстанции не представляют опасности для человека или окружающей среды.

Дата: Подпись: Печать:

7.8 Утилизация

Осторожно!
Утилизацию следует осуществлять в соответствии с действующими в государстве законодательными актами.

Раздельный сбор отработанного электрического и электронного оборудования в Европейском Союзе:

Согласно директиве 2012/19/EC оборудование мониторинга и контроля, имеющее маркировку WEEE и достигшее окончания срока службы, не допускается утилизировать вместе с другими отходами.

Пользователь должен доставить отработанное электрическое и электронное оборудование в пункт сбора для его дальнейшей переработки или отправить на локальное предприятие или в уполномоченное представительство компании.
8.1 Принцип измерения

Сигнал радара излучается антенной, отражается от поверхности измеряемого продукта и с небольшой временной задержкой принимается антенней. Используемый радарный принцип называется FMCW (частотно-модулированная незатухающая волна).

При FMCW радарном измерении используется высокочастотный сигнал, частота излучения которого во время измерения линейно возрастает (так называемое качание частоты). Излучаемый сигнал отражается от поверхности измеряемого продукта и с небольшой временной задержкой (t) принимается антенней. Время задержки рассчитывается по формуле t=2d/c, где d - это расстояние до поверхности продукта, а c - это скорость света в газе над поверхностью продукта.

Из частоты посланного и принятого сигналов для дальнейшей обработки сигнала рассчитывается разница Δf. Разница времени прохождения прямо пропорциональна расстоянию. Большая разница между частотами соответствует большому расстоянию, и наоборот. Разница частот Δf трансформируется в частотный спектр посредством преобразования Фурье (FFT), а затем на основе этого рассчитывается расстояние. Уровень рассчитывается как разница между высотой резервуара и полученным расстоянием.

![Diagram](81.png)

Рисунок 8-1: Принцип измерения FMCW радарного уровнемера

1. Преобразователь
2. Смеситель
3. Антенна
4. Дистанция до поверхности продукта, изменение частоты пропорционально дистанции
5. Задержка возвращения сигнала Δt (по отношению к переданному сигналу)
6. Разность частот Δf (между переданным и принятым сигналом)
7. Частота излученного сигнала
8. Частота принятого сигнала
9. Частота
10. Время
8.2 Технические характеристики

Информация!
- Приведенные ниже данные распространяются на общие случаи применения. Если требуются данные, имеющие отношение к конкретной рабочей позиции, следует обратиться в региональное представительство нашей фирмы.
- Дополнительная информация (сертификаты, специализированный инструментарий, программное обеспечение...) и полный пакет документации на изделие доступны для загрузки бесплатно с Интернет-сайта (в разделе "Download Center" - "Документация и ПО").

Измерительная система

<table>
<thead>
<tr>
<th>Принцип измерения</th>
<th>2-проводный уровнемер с питанием от токовой сети; FMCW-радар диапазона частот K (24...26 ГГц)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Область применения</td>
<td>Измерение уровня жидкостей, паст и суспензий</td>
</tr>
<tr>
<td>Первая измеряемая величина</td>
<td>Δf (изменение частоты) между излученным и принятым сигналом</td>
</tr>
<tr>
<td>Вторичная измеряемая величина</td>
<td>Дистанция, уровень, объём, масса и коэффициент отражения</td>
</tr>
</tbody>
</table>

Исполнение

<table>
<thead>
<tr>
<th>Конструкция</th>
<th>Измерительная система состоит из первичного преобразователя (антенны) и преобразователя сигналов, который доступен только в компактном исполнении</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опции</td>
<td>Встроенный ЖК-дисплей с солнцезащитным козырьком (-20...+60°C / -4...+140°F), если температура окружающей среды вне данных пределов, то дисплей отключается</td>
</tr>
<tr>
<td></td>
<td>2-ой токовый выход</td>
</tr>
<tr>
<td></td>
<td>Программное ускорение (5 измерений за секунду)</td>
</tr>
<tr>
<td></td>
<td>Подфланцевая защитная пластина из ПТФЭ/полипропилена (только для каплевидных антенн без антенных удлинителей)</td>
</tr>
<tr>
<td></td>
<td>Дистанционная вставка (для температур на технологическом присоединении: +150...+200°C / +300...+390°F)</td>
</tr>
<tr>
<td></td>
<td>Система очистки антенн (поставляется с присоединением ¼ NPTF)</td>
</tr>
<tr>
<td>Комплектующие</td>
<td>Защитный козырёк</td>
</tr>
<tr>
<td></td>
<td>Антенные удлинители длиной от 105 мм / 4,1" (Макс. длина для исполнений с каплевидной антенной: 525 мм / 20,7"; не доступно для гигиенической антенны)</td>
</tr>
<tr>
<td></td>
<td>Диски (фланцы низкого давления), на которых позиции отверстий под болты и их размеры соответствуют DN80...200 PN2,5...40 или 3"...8" 150 lb для приборов с резьбовым соединением G 1½". Макс давление: 1 бар изб / 14,5 фунт/кв.дюйм изб при +20°C / +68°F</td>
</tr>
<tr>
<td>Макс. диапазон измерения</td>
<td>80 м / 260 фут</td>
</tr>
<tr>
<td>Мин. высота резервуара</td>
<td>Зависит от типа антенны, диэлектрической постоянной продукта и типа присоединения. Смотрите также раздел "Выбор антенны".</td>
</tr>
<tr>
<td>Макс. измерение уровня</td>
<td>0,2 м / 8" (1 м / 40" для гигиенической антенны)</td>
</tr>
<tr>
<td>Программное ускорение: Прибор использует самый сильный сигнал в диапазоне измерения для вычисления дистанции в каждом цикле измерения. Пункт меню по скорости отслеживания доступен, однако функция отключена и изменения не оказывают влияния на работу прибора.</td>
<td></td>
</tr>
<tr>
<td>Мин. мёртвая зона</td>
<td>Длина антенного удлинителя + длина антенны + 0,1 м / 4" (200 мм / 8" для гигиенической антенны)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Угол луча антенны</td>
<td>Рупорная DN40 / 1,5": 20°</td>
</tr>
<tr>
<td></td>
<td>Рупорная DN50 / 2": 15°</td>
</tr>
<tr>
<td></td>
<td>Рупорная / Рупорная из листового металла DN80 / 3": 10°</td>
</tr>
<tr>
<td></td>
<td>Рупорная / Рупорная из листового металла DN100 / 4": 8°</td>
</tr>
<tr>
<td></td>
<td>Рупорная из листового металла DN150 / 6": 6°</td>
</tr>
<tr>
<td></td>
<td>Рупорная из листового металла DN200 / 8": 4°</td>
</tr>
<tr>
<td></td>
<td>Каплевидная DN80 / 3": 8°</td>
</tr>
<tr>
<td></td>
<td>Каплевидная DN150 / 6": 4°</td>
</tr>
<tr>
<td></td>
<td>Гигиеническая DN50 / 2": 15°</td>
</tr>
</tbody>
</table>

Дисплей и интерфейс пользователя

<table>
<thead>
<tr>
<th>Дисплей</th>
<th>ЖК-дисплей</th>
</tr>
</thead>
<tbody>
<tr>
<td>Языки интерфейса</td>
<td>Английский, Немецкий, Французский, Итальянский, Испанский, Португальский, Японский, Китайский (упрощённый) и Русский</td>
</tr>
</tbody>
</table>

Точность измерений

<table>
<thead>
<tr>
<th>Разрешающая способность</th>
<th>1 мм / 0,04"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Повторяемость</td>
<td>±1 мм / ±0,04"</td>
</tr>
<tr>
<td>Погрешность</td>
<td>±3 мм / ±0,12" при дистанции < 10 м / 33 фут; ±0,03% от измеренного значения при дистанции > 10 м / 33 фут</td>
</tr>
</tbody>
</table>

Условия поверки согласно EN 60770

<table>
<thead>
<tr>
<th>Температура</th>
<th>+20°C ±5°C / +70°F ±10°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Давление</td>
<td>1013 мбар абс ±20 мбар / 14,69 фунт/кв.дюйм абс ±0,29 фунт/кв.дюйм</td>
</tr>
<tr>
<td>Относительная влажность воздуха</td>
<td>60% ±15%</td>
</tr>
<tr>
<td>Марка</td>
<td>Металлическая пластина в безэховой испытательной камере</td>
</tr>
</tbody>
</table>

Условия эксплуатации

<table>
<thead>
<tr>
<th>Температура окружающей среды</th>
<th>-40...+80°C / -40...+175°F (в соответствии с предельными значениями температуры для материала уплотнительной прокладки. См. раздел "Материалы" данной таблицы.) Приборы взрывозащищённого исполнения: см. дополнительные инструкции для взрывозащищённых версий или сертификаты по взрывозащите</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура хранения</td>
<td>-40...+85°C / -40...+185°F</td>
</tr>
<tr>
<td>Температура на технологическом присоединении</td>
<td>Рупорная / Рупорная из листового металла:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Standard: -50...+150°C / -58...+300°F</td>
<td>Temperature on the technological connection must correspond to the temperature range of the material of the glandular gasket. See the "Materials" section of this table.</td>
</tr>
<tr>
<td>Optional: -50...+200°C / -58...+390°F</td>
<td>For explosion-protected versions: see additional instructions for explosion-protected versions or certificates for explosion protection.</td>
</tr>
</tbody>
</table>

Каплевидная антенна (ПТФЭ):
-50...+150°C / -58...+300°F (Temperature on the technological connection must correspond to the temperature range of the material of the glandular gasket. See the "Materials" section of this table.)

Каплевидная антенна (полипропилен):
-40...+100°C / -40...+210°F (Temperature on the technological connection must correspond to the temperature range of the material of the glandular gasket. See the "Materials" section of this table.)

Гигиеническая антенна (ПЭЭК):
-20...+150°C / -4...+300°F (Temperature on the technological connection must correspond to the temperature range of the material of the glandular gasket. See the "Materials" section of this table.)

Давление

Рабочее давление

<table>
<thead>
<tr>
<th>Каплевидная антенна (полипропилен):</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1...+16 бар изб / -14,5...232 фунт/кв.дюйм изб; depends on the type of technological connection and temperature at the flange</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Каплевидная антенна (ПТФЭ):</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1...+40 бар изб / -14,5...580 фунт/кв.дюйм изб; depends on the type of technological connection and temperature at the flange</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Гигиеническая антенна (ПЭЭК):</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1...+10 бар изб / -14,5...145 фунт/кв.дюйм изб; depends on the type of technological connection and temperature at the flange</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Рупорная / Рупорная из листового металла:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard: -1...+40 бар изб / -14,5...580 фунт/кв.дюйм изб;</td>
</tr>
<tr>
<td>Optional: -1...+100 бар изб / -14,5...1450 фунт/кв.дюйм изб; depends on the type of technological connection and temperature at the flange</td>
</tr>
</tbody>
</table>

Прочие условия

<table>
<thead>
<tr>
<th>Диэлектрическая постоянная (εr)</th>
<th>≥1,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Устойчивость к вибрации</td>
<td>IEC 60068-2-6 и EN 50178 (10...57 Гц: 0,075 мм / 57...150 Гц: 1g)</td>
</tr>
<tr>
<td>Степень пылевлагозащиты</td>
<td>IP 66/67 equivalent to NEMA type 4X (corpus) and type 6P (antenna)</td>
</tr>
</tbody>
</table>
Условия установки

<table>
<thead>
<tr>
<th>Типоразмер технологического присоединения</th>
<th>Номинальный диаметр (DN) должен быть равен диаметру антенны или быть больше него</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Если номинальный диаметр (DN) меньше диаметра антенны, тогда:</td>
</tr>
<tr>
<td></td>
<td>– примите меры, для того чтобы присоединить прибор к технологическому присоединению резервуара, имеющему больший типоразмер (например, предусмотрите пластину с отверстием), или</td>
</tr>
<tr>
<td></td>
<td>– используйте такое же технологическое присоединение, только перед установкой демонтируйте антенну с прибора, а затем прикрепите её вновь изнутри резервуара.</td>
</tr>
</tbody>
</table>

Расположение технологического присоединения

Убедитесь, что под технологическим присоединением прибора нет никаких конструкций.

