24 GHz 雷达（FMCW）物位变送器 用于有搅拌和腐蚀性液体
保留所有权。未经 KROHNE Messtechnik GmbH 公司事先书面授权，不得复制此文件及其任何部分。
如有更改，恕不通知。

版权所有 2018
KROHNE Messtechnik GmbH – Ludwig-Krohne-Str. 5 - 47058 Duisburg（德国）
4 电气连接 46

4.1 安全须知 ... 46
4.2 常规注意事项 .. 46
4.3 电气安装：2 线制，回路供电 46
4.4 电流输出的电气连接 .. 50
 4.4.1 非防爆仪表 ... 50
 4.4.2 用于危险区域的仪表 .. 50
4.5 防护等级 ... 50
4.6 网络 .. 51
 4.6.1 基本信息 ... 51
 4.6.2 点到点连接 .. 51
 4.6.3 多点网络 ... 52

5 启动 53

5.1 启动检查列表 .. 53
5.2 如何启动仪表 .. 53
5.3 操作概念 .. 53
5.4 数显屏幕 .. 54
 5.4.1 显示屏布局 .. 54
 5.4.2 键盘按钮 ... 55
5.5 通过 PACTware™ 远程通讯 ... 57
5.6 通过 AMS™ 设备管理器进行远程通讯 58

6 操作 59

6.1 用户模式 ... 59
6.2 常规模式 ... 59
6.3 程序模式 ... 62
 6.3.1 常规注意事项 ... 62
 6.3.2 仪表设置保护（访问级别） ... 62
 6.3.3 如何访问快速设置菜单 ... 64
 6.3.4 键盘功能 ... 65
 6.3.5 如何保存程序模式中更改的设置 68
 6.3.6 菜单一览 ... 69
 6.3.7 功能说明 ... 74
6.4 程序模式下仪表配置的更多信息 89
 6.4.1 标准设置 ... 89
 6.4.2 空频谱记录 .. 92
 6.4.3 HART® 网络设置 ... 94
 6.4.4 距离测量 ... 95
 6.4.5 物位测量 ... 96
 6.4.6 如何设置仪表测量体积或质量 98
 6.4.7 如何在弯曲或锥形底部的储罐中进行正确测量 99
 6.4.8 如何制作滤波器以去除雷达信号干扰 100
6.5 状态消息和诊断数据 .. 101
7 服务

7.1 周期性维护 ... 107
 7.1.1 常规注意事项 .. 107
 7.1.2 维护外壳盖的 O 形圈 ... 107
 7.1.3 如何清洁仪表的顶部表面 .. 108
 7.1.4 如何在过程条件下清洁喇叭天线 108
 7.1.5 在过程条件下对喇叭天线伴热或冷却 109

7.2 服务保修 ... 109

7.3 用 OPTIWAVE7400 转换器替换 OPTIWAVE7300 转换器 110

7.4 备件可用性 ... 113

7.5 可提供的服务 ... 113

7.6 仪器送返生产厂家 .. 113
 7.6.1 基本信息 ... 113
 7.6.2 送返仪器时附带的表格 （可复印） 114

7.7 处理 .. 115

8 技术数据 116

8.1 测量原理 ... 116

8.2 技术数据 ... 118

8.3 测量精度 ... 124

8.4 最小供电电压 ... 125

8.5 最大操作压力指令 ... 126

8.6 尺寸和重量 ... 128

9 HART 接口 139

9.1 综述 ... 139

9.2 软件历史 ... 139

9.3 连接变量 .. 140
 9.3.1 点到点连接 - 模拟 / 数字模式 140
 9.3.2 多点连接 （2 线制连接） .. 140

9.4 HART® 仪表变量 .. 140

9.5 手操器 475 （FC 475） ... 141
 9.5.1 安装 ... 141
 9.5.2 操作 ... 141

9.6 资产管理系统 （AMS®） .. 141
 9.6.1 安装 ... 141
 9.6.2 操作 ... 142
 9.6.3 基本配置参数 .. 142

9.7 现场仪表工具 / 仪表类型管理器（FDT / DTM） 142
 9.7.1 安装 ... 142
 9.7.2 操作 ... 142

9.8 过程设备管理 （PDM） .. 142
 9.8.1 安装 ... 142
 9.8.2 操作 ... 142
内容

9.9 **AMD 的 HART® 菜单结构** .. 143
 9.9.1 **AMS 菜单结构总览 （菜单结构中的位置）** 143
 9.9.2 **AMS 菜单结构 （具体设置）** 143
9.10 **PDM 的 HART® 树形菜单** 145
 9.10.1 **PDM 菜单树总览 （菜单树中的位置）** 145
 9.10.2 **PDM 菜单结构 （具体设置）** 146

10 **附录** ... 149
 10.1 **订货代码** .. 149
 10.2 **备件** .. 156
 10.3 **附件** .. 163
 10.4 **术语表** .. 163

11 **笔记** ... 166
1.1 软件历史

固件版本符合 "NAMUR NE 53。它是用来记录嵌入式软件（固件）在电子设备组件的版本状态的序列号。它给出了更改类型的数据，以及更改对兼容性的影响。

有关软件更新的数据显示在菜单 1.1.0 IDENT。更多信息，请参考第 74 页 功能说明。如果不能参考仪表菜单，请记录仪表序列号（在仪表铭牌上获得）并电话联系供货商。

变更以及对兼容性的影响

1	向下兼容的变化和不影响运行的故障维修（例如软件中的拼写错误）
2	向下兼容的通讯硬件和 / 或软件变更：
H	HART®
P	Profibus
F	FF 现场总线
3	输入和输出向下兼容的硬件和 / 或软件变更：
C	电流输出
F0	频率输出 / 脉冲输出
S0	状态输出
LS	限位开关
CI	电流输入
D	显示

发布日期 | 印刷电路组件 | 固件版本 | 机芯版本 | 硬件版本 | 变更与兼容性 | 文件 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-2-2</td>
<td>HMI（液晶显示屏选项）</td>
<td>BL1.24.04</td>
<td>ER1.0.06</td>
<td>4002905801a</td>
<td>—</td>
<td>MA OPTIWAVE 7400 R01</td>
</tr>
<tr>
<td>主要功能与支持</td>
<td>4002859301a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>传感器</td>
<td>4002859301a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) 如果仪表没有显示模块选项，模块参考号为 4002905802a
1 安全须知

1.2 用途

注意！
恰当的合乎预期的使用测量仪表的责任，选择合适的材料使其可以耐受测量介质的腐蚀，这完全是仪表使用方的责任。

信息！
制造商不承担任何因为不恰当使用或者超出指定使用范围而造成的损坏。

此雷达物位计测量距离，物位，质量，体积和液体，糊状物和浆液的反射率。

其可安装在罐体，反应釜和明渠上。

1.3 认证

危险！
危险场所中所使用的仪器须遵守补充安全提示，请参考 Ex 文档。

CE 标志

仪表满足欧盟指令的基本规范：
- 电磁兼容指令
- 低电压指令的安全规范
- 在危险区域使用的仪表：ATEX 指令

制造商证明该产品成功的通过测试，从而可使用 CE 标志。针对更多关于此仪表的欧盟指令和欧洲标准的信息，请参考欧盟符合性声明。您可以从随仪表发货的 DVD-ROM 或免费从网站（下载中心）中找到此文件。

所有仪表均基于 CE 标志，并符合 NAMUR 准则 NE 21、NE 43、NE 53 和 NE 107 的要求。

1.4 无线电批准证书

1.4.1 欧盟 (EU)

信息！
LPR（物位探测雷达）仪表测量露天或封闭环境（金属罐等）的物位。TLPR（罐体物位探测雷达）仪表仅测量封闭环境的物位。您可使用 LPR 仪表测量 TLPR 应用。LPR 和 TLPR 仪表满足欧盟成员国的 RED（无线电设备指令）。

订货代码的更多数据，请参考第 149 页订货代码。

该液位计经批准可用于金属罐外部。如果您露天使用仪表，请阅读仪表铭牌，确保仪表可用于您的应用。仅允许将以下天线用于露天应用：
安全须知

1. 仅限 TLPR（罐体物位探测雷达）仪表

 由经批准的人员来安装设备。如果您遵守以下说明，则仪表和储罐符合 RED（无线电设备指令）:

 - TLPR（物位探测雷达）需要安装在封闭式（非开放式）金属罐或钢筋混凝土罐，或使用类似衰减材料制成的类似密闭式构筑物的永久固定位置；
 - TLPR 设备的法兰和附件应在设计上提供必要的微波密封；
 - 必要时观察镜应涂有防微波涂层（如导电涂层）；
 - 应关闭储罐上的检修孔或连接法兰，以确保泄露到储罐外空间的信号比较少；
 - 在可能的情况下，应将 TLPR 设备安装在储罐结构的顶部，使天线的方向指向下方；
 - 应仅由经过专业培训的人员对 TLPR 设备进行安装和维护。

天线类型

<table>
<thead>
<tr>
<th>天线类型</th>
<th>订货代码</th>
</tr>
</thead>
<tbody>
<tr>
<td>316L / DN80 （3”）金属喇叭</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx...</td>
</tr>
<tr>
<td>316L / DN100 （4”）金属喇叭</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx5xx...</td>
</tr>
<tr>
<td>316L / DN150 （6”）金属喇叭</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx6xx...</td>
</tr>
<tr>
<td>316L / DN200 （8”）金属喇叭</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx7xx...</td>
</tr>
<tr>
<td>PTFE / DN80 （3”）水滴型</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx8xx...</td>
</tr>
<tr>
<td>PTFE / DN100 （4”）水滴型</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx9xx...</td>
</tr>
<tr>
<td>PTFE / DN150 （6”）水滴型</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxxGxx...</td>
</tr>
<tr>
<td>PEEK / DN80 （3”）水滴型</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxxKxx...</td>
</tr>
</tbody>
</table>

![图 1-1：欧盟：铭牌上的无线电认证信息](image)

① 类型代码（按订单定义），如需更多数据，请访问，请参考第 149 页 订货代码。
② HVIN（硬件版本识别号码），该号码给出了雷达信号频率（24G=24GHz）、仪表的位置（T=TLPR或L=LPR）和信号转换器的类型（一体型（C））。
TLPR 仪表：HVIN: 24G-T-C
LPR 仪表：HVIN: 24G-L-C
③ CE 标识

仅限 TLPR（罐体物位探测雷达）仪表

根据以上说明，则仪表和储罐符合 RED（无线电设备指令）。

图 1-1：欧盟：铭牌上的无线电认证信息
有关如何安装 EMI/RFI 屏蔽密封圈的数据，请参阅随附的说明。

仅限 LPR（物位探测雷达）仪表
由经批准的人员安装仪表。如果仪表在露天（室外）运行，如果您遵守这些说明，则其会符合 RED（无线电设备指令）：

- 天线必须始终指向下方。天线的孔径方向必须垂直。不允许其他角度。
- 将仪表安装在远离射电天文站点 4 千米 / 2.485 英里以上的地方。
- 如果仪表距离射电天文站点 4...40 千米 / 2.485...24.855 英里，则请勿将仪表安装在地面以上 15 米 / 49.21 英尺的地方。

注意！
如果需要将仪表安装在距离射电天文站点不到 4 千米 / 2.485 英里的地方，则必须在安装之前获得国家监管机构的批准（例如，ANFR（法国）、Bundesnetzagentur（德国）、Ofcom（英国）等）。