Габаритные размеры и вес

Смотрите раздел "Технические характеристики: Габаритные размеры и вес".

Материалы

<table>
<thead>
<tr>
<th>Корпус</th>
<th>Стандартно: Алюминий, покрытый полиэфиром</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Опционально: Нержавеющая сталь (1.4404 / 316L)</td>
</tr>
<tr>
<td></td>
<td>Стандартно для рупорной / рупорной из листового металла антенны: Нержавеющая сталь (1.4404 / 316L)</td>
</tr>
<tr>
<td></td>
<td>Опционально для рупорной антенны: Хастеллой-C-22® (2.4602)</td>
</tr>
<tr>
<td></td>
<td>Стандартно для каплевидной антенны: ПТФЭ; полипропилен</td>
</tr>
<tr>
<td></td>
<td>Опционально для каплевидной антенны: Подфланцевая защитная пластина из полипропилена или ПТФЭ</td>
</tr>
<tr>
<td></td>
<td>Гигиеническая антенна: ПЭЭК – данный материал соответствует нормам FDA</td>
</tr>
</tbody>
</table>

Технологическое присоединение

Стандартно для рупорной, рупорной из листового металла и каплевидной антенны: Нержавеющая сталь (1.4404 / 316L) – для каплевидной антенны также доступна опциональная подфланцевая защитная пластина из полипропилена или ПТФЭ

Стандартно для гигиенической антенны: Нержавеющая сталь (1.4404 / 316L)

Опционально: Хастеллой-C-22® (2.4602) – только для рупорных антенн

Уплотнительные прокладки (и уплотнительные кольца для герметизации опциональных антенных удлинителей)

Гигиеническая антенна:

EPDM (-20°C…+150°C / -4…+300°F); FKM/FPM (-20…+150°C / -4…+300°F)

Каплевидная антенна из ПТФЭ:

FKM/FPM (-40…+150°C / -40…+300°F); Kalrez® 6375 (-20…+150°C / -4…+300°F)

Каплевидная антенна из полипропилена:

FKM/FPM (-40…+100°C / -40…+210°F); Kalrez® 6375 (-20…+100°C / -4…+210°F)

Рупорная / Рупорная из листового металла:

FKM/FPM (-40…+200°C / -40…+390°F); Kalrez® 6375 (-20…+200°C / -4…+390°F)

Проходник

Стандартно: ПЭИ (-50…+200°C / -58…+390°F) – макс диапазон. Температура на проходнике должна соответствовать температурному диапазону материала уплотнительной прокладки и типа антенны. Если опциональная дистанционная вставка не установлена, максимальная температура составляет +150°C / +300°F)

Опционально: Metaglas® (-30…+200°C / -22…+390°F) – макс диапазон. Температура на проходнике должна соответствовать температурному диапазону материала уплотнительной прокладки и типа антенны. Если опциональная дистанционная вставка не установлена, максимальная температура составляет +150°C / +300°F.)

Защитный козырёк (опционально)

Нержавеющая сталь (1.4301 / 304)
Технические характеристики

Технологические присоединения

<table>
<thead>
<tr>
<th>Резьбовое соединение</th>
<th>G 1½ (ISO 228); 1½ NPT (ASME B1.20.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фланцевое исполнение</td>
<td></td>
</tr>
<tr>
<td>EN 1092-1</td>
<td>DN40...80 PN40 (тип B1), DN100...200 PN16 или PN40 (тип B1), DN40...150 PN63 или PN100 (тип B1); другое по запросу</td>
</tr>
<tr>
<td>ASME B16.5</td>
<td>1½''...8'' 150 lb RF, 1½''...6'' 300 lb RF, 1½''...4'' 600 lb или 900 lb RF; 1½''...2'' 1500 lb RJ; другое по запросу</td>
</tr>
<tr>
<td>JIS B2220</td>
<td>40...100A 10K; другое по запросу</td>
</tr>
<tr>
<td>Гигиеническое присоединение</td>
<td>BioControl® DN50; Tri-Clamp® 2''; DIN 11851 DN50; SMS 51; VARIVENT® DN50; другое по запросу</td>
</tr>
<tr>
<td>Другое</td>
<td>Другое по запросу</td>
</tr>
</tbody>
</table>

Электрические подключения

<table>
<thead>
<tr>
<th>Напряжение питания</th>
<th>Клеммы выхода 1 – не-Ex / Ex i: 14...30 В п.ст. тока; мин./макс. значение при токе 22 mA на клеммах</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Клеммы выхода 1 – Ex d: 20...36 В п.ст. тока; мин./макс. значение при токе 22 mA на клеммах</td>
</tr>
<tr>
<td></td>
<td>Клеммы выхода 2 – не-Ex / Ex i / Ex d 10...30 В п.ст. тока; мин./макс. значение при токе 22 mA на клеммах (требуется дополнительный источник питания - только выход)</td>
</tr>
<tr>
<td>Кабельный ввод</td>
<td>M20×1,5; ½ NPT</td>
</tr>
<tr>
<td></td>
<td>G ½ (не для устройств, сертифицированных в соответствии с FM и CSA. Не для корпуса из нержавеющей стали.)</td>
</tr>
<tr>
<td></td>
<td>Корпус из нержавеющей стали: M20×1,5</td>
</tr>
<tr>
<td>Кабельное уплотнение</td>
<td>Стандартно: нет</td>
</tr>
<tr>
<td></td>
<td>Опционально: M20×1,5; другое по запросу</td>
</tr>
<tr>
<td>Требуемое сечение проводников кабельного ввода (для клемм)</td>
<td>0,5…1,5 мм²</td>
</tr>
</tbody>
</table>

Входные и выходные сигналы

Токовый выход (стандартное программное обеспечение)

<table>
<thead>
<tr>
<th>Выходной сигнал (Выход 1)</th>
<th>4...20 mA HART® или 3,8...20,5 mA в соответствии с NAMUR NE 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Выходной сигнал (Выход 2 – опционально)</td>
<td>4...20 mA (без наложенного протокола HART®) или 3,8...20,5 mA в соответствии с NAMUR NE 43</td>
</tr>
</tbody>
</table>

Токовый выход (с опциональным программным ускорением)

<table>
<thead>
<tr>
<th>Выходной сигнал (Выход 1)</th>
<th>16 mA HART®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Выходной сигнал (Выход 2)</td>
<td>4...20 mA (без наложенного протокола HART®) или 3,8...20,5 mA в соответствии с NAMUR NE 43</td>
</tr>
<tr>
<td>Разрешающая способность</td>
<td>±3 мкА</td>
</tr>
<tr>
<td>Температурный дрейф</td>
<td>Стандартно 50 млн⁻¹/К</td>
</tr>
<tr>
<td>Сигнал ошибки</td>
<td>Высокий: 22 mA; Низкий: 3,6 mA по NAMUR NE 43</td>
</tr>
</tbody>
</table>
Разрешения и сертификаты

<table>
<thead>
<tr>
<th>CE</th>
<th>Устройство соответствует нормативным требованиям директив EC. Изготовитель удостоверяет успешно пройденные испытания устройства нанесением маркировки CE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Взрывозащита</td>
<td></td>
</tr>
<tr>
<td>ATEX KEMA 04ATEX1218 X</td>
<td>II 1 G, 1/2 G, 2 G Ex ia IIC T6…T3; II 1 D, 1/2 D, 2 D Ex iaD 20 или Ex iaD 20/21 IP6X T70°C…T95°C; II 1/2 G, 2 G Ex d[ia] IIC T6…T3; II 1/2 D, 2 D Ex tD[iaD] A21/20 IP6X T70°C…T95°C; II 3 G Ex nA II T6…T3 X</td>
</tr>
<tr>
<td>IECEx IECEx KEM 06.0025 X</td>
<td>Ga Ex ia IIC T6…T3; Ex iaD 20 IP6X T70°C…T 95°C; Ga/Gb Ex d[ia] IIC T6…T3; Ex tD[iaD] A21/20 IP6X T70°C…T 95°C</td>
</tr>
<tr>
<td>FM - сертифицировано по системе двойного уплотнения</td>
<td>NEC 500 XP-IS / Кл. I / Кат. 1 / Гр. ABCD / T6-T1; DIP / Кл. II, III / Кат. 1 / Гр. EFG / T6-T1; IS / Кл. I, II, III / Кат. 1 / Гр. ABCDEFG / T6-T1; NI / Кл. I / Кат. 2 / Гр. ABCD / T6-T1</td>
</tr>
<tr>
<td>CSA – сертифицировано по системе двойного уплотнения</td>
<td>CEC Раздел 18 (Зоны) Кл. I, Зона 1, Ex d, IIC (Антenna: Зона 0), T6; Кл. I, Зона 0, Ex ia, IIC T6; Кл. I, Зона 2, Ex nA, IIC T6</td>
</tr>
<tr>
<td>CEC Раздел 18 и Приложение J (Категории)</td>
<td>XP-IS, Кл. I, Кат. 2, Гр. ABCD; Кл. II, Кат. 2, Гр. FG; Кл. III, Кат. 2 T6; IS, Кл. I, Кат. 1, Гр. ABCD; Кл. II, Гр. FG; Кл. III T6</td>
</tr>
<tr>
<td>NEPSI GYJ111193/94</td>
<td>Ex dia IIC T3T6 DIP A21/A20 TA T70°CT95°C IP6X;</td>
</tr>
<tr>
<td>DNV / INMETRO DNV 12.0043 X</td>
<td>Ex ia IIC T6T3 Ga; Ex ia IIC T70°CT95°C Da IP6X;</td>
</tr>
<tr>
<td>KGS 11-GA4BO-0324X 11-GA4BO-0329X</td>
<td>Ex ia IIC T6T3; Ex iaD 20 IP6X T70°CT95°C; Ex dia IIC T6T3; Ex tD[iaD] A21/20 IP6X T70°CT95°C</td>
</tr>
</tbody>
</table>

Другие стандарты и сертификаты

|---|---|
Технические характеристики

<table>
<thead>
<tr>
<th>FCC - Правила Американской государственной комиссии по коммуникациям</th>
<th>Часть 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Министерство промышленности Канады</td>
<td>RSS-210</td>
</tr>
<tr>
<td>LVD</td>
<td>Директива по низковольтному оборудованию 2006/95/EC совместно с EN 61010-1 (2001)</td>
</tr>
<tr>
<td>NAMUR</td>
<td>NAMUR NE 21 Электромагнитная совместимость (ЭМС) промышленного и лабораторного оборудования</td>
</tr>
<tr>
<td></td>
<td>NAMUR NE 43 Стандартизация уровня сигнала для информации о неисправности цифровых передатчиков</td>
</tr>
<tr>
<td>WHG (Закон о регулировании водного режима)</td>
<td>В соответствии с §9 закона о регулировании водного режима Германии</td>
</tr>
<tr>
<td>CRN (Центр ядерных исследований)</td>
<td>Этот сертификат действителен для всех провинций и территорий Канады. Подробную информацию смотрите на сайте.</td>
</tr>
<tr>
<td>Строительные нормы</td>
<td>Опционально: NACE MR0175 / NACE MR0103 / ISO 15156</td>
</tr>
</tbody>
</table>

1. Прибор оснащается дистанционной вставкой, если имеет следующие типоразмеры фланцев: DN100 PN100, DN150 PN63 или PN100, DN200 PN40, 6" 300 lb, 3"...4" 600 lb, 3"...4" 900 lb, и 1½"...2" 900 lb или 1500 lb.
2. Данная опция недоступна для устройств, сертифицированных в соответствии с FM или CSA.
3. Хаствеллой® является зарегистрированной торговой маркой компании Haynes International, Inc.
4. Kalrez® является зарегистрированной торговой маркой компании DuPont Performance Elastomers L.L.C.
5. Metaglas® является зарегистрированной торговой маркой компании Herberts Industrieglas, GMBH & Co., KG.
7. HART® является зарегистрированной торговой маркой компании HART Communication Foundation.
8. Сертификация по взрывозащите вида Ex ia и Ex iaD для гигиенических антен в процессе подготовки.
9. Данная сертификация не распространяется на гигиенические антенны.
8.3 Выбор антенны

Данные графики позволяют выбрать соответствующий тип антенны для конкретного применения:

- D, измерительный диапазон,
- ε_r, диэлектрическая постоянная измеряемого продукта

Рисунок 8-2: Выбор антенны для жидкостей (кривая зависимости дистанции в метрах от ε_r)

Рисунок 8-3: Выбор антенны для жидкостей (кривая зависимости дистанции в футах от ε_r)

1. Дистанция, D [м]
2. Дистанция, D [фут]
3. Диапазон диэлектрической постоянной (ε_r) для применений на резервуарах хранения/успокоительных трубах
4. Диапазон диэлектрической постоянной (ε_r) для применений на технологических резервуарах/резервуарах с мешалками
5. Рупорная антенна DN80, DN100, DN150 или DN200 с успокоительной трубой, или рупорная антенна DN150 или DN200 без успокоительной трубы
6. Рупорная антенна DN80, DN100, DN150 или DN200 с успокоительной трубой или без неё, или каплевидная антенна DN80 или DN150 без успокоительной трубы
7. Рупорная антенна DN80, DN100, DN150 или DN200 с успокоительной трубой или без неё, каплевидная антенна DN80 или DN150 без успокоительной трубы или гигиеническая антенна
8.4 Указания по максимальному рабочему давлению

Внимание!
Убедитесь в том, что устройства используются в пределах установленных эксплуатационных ограничений.

Рисунок 8-4: Номинальное давление / температура (EN 1092-1), фланцевое и резьбовое технологическое присоединение, в °C и бар изб

Рисунок 8-5: Номинальное давление / температура (EN 1092-1), фланцевое и резьбовое технологическое присоединение, в °F и фунт/кв.дюйм изб

1. p [бар изб]
2. T [°C]
3. p [фунт/кв.дюйм изб]
4. T [°F]
5. Резьбовое присоединение, G (ISO 228-1)
6. Фланцевое присоединение, PN100
7. Фланцевое присоединение, PN80
8. Фланцевое присоединение, PN40
9. Фланцевое присоединение, PN16
Информация!

Сертификация CRN
Для приборов с технологическими присоединениями, отвечающими стандартам ASME, существует возможность сертификации в соответствии с требованиями CRN. Данная сертификация необходима для всех устройств, которые устанавливаются на резервуаре высокого давления и используются в Канаде.

Рисунок 8-6: Номинальное давление / температура (ASME B16.5), фланцевое и резьбовое присоединение, в °С и бар изб

Рисунок 8-7: Номинальное давление / температура (ASME B16.5), фланцевое и резьбовое присоединение, в °F и фунт/кв.дюйм изб

1. P [бар изб]
2. T [°С]
3. P [фунт/кв.дюйм изб]
4. T [°F]
5. Фланцевое присоединение, класс 900 и класс 1500. Резьбовое присоединение, NPT (ASME B1.20.1).
6. Фланцевое присоединение, класс 600
7. Фланцевое присоединение, класс 300
8. Фланцевое присоединение, класс 150
8.5 Габаритные размеры и вес

Габаритные размеры и вес в мм и кг

<table>
<thead>
<tr>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>180</td>
<td>122</td>
</tr>
</tbody>
</table>

1 В случае оснащения стандартными кабельными уплотнениями

Габаритные размеры и вес в дюймах и фунтах

<table>
<thead>
<tr>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>7,1</td>
<td>4,8</td>
</tr>
</tbody>
</table>

1 В случае оснащения стандартными кабельными уплотнениями

Осторожно!
- Кабельные уплотнения поставляются по требованию для приборов невзрывозащищённого (не-Ex), искробезопасного (Ex i) и взрывозащищённого (Ex d) исполнения.
- Диаметр внешней оболочки кабеля должен быть 7…12 мм или 0,28…0,47".
- Кабельные уплотнения для приборов, сертифицированных в соответствии с FM или CSA, должны приобретаться заказчиком.
- Кожух для защиты от атмосферных воздействий доступен по запросу для всех исполнений прибора.
Габаритные размеры и вес в мм и кг

<table>
<thead>
<tr>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Защитный козырёк</td>
<td>208</td>
</tr>
</tbody>
</table>

Радиус

Габаритные размеры и вес в дюймах и фунтах

<table>
<thead>
<tr>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Защитный козырёк</td>
<td>8,2</td>
</tr>
</tbody>
</table>

Радиус
Исполнения рупорной антенны DN40/1,5"

![Diagram](image_url)

Рисунок 8-10: Исполнения рупорной антенны DN40 или 1,5"

1. Рупорная антенна DN40/1,5" с резьбовым присоединением G 1½ или 1 ½ NPT
2. Рупорная антенна DN40/1,5" с фланцевым присоединением

Габаритные размеры и вес в мм и кг

<table>
<thead>
<tr>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td>194</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>194</td>
</tr>
</tbody>
</table>

1. В случае оснащения стандартными кабельными уплотнениями
2. Доступны дополнительные антенные удлинители ∅39 и длиной 105 мм
3. Для приборов с опциональным промывочным штуцером ¼ NPTF необходимо к этому размеру добавить 17 мм. Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 71 мм.

Габаритные размеры и вес в дюймах и фунтах

<table>
<thead>
<tr>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td>7,6</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>7,6</td>
</tr>
</tbody>
</table>

1. В случае оснащения стандартными кабельными уплотнениями
2. Доступны дополнительные антенные удлинители ∅1,5 и длиной 4,1"
3. Для приборов с опциональным промывочным штуцером ¼ NPTF необходимо к этому размеру добавить 0,7". Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 2,8".
Технические характеристики

Исполнения рупорной антенны DN50/2"

Рисунок 8-11: Исполнения рупорной антенны DN50/2"

1. Рупорная антенна DN50/2" с резьбовым присоединением G 1½ или 1½ NPT
2. Рупорная антенна DN50/2" с фланцевым присоединением

Габаритные размеры и вес в мм и кг

<table>
<thead>
<tr>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c d e f h ∅i</td>
<td></td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td>182 1</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>182 1</td>
</tr>
</tbody>
</table>

В случае оснащения стандартными кабельными уплотнениями
Доступны дополнительные антенны удлинители ∅39 и длиной 105 мм
Для приборов с опциональным промывочным штуцером ¼ NPTF необходимо к этому размеру добавить 17 мм. Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 71 мм.

Габаритные размеры и вес в дюймах и фунтах

<table>
<thead>
<tr>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c d e f h ∅i</td>
<td></td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td>7,2 1</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>7,2 1</td>
</tr>
</tbody>
</table>

В случае оснащения стандартными кабельными уплотнениями
Доступны дополнительные антенны удлинители ∅1,5 и длиной 4,1"
Для приборов с опциональным промывочным штуцером ¼ NPTF необходимо к этому размеру добавить 0,7". Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 2,8".
Исполнения рупорной антенны DN80/3"

Рисунок 8-12: Исполнения рупорной антенны DN80/3"
1. Рупорная антенна DN80/3" с резьбовым присоединением G 1½ или 1½ NPT
2. Рупорная антенна DN80/3" с фланцевым присоединением

Габаритные размеры и вес в мм и кг

<table>
<thead>
<tr>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td>182</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>182</td>
</tr>
</tbody>
</table>

1. В случае оснащения стандартными кабельными уплотнениями
2. Доступны дополнительные антенны удлинители 239 и длиной 105 мм
3. Для приборов с опциональным промывочным штуцером ¼ NPTF необходимо к этому размеру добавить 17 мм. Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 71 мм.

<table>
<thead>
<tr>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td>7,2</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>7,2</td>
</tr>
</tbody>
</table>

1. В случае оснащения стандартными кабельными уплотнениями
2. Доступны дополнительные антенны удлинители 1,5 и длиной 4,1"
3. Для приборов с опциональным промывочным штуцером ¼ NPTF необходимо к этому размеру добавить 0,7". Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 2,8".
Исполнения рупорной антенны DN100/4".

1. Рупорная антенна DN100/4" с резьбовым присоединением G 1½ или 1½ NPT
2. Рупорная антенна DN100/4" с фланцевым присоединением
Габаритные размеры и вес в мм и кг

<table>
<thead>
<tr>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td>182</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>182</td>
</tr>
</tbody>
</table>

1 В случае оснащения стандартными кабельными уплотнениями
2 Доступны дополнительные антенные удлинители Ø39 и длиной 105 мм
3 Для приборов с опциональным промывочным штуцером ¼ NPTF необходимо к этому размеру добавить 17 мм. Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 71 мм.

Габаритные размеры и вес в дюймах и фунтах

<table>
<thead>
<tr>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td>7,2</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>7,2</td>
</tr>
</tbody>
</table>

1 В случае оснащения стандартными кабельными уплотнениями
2 Доступны дополнительные антенные удлинители Ø1,5 и длиной 4,1’
3 Для приборов с опциональным промывочным штуцером ¼ NPTF необходимо к этому размеру добавить 0,7”. Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 2,8”.

OPTIWARE 7300 C
Технические характеристики
Исполнения рупорной антенны из листового металла

Рисунок 8-14: Исполнения рупорной антенны из листового металла DN80/3", DN100/4", DN150/6" и DN200/8"

1. Рупорная антенна из листового металла (DN80/3", DN100/4", DN150/6" или DN200/8") с резьбовым присоединением G 1½ или 1½ NPT.
2. Рупорная антенна из листового металла (DN80/3", DN100/4", DN150/6" или DN200/8") с фланцевым присоединением.
3. Опциональная система очистки антенны (поставляется с присоединением ¼ NPTF).
Габаритные размеры и вес в мм и кг

<table>
<thead>
<tr>
<th>Резьбовое присоединение</th>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN80/3”</td>
<td>182 1 167 201 234 483 33</td>
<td>249 2 75</td>
</tr>
<tr>
<td>DN100/4”</td>
<td>182 1 167 201 234 552 33</td>
<td>318 2 95</td>
</tr>
<tr>
<td>DN150/6”</td>
<td>182 1 167 201 234 720 33</td>
<td>486 2 144</td>
</tr>
<tr>
<td>DN200/8”</td>
<td>182 1 167 201 234 878 33</td>
<td>644 2 190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Фланцевое присоединение</th>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN80/3”</td>
<td>182 1 167 201 246 467 45 221 2 75</td>
<td>9,2</td>
</tr>
<tr>
<td>DN100/4”</td>
<td>182 1 167 201 246 536 45 290 2 95</td>
<td>9,5</td>
</tr>
<tr>
<td>DN150/6”</td>
<td>182 1 167 201 246 704 45 458 2 144</td>
<td>14,4</td>
</tr>
<tr>
<td>DN200/8”</td>
<td>182 1 167 201 246 862 45 616 2 190</td>
<td>15,0</td>
</tr>
</tbody>
</table>

1. В случае оснащения стандартными кабельными уплотнениями
2. Доступны дополнительные винтовые удлинители ∅39 и длиной 105 мм
3. Для приборов с опциональным промывочным штуцером ½ NPTF необходимо к этому размеру добавить 17 мм. Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 71 мм.