无线电宁静区：欧洲和欧亚大陆北部射电天文站点（站）的位置

<table>
<thead>
<tr>
<th>国家 / 地区</th>
<th>站点名称</th>
<th>纬度， φ</th>
<th>经度， λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>芬兰</td>
<td>梅茨霍维</td>
<td>60°13′04″ N</td>
<td>24°23′37″ E</td>
</tr>
<tr>
<td></td>
<td>Tuorla</td>
<td>60°24′56″ N</td>
<td>22°26′31″ E</td>
</tr>
<tr>
<td>法国</td>
<td>德布尔高原</td>
<td>44°38′01″ N</td>
<td>05°54′26″ E</td>
</tr>
<tr>
<td>德国</td>
<td>埃费尔斯贝格</td>
<td>50°31′32″ N</td>
<td>06°53′00″ E</td>
</tr>
<tr>
<td>匈牙利</td>
<td>彭茨</td>
<td>47°47′22″ N</td>
<td>19°16′53″ E</td>
</tr>
<tr>
<td>意大利</td>
<td>梅迪奇纳</td>
<td>44°31′14″ N</td>
<td>11°38′49″ E</td>
</tr>
<tr>
<td></td>
<td>诺托</td>
<td>36°52′34″ N</td>
<td>14°59′21″ E</td>
</tr>
<tr>
<td></td>
<td>撒丁岛</td>
<td>39°29′50″ N</td>
<td>09°14′40″ E</td>
</tr>
<tr>
<td>拉脱维亚</td>
<td>文茨皮尔斯</td>
<td>57°33′12″ N</td>
<td>21°51′17″ E</td>
</tr>
<tr>
<td>波兰</td>
<td>克拉科夫 - Fort Skala</td>
<td>50°03′18″ N</td>
<td>19°49′36″ E</td>
</tr>
<tr>
<td>俄罗斯</td>
<td>德米特罗夫</td>
<td>56°26′00″ N</td>
<td>37°27′00″ E</td>
</tr>
<tr>
<td></td>
<td>卡利亚津</td>
<td>57°13′22″ N</td>
<td>37°54′01″ E</td>
</tr>
<tr>
<td></td>
<td>Pushchino</td>
<td>54°49′00″ N</td>
<td>37°40′00″ E</td>
</tr>
<tr>
<td></td>
<td>Zelenchukskaya</td>
<td>43°49′53″ N</td>
<td>41°35′32″ E</td>
</tr>
<tr>
<td>西班牙</td>
<td>叶博斯</td>
<td>40°31′27″ N</td>
<td>03°05′22″ W</td>
</tr>
<tr>
<td></td>
<td>罗夫莱多</td>
<td>40°25′38″ N</td>
<td>04°14′57″ W</td>
</tr>
<tr>
<td>瑞典</td>
<td>Bleien</td>
<td>47°20′26″ N</td>
<td>08°06′44″ E</td>
</tr>
<tr>
<td>瑞典</td>
<td>翼萨拉</td>
<td>57°23′45″ N</td>
<td>11°55′35″ E</td>
</tr>
<tr>
<td>英国</td>
<td>剑桥</td>
<td>52°09′59″ N</td>
<td>00°02′20″ E</td>
</tr>
<tr>
<td></td>
<td>Darnhall</td>
<td>53°09′22″ N</td>
<td>02°32′03″ W</td>
</tr>
<tr>
<td></td>
<td>焦德雷尔班克</td>
<td>53°14′10″ N</td>
<td>02°18′26″ W</td>
</tr>
<tr>
<td></td>
<td>Knockin</td>
<td>52°47′24″ N</td>
<td>02°59′45″ W</td>
</tr>
<tr>
<td></td>
<td>Pickmere</td>
<td>53°17′18″ N</td>
<td>02°26′38″ W</td>
</tr>
</tbody>
</table>
1.4.2 美国和加拿大

信息！

LPR（物位探测雷达）仪表测量露天或封闭环境（金属罐等）的物位。TLPR（罐体物位探测雷达）仪表仅测量封闭环境的物位。

如需有关订单代码的更多信息，请参考第149页订货代码。

该液位计经批准可用于金属罐外部。如果您露天使用仪表，请阅读仪表铭牌，确保仪表可用于您的应用。仅允许将以下天线用于露天应用:

<table>
<thead>
<tr>
<th>天线类型</th>
<th>订货代码</th>
</tr>
</thead>
<tbody>
<tr>
<td>316L / DN80（3”）金属喇叭</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx1xxx...</td>
</tr>
<tr>
<td>316L / DN100（4”）金属喇叭</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx5xxx...</td>
</tr>
<tr>
<td>316L / DN150（6”）金属喇叭</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx6xxx...</td>
</tr>
<tr>
<td>316L / DN200（8”）金属喇叭</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxx7xxx...</td>
</tr>
<tr>
<td>PTFE / DN80（3”）水滴型</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxxExxx...</td>
</tr>
<tr>
<td>PTFE / DN100（4”）水滴型</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxxFxxx...</td>
</tr>
<tr>
<td>PTFE / DN150（6”）水滴型</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxxGxxx...</td>
</tr>
<tr>
<td>PEEK / DN80（3”）水滴型</td>
<td>VFDxxxxxxxxxxxxxxxxxxxxxKxxx...</td>
</tr>
</tbody>
</table>

法律声明！

FCC

本设备符合 FCC 规则的第15部分。操作受限于以下两个条件:
1. 本仪表不会造成有害干扰，
2. 本仪表必须接受任何收到的干扰，包括可能导致意外操作的干扰。
未经制造商明确批准而擅自对本设备进行更改或修改，可能导致 FCC 授权无效，无法使用本设备。

本设备经测试证明符合 FCC 规则第15部分对 B 类数字装置的限制。这些限制旨在提供合理的保护，防止住宅安装中的有害干扰。本设备会产生、使用并能够辐射无线电频率能量，如果未按照说明进行安装和使用，可能会对无线电通信造成有害干扰。但是，不能保证在特定的安装中不会发生干扰。如果本设备确实对无线电或电视接收产生有害干扰（可通过关闭和打开设备来确认），则推荐用户尝试通过以下一种或多种措施来纠正干扰:
• 重新调整或摆放接收天线。
• 加大设备和接收器之间的距离。
• 将设备连接到与接收器所连接的电路不同的电源插座上。
• 请咨询经销商或有经验的无线电/电视技术人员寻求帮助。
安全须知

IC

本设备符合加拿大工业部免许可证 RSS 标准。
操作须遵守以下条件：
1. 本仪表不会造成有害干扰，
2. 本仪表必须接受任何收到的干扰，包括可能导致意外操作的干扰。

本仪表和手册符合 RSS-Gen 的要求，操作需遵循以下条件：
1. LPR/TLPR 仪表的安装应由经过培训的安装人员严格按照制造商的说明进行。
2. 本仪表的使用是在“无干扰，无保护”的基础上进行的。也就是说，用户应该接受在相同频段内可能会干扰或损坏本仪表的高功率雷达的操作。但是，发现会干扰主要许可操作的仪表将被要求移除，费用由用户承担。
3. TLPR 仪表应在完全封闭的容器内安装和操作，以防止 RF 发射，否则可能会干扰航空导航。
4. LPR 仪表：确保发射天线的垂直向下方向和只在固定位置进行安装。
5. 本仪表的安装者/用户应确保距不列颠哥伦比亚省彭蒂克顿附近的自治领天体物理天文台（DRAO）至少 10 公里。DRAO 的坐标是北纬 49°19′15″和东经 119°37′12″。对于不符合 10 公里距离的仪表（例如不列颠哥伦比亚省奥肯那根山谷的仪表），安装者/用户必须在安装或运行设备之前，与 DRAO 主管进行协调并获得其书面同意。可通过 250-497-2300（电话）或 250-497-2355（传真）与 DRAO 主管联系。或者，也可联系加拿大工业部监管标准经理。

本仪表的产品销售名称 (PMN) 是“Optiwave x400 系列”。

图 1-2: 美国和加拿大：铭牌上的无线电认证信息
1. 输入代码（按订单定义）。如需更多数据，请参考第 149 页 订货代码。
2. HVIN（硬件版本识别号码）。该号码给出了雷达信号频率（24G=24GHz）、仪表的位置（T=TLPR 或 L=LPR）和信号转换器的类型（一体型（C））
 TLPR 仪表：HVIN：24G-T-C
 LPR 仪表：HVIN：24G-L-C
3. FCC ID 和 IC 编号
 TLPR 仪表：FCC-ID: Q6BFMCW24G74T，IC 编号：1991D-FMCW24G74T
 LPR 仪表：FCC-ID: Q6BFMCW24G74L，IC 编号：1991D-FMCW24G74L
1.5 来自制造厂家的安全须知

1.5.1 版权及数据保护

本文档的内容已经过认真检查。但并不保证内容完全正确和最新版本的完全一致。

本文档的内容和作品受到德国版权的保护。来自第三方的供稿均已进行标记。复制、加工、传播以及任何超出版权许可范围的使用行为必须得到其作者或生产厂家的书面许可。

生产厂家始终努力尊重他人版权，并尽量使用自己的或无需授权的作品。

生产厂家文档中所使用的个人资料（例如姓名、地址或电子邮件地址），只要可能，均在自愿的基础上进行收集。产品及服务的使用，尽可能在不必提供个人资料的情况下进行。

我们提醒您：互联网中的数据传输（例如在通过电子邮件进行交流时）可能会出现安全漏洞。无法完全保证数据不被第三方获取。

在此，发布一份出版说明，明确禁止使用在版权声明义务范围内提供的联系资料寄送未经要求的广告及信息材料。

1.5.2 免责条款

对于因使用该产品而造成的任何形式的损失，生产厂家均不承担责任；这些损失包括但不限于直接、间接，意外发生或导致处罚的损失及间接损失。

若生产厂家的行为属故意或有重大过失，则该免责条款无效。若根据适用的法律不允许限制产品的默示保证，或者不允许免除或限定某些类型的赔偿，并且这些权利对您也适用，在此情况下，以上的免责条款或限制可能对您部分或完全不适用。

对每件购买的产品，均适用相应的产品文档及生产厂家的销售条款。

对于包括本免责条款在内的文档内容，生产厂家保留以下权利，即以任何方式，任何时间、任何理由，在无需事先通知的情况下对其进行修改，且对因任何形式的改动而可能带来的后果不承担任何形式的责任。
1.5.3 产品责任及质保

营运方自行判断该仪表是否适用于其使用目的，且对此自行承担责任。生产厂家对因营运方错误使用仪器而造成的后果不承担任何责任。错误的安装及运行流量计（系统）将会丧失质保权利。此外，相应的“标准销售条款”也适用，该条款是购货合同的基础。

1.5.4 有关文档的信息

为避免对使用者造成伤害或损坏仪器，请您务必仔细阅读本文档中的信息，此外，还必须遵守本国相关标准、安全规定以及事故预防规则。

若本文档非您本国语言或对本文档内容有任何不明之处，请联系生产厂家在当地的办事处寻求帮助。若因未正确理解本文档所含的信息，而造成财产损失或人员伤害，则生产厂家将不承担责任。

本文档将帮助您建立正确的运行条件，以便确保您安全有效地使用仪器。此外，本文档中特别需要注意的地方以及安全措施将通过下列图标进行标记。
1.5.5 警告与符号使用

安全警告如下列符号所示。

危险！
此符号表示带电工作下会有直接危险。

危险！
此符号表示高温或炙热表面会造成灼伤的直接危险。

危险！
此符号表示危险气体环境下使用仪器会有直接危险。

危险！
此类警告必须注意。稍有忽视可能导致严重的人身伤害甚至死亡。还不可能损坏仪器本身或营运方的工厂设施。

警告！
此类警告必须注意，稍有忽视可能导致严重的人身伤害。以及可能损坏仪器本身或营运方的工厂设施。

注意！
忽视此类指示，可能会损坏仪器本身或营运方的工厂设施。

信息！
此类指示包含操作仪器的重要信息。

法律声明！
此符号包含有关法定指令和标准的信息。

• 操作
此符号标注出所有的操作提示，操作人员必须按规定顺序进行操作。

• 结果
此符号表示之前的步骤产生的所有重要后果。

1.6 操作者的安全须知

警告！
仅允许由接受过相应培训并获得授权的人员安装、使用、操作和维护该仪器。
本文档将帮助您建立运行条件，这将保证您安全有效地使用本仪器。
2.1 供货范围

信息！
请检查装箱清单，以确保您收到了所有订购的物品。

![供货范围](image)

图 2-1: 供货范围
① 订购版本的信号转换器、过程连接件和天线
② 天线延长管（选件），这些都随附于仪表上。如果天线延长管过长，仪表将分两部分提供。
③ 证书：校准等（如果仪表有适当的选项）
④ DVD-ROM（包括手册、技术数据表和相关软件）
⑤ 磁棒
⑥ 显示提取器（用于移除可选的显示模块）
⑦ 端盖扳手（用于拆卸仪表盖）

信息！
本仪表可延长天线。这些都随附于仪表上。如果天线延长管过长，仪表将分两部分提供。有关装配过程的更多信息，请参考第 38 页如何连接天线延长管。
2.2 仪表说明

本仪表是一款24 GHz FMCW雷达物位计。这是一种非接触式技术，采用2线环路供电。设计用于测量液体、糊剂和浆体的距离、液位、质量、体积和反射率。如需有关测量原理的更多数据，请参考第116页 测量原理。

雷达物位计使用天线发射信号到被测产品的表面。本仪表有许多天线可用。因此，即使在困难的条件下也可以测量大多数产品。此外，请参考第116页 技术数据。

如果本仪表是根据适用的选项订购的，则可以通过认证用于危险区域。

信号转换器直接连接到过程连接件和天线上。下图显示了天线的类型。

图 2-2: 天线类型

1. 金属喇叭天线（可用天线尺寸：DN40（1¼”）、DN50（2”）、DN65（2½”）、DN80（3”）、DN100（4”）、DN150（6”）和DN200（8”））由316L不锈钢制成。天线延长管可用于高短脖。
2. 水滴型天线（可用天线尺寸：DN80（3”）、DN100（4”）和DN150（6”））由PTFE或PEEK制成。天线延长管可用于高短脖。腐蚀性产品也可使用法兰盘保护和天线延长管保护。

信息！
DN65（2½”）金属喇叭天线选件专为BM 26 A磁翻板液位计而设计。

信息！
如需有关配件的更多信息，请参考第163页附件。
2.3 外观检查

警告！
如果显示屏玻璃碎裂，请勿触摸。

信息！
请仔细检查包装箱是否有损坏或是否曾被野蛮装卸。请向送货员及当地办事处报告损坏情况。

图 2-3: 外观检查
① 仪表铭牌（如需更多数据 请参考第 19 页 铭牌（示例））
② 过程连接数据（尺寸、压力等级、材质和炉号）
③ 密封圈材质数据 – 参见下列图示

图 2-4: 所提供密封圈材料的符号（在过程连接件侧）
① EPDM
② Kalrez® 6375

如果仪表配有 FKM/FPM 密封圈，则过程连接件侧没有符号。

信息！
请检查仪器的铭牌，并确定供货内容是否与您的订单相同。请检查铭牌上的电源电压是否正确。

信息！
将过程连接件侧的材料参照与订单进行比较。
2.4 铭牌

请检查仪器的铭牌，并确定供货内容是否与您的订单相同。请检查铭牌上的电源电压是否正确。

2.4.1 铭牌（示例）

图 2-5: 非防爆铭牌附在外壳上

① 电缆接口尺寸
② 机芯版本（根据 NAMUR NE 53）
③ 信号输出（模拟、HART®、fieldbus 等），输入电压和最大电流（fieldbus：基本电流）
④ 防护等级（符合 EN 60529 / IEC 60529）
⑤ 客户标签号
⑥ 生产日期
⑦ 序列号
⑧ 输入代码（按订单定义），如需更多数据，请参考第 149 页 订货代码。
⑨ 型号名称和编号，C=一体型。
⑩ 公司标志、名称和通讯地址

产地 / 公司网址
3.1 通用安装提示

信息！
请仔细检查包装箱是否有损坏或是否曾被野蛮装卸。请向送货员及当地办事处报告损坏情况。

信息！
请检查装箱清单，以确保您收到了所有订购的物品。

信息！
请检查仪器的铭牌，并确定供货内容是否与您的订单相同。请检查铭牌上的电源电压是否正确。

3.2 存储

警告！
请勿将仪表存放在垂直位置。这将会损坏天线并且仪表将无法正确测量。

图 3-1: 存放条件
① 将仪表放入存放处时，请勿将其存放在垂直位置。
② 将仪表倾向一侧。我们建议您使用交付时使用的包装。
③ 储存温度范围：-40...+85°C / -40...+185°F

- 请将仪表存放在干燥无尘的场所。
- 使转换器远离阳光。
- 将仪表存放在原包装内。
3.3 运输

![图 3-2: 如何抬起仪表](image)

警告！
小心抬起仪表以防止损坏天线。如果取下信号转换器以起吊仪表，请勿将该部件与另一个信号转换器互换。这可能会影响仪表的性能。

3.4 安装前要求

信息！
为确保仪表正确安装，请遵循以下注意事项。

- 确保四周有足够的空间。
- 保护信号转换器不受阳光直射。如需，安装防护罩。
- 请勿让信号转换器承受剧烈振动。仪表依据 EN 50178 和 IEC 60068-2-6 标准进行了振动测试。
3.5 压力和温度范围

图 3-3：压力和温度范围

1 过程连接温度
 非防爆设备：温度范围取决于天线，过程连接和密封材质的类型。参考以下表格。
 具有防爆认证的仪表：见补充说明

2 显示屏运行的环境温度
 -20...+70°C / -4...+158°F
 如果环境温度不在此范围内，显示屏可能暂时无法工作。仪表仍会持续测量物位并传送输出信号。

3 环境温度
 非防爆仪表：-40...+80°C / -40...+176°F
 具有防爆认证的仪表：见补充说明

4 过程压力
 取决于天线和过程连接的种类。参考以下表格。

警告！
过程连接的温度范围必须遵循密封材料的温度限制。操作压力范围受使用的过程连接和法兰温度的限制。

最大过程连接温度和操作压力

<table>
<thead>
<tr>
<th>天线类型</th>
<th>最大过程连接温度</th>
<th>最大操作压力</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[°C]</td>
<td>[°F]</td>
</tr>
<tr>
<td>PEEK 水滴型</td>
<td>+200</td>
<td>+392</td>
</tr>
<tr>
<td>PTFE 水滴型</td>
<td>+150</td>
<td>+302</td>
</tr>
<tr>
<td>金属喇叭</td>
<td>+200 ①</td>
<td>+392 ①</td>
</tr>
</tbody>
</table>

① 最大过程连接温度必须遵循密封材料的温度限制
② 标准操作压力：40 barg / 580 psig。可选最大操作压力：100 barg / 1450 psig。

关于压力等级的更多数据，请参考第 126 页。最大操作压力指令。
3.6 推荐的安装位置

请注意这些建议以确保仪表的正确测量。这会影响仪表性能。

我们推荐您在空罐时准备安装。

3.6.1 通用说明

针对液体，糊状物和浆液的短脖推荐安装位置

图 3-4：针对液体，糊状物和浆液的短脖推荐安装位置

1. 用于 DN40 或 DN50 金属喇叭天线的短脖或安装孔
2. 用于 DN80 或 DN100 金属喇叭天线，和 DN80 水滴型天线的短脖或安装孔
3. 用于 DN150 或 DN200 金属喇叭天线，和 DN100 或 DN150 水滴型天线的短脖或安装孔
4. 罐的直径
5. 短脖或安装孔离罐壁最小距离（取决于天线种类和尺寸 - 参考表中项目 1, 2 和 3）:
 - DN40 或 DN50 金属喇叭口：1/5 × 罐高
 - DN80 或 DN100 金属喇叭口：1/10 × 罐高
 - DN80 水滴型：1/10 × 罐高
 - DN150 或 DN200 金属喇叭口：1/20 × 罐高
 - DN100 或 DN150 水滴型：1/20 × 罐高
6. 罐高

信息！
如果安装前罐体上已有短脖，其离罐壁必须至少有 200 mm / 7.9"。罐壁必须光滑并且在短脖或罐壁间不能有障碍物。
将仪表朝向正确的方向以保证最佳性能

图 3-5：将仪表朝向正确的方向以保证最佳性能
① 电缆接口
② 距离最近的罐壁
③ 罐体中心线

指出罐体中心线方向外壳的电缆进口。

一个罐体中运行的仪表数量

图 3-6：相同罐体内可运行的仪表没有数量限制

安装在相同罐体里的仪表没有数量限制。其可安装在其他雷达物位计旁。
3.6.2 具有盘状和锥形底部的储罐

盘状或锥形底部对测量范围具有影响。仪表无法测量到储罐底部。如果可能的话，按照下图所示安装仪表：

![图3-7：具有盘状或锥形底部的储罐](image)

1. 雷达射束轴
2. 最小物位读数

3.7 安装限制

注意！
请遵循这些建议以确保仪表的正确测量。这会影响仪表性能。

我们推荐您在空罐时准备安装。

3.7.1 通用说明

LPR 和 TLPR 仪表

警告！
LPR（物位探测雷达）仪表测量露天或封闭环境（金属罐等）的物位。TLPR（罐体物位探测雷达）仪表仅测量封闭环境的物位。您可使用LPR仪表测量TLPR应用。更多数据，请参考第8页无线电批准证书。

产生信号干扰
- 罐体或井坑中的物体。
- 垂直于雷达波路径的尖角。
- 在雷达波路径中突然改变罐体直径。
安装

注意！
不准将仪表安装在罐体或井坑内物体（如搅拌器等）上方。罐体或井坑内的物体会产生干扰信号。如果有干扰信号，仪表将无法准确测量。
如果无法将仪表安装在罐体或井坑的另一侧，进行一次空频谱扫描。更多数据，请参考第 92 页空频谱记录。

设备和障碍物：如何避免信号干扰
在罐体和井坑中避免将仪表直接安装在设备和障碍物上方。这会影响仪表性能。

信息！
如果可以的话，请勿将短脖安装在罐体中心线处。

图 3-8：设备和障碍物：如何防止信号干扰
① 仪表的倾斜角度不要超过 2°
② 如果在雷达波束范围内有许多障碍物，我们推荐您做一个空频谱记录（请参考第 92 页空频谱记录）。
③ 如果罐体内有许多障碍物，您可将仪表安装在立管上。更多关于如何安装在立管上的信息，请参考第 34 页立管（导波管和旁通管）。
④ 天线波束半径：参考下表。波束半径随天线距离每米增加而增加”x” mm。

天线的波束半径

<table>
<thead>
<tr>
<th>天线类型</th>
<th>波束角</th>
<th>波束半径，x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[°]</td>
<td>[mm/m]</td>
</tr>
<tr>
<td>金属喇叭，DN40（1½")</td>
<td>17°</td>
<td>150</td>
</tr>
<tr>
<td>金属喇叭，DN50（2")</td>
<td>16°</td>
<td>141</td>
</tr>
<tr>
<td>金属喇叭，DN65（2½")</td>
<td>10°</td>
<td>—①</td>
</tr>
<tr>
<td>金属喇叭，DN80（3")</td>
<td>9°</td>
<td>79</td>
</tr>
</tbody>
</table>
3.7.2 过程连接

<table>
<thead>
<tr>
<th>天线类型</th>
<th>波束角</th>
<th>波束半径, x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[°]</td>
<td>[mm/m] [in/ft]</td>
</tr>
<tr>
<td>金属喇叭，DN100 (4")</td>
<td>8°</td>
<td>70 [0.8]</td>
</tr>
<tr>
<td>金属喇叭，DN150 (6")</td>
<td>6°</td>
<td>53 [0.6]</td>
</tr>
<tr>
<td>金属喇叭，DN200 (8")</td>
<td>5°</td>
<td>44 [0.5]</td>
</tr>
<tr>
<td>PTFE 水滴型，DN80 (3")</td>
<td>8°</td>
<td>70 [0.8]</td>
</tr>
<tr>
<td>PTFE 水滴型，DN100 (4")</td>
<td>7°</td>
<td>61 [0.7]</td>
</tr>
<tr>
<td>PTFE 水滴型，DN150 (6")</td>
<td>4°</td>
<td>35 [0.4]</td>
</tr>
<tr>
<td>PEEK 水滴型，DN80 (3")</td>
<td>9°</td>
<td>79 [0.9]</td>
</tr>
</tbody>
</table>

① 此天线选项仅为 BM 26 A 定制

介质进口

图 3-9: 介质进口
① 仪表安装位置正确。
② 仪表离进料口过近。

注意！
不要将仪表位置靠近进料口。如果罐体进料时介质冲击天线，会造成误测量。如果罐体进料时介质就在天线下，也会造成误测量。

信息！
关于每种天线的测量范围的更多信息，请参考第 124 页测量精度。

以下所有步骤都适用于金属喇叭和水滴型天线。
法兰连接：安装步骤

法兰连接的推荐短脖尺寸
短脖必须越短越好。参考下图的短脖最大高度：

<table>
<thead>
<tr>
<th>短脖直径（mm）</th>
<th>短脖最大高度（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>金属喇叭天线</td>
</tr>
<tr>
<td></td>
<td>[mm]</td>
</tr>
<tr>
<td>40</td>
<td>140</td>
</tr>
<tr>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>80</td>
<td>260</td>
</tr>
<tr>
<td>100</td>
<td>330</td>
</tr>
<tr>
<td>150</td>
<td>490</td>
</tr>
<tr>
<td>200</td>
<td>660</td>
</tr>
</tbody>
</table>

(1) 如果仪表有天线延长管，此选项可延长短脖的最大高度。在此值上增加连接仪表的天线延长管长度。

所需设备
- 仪表
- 法兰密封圈（不提供）
- 扳手（不提供）

如果天线直径小于过程连接尺寸（法兰）：
- 确保短脖上的法兰面是水平的。
- 确保用于法兰和过程连接之间的密封圈规格合适。
- 将密封圈平整地放置于短脖法兰面上。
- 将仪表小心地放在罐体法兰上。不要再将仪表法兰附在罐体上。
- 确保您将信号转换器朝向正确的方向。更多信息，请参考第 41 页 如何旋转或移除信号转换器。
拧紧法兰螺栓。参考当地的规章制度, 使用适用于该螺栓的正确力矩。
步骤结束。

所需的特殊设备:
- 3 mm 内六角扳手 (不提供)

警告！
如果您将天线连接在封闭空间, 确保此区域内有良好的空气流量。确保罐体外的人员能听到你。

信息！
如果天线比过程连接大，我们建议您使用天线延长管。其有可能会没有旋紧天线锁紧螺丝的足够空间。

确保短脖上的法兰面是水平的。

带天线延长管的水滴型天线：用 3 mm 内六角扳手旋下 3 个锁紧螺丝。
移除法兰下部的天线部分（如果没有天线延长管）。如果仪表有一管或更多天线延长管，移除天线延长管顶部的锁紧螺丝并且移除法兰下部的天线和天线延长管部分。

天线没有连在仪表上。如果仪表是水滴型天线，确保 O 圈在天线或天线延长管的凹槽内。

将密封圈平整地放置于短脖法兰面上。

将仪表小心的放在罐体法兰上。不要再将仪表法兰附在罐体上。

进入罐体。如果您将天线连接在封闭空间, 确保此区域内有良好的空气流量。

将天线固定在法兰下方。我们建议有人能在罐体顶部托住仪表。

去罐体顶部。将仪表抬起一小段距离。

不带天线延长管的水滴型天线：用 3 mm 内六角扳手旋紧天线上的 3 颗锁紧螺丝。

不带天线延长管的金属喇叭天线：用 3 mm 内六角扳手旋紧天线上的锁紧螺丝。
所有带 1 管或更多天线延长管的天线：用 3 mm 内六角扳手旋紧天线延长管上的锁紧螺丝。