Габаритные размеры и вес в дюймах и фунтах

<table>
<thead>
<tr>
<th>Резьбовое присоединение</th>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN80/3”</td>
<td>7,2 1 6,5 7,9 9,2 19,0 1,3</td>
<td>9,8 2 3,0</td>
</tr>
<tr>
<td>DN100/4”</td>
<td>7,2 1 6,5 7,9 9,2 21,7 1,3</td>
<td>12,5 2 3,7</td>
</tr>
<tr>
<td>DN150/6”</td>
<td>7,2 1 6,5 7,9 9,2 28,3 1,3</td>
<td>19,1 2 5,7</td>
</tr>
<tr>
<td>DN200/8”</td>
<td>7,2 1 6,5 7,9 9,2 34,6 1,3</td>
<td>25,4 2 7,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Фланцевое присоединение</th>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN80/3”</td>
<td>7,2 1 6,5 7,9 9,7 18,4 1,8 8,7 2 3,0</td>
<td>20,2</td>
</tr>
<tr>
<td>DN100/4”</td>
<td>7,2 1 6,5 7,9 9,7 21,1 1,8 11,4 2 3,7</td>
<td>20,8</td>
</tr>
<tr>
<td>DN150/6”</td>
<td>7,2 1 6,5 7,9 9,7 27,7 1,8 18,0 2 5,7</td>
<td>31,6</td>
</tr>
<tr>
<td>DN200/8”</td>
<td>7,2 1 6,5 7,9 9,7 33,9 1,8 24,3 2 7,5</td>
<td>32,9</td>
</tr>
</tbody>
</table>

1. В случае оснащения стандартными кабельными уплотнениями
2. Доступны дополнительные винтовые удлинители ∅1,5 и длиной 4,1”
3. Для приборов с опциональным промывочным штуцером ½ NPTF необходимо к этому размеру добавить 0,7”. Для приборов с опциональной дистанционной вставкой необходимо к этому размеру добавить 2,8”.
Технические характеристики

Исполнения каплевидной антенны DN80/3"

<table>
<thead>
<tr>
<th>Исполнение</th>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Резьбовое присоединение</td>
<td>182 167 201 234 399 33 165 74</td>
<td>— 5.7…6.1</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>182 167 201 246 383 45 137 74</td>
<td>— 6.3…26</td>
</tr>
<tr>
<td>Фланцевое присоединение с опциональной подфланцевой защитной пластиной</td>
<td>182 167 201 246 383 45 137 74</td>
<td>39 6.6…26.8</td>
</tr>
</tbody>
</table>

1. Каплевидная антенна DN80/3" с резьбовым присоединением G ½" или 1½ NPT
2. Каплевидная антенна DN80/3" с фланцевым присоединением
3. Каплевидная антенна DN80/3" с опциональной подфланцевой защитной пластиной из полипропилена или ПТФЭ

Габаритные размеры и вес в дюймах и фунтах

<table>
<thead>
<tr>
<th>Исполнение</th>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фут]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Резьбовое присоединение</td>
<td>7,2 6,5 7,9 9,2 15,7 1,3 6,5 2,9</td>
<td>— 12,6…13,4</td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td>7,2 6,5 7,9 9,7 15,1 1,8 5,4 2,9</td>
<td>— 13,9…57,3</td>
</tr>
<tr>
<td>Фланцевое присоединение с опциональной подфланцевой защитной пластиной</td>
<td>7,2 6,5 7,9 9,7 15,1 1,8 5,4 2,9</td>
<td>1,5 13,9…59,1</td>
</tr>
</tbody>
</table>

1. В случае оснащения стандартными кабельными уплотнениями
2. Доступны дополнительные антенны удлинители Ø39 и длиной 105 мм. Не присоединяйте более 5 антенных удлинителей.
3. Доступны дополнительные антенны удлинители Ø1,5 и длиной 4,1". Не присоединяйте более 5 антенных удлинителей.
Исполнения каплевидной антенны DN150/6" (только для полипропилена)

<table>
<thead>
<tr>
<th>Габаритные размеры и вес в мм и кг</th>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Резьбовое присоединение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фланцевое присоединение с опциональной подфланцевой защитной пластиной</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Габаритные размеры в дюймах и фунтах</td>
<td>Габаритные размеры [дюйм]</td>
<td>Вес [фунт]</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Резьбовое присоединение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фланцевое присоединение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фланцевое присоединение с опциональной подфланцевой защитной пластиной</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рисунок 8-16: Исполнения каплевидной антенны DN150/6" (только для полипропилена)

1 Каплевидная антенна DN150/6" с резьбовым присоединением
2 Каплевидная антенна DN150/6" с фланцевым присоединением
3 Каплевидная антенна DN150/6" с опциональной подфланцевой защитной пластиной

1 В случае оснащения стандартными кабельными уплотнениями
2 Доступны дополнительные антенные удлинители & 39 и длиной 105 мм. Не присоединяйте более 5 антенных удлинителей.

1 В случае оснащения стандартными кабельными уплотнениями
2 Доступны дополнительные антенные удлинители & 1,5 и длиной 4,1". Не присоединяйте более 5 антенных удлинителей.
Исполнения гигиенической антенны DN50/2"

Габаритные размеры и вес в мм и кг

<table>
<thead>
<tr>
<th>Присоединение</th>
<th>Габаритные размеры [мм]</th>
<th>Вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Присоединение Neumo BioControl®</td>
<td>182</td>
<td>167</td>
</tr>
<tr>
<td>Присоединение Tri-Clamp®</td>
<td>182</td>
<td>167</td>
</tr>
<tr>
<td>Присоединение по SMS-стандарту</td>
<td>182</td>
<td>167</td>
</tr>
<tr>
<td>Присоединение по DIN 11851</td>
<td>182</td>
<td>167</td>
</tr>
<tr>
<td>Присоединение VARIVENT®</td>
<td>182</td>
<td>167</td>
</tr>
</tbody>
</table>

1 В случае оснащения стандартными кабельными уплотнениями

Габаритные размеры и вес в дюймах и фунтах

<table>
<thead>
<tr>
<th>Присоединение</th>
<th>Габаритные размеры [дюйм]</th>
<th>Вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Присоединение Neumo BioControl®</td>
<td>7,2</td>
<td>6,5</td>
</tr>
<tr>
<td>Присоединение Tri-Clamp®</td>
<td>7,2</td>
<td>6,5</td>
</tr>
<tr>
<td>Присоединение по SMS-стандарту</td>
<td>7,2</td>
<td>6,5</td>
</tr>
<tr>
<td>Присоединение по DIN 11851</td>
<td>7,2</td>
<td>6,5</td>
</tr>
<tr>
<td>Присоединение VARIVENT®</td>
<td>7,2</td>
<td>6,5</td>
</tr>
</tbody>
</table>

1 В случае оснащения стандартными кабельными уплотнениями
9.1 Общее описание

HART®-протокол является открытым цифровым протоколом связи для применения в промышленности. Его использование бесплатно. Протокол является составной частью программного обеспечения, установленного в преобразователях сигналов совместимых с HART приборов.

Существует 2 типа приборов, которые поддерживают протокол HART®: управляющие устройства и полевые приборы. Есть 2 типа управляющих устройств (главных устройств): рабочие станции на базе ПК (основное главное устройство) и ручные станции управления (вторичное главное устройство). Они могут использоваться в центрах управления и в других местах. К полевым устройствам HART® относятся измерительные датчики, преобразователи сигналов и приводы. Полевые устройства могут быть как 2-проводными, так и 4-проводными и изготавливаться в искробезопасном исполнении для применения во взрывоопасных зонах.

Для приборов, совместимых с HART, предусмотрено 2 основных режима работы: режим с двухточечным подключением и многоканальный режим.

Если прибор используется в режиме с двухточечным подключением, HART®-протокол работает со стандартом частотной манипуляции (FSK = Frequency Shift Keying, ЧМн = частотная манипуляция) Bell 202, чтобы наложить цифровой сигнал на сигнал 4...20 мА. Подключенный прибор отсылает и принимает цифровые сигналы, соответствующие протоколу HART®, и отсылает одновременно аналоговые сигналы. Только 1 прибор может быть подключен к кабелю связи.

Если прибор находится в многоканальном режиме, то сеть работает только с цифровым сигналом, который соответствует HART®-протоколу. Ток в контуре установлен на 4 мА. Вы можете подключить к сигнальному кабелю до 15 приборов.

В полевых устройствах и пультах ручного управления имеется встроенный модем FSK или HART®. Для рабочих мест с компьютером необходим внешний модем. Внешний модем подключается к последовательному интерфейсу.

9.2 История версий программного обеспечения

Информация!
В нижеследующей таблице символ "x" используется как поле для подстановки возможных многозначных буквенно-цифровых комбинаций в зависимости от существующего исполнения.

<table>
<thead>
<tr>
<th>Дата выпуска</th>
<th>Устройства</th>
<th>HART®</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Версия устройства</td>
<td>Версия DD-драйвера</td>
</tr>
<tr>
<td>2008-03</td>
<td>Все версии</td>
<td>1</td>
</tr>
</tbody>
</table>
Идентификационные коды HART®-устройства и номера версий

<table>
<thead>
<tr>
<th>Идентификатор изготовителя:</th>
<th>0x45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Устройство:</td>
<td>0xE5</td>
</tr>
<tr>
<td>Версия устройства:</td>
<td>1</td>
</tr>
<tr>
<td>Версия DD-драйвера:</td>
<td>2</td>
</tr>
<tr>
<td>Общая версия HART®:</td>
<td>5</td>
</tr>
<tr>
<td>Версия ПО для системы полевого коммуникатора моделей 375/475:</td>
<td>≥ 1.8</td>
</tr>
<tr>
<td>Версия AMS:</td>
<td>≥ 7.0</td>
</tr>
<tr>
<td>Версия PDM:</td>
<td>—</td>
</tr>
<tr>
<td>Версия FDT:</td>
<td>≥ 1.2</td>
</tr>
</tbody>
</table>

9.3 Варианты подключения

Преобразователь сигналов является 2-проводным устройством с токовым выходом 4...20 мА и интерфейсом HART®.

- Поддерживается многооточечный режим
 В многооточных системах передачи данных к общему кабелю связи подключается более одного прибора.
- Монопольный режим не поддерживается

Имеется два варианта использования протокола HART® для связи:
- двухточечное соединение и
- многооточное (сетевое) соединение с 2-х проводным подключением.

9.3.1 Двухточечное соединение - аналоговый / цифровой режим

Двухточечное соединение между преобразователем сигналов и главным устройством HART®.

Токовый выход на приборе является пассивным.

Также смотрите Двухточечное подключение к промышленной сети на странице 45.

9.3.2 Многооточечное соединение (2-проводное подключение)

Допускается параллельное подключение до 15 устройств (данный преобразователь сигналов и другие устройства HART®).

Изображение многооточных сетей смотрите разделе Многооточечное подключение к промышленной сети на странице 46.

Данные по обмену данными в многооточечном режиме в разделе Конфигурация сети на странице 75.
9.4 Переменные HART®

<table>
<thead>
<tr>
<th>Переменная HART®</th>
<th>Код</th>
<th>Тип</th>
</tr>
</thead>
<tbody>
<tr>
<td>уровень</td>
<td>0</td>
<td>линейная</td>
</tr>
<tr>
<td>дистанция</td>
<td>1</td>
<td>линейная</td>
</tr>
<tr>
<td>преобразование уровня</td>
<td>2</td>
<td>линейная</td>
</tr>
<tr>
<td>масса уровня</td>
<td>3</td>
<td>линейная</td>
</tr>
<tr>
<td>отражение</td>
<td>4</td>
<td>линейная</td>
</tr>
<tr>
<td>преобразование дистанции</td>
<td>5</td>
<td>линейная</td>
</tr>
<tr>
<td>масса дистанции</td>
<td>6</td>
<td>линейная</td>
</tr>
</tbody>
</table>

Динамические переменные HART® (PV = первичная переменная; SV = вторичная переменная; TV = третичная переменная; QV = четвёртая переменная) могут быть назначены любой из переменных прибора.

Первичная динамическая переменная PV HART® всегда назначается токовому выходу с наложенным HART®-протоколом, который, например, настроен на измерение уровня.

9.5 Полевой коммуникатор 375/475 (FC 375/475)

Полевой коммуникатор является переносным терминалом производства фирмы "Emerson Process Management", предназначенным для удалённой настройки устройств, работающих по протоколу HART® и Foundation Fieldbus. Файлы описания устройств (DD) предназначены для сопряжения различных устройств с полевым коммуникатором.

9.5.1 Установка

Осторожно!
Полевой коммуникатор не может быть использован для корректного конфигурирования, управления и чтения данных с прибора, если не установлен файл описания прибора (DD).

Требования к системе и программному обеспечению для полевого коммуникатора
- Системная карта с программой автоматического обновления «Easy Upgrade»
- Утилита программирования для автоматического обновления полевого коммуникатора
- Файл описания прибора (DD), поддерживающего HART®-протокол

Подробную информацию смотрите в руководстве по эксплуатации полевого коммуникатора.

9.5.2 Использование

Информация!
Полевой коммуникатор не обеспечивает доступ к сервисному меню. Имитация возможна только для токовых выходов.

Полевой коммуникатор и локальный дисплей прибора используют для управления преобразователем сигналов почти одинаковые методы. Встроенная справочная система для отдельных пунктов меню относится к номеру функции, присвоенному отдельным пунктам меню на локальном дисплее прибора. Защита настроек такая же, как и на встроенном дисплее прибора.

Полевой коммуникатор всегда сохраняет полную конфигурацию для связи с AMS.
9.6 Система управления устройствами (AMS)

Диспетчер системы Asset Management Solutions (AMS - системы управления устройствами) является программой для ПК от фирмы "Emerson Process Management", предназначенной для настройки и управления устройствами по протоколам HART®, PROFIBUS и Foundation-Fieldbus. Файлы описания устройств (DD) предназначены для интегрирования различных устройств в систему AMS.

9.6.1 Установка

Прочитайте, пожалуйста, файл README.TXT в установочном пакете программ.

Если описание прибора (DD) ещё не установлено, установите пакет HART® AMS. Данный файл с расширением .EXE содержится на компакт-диске, входящем в комплект поставки прибора.

Описание процедуры инсталляции смотрите в документе «AMS Intelligent Device Manager Books Online», раздел «Базовые функции AMS / Настройка устройств / Установка типовых устройств / Процедуры / Установка типовых устройств с носителями».

9.6.2 Использование

Информация!

Дополнительные данные смотрите в разделе Структура меню HART® для AMS на странице 129.

9.6.3 Параметры для базовой конфигурации

В связи с наличием характерных требований и допущений к системе AMS, обслуживание преобразователя сигналов с ее помощью отличается от обслуживания с помощью локальной клавиатуры. Сервисный раздел меню устройства не доступен, а имитация возможна только для токовых выходов. В оперативной справке для каждого параметра приводится номер функции, соответствующий его значению на локальном дисплее.

9.7 Инструментальное средство управления полевыми устройствами / Драйвер типа устройства (FDT / DTM)

Инструментальная среда управления полевыми устройствами (FDT Container) по сути является программой ПК для настройки устройств по протоколам HART®. Для настройки различных устройств в среде FDT используются так называемые драйверы типов устройств (DTM).

9.7.1 Установка

Перед эксплуатацией прибора необходимо установить диспетчер типа устройств (Device DTM) в программном пакете FDT. Данный файл с расширением .msi находится на DVD-диске, входящем в комплект поставки прибора. Файл также можно скачать с веб-сайта компании. Установочные и конфигурационные данные можно найти в документации, прилагаемой на DVD-диске к Device DTM или на сайте в разделе Downloads (Загрузки).
9.7.2 Использование

DTM и локальный дисплей прибора используют для управления преобразователем сигналов почти одинаковые методы. Дополнительные данные смотрите в разделе Эксплуатация на странице 51.

9.8 Обзор пунктов меню HART® для базовых DD

Сокращения, используемые в нижеследующих таблицах:
- **Опц** Опционально, зависит от версии и конфигурации устройства
- **Чт** Только для чтения

9.8.1 Обзор базовой структуры меню DD (расположение в структуре меню)

<table>
<thead>
<tr>
<th>1 Переменные процесса</th>
<th>1 Измеряемый параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Вход/Выходы</td>
<td>1 Выход 1</td>
</tr>
<tr>
<td></td>
<td>2 Выход 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 HART переменные</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Права доступа</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Тест</th>
<th>1 Тест</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 информация</td>
<td>1 Выход 1</td>
</tr>
<tr>
<td></td>
<td>2 Выход 2 Опц</td>
</tr>
<tr>
<td></td>
<td>3 Ид. № устройства</td>
</tr>
<tr>
<td></td>
<td>4 Описание быстрой настройки</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Сохранить параметры прибора</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6 Переменные настройки</th>
<th>1 Параметры установки</th>
<th>Единицы для таблиц</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Запись спектра пустой емкости</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Выход 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Выход 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Сброс</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 Сервисные переменные</th>
<th>1 Сервисные параметры</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Параметры калибровки</td>
<td></td>
</tr>
<tr>
<td>3 Информация по обслуживанию</td>
<td></td>
</tr>
</tbody>
</table>

9.8.2 Базовая структура меню DD (данные для настроек)

<table>
<thead>
<tr>
<th>1 Переменные процесса</th>
<th>1 Дистанция Чт / 2 Уровень Чт</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Входные/Выходные сигналы</td>
<td>1 Выход 1</td>
</tr>
<tr>
<td></td>
<td>2 Выход 2 Опц</td>
</tr>
<tr>
<td></td>
<td>2 Уровень I2 Чт, Опц / 3 % уровня Чт, Опц</td>
</tr>
</tbody>
</table>
2 Переменные HART

1	Изготовитель Чт	
2	Модель Чт	
3	Версия ПО полевого устройства	1 Версия главного центрального процессора Чт / 2 Версия центрального процессора компьютера Чт / 3 Версия цифровой обработки сигнала Чт
4	Идентификационный номер прибора Чт	
5	Адрес опроса	

3 Права доступа

| 1 | Пароль супервизора Чт |
| 2 | Сервисный пароль |

4 Тест

1	Тест	1 Дистанция 11 / 2 Тест ток.вых.1 / 3 Уровень I2 Опц / 4 Тест ток.вых.2 Опц / 5 Внутренний тест	
2	Информация	1 Выход 1	1 Первая переменная Чт / 2 Дистанция 4 мА Чт / 3 Дистанция 20 мА Чт / 4 Диапазон выходного сигнала Чт / 5 Сообщение об ошибке Чт / 6 Адрес опроса Чт
		2 Выход 2 Опц	1 Вторичная переменная Чт / 2 Дистанция 4 мА Чт, Опц / 3 Дистанция 20 мА Чт, Опц / 4 Диапазон выходного сигнала Чт, Опц / 5 Сообщение об ошибке Чт, Опц
3	ид. № устройства	1 Номер заказа Чт / 2 Номер версии Чт / 3 Сервисный номер Чт / 4 Сертификат Ex Чт / 5 Версия главного центрального процессора Чт / 6 Версия центрального процессора компьютера Чт / 7 Версия цифровой обработки сигнала Чт	
4	Описание быстрой настройки	1 Тип емкости Чт / 2 Тип применения Чт / 3 Высота емкости Чт / 4 Блок-дист. Чт	
5	Номер технологической позиции		
6	Опред.польз. ед. длины Чт		
7	Опред.польз. коэф. длины Чт		
8	Опред. польз. ед. преобр. Чт		
9.9 Структура меню HART® для AMS

Сокращения, используемые в нижеследующих таблицах:
- Opt — Опционально, зависит от версии и конфигурации устройства
- Rd — Только для чтения

9.9.1 Обзор структуры меню AMS (расположение в структуре меню)

<table>
<thead>
<tr>
<th>Конфигурирование / Настройка</th>
<th>Параметры установки 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Параметры установки 2</td>
<td></td>
</tr>
<tr>
<td>Выбор выхода</td>
<td></td>
</tr>
<tr>
<td>Первичные настройки выхода</td>
<td></td>
</tr>
<tr>
<td>Вторичные настройки выхода</td>
<td></td>
</tr>
<tr>
<td>Сервис</td>
<td></td>
</tr>
<tr>
<td>HART</td>
<td></td>
</tr>
<tr>
<td>Устройство</td>
<td></td>
</tr>
</tbody>
</table>
9.9.2 Структура меню AMS (детальное описание параметров)

<table>
<thead>
<tr>
<th>Конфигурация/Настройка</th>
<th>Параметры установки 1</th>
<th>Параметры установки 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диагностика прибора</td>
<td>Анализ</td>
<td>Критический</td>
</tr>
<tr>
<td>Временные процесса</td>
<td>Информационный</td>
<td></td>
</tr>
<tr>
<td>Управление настройкой</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Способы</td>
<td>Право доступа</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Диагностика и тест</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Калибровать</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Таблицы</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Сброс</td>
<td></td>
</tr>
</tbody>
</table>

Конфигурация/Настройка

<table>
<thead>
<tr>
<th>Параметры установки 1</th>
<th>Параметры установки 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип емкости / Тип применения / Высота емкости / Диапазон измерений / Длина труб / Длина труб / Блок-дистанция / Удлинитель антенны / Дист. вставка / См. дна емкости / Режим измерения / Ед. продукта / Скорость отслеживания / Многократный отражатель / Спектр пустой емкости / Постоянное время / См. точки отсчёта / Обнаружение переполняемых значений</td>
<td></td>
</tr>
<tr>
<td>Единица длины / Единица объема / Единица массы / Ед. длины / Ед. объема / Ед. массы / Ед. преобразований / Поль / Поль / Сотр. пользов. ед. / Ед. преобразования / Плотность вещества / Состояние выхода 2 / Индикатор преобразований</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Выбор выхода</th>
<th>Функции выхода</th>
<th>Периметральная функция / Вторичная функция / Третичная функция / Четвёртая функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>Выход 1</td>
<td>Диапазон выхода / Реакция на ошибку / Задержка действия ошибки</td>
<td></td>
</tr>
<tr>
<td>Выход 2</td>
<td>Диапазон выхода / Реакция на ошибку</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Настройки первичного выхода (Контур выхода 1)</th>
<th>Значение для 4 мА</th>
<th>Дистанция 4 мА / Уровень</th>
<th>4 мА / Объем 4 мА / Незаполниваем объем 4 мА / Масса 4 мА / Незаполниваемая масса 4 мА / Отражение 4 мА</th>
</tr>
</thead>
<tbody>
<tr>
<td>Значение для 20 мА</td>
<td>Дистанция 20 мА / Уровень</td>
<td>20 мА / Объем 20 мА / Незаполниваем объем 20 мА / Масса 20 мА / Незаполниваемая масса 20 мА / Отражение 20 мА</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Значение для 20 мА</th>
<th>Детальное описание параметров</th>
<th>Детальное описание параметров</th>
</tr>
</thead>
<tbody>
<tr>
<td>Значение для 20 мА</td>
<td>Детальное описание параметров</td>
<td>Детальное описание параметров</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Значение для 20 мА</th>
<th>Детальное описание параметров</th>
<th>Детальное описание параметров</th>
</tr>
</thead>
<tbody>
<tr>
<td>Значение для 20 мА</td>
<td>Детальное описание параметров</td>
<td>Детальное описание параметров</td>
</tr>
<tr>
<td>Настройки вторичного выхода (Контур выхода 2 (пассив.))</td>
<td>Значение для 4 mA</td>
<td>Дистанция 4 mA / Уровень 4 mA Опц / Объём 4 mA Опц / Незаполн. объём 4 mA Опц / Масса 4 mA Опц / Незаполн. масса 4 mA Опц / Отражение 4 mA Опц</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Знач-е для 20 mA</td>
<td>Дистанция 20 mA / Уровень 20 mA Опц / Объём 20 mA Опц / Незаполн. объём 20 mA Опц / Масса 20 mA Опц / Незаполн. масса 20 mA Опц / Отражение 20 mA Опц</td>
<td></td>
</tr>
<tr>
<td>Сервис</td>
<td>Сервисные параметры</td>
<td>Минимальный пик Инд / Порог переполн-я Инд / Минимальное окно Инд / Частота развертки Инд</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Смещение конв. Инд / Смещение фл. сист. Инд / Корректир. коэффи. Инд</td>
</tr>
<tr>
<td></td>
<td>Ифр. об обслужив.</td>
<td>Сервисный № Инд / Дата обслуживания Инд / Оператор Инд</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART</td>
<td>№ техн. позиции / Изготовитель HRT / Модель HRT / ID прибора HRT / Адрес опроса</td>
<td></td>
</tr>
<tr>
<td>Устройство</td>
<td>Код заказа HRT / V-номер HRT / Ех допуск HRT / Сервисный № HRT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Версия ПО полевого устройства</td>
<td>Вер. проц. HRT / Вер. сопроц. HRT / Версия DSP HRT</td>
</tr>
</tbody>
</table>