将仪表小心的放在罐体法兰上。

确保您将信号转换器朝向正确的方向。更多信息, 请参考第 41 页 如何旋转或移除信号转换器。
拧紧法兰螺栓。参考当地的规章制度, 使用适用于该螺栓的正确力矩。
步骤结束。

信息！

法兰连接仪表的天线延长管
如果仪表有天线延长管，此选项可延长短脖的最大高度。每段天线延长管长 105 mm / 4.1”。连接至仪表的最大天线延长管数量如下：
- 金属喇叭天线: 10
- 不带 PTFE 法兰保护盘的 PTFE 水滴型天线: 5
- 带 PTFE 法兰保护盘的 PTFE 水滴型天线: 3
- 不带 PEEK 法兰保护盘的 PEEK 水滴型天线: 5
- 带 PEEK 法兰保护盘的 PEEK 水滴型天线: 3

螺纹连接：安装步骤

图 3-12: 螺纹连接：安装步骤

推荐的螺纹连接插座尺寸
插座必须越短越好。如果插座在凹处，此处使用最大限度的短脖尺寸（法兰连接）。

如果仪表有天线延长管，此选项可延长插座的最大高度。在此值上增加连接仪表的天线延长管长度。

所需设备
- 仪表
- G 1½ 螺纹的密封圈（不提供）
- 1½ NPT 螺纹的生料带（PTFE）（不提供）
- 50 mm 开口扳手（不提供）

警告！
不要旋紧过程连接扭矩超过 40 Nm / 29.5 lb·ft。如果过程连接过紧，会损坏螺纹。为防止天线损坏，确保用于 1½ NPT 螺纹连接的最小孔径不低于 43.4 mm / 1.71”外径。
如果天线小于过程连接（螺纹）:
- 确保罐体连接口是水平的。
- ISO 228-1 (G) 连接：确保用于连接口和过程连接之间的密封圈规格合适。
- ISO 228-1 (G) 连接：平整地放置密封圈。
- NPT 连接：将仪表小心地放在罐体过程连接上。
- 用天线上的螺纹连接将仪表固定在过程连接上。
- 确保您将信号转换器朝向正确的方向。更多信息，请参考第 41 页 如何旋转或移除信号转换器。
- 正确的扭矩下旋紧过程连接（不超过 40 N·m / 29.5 lb·ft）。

步骤结束。

所需特殊设备:
- 3 mm 内六角扳手 (不提供)

警告！
如果您将天线连接在封闭空间，确保此区域内有良好的空气流量。确保罐体外的人员能听到你。

信息！
如果天线比过程连接大，我们建议您使用天线延长管。其有可能会没有旋紧天线锁紧螺丝的足够空间。

- 确保罐体连接口是水平的。
- 不带天线延长管的水滴型天线：用 3 mm 内六角扳手旋下 3 颗锁紧螺丝。
- 移除法兰下部的天线部分（如果没有天线延长管）。如果仪表有一管或多天线延长管，移除天线延长管顶部的锁紧螺丝并且移除法兰下部的天线和天线延长管部分。
- 天线没有连在仪表上。如果仪表是水滴型天线，确保 O 圈在天线或天线延长管的凹槽内。
- ISO 228-1 (G) 连接：确保用于连接口和过程连接之间的密封圈规格合适。
• ISO 228-1 (G) 连接：平整地放置密封圈。
• NPT 连接：正确的将生料带缠在过程连接上。
• 将仪表小心的放在罐体法兰上。不要再将螺纹连接附在罐体上。
• 进入罐体。如果您将天线连接在封闭空间，确保此区域内有良好的空气流量。
• 将天线固定在螺纹下方。我们建议将天线顶部托住仪表。
• 将仪表放在罐体法兰上。不要再将螺纹连接附在罐体上。
• 将仪表轻放置在罐体法兰上。保持仪表与罐体法兰之间的距离。
• 将仪表用于罐体过程连接上。
• 正确的扭矩下旋紧过程连接（不超过 40 N·m / 29.5 lb·ft）。
• 确保您将信号转换器朝向正确的方向。更多信息，请参考第 41 页 如何旋转或移除信号转换器。

步骤结束。

信息！

螺纹连接仪表的天线延长管
如果仪表有天线延长管，此选项可延长天线的最大高度。每段天线延长管长 105 mm / 4.1"。连接至仪表的最大天线长度数量如下：
- 金属喇叭天线：10
- PTFE 水滴型天线：5
- PEEK 水滴型天线：5

警告！

此指南仅针对 LPR 设备。更多信息，请参考第 8 页无线电批准证书。

3.7.3 LPR 仪表：对于在井坑和非导电材质罐体的安装建议

警告！

此指南仅针对 LPR 设备。更多信息，请参考第 8 页无线电批准证书。

仪表安装在非导电材质的罐体上

![图 3-14: 仪表安装在非导电材质的罐体上](image)

① LPR 设备在基本的支架上（室内安装）
② LPR 设备在密封支架上
③ LPR 设备在非导电材质的罐体上，但配有非导电的密封“窗体”

如果仪表不能进入罐体并且罐体材质是非导电材料（塑料等），您可在罐顶安装支架而无需开口。我们建议您将天线安装的离罐顶越近越好。
如果仪表必须测量井坑中的物位，您可在井坑边或井坑上方安装支架。

注意！
如果罐体在室外，我们建议您将支架密封。如果雨滴在罐顶和仪表之间会影响仪表性能。

注意！
如果仪表使用在粉尘环境，我们建议您将支架密封。如果粉尘在罐顶和仪表之间会影响仪表性能。

图 3-15：敞口井坑

如果仪表必须测量井坑中的物位，您可在井坑边或井坑上方安装支架。
3.7.4 立管（导波管和旁通管）

此指南仅针对金属喇叭天线选项的仪表。在以下情况下，安装在立管上:

- 罐体中有高导电的泡沫。
- 液面波动或搅拌剧烈。
- 罐体内其他干扰物太多。
- 仪表用于测量浮顶罐中的液体（石油化工）。
- 仪表安装在水平卧罐。

图 3-16: 立管（导波管和旁通管）安装建议

1	导波管解决方案
2	旁通管解决方案
3	空气流通孔
4	液位

注意！

- 立管必须导电。
- 立管内径必须不能比天线直径大 5 mm / 0.2”（对于高介电常数液体）。
- 立管必须为直管。内径变径不能超过 1 mm / 0.04”。
- 立管必须垂直。
- 建议表面光洁度： < ±0.1 mm / 0.004”。
- 确保立管底部没有堆积。
- 确保立管中有液体。
导波管 – 常规注意事项

注意！
您必须钻一个空气流通孔。

安装在含有液体和泡沫的罐体中
• 在导波管钻最大物位上方钻一个空气流通孔（最大 ∅10 mm / 0.4”）。
• 去除孔上的毛刺。

安装在含有液体不含泡沫的罐体中
• 在导波管钻最大物位上方钻一个空气流通孔（最大 ∅10 mm / 0.4”）。
• 在导波管中钻 1 个或更多的液体流通孔（如果罐体中含有多于 1 相液体）。
 这些孔使液体能自由的在导波管和罐体中流动。
• 去除孔上的毛刺。

导波管：浮顶
如果仪表必须安装在浮顶罐上，将其安装在金属导波管里。

图 3-17: 浮顶
① 沉淀物
② 固定支撑
③ 导波管
④ 浮顶
⑤ 介质
⑥ 罐体
导波管：水平卧罐
如果是以下情况，我们建议您将仪表装在导波管里：

- 是水平卧罐，
- 是金属罐，
- 待测介质有高介电常数
- 在罐体中心线处

图 3-18: 水平卧罐
① 仪表不安装在导波管中，会有多重反射，请参考以下警告！项。
② 仪表安装在导波管中并测量准确。

注意！
如果仪表安装在含有高介电常数液体且无导波管的水平卧罐中时，不要将其置于罐体中心线处，这会产生多重反射并且仪表会测量不准。使用“专家”登录程序模式设置 C2.7 多重反射 开启功能“开启”以保持多重反射影响最低。更多信息，请参考第 74 页功能说明（C. 完整设置）。
旁通管
安装在含有液体和泡沫的罐旁
- 旁通管顶部的过程连接必须在液体最大液位的上方。
- 旁通管底部的过程连接必须在液体最小液位的下方。

安装在含有多相液体的罐旁
- 旁通管顶部的过程连接必须在液体最大液位的上方。
- 旁通管底部的过程连接必须在液体最小液位的下方。
- 额外的过程连接也需要用于液体沿着旁通管自由的流通。

图 3-19：含多相液体的旁通管安装建议
① 旁通管
② 额外过程连接
3.8 如何连接天线延长管

如果仪表未附带连接到信号转换器的天线，或者在仪表交付后将天线延长管作为配件提供，请执行以下步骤。

所需设备:
- 3mm 内六角扳手（不提供）
- 36mm 开口端或箱端扳手（不提供）

注意！
金属喇叭天线: 请确保连接到具有金属喇叭天线的仪表的天线延长管不超过 10 个。如果具有 10 个以上的天线延长管，仪表将不能正确测量。

第 1 步：如何连接天线延长管
- 将天线延长管①连接到法兰下方。使用 36mm 的开口扳手拧紧每个天线延长管。确保天线延长管①完全啮合。
- 使用 3mm 内六角扳手拧紧每个天线延长管上的锁紧螺钉③。
- 连接天线②。请确保天线完全啮合。
- 使用 3mm 内六角扳手拧紧每个天线延长管上的锁紧螺钉③。
- 使用 3mm 内六角扳手拧紧锁紧螺钉③。
- 如果天线延长管随仪表一起提供，则不需要更改仪表设置。步骤结束。
- 如果在交付仪表后提供天线延长管，则需要更改仪表设置。执行以下步骤。

第 2 步：针对具有天线延长管的仪表的仪表设置
- 按 2 × [>]，2 × [▼] 和 [>] 以前往菜单项登录。
- 输入十六进制密码（默认密码：0058）。
- 按 2 × [◄]，2 × [▼]，2 × [>]，5 × [▼] 和 [>] 以前往菜单项 C1.8 天线延长管。
- 按 [>] 以更改值。按 [>] 以更改光标位置。按 [▼] 以减小值或 [▲] 以增加值。
- 每个天线延长管的长度为 105mm。如果仪表有 3 个天线延长管，则它们的总长度为 315mm。在这个例子中，输入值“315”。
- 如果您更改了天线延长管的值，还要更改死区值。按 [◄]，3 × [▲]，[>] 以前往菜单项 C1.5 死区。
- 按 [>] 以更改值。按 [>] 以更改光标位置。按 [▼] 以减小值或 [▲] 以增加值。推荐的最小死区=天线长度 + （天线延长管长度 × 延长数量）+ 0.1 m / 4"。
- 按 3× [◄]，返回到“保存配置？”屏幕。
- 按 [▲] 或 [▼] 以将屏幕设置为是并按 [◄] 以保存并使用已更改的设置。
步骤结束。

水滴型天线 - 天线延长管

所需设备（不含）：
- 3 mm 内六角扳手
- 36mm 开口端或箱端扳手

注意！
天线延长管只能连接到没有 PTFE 或 PEEK 法兰盘选件的法兰下方。

确保连接到具有水滴型天线的仪表的天线延长管不超过 5 个。如果连接了 5 个以上的天线延长管，仪表将无法正确测量。

确保将 0 形圈插到每个天线延长管顶部的凹槽中。

锁紧螺钉长度
- 天线延长管：M6×10（数量：天线延长管的每段 1 个）
- DN80（3’）水滴型天线：M6 × 16（数量：3）
- DN100（4’）水滴型天线：M6 × 20（数量：3）
- DN150（6’）水滴型天线：M6 × 40（数量：3）

第 1 步：如何连接天线延长管
1. 从仪表随附的塑料袋中取出 0 形圈。将 0 形圈插到每个天线延长管顶部的凹槽中。
2. 将天线延长管连接到法兰下方。使用 36mm 的开口端或箱端扳手拧紧每个天线延长管。确保天线延长管完全啮合。
3. 使用 3mm 内六角扳手拧紧每个天线延长管上的锁紧螺钉。
4. 连接天线，拧紧天线。
5. 确保天线延长管和天线完全啮合。
6. 使用 3mm 内六角扳手拧紧锁紧螺钉。注意：天线有 3 个锁紧螺钉。
如果天线延长管随仪表一起提供，则不需要更改仪表设置。步骤结束。

如果在交付仪表后提供天线延长管，则需要更改仪表设置。执行以下步骤。

第 2 步：针对具有天线延长管的仪表的仪表设置

- 按 $2 \times [>]$, $2 \times [\downarrow]$ 和 $[>]$ 以前往菜单项 登录。
- 输入十六进制密码（默认密码：0058）
- 按 $2 \times [<]$, $2 \times [\downarrow]$, $2 \times [>]$, $5 \times [\downarrow]$ 和 $[>]$ 以前往菜单项 C 1.8 天线延长管。
- 按 $[>]$ 以更改值。按 $[>]$ 以更改光标位置。按 $[\downarrow]$ 以减小值或 $[\uparrow]$ 以增加值。