Диагностика прибора

<table>
<thead>
<tr>
<th>Просмотр (Общее)</th>
<th>Перв. перем. вне диап. HRT / Неперв. перем. вне диап. HRT / Перв. перем. аналог. вых. насыщенна HRT / Перв. перем. аналог. вых. фикс. HRT / Холодный пуск HRT / Изменение конфигурации HRT / Сбой полевого устройства HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критический уровень (Ошибки)</td>
<td>Пл. кач. спектра HRT / Ошибочный спектр HRT / Нет приемл. пика HRT / Температура вне диап. HRT / Ош. при самотест. HRT / Ошибка теста СВЧ HRT / Отказ периферии HRT / DSP не загр. HRT</td>
</tr>
<tr>
<td>Информация (Предупреждение)</td>
<td>Макс. ток. вых.1 насыщен HRT / Макс. ток. вых.2 насыщен HRT / Мин. ток. вых.1 насыщен HRT / Мин. ток. вых.2 насыщен HRT / Устаревшее измер. / Переполнение емкости HRT / Дно емкости HRT / Измерение прекращено HRT</td>
</tr>
</tbody>
</table>

Переменные процесса

<table>
<thead>
<tr>
<th>Уровень Rd / Дистанция Rd / Отражение Rd</th>
<th>Первичный выход</th>
<th>Первичная функция HRT / Дистанция 1 № HRT / Дистанция в % HRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вторичный выход</td>
<td>Вторичная функция HRT / Уровень 2 HRT / Уровень в % HRT</td>
<td></td>
</tr>
</tbody>
</table>
Управление калибровкой

<table>
<thead>
<tr>
<th>Определи́ть тест...</th>
<th>Ввод дани́х для теста...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Статус калибровки...</td>
<td>История калибровки</td>
</tr>
</tbody>
</table>

Способы

<table>
<thead>
<tr>
<th>Права доступа</th>
<th>Супервизор / Сервис</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сохранить параметры</td>
<td>Внутренний тест / Настройка вых.1 / Настройка вых.2</td>
</tr>
<tr>
<td>Диагностика и тест</td>
<td>Выход1 нижн. / Выход1 верхн. / Выход2 нижн. / Выход2 верхн.</td>
</tr>
<tr>
<td>Калибровать</td>
<td>Таблица объема/массы / Таблица линеаризации / Удалить таблицы</td>
</tr>
<tr>
<td>Таблицы</td>
<td>Запись С.П.Е.</td>
</tr>
<tr>
<td>Сброс</td>
<td>Сброс на настройки пользователя / Сброс зав. парам. / Перезапуск прибора</td>
</tr>
</tbody>
</table>
10.1 Код заказа

Для получения полного кода заказа выберите пункт в каждом столбце. Символы светло-серого цвета обозначают пункты заказа, соответствующие стандартному исполнению прибора.

<table>
<thead>
<tr>
<th>VF70</th>
<th>4</th>
<th>Бесконтактный 24 ГГц радарный (FMCW) уровнемер для жидкостей OPTIWAVE 7300 C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Сертификация</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Без</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>WHG (защита от перелива)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>ATEX Ex ia IIC T3...T6 + DIP</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>ATEX Ex d[ia] IIC T3...T6 + DIP</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>ATEX Ex ia IIC T3...T6 + DIP + WHG</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>ATEX Ex d[ia] IIC T3...T6 + DIP + WHG</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>FM IS КЛ. I/III, КАТ. 1, ГР. A-G; КЛ. I, Зона 0, AEx ia IIC T3...T6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>FM XP-IS/DIP КЛ. I/II/III, КАТ. 1, ГР. A-G; КЛ. I, Зона 0, AEx d [ia] IIC T3...T6</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>ATEX 3G Ex nА II T3...T6</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>INMETRO Ex ia IIC T3...T6 + DIP</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>INMETRO Ex d ia IIC T3...T6 + DIP</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>NEPSI Ex ia IIC T3 ~ T6 + DIP</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>NEPSI Ex d ia IIC T3 ~ T6 + DIP</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>CSA IS КЛ. I/II/III, КАТ. 1, ГР. A-G; КЛ. I, Зона 0, Ex ia IIC T3...T6</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>CSA XP-IS/DIP КЛ. I/II/III, КАТ. 1, ГР. A-D, F, G; КЛ. I, Зона 0, Ex d IIC T3...T6</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>IECEx Ex ia IIC T2...T6 + DIP</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>IECEx Ex d ia IIC T2...T6 + DIP</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>KGS Ex ia IIC T3 – T6 + DIP</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>KGS Ex d[ia] IIC T3 – T6 + DIP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Материал технологического присоединения / Тип и материал антенны (давление)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<p>| VF70 | 4 | Код заказа (дополните код заказа, используя данные со следующих страниц) |</p>
<table>
<thead>
<tr>
<th>Тип антенны</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Рупорная DN80 (⌀ 75 мм / 2,95") – длинная</td>
</tr>
<tr>
<td>4</td>
<td>Рупорная DN40 (⌀ 39 мм / 1,54") – длинная</td>
</tr>
<tr>
<td>5</td>
<td>Рупорная DN50 (⌀ 43 мм / 1,69") – длинная</td>
</tr>
<tr>
<td>6</td>
<td>Рупорная DN80 (⌀ 75 мм / 2,95") – длинная – с системой очистки</td>
</tr>
<tr>
<td>7</td>
<td>Рупорная DN40 (⌀ 39 мм / 1,54") – длинная – с системой очистки</td>
</tr>
<tr>
<td>8</td>
<td>Рупорная DN50 (⌀ 43 мм / 1,69") – длинная – с системой очистки</td>
</tr>
<tr>
<td>F</td>
<td>Рупорная DN100 (⌀ 95 мм / 3,74") – длинная – с системой очистки</td>
</tr>
<tr>
<td>G</td>
<td>Рупорная DN100 (⌀ 95 мм / 3,74") – длинная – с системой очистки</td>
</tr>
<tr>
<td>H</td>
<td>Гигиеническая антенна из ПЭЭК (в соответствии с FDA)</td>
</tr>
<tr>
<td>L</td>
<td>Рупорная для BM26 W (⌀ 65,4 мм / 2,58")</td>
</tr>
<tr>
<td>N</td>
<td>Рупорная для BM 26 ADVANCED – с системой очистки</td>
</tr>
<tr>
<td>P</td>
<td>Каплевидная из ПТФЭ DN80 (⌀ 75 мм / 2,95") – длинная / -50…+150°C (-58…+302°F)</td>
</tr>
<tr>
<td>R</td>
<td>Каплевидная из полипропилена DN150 (⌀ 144 мм / 5,67") – длинная / -40…+100°C (-40…+212°F)</td>
</tr>
<tr>
<td>S</td>
<td>Каплевидная из полипропилена DN80 (⌀ 75 мм / 2,95") – длинная / -40…+100°C (-40…+212°F)</td>
</tr>
<tr>
<td>T</td>
<td>Рупорная из листового металла DN 200 (⌀ 190 мм / 7,48") – длинная – с системой очистки</td>
</tr>
<tr>
<td>U</td>
<td>Рупорная из листового металла DN80 (⌀ 75 мм / 2,95") – длинная</td>
</tr>
<tr>
<td>V</td>
<td>Рупорная из листового металла DN100 (⌀ 95 мм / 3,74") – длинная</td>
</tr>
<tr>
<td>W</td>
<td>Рупорная из листового металла DN80 (⌀ 75 мм / 2,95") – длинная – с системой очистки</td>
</tr>
<tr>
<td>X</td>
<td>Рупорная из листового металла DN100 (⌀ 95 мм / 3,74") – длинная – с системой очистки</td>
</tr>
<tr>
<td>Y</td>
<td>Рупорная из листового металла DN150 (⌀ 144 мм / 5,67") – длинная – с системой очистки</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Антенный удлинитель</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Без</td>
</tr>
<tr>
<td>1</td>
<td>Удлинитель 105 мм (4,13")</td>
</tr>
<tr>
<td>2</td>
<td>Удлинитель 210 мм (8,27")</td>
</tr>
<tr>
<td>3</td>
<td>Удлинитель 315 мм (12,40")</td>
</tr>
<tr>
<td>4</td>
<td>Удлинитель 420 мм (16,54")</td>
</tr>
<tr>
<td>5</td>
<td>Удлинитель 525 мм (20,67")</td>
</tr>
<tr>
<td>6</td>
<td>Удлинитель 630 мм (24,80")</td>
</tr>
<tr>
<td>7</td>
<td>Удлинитель 735 мм (28,94")</td>
</tr>
<tr>
<td>8</td>
<td>Удлинитель 840 мм (33,07")</td>
</tr>
<tr>
<td>A</td>
<td>Удлинитель 945 мм (37,21")</td>
</tr>
<tr>
<td>B</td>
<td>Удлинитель 1050 мм (41,34")</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Подфланцевая защитная пластина</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Подфланцевая защитная пластина из полипропилена DN80, DN100, 3", 4", 80A, 100A</td>
</tr>
<tr>
<td>R</td>
<td>Подфланцевая защитная пластина из полипропилена DN150, 6", 8"</td>
</tr>
<tr>
<td>S</td>
<td>Подфланцевая защитная пластина из ПТФЭ DN80, DN100, 3", 4", 80A, 100A</td>
</tr>
<tr>
<td>T</td>
<td>Подфланцевая защитная пластина из ПТФЭ DN150, 6", 8"</td>
</tr>
</tbody>
</table>

| VF70 | 4 | Код заказа (дополните код заказа, используя данные со следующих страниц) |
Кабельный проходник / Температура / Уплотнительная прокладка

<table>
<thead>
<tr>
<th>Код</th>
<th>Описание</th>
<th>Температура</th>
<th>Уплотнительная прокладка</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Стандартный / -40…+150°C (-40…+302°F) / FKM/FPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Стандартный / -50…+150°C (-58…+302°F) / EPDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Стандартный / -40…+150°C (-40…+302°F) / FKM/FPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Стандартный / -20…+150°C (-4…+302°F) / Kalrez 6375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Metaglas® / -30…+150°C (-22…+302°F) / FKM/FPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Metaglas® / -20…+150°C (-4…+302°F) / Kalrez 6375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Стандартный / -50…+150°C (-58…+302°F) / EPDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Metaglas® / -30…+150°C (-22…+302°F) / EPDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Стандартный / -20…+150°C (-4…+302°F) / EPDM – для гигиенических присоединений</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Стандартный / -20…+150°C (-4…+302°F) / FKM/FPM – для гигиенических присоединений</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Стандартный / -40…+200°C (-40…+392°F) / FKM/FPM с дистанционной вставкой</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Стандартный / -20…+200°C (-4…+392°F) / Kalrez 6375 с дистанционной вставкой</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Metaglas® / -30…+200°C (-22…+392°F) / FKM/FPM с дистанционной вставкой</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Metaglas® / -20…+200°C (-4…+392°F) / Kalrez 6375 с дистанционной вставкой</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Технологическое присоединение по EN

<table>
<thead>
<tr>
<th>Код</th>
<th>Описание</th>
<th>Размер</th>
<th>Стандарт</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Без</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G 1½A ISO 228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DN40 PN40 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DN50 PN40 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DN80 PN40 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DN100 PN16 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DN100 PN40 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>DN150 PN16 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>DN150 PN40 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>DN50 PN63 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>DN80 PN63 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>DN100 PN63 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>DN40 PN63/PN100 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>DN50 PN100 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>DN80 PN100 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>DN100 PN100 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>DN150 PN63 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>DN150 PN100 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>DN 200 PN 16 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>DN 200 PN 40 тип B1 EN 1092-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VF70 4

Код заказа (дополните код заказа, используя данные со следующих страниц)
Технологическое присоединение по ASME

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Без</td>
</tr>
<tr>
<td>3</td>
<td>1½ NPT</td>
</tr>
<tr>
<td>5</td>
<td>1½" 150 lb RF ASME B16.5</td>
</tr>
<tr>
<td>6</td>
<td>1½" 300 lb RF ASME B16.5</td>
</tr>
<tr>
<td>7</td>
<td>2" 150 lb RF ASME B16.5</td>
</tr>
<tr>
<td>8</td>
<td>2" 300 lb RF ASME B16.5</td>
</tr>
<tr>
<td>A</td>
<td>3" 150 lb RF ASME B16.5</td>
</tr>
<tr>
<td>B</td>
<td>3" 300 lb RF ASME B16.5</td>
</tr>
<tr>
<td>C</td>
<td>4" 150 lb RF ASME B16.5</td>
</tr>
<tr>
<td>D</td>
<td>4" 300 lb RF ASME B16.5</td>
</tr>
<tr>
<td>E</td>
<td>6" 150 lb RF ASME B16.5</td>
</tr>
<tr>
<td>F</td>
<td>8" 150 lb RF ASME B16.5</td>
</tr>
<tr>
<td>G</td>
<td>6" 300 lb RF ASME B16.5 (с дистанционной вставкой)</td>
</tr>
<tr>
<td>L</td>
<td>2" 300 lb RF ASME B16.5 / BM 26 W</td>
</tr>
<tr>
<td>N</td>
<td>1½" 600 lb RF ASME B16.5</td>
</tr>
<tr>
<td>P</td>
<td>2" 600 lb RF ASME B16.5</td>
</tr>
<tr>
<td>R</td>
<td>3" 600 lb RF ASME B16.5 (с дистанционной вставкой)</td>
</tr>
<tr>
<td>S</td>
<td>4" 600 lb RF ASME B16.5 (с дистанционной вставкой)</td>
</tr>
<tr>
<td>U</td>
<td>1½" 900/1500 lb RJ ASME B16.5 (с дистанционной вставкой)</td>
</tr>
<tr>
<td>V</td>
<td>2" 900/1500 lb RJ ASME B16.5 (с дистанционной вставкой)</td>
</tr>
<tr>
<td>W</td>
<td>3" 900 lb RF ASME B16.5 (с дистанционной вставкой)</td>
</tr>
<tr>
<td>X</td>
<td>4" 900 lb RF ASME B16.5 (с дистанционной вставкой)</td>
</tr>
</tbody>
</table>

Другие технологические присоединения

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Без</td>
</tr>
<tr>
<td>3</td>
<td>RJ (ASME B16.5) муфтовое соединение</td>
</tr>
<tr>
<td>5</td>
<td>10K 40A RF JIS B2220</td>
</tr>
<tr>
<td>6</td>
<td>10K 50A RF JIS B2220</td>
</tr>
<tr>
<td>7</td>
<td>10K 80A RF JIS B2220</td>
</tr>
<tr>
<td>8</td>
<td>10K 100A RF JIS B2220</td>
</tr>
<tr>
<td>B</td>
<td>Tuchenhagen VARIVENT® DN50</td>
</tr>
<tr>
<td>C</td>
<td>NEUMO BioControl® DN50</td>
</tr>
<tr>
<td>F</td>
<td>Tri-Clamp® 2"</td>
</tr>
<tr>
<td>L</td>
<td>DIN 11851 DN50</td>
</tr>
<tr>
<td>P</td>
<td>SMS 51</td>
</tr>
<tr>
<td>V</td>
<td>Тип C (EN 1092-1) шип</td>
</tr>
<tr>
<td>W</td>
<td>Тип D (EN 1092-1) паз</td>
</tr>
<tr>
<td>X</td>
<td>Тип E (EN 1092-1) выступ</td>
</tr>
<tr>
<td>Y</td>
<td>Тип F (EN 1092-1) впадина</td>
</tr>
</tbody>
</table>

VF70 4 Код заказа (дополните код заказа, используя данные со следующих страниц)
Выход

<table>
<thead>
<tr>
<th>0</th>
<th>1 выход: 4…20 мА (HART®)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 выхода: 4…20 мА (HART®) + 4…20 мА</td>
</tr>
<tr>
<td>4</td>
<td>2 выхода: 16 мА (HART) + 4…20 мА с программным ускорением (5 измерений за секунду)</td>
</tr>
</tbody>
</table>

Корпус / Кабельный ввод / Кабельное уплотнение

0	Алюминий / M20 × 1,5 (адаптер из никелированной латуни) / без
1	Алюминий / ½ NPT (адаптер из никелированной латуни) / без
2	Алюминий / G ½ (адаптер из никелированной латуни) / без
3	Алюминий / M20 × 1,5 (адаптер из никелированной латуни) / Пластмасса (невзрывозащищённое исполнение не-Ex: чёрный цвет, искробезопасное исполнение Ex ia: синий цвет)
4	Алюминий / M20 × 1,5 (адаптер из никелированной латуни) / Металл (только для исполнения Ex d)
A	Нержавеющая сталь / M20 × 1,5 (адаптер из нержавеющей стали) / без
B	Нержавеющая сталь / ½ NPT (адаптер из нержавеющей стали) / без
D	Нержавеющая сталь / M20 × 1,5 (адаптер из нержавеющей стали) / Пластмасса M20 (невзрывозащищённое исполнение не-Ex: чёрный цвет, искробезопасное исполнение Ex ia: синий цвет)
E	Нержавеющая сталь / M20 × 1,5 (адаптер из нержавеющей стали) / Металл M20 (только для взрывозащищённого исполнения Ex d)

Опции для корпуса

| 0 | Без |
| 2 | Защита от атмосферных воздействий из нержавеющей стали |

ЧМИ (дисплей и клавиши)

0	Без
1	Английский
2	Немецкий
3	Французский
4	Итальянский
5	Испанский
6	Португальский
7	Японский
8	Китайский (упрощённый)
A	Русский

Версия

0	KROHNE (RAL 9006 / RAL 5005)
5	KROHNE USA (FCC 2 ГГц)
8	KROHNE USA (250 МГц)
A	KMIC L (для жидкостей)

VF70 4 0 Код заказа (дополните код заказа, используя данные со следующих страниц)
<table>
<thead>
<tr>
<th></th>
<th>Другой сертификат</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Без</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>ЕАС Россия</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ЕАС Беларусь</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>ЕАС Казахстан</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Сертификат калибровки</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Без</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Сертификат калибровки по 2 точкам, установленным на заводе по умолчанию, для гарантии погрешности ±3 мм / ±0,12"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Сертификат калибровки по 5 точкам, установленным на заводе по умолчанию, для гарантии погрешности ±3 мм / ±0,12" (минимальная дистанция первой точки: 300 мм / 11,81")</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Сертификация материалов конструкции</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Без</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Сертификат NACE (MR 0175 / MR 0103 / ISO 15156)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Технолог. позиция №</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Без</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Табличка из нерж. стали с номером технологической позиции (макс. 16 символов)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VF70 4 0 0 0 Код заказа

1. Сертификация в соответствии с законом о регулировании водного режима (WHG) доступна для приборов с антенной номинальным диаметром DN80 / 3" или больше.
2. DIP= защищённый от горючей пыли
3. DIP= защищённый от горючей пыли. Сертификация в соответствии с законом о регулировании водного режима (WHG) доступна для приборов с антенной номинальным диаметром DN80 / 3" или больше.
4. По запросу
5. Данная опция не доступна для приборов с каплевидной антенной
6. Данная опция доступна, если тип уплотнительной поверхности фланца - B1 или RF (выступающий торец)
7. Даный вариант присоединения может быть прикреплен к фланцу из нержавеющей стали низкого давления. Подробные данные смотрите в перечне комплектующих.
10.2 Список запасных частей

Мы производим поставку запчастей и аксессуаров для этого прибора. При заказе запасных частей или комплектующих указывайте следующие артикульные номера:

Рисунок 10-1: Запасные части

Артикульные номера для запасных частей

<table>
<thead>
<tr>
<th>Номер позиции</th>
<th>Описание</th>
<th>Количество</th>
<th>Артикульный номер детали</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Блок электроники в сборе ①</td>
<td>1</td>
<td>XF7040000000040000</td>
</tr>
<tr>
<td></td>
<td>Крепёжные винты для блока электроники в сборе</td>
<td>2</td>
<td>F3177360000</td>
</tr>
<tr>
<td>2</td>
<td>Крышка дисплея и кабель (корпус из алюминия) ②</td>
<td>1</td>
<td>XF7040000000050100</td>
</tr>
<tr>
<td></td>
<td>Крышка дисплея и кабель (корпус из нержавеющей стали) ②</td>
<td>1</td>
<td>XF70400000000F0100</td>
</tr>
<tr>
<td>Номер позиции</td>
<td>Описание</td>
<td>Количество</td>
<td>Артикульный номер детали</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>3</td>
<td>Клеммный модуль с 1 выходом (не-Ex)</td>
<td>1</td>
<td>XF7040000000031000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (ATEX - Ex ia)</td>
<td>1</td>
<td>XF7042000000031000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (ATEX - Ex d[ia])</td>
<td>1</td>
<td>XF70430000000E1000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (ATEX - Ex nA)</td>
<td>1</td>
<td>XF704A000000031000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (FM - IS)</td>
<td>1</td>
<td>XF7046000000031000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (FM - XP)</td>
<td>1</td>
<td>XF70470000000E1000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (CSA - IS)</td>
<td>1</td>
<td>XF704H000000031000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (CSA - XP)</td>
<td>1</td>
<td>XF704K0000000E1000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (IECEx - Ex ia)</td>
<td>1</td>
<td>XF704M000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (IECEx - Ex d[ia])</td>
<td>1</td>
<td>XF704N0000000E1000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (NEPSI - Ex ia)</td>
<td>1</td>
<td>XF704E000000031000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (NEPSI - Ex d ia)</td>
<td>1</td>
<td>XF704F0000000E1000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (INMETRO - Ex ia)</td>
<td>1</td>
<td>XF704B000000031000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (INMETRO - Ex d ia)</td>
<td>1</td>
<td>XF704C0000000E1000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (KGS - Ex ia)</td>
<td>1</td>
<td>XF704R000000031000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 1 выходом (KGS – Ex d[ia])</td>
<td>1</td>
<td>XF704S0000000E1000</td>
</tr>
<tr>
<td>3</td>
<td>Клеммный модуль с 2 выходами (не-Ex)</td>
<td>1</td>
<td>XF7040000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (ATEX - Ex ia)</td>
<td>1</td>
<td>XF7042000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (ATEX - Ex d[ia])</td>
<td>1</td>
<td>XF70430000000E2000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (ATEX - Ex nA)</td>
<td>1</td>
<td>XF704A000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (FM - IS)</td>
<td>1</td>
<td>XF7046000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (FM - XP)</td>
<td>1</td>
<td>XF70470000000E2000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (CSA - IS)</td>
<td>1</td>
<td>XF704H000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (CSA - XP)</td>
<td>1</td>
<td>XF704K0000000E2000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (IECEx - Ex ia)</td>
<td>1</td>
<td>XF704M000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (IECEx - Ex d[ia])</td>
<td>1</td>
<td>XF704N0000000E2000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (NEPSI - Ex d ia)</td>
<td>1</td>
<td>XF704F0000000E2000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (INMETRO - Ex ia)</td>
<td>1</td>
<td>XF704B000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (INMETRO – Ex d ia)</td>
<td>1</td>
<td>XF704C000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (KGS - Ex ia)</td>
<td>1</td>
<td>XF704R000000032000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с 2 выходами (KGS – Ex d[ia])</td>
<td>1</td>
<td>XF704S0000000E2000</td>
</tr>
<tr>
<td>3</td>
<td>Клеммный модуль с 2 выходами и опцией программного ускорения (не-Ex)</td>
<td>1</td>
<td>XF7040000000034000</td>
</tr>
<tr>
<td>3</td>
<td>Клеммный модуль с выходом FOUNDATION Fieldbus (не-Ex) 3</td>
<td>1</td>
<td>XF704000000003A000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с выходом FOUNDATION Fieldbus (ATEX - Ex ia) 3</td>
<td>1</td>
<td>XF704200000003A000</td>
</tr>
<tr>
<td>Номер позиции</td>
<td>Описание</td>
<td>Количество</td>
<td>Артикульный номер детали</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>③</td>
<td>Клеммный модуль с выходом PROFIBUS PA (не-Ex) ③</td>
<td>1</td>
<td>XF7040000000003D000</td>
</tr>
<tr>
<td></td>
<td>Клеммный модуль с выходом PROFIBUS PA (ATEX - Ex ia) ③</td>
<td>1</td>
<td>XF7042000000003D000</td>
</tr>
<tr>
<td>③</td>
<td>Крепёжные винты для клеммного модуля</td>
<td>2</td>
<td>F3177350000</td>
</tr>
</tbody>
</table>