每个天线延长管的长度为 105mm。如果仪表有 3 个天线延长管，则它们的总长度为 315mm。在这个例子中，输入值“315”。

- 如果您更改了天线延长管的值，还要更改死区值。按 $3 \times [<]$, $3 \times [\uparrow]$, $[>]$ 以前往菜单项 C1.5 死区。
- 按 $[>]$ 以更改值。按 $[>]$ 以更改光标位置。按 $[\downarrow]$ 以减小值或 $[\uparrow]$ 以增加值。推荐的最小死区=天线长度 + (天线延长管长度 × 延长数量) + 0.1 m / 4”。
- 按 $3 \times [<]$, 返回到“保存配置？”屏幕。
- 按 $[\uparrow]$ 或 $[\downarrow]$ 以将屏幕设置为 是并按 $[<]$ 以保存并使用已更改的设置。

步骤结束。
3.9 如何旋转或移除信号转换器

信息！
转换器旋转 360°。转换器就可以在工艺状况下被从过程连接构件上移除。

图 3-22：如何旋转或移除信号转换器
① 工具：5 mm 内六角扳手（不提供）
② 过程连接构件上的导波孔端盖（不提供）

注意！
如果需要移除转换器，请在过程连接构件上的导波孔上放置端盖。
当您将转换器安装到过程连接构件时请确保其完全啮合到位。然后旋紧锁止螺钉。

3.10 如何旋转或移除显示模块（选件）

如果与仪表相邻的物体使读取显示屏有困难，可以以 90° 的增量旋转显示屏。
所需设备：
- 端盖扳手
- 显示屏提取器

![图 3-23：如何旋转或移除显示模块（选件）](image)

注意！
断开电源连接。

按照该步骤执行：
- 用端盖扳手卸下外壳盖。
- 使用显示屏提取器从外壳上卸下显示模块。找到将显示模块固定在外壳中的两个夹子。将显示屏提取器放入这些夹子的模块的插槽中。首先将显示屏提取器放在显示模块的一侧，然后放在另一侧。
- 小心地从外壳上拆下显示模块，然后从显示模块上拆下显示屏提取器。
- 旋转显示模块直到其指向用户。
- 将显示模块放回电子部件上。如果夹子发出咔嗒声，则显示模块正确连接到电子部件上。
确保外壳盖上有密封圈。将盖子盖在外壳上，用手拧紧。

步骤结束。

信息！
端盖扳手和显示屏提取器随仪表提供。如果需要发送端盖扳手或显示屏提取器的订单，请参考第 163 页附件。

3.11 防护罩

3.11.1 如何将防护罩连接至仪表上

图 3-24: 装配防护罩所需的设备
① 防护罩盖 (带一个将盖固定在夹套上的 R 型夹)
② 仪表
③ 防护罩夹套 （2 部分）
④ 2 个锁紧螺母
⑤ 10 mm 套筒扳手 (不提供)

防护罩的整体尺寸第 128 页。
3 安装

1. 将防护罩夹置在仪表顶部。
2. 将两个锁紧螺母装到防护罩夹上的螺纹上。使用 10 mm 的套筒扳手拧紧锁紧螺母。
3. 将防护罩盖向下放置到防护罩夹套上面，直到锁紧孔位于盖前面的槽中。
4. 将 R 型夹放入防护罩盖前面的孔中。
5. 步骤结束。

图 3-25：防护罩安装
3.11.2 如何打开防护罩

将 R 型夹从防护罩盖前面的孔中取出。
取下防护罩盖。
抬起显示屏盖。结束步骤。

图 3-26: 如何打开防护罩
4.1 安全须知

危险！
电气连接的所有作业只可在切断电源的情况下进行。请注意铭牌上的电压数据！

危险！
请遵守本国的电气安装规定！

危险！
危险场所中所使用的仪器须遵守补充安全提示，请参考 Ex 文档。

警告！
请严格遵守当地的职业卫生与安全法规。仅允许受过适当培训的人员在电气设备上作业。

信息！
请检查仪器的铭牌，并确定供货内容是否与您的订单相同。请检查铭牌上的电源电压是否正确。

4.2 常规注意事项

本章包含有关具有 4...20 mA 输出和 HART® 通信选件的仪表的电气连接数据。

4.3 电气安装：2 线制，回路供电

电气安装的端子

图 4-1: 电气安装的端子

1. 外壳上的接地端子（如果电缆屏蔽）
2. 电流输出 -
3. 电流输出 +
4. 外部接地端子（在转换器底部）

信息！
输出端子驱动仪表工作，并可用于 HART® 通信。
所需设备
- 3 mm 内六角扳手（不提供）
- 端盖扳手

步骤
1. 使用一个3 mm六角扳手松开缩紧的螺钉。
2. 移开盖子。
3. 用端盖扳手逆时针方向打开盖子。
4. 移开盖子。

注意！
- 使用合适的带电缆格兰头的电缆。
- 确保电流不大于5 A或仪表驱动电路具有5 A规格的熔丝。

图 4-2: 如何打开接线端子腔的盖子
所需设备
- 小号十字螺丝刀（不提供）

步骤
1. 旋松电缆密封接头。将电线放入电缆接头。用小十字螺丝刀旋松端子螺钉。将电线接到连接头上。
2. 用小十字螺丝刀拧紧端子螺钉。
3. 拧紧电缆密封接头。
所需设备
- 3 mm 内六角扳手（不提供）

① 将盖子放在外壳上
② 顺时针方向旋转盖子至完全密合。
③ 盖上盖子并旋紧。
④ 使用一个 3 mm 六角扳手旋紧缩紧的螺钉。
4.4 电流输出的电气连接

4.4.1 非防爆仪表

图 4-5：非防爆仪表的电气连接

1. 电源
2. HART®通讯用电阻器（通常 250 ohms）
3. 可选接地端子的连接
4. 可选：端子上 21.5 mA 输出时为 12…30 VDC
5. 仪表

4.4.2 用于危险区域的仪表

危险！
针对用于危险区域的仪表的电气信息，请参考遵守和补充说明的相关证书（ATEX，IECEx 等）。您可以从随仪表发货的 DVD-ROM 中找到此文件，或免费从网站下载（Downloadcenter 下载中心）。

4.5 防护等级

信息！
仪表的防护等级符合 IP66 / IP68（0.1 barg / 1.45 psig）所需的条件，如国际标准 IEC 60529 中所述。

危险！
确保电缆接头防水。

图 4-6：如何使安装符合防护等级 IP68

- 确认密封圈无损坏。
- 确认电缆无损坏。
• 确认电缆符合国家电气规程。
• 电缆进仪表前必须设置滴水圈①。这样，水就不能进入壳体内。
• 扳紧电缆密封套②。
• 使用模拟插头③关闭未使用的电缆密封套。

电缆外护套直径（用于供电和电流输出）必须为 6...10 mm 或 0.24...0.39”。

4.6 网络

4.6.1 基本信息

仪表采用 HART® 通讯协议。此协议符合 HART® 通讯基础标准。可以采用点对点方式连接。也可以在多点网络中具有 1 到 63 询址。

仪表出厂设置为点对点通讯方式。通讯方式如需从点对点改为多点，请参考第 94 页 HART® 网络设置。

4.6.2 点到点连接

![图 4-7: 点对点连接（非防爆）](image)

① 仪表地址（0 用于点对点连接）
② 4...20 mA + HART®
③ HART® 通讯用电阻器（通常 250 ohms）
④ 电源
⑤ HART® 转换器
⑥ HART® 通讯软件
4.6.3 多点网络

图 4-8: 多点网络（非防爆）

① 仪表地址（每台仪表必须有不同的地址用于多点网络）
② 4 mA + HART®
③ HART® 通讯用电阻器（通常 250 ohms）
④ 电源
⑤ HART® 转换器
⑥ HART® 通讯软件
启动

5.1 启动检查列表

在通电前请检查这些要点:
- 所有的接液部件（天线，法兰和垫圈）都耐罐内产品的化学腐蚀？
- 转换器铭牌上的信息与运行数据相符吗？
- 您是否正确的在罐体上安装仪表？
- 电气是否符合国家电气规程？使用合适的带电缆格兰头的电缆。

危险！
通电前请确认供电电压和电源极性是正确的。

危险！
如果仪表应用于防爆区域，确保仪表和安装符合合格证书的要求。

5.2 如何启动仪表

- 为转换器接好电源。
- 转换器通电。
- 仅具有 LCD 显示屏选项的仪表 10 秒钟后，屏幕将显示 “Optiwave 7400” 和供应商的标志。40 秒后，将出现默认屏幕。本仪表将显示测量数据。测量结果与客户订单中给出的规格一致。

注意！
如果制造商收到有关安装的数据，仪表将正确显示读数。如果没有，则进入配置菜单中的子菜单 A.4 应用助手来选择正确的设置。

5.3 操作概念

您可以通过以下来读取测量信息和设置仪表：
- 数码显示屏（可选）。
- 与系统或具有 PACTware™ 个人电脑的连接。您可从网站下载 Device Type Manager（DTM）文件。这随仪表发货的 DVD-ROM 中提供。
- 与系统或具有 AMS™ 个人电脑的连接。您可以从网站下载设备描述（DD）文件。这也随仪表发货的 DVD-ROM 中提供。
- 与 HART® 现场通讯器的连接。您可以从网站下载仪表描述（DD）文件。它也随仪表附带的 DVD-ROM 上提供。
5.4 数显屏幕

如果移除了外壳盖，则可以按键盘上的按钮。如果无法移除外壳盖，可以使用磁棒操作键盘。如需更多信息，请访问第 55 页 键盘按钮。

5.4.1 显示屏布局

以常规模式显示

图 5-1：常规模式的显示屏布局（测量数据）
① 电流输出百分比（条形图）
② 仪表状态（NAMUR NE 107 符号）
③ 仪表标签名称
④ 键盘操作指示器（当您按下按钮或用磁棒操作键盘时显示）
⑤ 测量值和单位
⑥ 带霍尔效应传感器的键盘按钮（对磁场强度较大变化敏感的传感器）

输出百分比条形图仅在您在菜单项 C6.4.1 功能（第 1 测量页面）或 C6.5.1 功能（第 2 测量页面）中设置了“一个值和条形图”或“两个值和条形图”时才会显示。如果菜单项 C6.4.2 第 1 变量值（第 1 测量页面）设置为“液位”，则仪表在常规模式下显示“液位”作为电流输出百分比（参阅图示中的项目①）。
以程序模式显示

![程序模式下的显示屏布局](image)

图 5-2: 程序模式下的显示屏布局
① 菜单编号或菜单项编号
② 子菜单或菜单项的位置 (菜单)
③ 菜单项名称

5.4.2 键盘按钮

键盘按钮功能

<table>
<thead>
<tr>
<th>键盘按钮</th>
<th>符号</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>常规模式，进入程序模式</td>
<td></td>
</tr>
<tr>
<td>(向右)</td>
<td>[>]</td>
<td>常规模式，进入程序模式。程序模式，菜单：进入子菜单或菜单项。菜单项，将光标向右移一位（包括小数点）。如果光标在最后一位数字上，则按下该按钮会将光标移动到第一位数字。</td>
</tr>
<tr>
<td>(返回)</td>
<td>[<]</td>
<td>常规模式，无</td>
</tr>
<tr>
<td>(退出)</td>
<td>[退出]</td>
<td>常规模式，无</td>
</tr>
<tr>
<td>(向下)</td>
<td>[向下]</td>
<td>常规模式，更改屏幕（测量页面 1 和 2 以及状态消息页面）</td>
</tr>
<tr>
<td>(向上)</td>
<td>[向上]</td>
<td>常规模式，更改屏幕（测量页面 1 和 2 以及状态消息页面）</td>
</tr>
</tbody>
</table>

如需有关键盘功能的更多数据，请访问，参考第 65 页 键盘功能。
启动

如何使用手按键盘按钮

所需设备
- 端盖扳手

① 使用仪表随附的端盖扳手拆除外壳盖。
② 按键盘上的按钮。

这将会操作仪表。

如何使用磁棒操作键盘按钮

所需设备
- 磁棒
信息！
执行该步骤无需卸下显示屏外壳盖。

- 捏住磁棒，靠近键盘按钮。
 键盘按钮将会运行。如果您必须运行一次以上的按钮，移开磁棒，然后将其再次靠近按钮。

5.5 通过 PACTware™ 远程通讯

PACTware™ 清晰地显示测量信息，可以让你远程设置仪表。这是个对所有仪表都开源的、开放的组态软件。它采用现场设备工具 (FDT) 技术。FDT 是一种系统与现场仪表之间信息传送的通讯标准。此标准遵循 IEC 62453。现场设备易于集成。安装由用户友好向导支持。

安装这些软件程序和设备:
- Microsoft® .NET Framework 版本 2.0 或更高版本。
- PACTware。
- HART® 转换器 (USB、RS232...)。
- 仪表的 Device Type Manager (DTM)。