① Заказчику необходимо отослать оригинальный блок электроники для ремонта в сервисный центр. Подробная информация по возврату прибора приведена в данном разделе.
② Данный код включает уплотнительную прокладку и крепёжные винты
③ 4-проводный + локальное подключение по протоколу HART
10.3 Перечень комплектующих

Артикульные номера для комплектующих

<table>
<thead>
<tr>
<th>Номер позиции</th>
<th>Описание</th>
<th>Количество</th>
<th>Артикульный номер детали</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Пластиковый солнцезащитный козырёк</td>
<td>1</td>
<td>XF704000000000000A</td>
</tr>
<tr>
<td></td>
<td>Крепёжные винты для пластикового солнцезащитного козырька</td>
<td>2</td>
<td>F3179990000</td>
</tr>
<tr>
<td>2</td>
<td>Защита от атмосферных воздействий из нержавеющей стали</td>
<td>1</td>
<td>XF7040000000000001</td>
</tr>
<tr>
<td>3</td>
<td>Глухая крышка (с уплотнительной прокладкой и винтами)</td>
<td>1</td>
<td>XF704000000000000B</td>
</tr>
<tr>
<td></td>
<td>Уплотнительная прокладка для глухой крышки</td>
<td>1</td>
<td>F3177420000</td>
</tr>
<tr>
<td></td>
<td>Шарнирные петли для глухой крышки</td>
<td>2</td>
<td>F3177340000</td>
</tr>
<tr>
<td></td>
<td>Стопорный винт для глухой крышки</td>
<td>1</td>
<td>F3177360000</td>
</tr>
<tr>
<td>Номер позиции</td>
<td>Описание</td>
<td>Количество</td>
<td>Артикульный номер детали</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Крышка клеммного отсека (с уплотнительной прокладкой)</td>
<td>1</td>
<td>XF7040000000000004</td>
</tr>
<tr>
<td></td>
<td>Уплотнительная прокладка для крышки клеммного отсека</td>
<td>1</td>
<td>F5091150000</td>
</tr>
<tr>
<td></td>
<td>Модем VIATOR RS232 / HART® 1</td>
<td>1</td>
<td>XF704000000000000C</td>
</tr>
<tr>
<td></td>
<td>Модем USB / HART® 2</td>
<td>1</td>
<td>XF704000000000000D</td>
</tr>
</tbody>
</table>

не используется

Шайба (фланец низкого давления). Позиции отверстий под болты и размеры соответствуют DN80 PN2,5...40 / 3” 150 lb. 3	1	XF70000010
Шайба (фланец низкого давления). Позиции отверстий под болты и размеры соответствуют DN100 PN2,5...40 / 4” 150 lb. 3	1	XF70000011
Шайба (фланец низкого давления). Позиции отверстий под болты и размеры соответствуют DN125 PN2,5...40 / 5” 150 lb. 3	1	XF70000012
Шайба (фланец низкого давления). Позиции отверстий под болты и размеры соответствуют DN150 PN2,5...40 / 6” 150 lb. 3	1	XF70000013
Шайба (фланец низкого давления). Позиции отверстий под болты и размеры соответствуют DN200 PN2,5...40 / 8” 150 lb. 3	1	XF70000014

1. Данный аксессуар предназначен для связи по протоколу HART® или PACTware™
2. Данная запасная часть предназначена для связи по протоколу HART® или PACTware™
3. Данная комплектующая деталь предназначена для приборов с резьбовым соединением G 1½. В комплект поставки входит шайба из нержавеющей стали 316L, винт и уплотнительная прокладка. Макс. давление: 1 бар изб / 14,5 фунт/кв.дюйм изб при 20°C / 68°F.
10.4 Глоссарий

В
Взрывоопасная зона Зона с потенциально взрывоопасной атмосферой. Только обученный персонал может устанавливать и эксплуатировать приборы в такой зоне. Прибор должен быть заказан с соответствующими опциями. В зависимости от области применения он должен иметь соответствующие сертификаты (ATEX, IECEx, cFMus, NEPSI и т.д.). Подробная информация по взрывоопасным зонам представлена в инструкциях и сертификатах на взрывозащищённое оборудование.

Волновод Элемент из ПТФЭ, который используется для направления излучаемых радарных волн в правильном направлении по рупорной антенне.

Г
Гигиеническая антенна Антенна из материала, который соответствует нормам FDA. Она поставляется со стандартными гигиеническими технологическими присоединениями (Tri-Clamp®, BioControl®, SMS, ...).

Д
Дистанция Расстояние от уплотнительной поверхности фланца до уровня поверхности (если 1 продукт) или до поверхности верхнего продукта (если 2 и более продуктов в резервуаре). Просмотрите рисунки в конце этого раздела.
Диэлектрическая постоянная Физическое свойство продукта, используемое для измерения уровня радарным методом. Диэлектрическая постоянная также известна как εr, DK или диэлектрическая проницаемость. Она определяет степень отражения электромагнитных волн от поверхности продукта.
DTM Драйвер типа устройства. Драйвер, который используется программой PACTware™. В него включены все данные и функции прибора.

К
Каплевидная антенна Новое поколение антенн из полипропилена (PP) или фторопласта (PTFE). Данная антенна имеет эллипсовидную форму, обеспечивающую улучшенную направленность радарного сигнала.

М
Масса Общая масса продукта в резервуаре.
Мёртвая зона Неизмеряемая зона

Н
Незаполненный объём Незаполненный (пустой) объём ёмкости. Просмотрите рисунки в конце этого раздела.
О

Объём
Общий объём содержимого резервуара.

Оператор
Пользователь, который может определять вид отображения измеряемых параметров. Такой пользователь не может настраивать прибор в режиме супервизора.

Отражение радиолокационных волн
Сигнал, отражённый от поверхности содержимого резервуара.

П

Преобразователь сигналов
Набор электронных компонентов прибора, которые посылают сигнал измерения через несколько фильтров. Они выявляют сигнал и измеряют уровень продукта в резервуаре.

Р

PACTware™
Программа, которая управляет полевым устройством и конфигурирует его с удаленной рабочей станцией. Нет необходимости создавать ПО для интерфейсной шины или разрабатывать внешнюю программу.

Рупорная (коническая) антенна
Обычная антенна для большинства применений. Используется для контролируемого излучения и приёма радарных сигналов.

С

Сигнал помехи
Ложные радарные отражения.

Супервизор
Привилегированный пользователь, который может настраивать прибор в режиме "Супервизор". Он не может настраивать прибор в режиме сервисного обслуживания.

Т

TBF
Режим отслеживания сигнала дна ёмкости (TBF) является альтернативным режимом измерения. Он позволяет измерять уровень содержимого ёмкости с низкой диэлектрической проницаемостью. Режим TBF использует отражение от дна ёмкости для непрямого измерения уровня продукта в ёмкости.

У

Уровень
Высота от дна резервуара (определенного пользователем) до поверхности верхнего измеряемого вещества (Высота резервуара минус Дистанция). Просмотрите рисунки в конце этого раздела.

Ф

FMCW
Технология частно-модулированной незатухающей волны. Сигнал постоянно присутствует, но частота модулируется, как правило, в последовательной частотной модуляции в течение продолжительного времени (развертка по частоте).
Электромагнитная совместимость

Определяет, насколько устройство влияет или находится под влиянием других устройств, которые генерируют электромагнитные поля во время работы. Более подробная информация представлена в европейском стандарте EN 61326-1.

Рисунок 10-3: Термины для процесса измерения "Дистанция"

1. Дистанция
2. Мёртвая зона
3. Уплотнительная поверхность фланца
4. Газ (Воздух)
5. Высота резервуара
6. Незаполненный объём или незаполненная масса

Рисунок 10-4: Термины для процесса измерения "Уровень"

1. Уровень
2. Объём или масса
KROHNE Россия
Самара
Самарская обл., Волжский р-н, пос. Стромилово
Почтовый адрес: Россия, 443065, г. Самара, Дополнительный пер., 11, а/я 12799
Тел.: +7 846 230 047 0
Факс: +7 846 230 031 3
samara@krohne.su
Москва
115280, г. Москва, ул. Ленинская Слобода, 19
Почтовый адрес: Россия, 105005, г. Москва, ул. Ленинская Слобода, 19, а/я 12799
Тел.: +7 499 967 779 9
Факс: +7 499 519 619 0
moscow@krohne.su
Санкт-Петербург
195112, г. Санкт-Петербург, Малоохтинский пр-т, 68
Почтовый адрес: Россия, 197023, г. Санкт-Петербург, ул. Малоохтинский пр-т, 68, а/я 12799
Тел.: +7 812 242 606 2
Факс: +7 812 242 606 6
peterburg@krohne.su
Краснодар
350000, г. Краснодар, ул. Им. Буденного, 117/2, оф. 301, Здание «КНГ»
Тел.: +7 861 201 933 5
Факс: +7 861 519 619 0
krasnodar@krohne.su
Красноярск
660098, г. Красноярск, ул. Алексеева, 17, оф. 380
Тел.: +7 391 263 697 3
Факс: +7 391 263 697 4
krasnoyarsk@krohne.su
Ярославль
150040, г. Ярославль, ул. Победы, 37, оф. 401
Тел.: +7 4852 594 003
Fax: +7 4852 594 003
yaroslavl@krohne.su
Ярославль-Автоматика
Самарская обл., Волжский р-н, пос. Стромилово
Тел.: +7 846 230 037 0
Факс: +7 846 230 031 3
kar@krohne.su
Сервисный центр
Беларусь, 211440, г. Новополоцк, ул. Юбилейная, 2а, оф. 310
Тел. / Факс: +375 214 537 472
Тел. / Факс: +375 214 327 886
Моб. в Белоруссии: +375 29 624 459 2
Моб. в России: +7 903 624 459 2
service@krohne.su
service-krohne@vitebsk.by
KROHNE Казахстан
050020, г. Алматы, пр-т Достык, 290 а
Тел.: +7 727 356 277 0
Факс: +7 727 356 277 1
almaty@krohne.su
KROHNE Беларусь
230023, г. Гродно, ул. 17 Сентября, 49, оф. 112
Тел.: +375 152 740 098
Тел. / Факс: +375 172 108 074
kanex_grodno@yahoo.com
KROHNE Украина
03040, г. Киев, ул. Васильковская, 1, оф. 201
Тел.: +380 44 490 268 4
Fax: +380 44 490 268 4
krohne@krohne.kiev.ua
KROHNE Узбекистан
100000, г. Ташкент, 1-й Пушкинский пр-д, 16
Тел. / Факс: +998 71 237 026 5
sterch@net.uz

Продукция сертифицирована в странах Таможенного Союза.

© KROHNE – Документ может быть изменен без предварительного уведомления.
Текущий список адресов и контактных данных вы найдете по адресу www.krohne.ru