软件和安装说明的 DVD-ROM 随仪表提供。

您也可以在我们的网页下载最新版的 PACTware™ 和 DTM。

请参阅 http://www.pactware.com 上的 PACTware Consortium 网站。
5.6 通过 AMS™ 设备管理器进行远程通讯

The AMS™ 设备管理器是工厂资产管理软件工具。它的作用是:

- 保存每台仪表的配置信息。
- 支持 HART® 和 FOUNDATION™ 现场总线仪表。
- 保存和读取过程数据。
- 保存和读取诊断状态信息。
- 协助计划预防性维修，使工厂停工时间降至最低。

DD 文件的 DVD-ROM 随仪表提供。
6.1 用户模式

常规模式
该模式显示测量数据和状态消息。如需有关测量的更多数据，请访问，请参考第 59 页 常规模式。如需有关状态消息的更多数据，请访问，请参考第 101 页 状态消息和诊断数据。

程序模式
使用该模式读取和更改参数，调试仪表，创建体积或质量测量的表格，以及更改临界值以在困难的执行条件下进行测量。要使用该程序模式更改设置，必须使用具有访问权限的仪表（用户、操作员或专家）。有关菜单项的更多数据，请访问，请参考第 74 页 功能说明。

所有用户均可以在程序模式下读取设置，但只有具有”操作员”和”专家”访问权限的用户可以更改设置。如需有关访问权限的更多数据，请访问，请参考第 62 页 仪表设置保护（访问级别）。

6.2 常规模式

该模式会显示测量数据。使用显示屏键盘更改屏幕上显示的测量数据类型以及读取仪表状态消息。

有 5 个选项可在显示屏上显示测量数据，请参阅以下的图示：

测量数据选项

<table>
<thead>
<tr>
<th>图 6-1: 常规模式下的测量数据选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 一个值</td>
</tr>
<tr>
<td>2. 测量值比例的一个值和 % 条形图</td>
</tr>
<tr>
<td>3. 两个值</td>
</tr>
<tr>
<td>4. 顶部测量值比例的两个值和 % 条形图</td>
</tr>
<tr>
<td>5. 三个值</td>
</tr>
</tbody>
</table>

图 6-1: 常规模式下的测量数据选项

1. 一个值
2. 测量值比例的一个值和 % 条形图
3. 两个值
4. 顶部测量值比例的两个值和 % 条形图
5. 三个值
测量数据包括不同的测量类型（物位、距离、体积、空距体积、质量等）。如果您在程序模式下输入了正确的参数，某些测量类型将只能在常规模式下使用。如果测量画面配置显示多个测量值，则常规模式会显示测量类型的缩写。有关常规模式中使用的缩写列表，请参阅下表：

常规模式中使用的测量类型的缩写

<table>
<thead>
<tr>
<th>测量类型</th>
<th>缩写</th>
</tr>
</thead>
<tbody>
<tr>
<td>距离</td>
<td>Dis</td>
</tr>
<tr>
<td>物位</td>
<td>Lvl</td>
</tr>
<tr>
<td>反射</td>
<td>Ref</td>
</tr>
<tr>
<td>传感器值</td>
<td>SV</td>
</tr>
<tr>
<td>体积</td>
<td>Vol</td>
</tr>
<tr>
<td>空距体积</td>
<td>Ull</td>
</tr>
<tr>
<td>质量</td>
<td>M</td>
</tr>
<tr>
<td>空距质量</td>
<td>UllM</td>
</tr>
<tr>
<td>线性化距离</td>
<td>Ldis 或 Distance Lin.</td>
</tr>
<tr>
<td>线性化物位</td>
<td>Lxlv 或 Level Lin.</td>
</tr>
</tbody>
</table>

测量数据格式错误

图 6-2：错误符号：测量数据的位数和小数位数不足
① 错误符号：测量数据的位数和小数位数不足，长度单位可能必须从 "mm" 更改为 "m"。

在本例中，仪表测量 10.001m 的距离，但 C7.5.1 长度设置为 "mm"，C6.4.5 第一值格式设置为 "X. XXX"（四数位，小数点后三位）。这不足以显示 10.001 m 的测量值。如果测量值等于或大于 10m，则将 C6.4.5 第一值格式设置为 "自动"。

您可更改常规模式下显示的测量值中的位数和小数位数。

信息！
如何更改常规模式下显示的测量值中的位数和小数位数
第 1 测量页面：进入菜单 C6.4 第 1 测量页面，然后更改 C6.4.5 第一值格式、C6.4.7 第二值格式或 C6.4.9 第三值格式的位数和小数位数。
第 2 测量页面：进入菜单 C6.5 第 2 测量页面，然后更改 C6.5.5 第一值格式、C6.5.7 第二值格式或 C6.5.9 第三值格式的位数和小数位数。

如果测量值有较大的变化，将相关的菜单项设置为 "自动"。
体积或质量测量
您必须制作一个转换表（计量表）来将测量数据显示为体积或质量。前往 C3.2 输入表（完整设置 > 转换）制作计量表。如需更多数据，请访问，请参考第 98 页 如何设置仪表测量体积或质量。

键盘按钮的功能（常规模式）

<table>
<thead>
<tr>
<th>键盘按钮</th>
<th>符号</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>[向右]</td>
<td>[>]</td>
<td>进入程序模式</td>
</tr>
<tr>
<td>[返回]</td>
<td>[▲]</td>
<td>—</td>
</tr>
<tr>
<td>[退出]</td>
<td>[>] + [▲]</td>
<td>—</td>
</tr>
<tr>
<td>[向下]</td>
<td>[▼]</td>
<td>更改屏幕（测量页面1和2，以及状态消息页面）</td>
</tr>
<tr>
<td>[向上]</td>
<td>[▲]</td>
<td>更改屏幕（测量页面1和2以及状态消息页面）</td>
</tr>
</tbody>
</table>

测量类型的定义

<table>
<thead>
<tr>
<th>测量类型</th>
<th>描述</th>
<th>可用单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>物位</td>
<td>这是显示和输出功能选项。从罐底到液体表面的高度（罐高 - 距离）。如果程序模式中的菜单项 C1.11 罐底偏移不为零，则此值将为（罐高 + 罐底偏移） - 传感器值。</td>
<td>m, cm, mm, in（英寸）, ft（英尺）, 自定义长度单位</td>
</tr>
<tr>
<td>距离</td>
<td>这是显示和输出功能选项。过程连接件表面（法兰面或螺纹止挡）到液体表面的距离。如果程序模式中的菜单项 C1.10 参考点偏移不为零，则该值将为传感器值 + 参考点偏移。如果菜单项 C1.10 参考点偏移为零（0），则距离 = 传感器值。另请参阅本表中的“传感器值”。</td>
<td>m, cm, mm, in（英寸）, ft（英尺）, 自定义长度单位</td>
</tr>
<tr>
<td>体积</td>
<td>这是显示和输出功能选项。它给出了罐内介质的体积或质量。如果您在编程模式（完整设置 > 转换）下准备好体积表，则该数据可用。有关如何准备转换单元的数据，请访问，请参考第 98 页 如何设置仪表测量体积或质量。</td>
<td>m³, L, hl（百升）, in³, ft³, gal（美制加仑）, pGal（英制加仑）, yd³, bbl（油）, bbl（啤酒）, 自定义体积单位</td>
</tr>
<tr>
<td>空距体积</td>
<td>这是显示和输出功能选项。它给出了可以放在储罐中的空体积。如果您在程序模式（完整设置 > 转换）下准备好体积表，则该数据可用。有关如何准备转换单元的数据，请访问，请参考第 98 页 如何设置仪表测量体积或质量。</td>
<td>m³, L, hl（百升）, in³, ft³, gal（美制加仑）, pGal（英制加仑）, yd³, bbl（油）, bbl（啤酒）, 自定义体积单位</td>
</tr>
<tr>
<td>质量</td>
<td>这是显示和输出功能选项。它给出了储罐介质的质量。如果您在编程模式（完整设置 > 转换）下准备好质量表，则该数据可用。有关如何准备转换单元的数据，请访问，请参考第 98 页 如何设置仪表测量体积或质量。</td>
<td>kg, tn. l.（英吨），tn.sh.（美吨），lb, t（公吨），Cst. Mass（自定义质量单位）</td>
</tr>
<tr>
<td>空距质量</td>
<td>这是显示和输出功能选项。它提供了可以放在储罐中的剩余质量。如果您在程序模式（完整设置 > 转换）下准备好质量表，则该数据可用。有关如何准备转换单元的数据，请访问，请参考第 98 页 如何设置仪表测量体积或质量。</td>
<td>kg, tn. l.（英吨），tn.sh.（美吨），lb, t（公吨），Cst. Mass（自定义质量单位）</td>
</tr>
<tr>
<td>反射</td>
<td>这是显示和输出功能选项。它是从液体表面反射并被仪表接收的反射雷达信号的百分比。</td>
<td>%</td>
</tr>
<tr>
<td>传感器值</td>
<td>这是显示和输出功能选项。过程连接件表面（法兰面或螺纹止挡）到液体表面的距离。在程序模式下不能更改此值。另请参阅本表中的“传感器值”。</td>
<td>m, cm, mm, in（英寸）, ft（英尺）, 自定义长度单位</td>
</tr>
</tbody>
</table>
6.3 程序模式

6.3.1 常规注意事项

在程序模式下更改仪表的设置。有关该菜单的数据已给出第74页。您可以:

- 使用A快速设置菜单更改显示语言、更改标签名称、登录以更改设置、执行标准设置和空频谱记录程序。
- 使用B测试菜单运行诊断测试、读取测量和频谱数据。
- 使用C完整设置菜单来更改设置。您可以设置体积或质量测量的转换表，更改电流输出值，更改HART®设置，更改常规模式下测量数据的显示方式，读取仪表标识数据，更改困难执行条件的临界参数，更改密码，更改测量单位或将仪表重置为出厂默认设置。

注意！
如果您在交付之前没有向供应商提供所有安装数据，则必须在“快速设置”菜单中执行标准设置步骤。

信息！
无法进入D服务菜单。该菜单用于工厂校准和经批准的人员。

6.3.2 仪表设置保护（访问级别）

本仪表的设置有三个不同的访问级别：”用户”、“操作员”和“专家”。“专家”是最高的访问级别。最高的访问级别允许您更改所有可用的功能。

<table>
<thead>
<tr>
<th>访问级别</th>
<th>默认密码</th>
<th>程序模式下的适用功能 （概述）</th>
</tr>
</thead>
</table>
| 专家 | 0058 | 读取：在“用户”访问级别中可用的测量数据和错误消息（常规模式和菜单C2实际值和C7.3.1消息视图）。
| | | 更改：菜单A快速设置、B测试和C完整设置中的所有子菜单。
| | | **注意**：您可以在菜单C7.2更改密码中更改“专家”访问级别的密码。请参阅以下的“信息！”注意事项。 |
| 操作员 | 0009 | 读取：在“用户”访问级别中可用的测量数据和错误消息（常规模式和菜单C2实际值和C7.3.1消息视图）。
| | | 更改：所有HART®设置（C5）但不是C5.1.1电流环路模式。
| | | **注意**：您可以在菜单C7.2更改密码中更改“操作员”访问级别的密码。请参阅以下的“信息！”注意事项。 |
| 用户 | — | 读取：测量数据和错误消息（常规模式和菜单C2实际值和C7.3.1消息视图）。
| | | 读取：菜单A快速设置、B测试和C完整设置中的所有设置。
| | | 更改：菜单C6显示（语言，背光灯打开/关闭，屏幕对比度和测量数据显示选项（常规模式，页面1和2））和C7.5单位（长度、体积、质量和自定义单位）中的所有设置。
| | | 更改访问级别。前往菜单A3登录或C7.2.1登录，从“用户”更改为“操作员”或“专家”访问级别。 |

如果您的访问级别太低，在程序模式下，显示屏将在菜单项旁显示一个“锁定”符号。如果需要更改设置，请将光标移至菜单项，按[>]并输入此时用于该菜单项的密码。
如何更改密码

- 按 [>] 进入程序模式。
- 按 2 × [▼]、[>]、5 × [▼]、[>]、[▼] 和 [>] 前往菜单 C7.2 安全性。
- 按 [>] 进入菜单项 C7.2.1 登录。
- 输入此时用于给定访问级别（“操作员”或“专家”）的密码。如果该密码是默认密码，请参阅该部分“程序模式下的访问级别和适用功能”表中的给定值。
- 按 [◄] 和 [▼] 前往菜单项 C7.2.2 更改密码。
- 按 [>] 进入菜单项。
- 输入当前用于在该步骤开始时设置的访问级别的密码。如果其为默认密码，请参阅该部分“程序模式下的访问级别和适用功能”表中的给定值。
- 输入新密码。
 - 如果更改了“操作员”访问级别的密码，则前三位必须为零（000x）。最后一位可以是数字（1...9）或字母（A...F）。
 - 如果更改了“专家”访问级别的密码，则前两位必须为零（00xx）。后两位可以为数字（1...9）或字母（A...F）。
- 再次输入新密码。
- 按 6 × [◄]，返回常规模式。

步骤结束。

信息！
- 每个访问级别均有四位十六进制密码。

 “操作员”访问级别的密码的前三位必须为零（000x）。最后一位可以为数字（1...9）或字母（A...F）。

 “专家”访问级别的密码的前两位必须为零（00xx）。后两位可以为数字（1...9）或字母（A...F）。

信息！
- 记下密码并将其放在安全地方。如果丢失了密码，请电话或书面联系您的供应商。

信息！
- 如果您断开仪表的电源然后重新通电，访问级别将返回到“用户”。如果5分钟内没有触摸键盘，则仪表将返回常规模式，访问级别将返回到“用户”。

图 6-3: 锁定符号

① 锁定符号。如果显示屏显示了该符号，则无法更改设置。

图 6-3: 锁定符号

<table>
<thead>
<tr>
<th>锁定符号</th>
<th>信息！</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>信息！</td>
</tr>
</tbody>
</table>

每个访问级别均有四位十六进制密码。

“操作员”访问级别的密码的前三位必须为零（000x）。最后一位可以为数字（1...9）或字母（A...F）。

“专家”访问级别的密码的前两位必须为零（00xx）。后两位可以为数字（1...9）或字母（A...F）。

信息！
记下密码并将其放在安全地方。如果丢失了密码，请电话或书面联系您的供应商。

信息！
如果您断开仪表的电源然后重新通电，访问级别将返回到“用户”。如果5分钟内没有触摸键盘，则仪表将返回常规模式，访问级别将返回到“用户”。
6.3.3 如何访问快速设置菜单

快速设置菜单包含仪表大部分配置所必需的菜单项。菜单项分为2组："标准设置"和"空频谱"。"标准设置"组允许用户（具有"专家"访问级别）设置罐高、罐类型（过程罐、储罐等）、输出变量、输出电流量程、0%量程、100%量程、报错功能和错误延迟。"空频谱"是一个程序，可以找到罐内的干扰信号，并使用过滤器将其从测量数据中移除。

警告！
如果您在交付之前没有向供应商提供所有安装数据，则必须在"快速设置"菜单中执行标准设置步骤。

执行以下步骤：
• 按 [>] 进入程序模式。
• 按[>]、2 × [▼] 前往菜单项 A3 登录。
• 按 [>]。输入此时用于“专家”访问级别的密码。如果是默认密码，请输入“0058”。
• 按 [◆]、[▼] 和 [>]，前往菜单项 A4.1 标准设置。
• 按 [>]。在“标准设置”菜单中进行仪表的基本配置。有关程序的更多数据，请访问、请参考第89页 标准设置。在程序的每一步结束时按 [◆]，继续下一步。
• 按 [▼] 和 [>]，前往菜单项 A4.2.1 记录频谱。
• 按 [>] 开始空频谱记录程序。如需更多数据，请访问、请参考第92页 空频谱记录。在程序的每一步结束时按 [◆] 继续下一步。
• 步骤结束。
6.3.4 键盘功能

菜单导航

图 6-4: 菜单导航
1. 菜单编号或菜单项编号
2. 子菜单或菜单项的位置（菜单）
3. 菜单项名称

这是您在程序模式下看到的内容。按钮的功能在下表中给出：

菜单导航按钮功能

<table>
<thead>
<tr>
<th>按钮</th>
<th>描述</th>
<th>功能</th>
</tr>
</thead>
</table>
| 向右 | • 下一级菜单（例如，从菜单 C1 到子菜单 C1.1）。
 | | • 进入菜单项。 |
| 进入 | • 上一级菜单（例如，从子菜单 C1.1 到菜单 C1）。
 | | • 进入常规模式。如果在程序模式下更改了设置，则必须保存或取消新的设置。欲了解更多信息，请访问第 68 页 如何保存程序模式中更改的设置。 |
| Esc 退出 | • 上一级菜单（例如，从子菜单 C1.1 到菜单 C1）。 |
| 向下 | • 向下滚动菜单列表（例如，从菜单 C1 到菜单 C2）。
 | | • 向下滚动子菜单列表（例如，从子菜单 C2.1 到子菜单 C2.2）。 |
| 向上 | • 向上滚动菜单列表（例如，从菜单 C2 到菜单 C1）。
 | | • 向上滚动子菜单列表（例如，从子菜单 C2.2 到子菜单 C2.1）。 |
菜单项中的参数表

图 6-5: 菜单项中的参数表

1. 此时存有参数的菜单项（第一个屏幕），按 [>] 进入菜单项。
2. 按 [\[] 或 [\]] 更改参数
3. 按 [\[\]] 设置新参数并返回到菜单级别
4. 参数
5. 菜单项名称
6. 出厂默认值（左侧）和出厂默认符号（右侧）
7. “打勾”符号表示有新的设置（新设置此时不保存）

这是选择参数表菜单项时所见。按钮功能在下表中给出：

参数表菜单项中的按钮功能

<table>
<thead>
<tr>
<th>按钮</th>
<th>描述</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>{→}</td>
<td>向右</td>
<td>—</td>
</tr>
<tr>
<td>{◆}</td>
<td>进入</td>
<td>选择参数并返回菜单</td>
</tr>
<tr>
<td>{◆} + {◆}</td>
<td>Esc （退出）</td>
<td>如果在更改参数后立即按下这些按钮，仪表也会忽略此更改并返回菜单。</td>
</tr>
<tr>
<td>{◆}</td>
<td>向下</td>
<td>向下滚动列表</td>
</tr>
<tr>
<td>{◆}</td>
<td>向上</td>
<td>向上滚动列表</td>
</tr>
</tbody>
</table>
菜单项中的值

图 6-6: 菜单项中的值

1. **此时有项值的菜单项**（第一个屏幕），按 [>] 进入菜单项，光标显示在第一个数位上。
2. **反复按 [>] 移动光标**。按 [▲] 或 [▼] 更改数位的值。如果数位是数字的一部分，则从 0..9 中进行选择。如果数位是自定义单位名称的一部分，请参阅本节末尾的表格以获取可用字符的列表。如果光标在小数点上，则可以更改小数点的位置。
3. 按 [▼] 设置新参数并返回到菜单级别
4. 进行选择，将光标放在数位或小数点上，
5. 菜单项名称
6. 出厂默认值（左侧）和出厂默认符号（右侧）
7. 此菜单项和最小 / 最大值 (min./max.) （左侧）以及 min./max. 符号（右侧）
8. “打勾”符号表示有新的设置（新设置此时不保存）

信息！

如果菜单项具有可以更改的值，则可以将非常大和非常小的值写为具有指数 (bn) 的值。例如，如果显示屏上显示的值是 100.00×10³，则该值等于 100 × 10³ 或 100000。

按钮功能在下表中给出：

数值菜单中的按钮功能

<table>
<thead>
<tr>
<th>按钮</th>
<th>描述</th>
<th>功能</th>
</tr>
</thead>
</table>
| ![向右按钮](image) | 向右 | - 进入菜单项并查看此时的存储值。
- 进入菜单项设置层以更改值。
- 将光标向右移动一位数。如果光标在最后一位数上，再次按 [>] 返回到第一位数。您也可以将光标放在小数点上。 |
| ![进入按钮](image) | 进入 | 接受此数值并返回主菜单。 |
| ![Esc按钮](image) | Esc（退出） | 如果在更改值后立即按下这些按钮，仪表也会忽略此更改并返回菜单。 |
| ![向下按钮](image) | 向下 | 如果光标在数字上，则该按钮会减小数字值。如果光标在小数点上，则该按钮会将小数点向左移动（这将数值减小 10 倍）。 |
| ![向上按钮](image) | 向上 | 如果光标在数字上，则该按钮会增加数字值。如果光标在小数点上，则该按钮会将小数点向右移动（这会将值增加 10 倍）。 |
6.3.5 如何保存程序模式中更改的设置

- 在所有必要的菜单项中更改参数时，按 [aturas] 以接受新参数。
- 反复按 [aturas] 回到“保存配置？”屏幕。
- 仪表将要求您保存或取消您的设置。按 [aturas] 或 [aturas]，从是，否或后退中进行选择。返回使显示屏返回到程序模式。如果该屏幕设置为“是”或“否”，按 [aturas] 接受（是）或拒绝（否）新设置。
- 如果在屏幕设置为“是”或“否”时按 [aturas]，显示屏将回到常规模式。
6.3.6 菜单一览

菜单概述：A - 快速设置

<table>
<thead>
<tr>
<th>常规</th>
<th>程序</th>
</tr>
</thead>
<tbody>
<tr>
<td>菜单 A</td>
<td>子菜单</td>
</tr>
<tr>
<td>> ⇧</td>
<td>↓ ⇧</td>
</tr>
</tbody>
</table>

A 快速设置
- A1 语言
- A2 标签
- A3 登录
- A4 应用设置助手

A4 1 标准设置
- A4.1.1.1 长度单位
- A4.1.2.1 储罐类型
- A4.1.2.2 储罐高度
- A4.1.2.3 导波管高
- A4.1.2.4 导波管直径
- A4.1.3.1 电流输出 1 Var.
- A4.1.3.2 0% 量程
- A4.1.3.3 100% 量程
- A4.1.3.4 电流输出量程
- A4.1.3.5 报错功能

A4.2 空频谱 / A4.2.1 记录频谱
- A4.2.1.2 空频谱类型
- A4.2.1.3 部分距离
- A4.2.1.4 检查储罐内部和介质
- A4.2.1.5 开始记录
- A4.2.1.6 记录空频谱数据
- A4.2.1.10 空频谱图
- A4.2.1.11 保存频谱
- A4.2.1.12 启用空频谱

1. 如果将菜单项 A4.1.2.1 设置为“导波管”，则仪表将显示此菜单项。
2. 如果将菜单项 A4.2.1.1 设置为“部分，平均”或“部分，最大”，则仪表将显示此菜单项。
菜单概述：B - 测试

<table>
<thead>
<tr>
<th>常规</th>
<th>程序</th>
<th>子菜单</th>
</tr>
</thead>
<tbody>
<tr>
<td>> ←</td>
<td>↓ ↑</td>
<td>> ←</td>
</tr>
</tbody>
</table>

菜单 B
- **B1 模拟①**
 - **B1.1 设定体积**
 - B1.1.2 物位
 - B1.1.3 距离
 - B1.1.4 反射
 - B1.1.5 物位线性②
 - B1.1.6 体积②
 - B1.1.7 质量②
 - B1.1.8 距离线性②
 - B1.1.9 空距体积②
 - B1.1.10 空距质量②
- **B1.2 输出**
 - B1.2.1 电流输出①

子菜单
- **B2 实际值**
 - B2.1 运行时间
 - B2.3 传感器值
 - B2.4 物位
 - B2.5 距离
 - B2.6 反射
 - B2.7 物位线性②
 - B2.8 体积②
 - B2.9 质量②
 - B2.10 距离线性②
 - B2.11 空距体积②
 - B2.12 空距质量②
 - B2.13 传感器温度
 - B2.14 转换器温度

B3 原始频谱
- B3.2 原始频谱

B4 修正频谱
- B4.2 修正频谱

B5 空频谱
- B5.2 空频谱

① 您必须在 A3 登录或 C7.2.1 登录中输入“专家”密码才能找到并使用此菜单。
② 如果在菜单 C.3 转换中创建一个计量表，则仪表将显示此菜单项。
菜单概览：C – 完整设置

<table>
<thead>
<tr>
<th>常规</th>
<th>程序</th>
</tr>
</thead>
<tbody>
<tr>
<td>菜单 C</td>
<td>子菜单</td>
</tr>
<tr>
<td>> <</td>
<td>↓ ↑</td>
</tr>
<tr>
<td>C 完整设置</td>
<td>C1 安装参数</td>
</tr>
</tbody>
</table>

- C1.1 储罐类型
- C1.2 储罐高度
- C1.3 导波管高度
- C1.4 导波管直径
- C1.5 死区
- C1.6 时间常数
- C1.7 天线类型
- C1.8 天线延长管
- C1.9 隔离段
- C1.10 参考点偏移
- C1.11 罐底偏移

<table>
<thead>
<tr>
<th>C2 过程</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2.1 跟踪速度</td>
</tr>
<tr>
<td>C2.2 介质 Epsilon R</td>
</tr>
<tr>
<td>C2.3 气体 Epsilon R</td>
</tr>
<tr>
<td>C2.4 测量模式</td>
</tr>
<tr>
<td>C2.5 满溢检测</td>
</tr>
<tr>
<td>C2.6 满溢临界值</td>
</tr>
<tr>
<td>C2.7 多重反射启用</td>
</tr>
<tr>
<td>C2.8 空频谱启用</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C3 转换 ③</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3.1 编辑表格</td>
</tr>
<tr>
<td>C3.1.1 擦除表格？</td>
</tr>
<tr>
<td>C3.1.3 选择转换？</td>
</tr>
<tr>
<td>C3.2 输入表</td>
</tr>
<tr>
<td>C3.2.2 点</td>
</tr>
<tr>
<td>C3.2.4 物位</td>
</tr>
<tr>
<td>C3.2.5 转换值</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C 完整设置</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4 输出</td>
</tr>
<tr>
<td>C4.1 电流输出 1</td>
</tr>
<tr>
<td>C4.1.1 电流输出 1 Var.</td>
</tr>
<tr>
<td>C4.1.2 0% 量程</td>
</tr>
<tr>
<td>C4.1.3 100% 量程</td>
</tr>
<tr>
<td>C4.1.4 电流输出量程</td>
</tr>
<tr>
<td>C4.1.5 报错功能</td>
</tr>
<tr>
<td>C4.1.7 低误差电流</td>
</tr>
<tr>
<td>C4.1.8 高误差电流</td>
</tr>
<tr>
<td>C4.1.9.2 微调 / 4mA 微调</td>
</tr>
<tr>
<td>C4.1.9.5 微调 / 20mA 微调</td>
</tr>
</tbody>
</table>
常规

<table>
<thead>
<tr>
<th>菜单</th>
<th>子菜单</th>
</tr>
</thead>
<tbody>
<tr>
<td>> ≤</td>
<td>↓ ↑</td>
</tr>
</tbody>
</table>

C 完整设置

C5 通讯

C5.1 HART
- C5.1.1 电流环路模式
- C5.1.2.1 识别 / 轮询地址
- C5.1.2.2 识别 / 标签
- C5.1.2.3 识别 / 长标签
- C5.1.2.4 识别 / 制造商 ID
- C5.1.2.5 识别 / 仪表类型
- C5.1.2.6 识别 / 仪表 ID
- C5.1.2.7 识别 / 普遍修订
- C5.1.2.8 识别 / 仪表修订
- C5.1.2.9 识别 / 软件修订
- C5.1.2.10 识别 / 硬件修订
- C5.1.3.1 仪表信息 / 描述符号
- C5.1.3.2 仪表信息 / 消息
- C5.1.3.3 仪表信息 / 日期
- C5.1.3.4 仪表信息 / Cfg. 更改计数器
- C5.1.4.1 HART 变量 / 电流输出 1 Var.
- C5.1.4.2 HART 变量 / HART 第二 / CO2 Var.
- C5.1.4.3 HART 变量 / 第三 Var.
- C5.1.4.4 HART 变量 / 第四 Var.

C6 显示

- C6.1 语言
- C6.2 背光
- C6.3 对比度
<table>
<thead>
<tr>
<th>常规</th>
<th>程序</th>
</tr>
</thead>
<tbody>
<tr>
<td>菜单 C</td>
<td>子菜单</td>
</tr>
<tr>
<td>> <</td>
<td>> <</td>
</tr>
<tr>
<td>C 完整设置</td>
<td>C6 显示</td>
</tr>
<tr>
<td>C6.4.1 显示方式</td>
<td>C6.4.2 第一值变量</td>
</tr>
<tr>
<td>C6.4.3 0% 量程</td>
<td>C6.4.4 100% 量程</td>
</tr>
<tr>
<td>C6.4.5 第一值格式</td>
<td>C6.4.6 第二值变量 ⑦</td>
</tr>
<tr>
<td>C6.4.7 第二值格式 ⑦</td>
<td>C6.4.8 第三值变量 ⑦</td>
</tr>
<tr>
<td>C6.4.9 第三值格式 ⑦</td>
<td></td>
</tr>
<tr>
<td>C6.5 第 2 测量页面</td>
<td></td>
</tr>
<tr>
<td>C6.5.1 显示方式</td>
<td></td>
</tr>
<tr>
<td>C6.5.2 第一值变量</td>
<td></td>
</tr>
<tr>
<td>C6.5.3 0% 量程</td>
<td></td>
</tr>
<tr>
<td>C6.5.4 100% 量程</td>
<td></td>
</tr>
<tr>
<td>C6.5.5 第一值格式</td>
<td></td>
</tr>
<tr>
<td>C6.5.6 第二值变量 ⑧</td>
<td></td>
</tr>
<tr>
<td>C6.5.7 第二值格式 ⑧</td>
<td></td>
</tr>
<tr>
<td>C6.5.8 第三值变量 ⑧</td>
<td></td>
</tr>
<tr>
<td>C6.5.9 第三值格式 ⑧</td>
<td></td>
</tr>
<tr>
<td>C7 仪表</td>
<td></td>
</tr>
<tr>
<td>C7.1 信息</td>
<td></td>
</tr>
<tr>
<td>C7.1.1 位号</td>
<td></td>
</tr>
<tr>
<td>C7.1.2 序列号</td>
<td></td>
</tr>
<tr>
<td>C7.1.3 设备名称</td>
<td></td>
</tr>
<tr>
<td>C7.1.4 V 代码</td>
<td></td>
</tr>
<tr>
<td>C7.1.5 机芯版本</td>
<td></td>
</tr>
<tr>
<td>C7.1.6 软件版本</td>
<td></td>
</tr>
<tr>
<td>C7.1.7 转换器序列号</td>
<td></td>
</tr>
<tr>
<td>C7.1.8 生产日期</td>
<td></td>
</tr>
<tr>
<td>C7.1.9 标定日期</td>
<td></td>
</tr>
<tr>
<td>C7.2 安全等级</td>
<td></td>
</tr>
<tr>
<td>C7.2.1 登录</td>
<td></td>
</tr>
<tr>
<td>C7.2.2 修改密码</td>
<td></td>
</tr>
<tr>
<td>C7.2.3 重置密码</td>
<td></td>
</tr>
<tr>
<td>C7.2.4 解锁扩展范围 ⑨</td>
<td></td>
</tr>
<tr>
<td>C7.2.5 解锁 SIL ⑨</td>
<td></td>
</tr>
<tr>
<td>C7.3 错误</td>
<td></td>
</tr>
<tr>
<td>C7.3.1 信息预览</td>
<td></td>
</tr>
<tr>
<td>C7.3.2.1 错误映射 / 传感器：信息</td>
<td></td>
</tr>
</tbody>
</table>
6.3.7 功能说明

A – 快速设置菜单

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>语言</td>
<td>选择以存储在仪表中的一种语言显示测量数据和设置。 更改设置的最低访问级别：用户</td>
<td>英语，法语，德语，意大利语，日语，中文（简体），葡萄牙语，俄语，西班牙语，捷克语，波兰语，土耳其语</td>
<td>英语</td>
</tr>
<tr>
<td>A2</td>
<td>位号</td>
<td>您可以于此处看到 TAG 名称。标签名称最多可以有 8 个字符，可以包含数字、大写和小写字母以及特殊字符。有关更多数据，请参阅第 65 页 键盘功能（菜单项中的值）。 更改设置的最低访问级别：操作员</td>
<td>请参阅“功能描述”</td>
<td>TANK01</td>
</tr>
<tr>
<td>A3</td>
<td>登录</td>
<td>请于此处输入正确密码以更改设置。如果用户没有输入密码，则将更改“用户”访问级别的设置。如需更多数据，请参阅第 62 页 仪表设置保护（访问级别）。</td>
<td>4 位十六进制密码</td>
<td>请参阅“功能描述”</td>
</tr>
</tbody>
</table>
A4 应用设置助手

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4.1</td>
<td>标准设置</td>
<td>这启动了适用于大多数应用的快速设置程序。您可以设置长度单位，安装规格（储罐类型，储罐高度，导波管高度，导波管直径等）和电流输出规格（0%量程，100%量程，报警功能等）。有关这些功能的更多数据，请参阅本节中的表C - 完整设置。有关程序的更多数据，请访问、请参考第89页 标准设置。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

执行程序的最低访问级别：专家

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4.2</td>
<td>空频谱</td>
<td>储罐中的固定和移动物体会产生干扰信号。使用该过滤器过滤它们来正确测量储罐介质。该菜单项启动快速设置程序。建议您在执行步骤之前将储罐清空或仅填充到最低限度。我们还建议，如果您将仪表安装在具有可移动零件设备（例如搅拌器）的储罐上，请启动设备。在程序结束时将保存频谱步骤设置为"是"，空频谱启用步骤设置为"启用"，将保存配置？屏幕设置为"是"，以使用数据。有关程序的更多数据，请访问，请参考第92页 空频谱记录。另请参阅"如何制作过滤器来消除雷达信号干扰"第100页。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

执行程序的最低访问级别：专家

B - 测试菜单

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
</table>

B1 模拟

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.1.2</td>
<td>物位</td>
<td>这将仪表设置为给定的测试物位值。确保菜单项C4.1.1 电流输出1 Var. 在仪表模拟物位值之前设置为"物位"。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

当您按【】确认该值时，显示屏将显示"开始模拟？"的问题。按【】或【】将显示屏设置为"是"。再次按【】开始测试，仪表在1小时后返回常规模式。

执行程序的最低访问级别：专家

最小至最大：
-4900.0...+5100.0 m / -192.91+03...+200.79+03 in / -16076...+16732 ft

1
<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.1.3</td>
<td>距离</td>
<td>这将仪表设置为给定的测试距离值。确保菜单 C4.1.1 电流输出 1 Var. 在仪表模拟距离值之前设置为“距离”。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。当您按[]确认该值时，显示屏将显示“开始模拟？”的问题。按 [] 或 [] 将显示设置为“是”。再次按[]开始测试。仪表在 1 小时后返回常规模式。执行程序的最低访问级别：专家</td>
<td>最小至最大： -4900.0...+5100.0 m / -192.91...+200.79 in / -16076...+16732 ft</td>
<td>[]</td>
</tr>
<tr>
<td>B1.1.4</td>
<td>反射</td>
<td>这将仪表设置为给定的测试反射值。确保菜单 C4.1.1 电流输出 1 Var. 在仪表模拟物位值之前设置为“折射”。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。当您按[]确认该值时，显示屏将显示“开始模拟？”的问题。按 [] 或 [] 将显示设置为“是”。再次按[]开始测试。仪表在 1 小时后返回常规模式。执行程序的最低访问级别：专家</td>
<td>最小至最大： 0...100%</td>
<td>[]</td>
</tr>
<tr>
<td>B1.1.5</td>
<td>物位线性</td>
<td>这将仪表设置为给定的测试物位值（线性化）。菜单 C3.1 编辑表中设置线性化表格时才可用。确保菜单 C4.1.1 电流输出 1 Var. 在仪表模拟物位值之前设置为“线性物位”。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。当您按[]确认该值时，显示屏将显示“开始模拟？”的问题。按 [] 或 [] 将显示设置为“是”。再次按[]开始测试。仪表在 1 小时后返回常规模式。执行程序的最低访问级别：专家</td>
<td>最小至最大： -5000.0...+5000.0 m / -196.85...+196.85 in / -16404...+16404 ft</td>
<td>[]</td>
</tr>
<tr>
<td>B1.1.6</td>
<td>体积</td>
<td>这将仪表设置为给定的测试体积值。只有在菜单 C3.1 编辑表中设置了转换（体积）表时，菜单 C4.1.1 才可用。确保菜单 C4.1.1 电流输出 1 Var. 在仪表模拟体积值之前设置为“体积”。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。当您按[]确认该值时，显示屏将显示“开始模拟？”的问题。按 [] 或 [] 将显示设置为“是”。再次按[]开始测试。仪表在 1 小时后返回常规模式。执行程序的最低访问级别：专家</td>
<td>最小至最大： 0...1.00×10⁶ m³</td>
<td>[]</td>
</tr>
<tr>
<td>菜单编号</td>
<td>功能</td>
<td>功能说明</td>
<td>选择列表</td>
<td>默认</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>B1.1.7</td>
<td>质量</td>
<td>这将仪表设置为给定的测试质量值。只有在菜单项 C3.1 编辑表中设置转换（质量）表格时，该菜单项才可用。确保菜单项 C4.1.1 电流输出 1 Var. 在仪表模拟质量值之前设置为“质量”。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。当您按 [←] 确认该值时，显示屏将显示“开始模拟？”的问题。按 [↓] 或 [▲] 将显示屏设置为“是”。再次按 [→] 开始测试。仪表在 1 小时后返回常规模式。执行程序的最低访问级别：专家</td>
<td>最小至最大： 0...10,000 kg</td>
<td>1</td>
</tr>
<tr>
<td>B1.1.8</td>
<td>距离线性</td>
<td>这将仪表设置为给定的测试距离值（线性化），此菜单项只有在菜单项 C3.1 编辑表中设置线性化表格时才可用。确保菜单项 C4.1.1 电流输出 1 Var. 在仪表模拟线性距离值之前设置为“线性距离”。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。当您按 [←] 确认该值时，显示屏将显示“开始模拟？”的问题。按 [↓] 或 [▲] 将显示屏设置为“是”。再次按 [→] 开始测试。仪表在 1 小时后返回常规模式。执行程序的最低访问级别：专家</td>
<td>最小至最大： -5000.0 m / -196,850 in / -1640.0 ft</td>
<td>1</td>
</tr>
<tr>
<td>B1.1.9</td>
<td>空距体积</td>
<td>这将仪表设置为给定的测试空距体积值。只有在菜单项 C3.1 编辑表中设置了转换（体积）表格时，此菜单项才可用。确保菜单项 C4.1.1 电流输出 1 Var. 在仪表模拟空距体积值之前设置为“空距体积”。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。按 [←] 时，显示屏显示问题“开始模拟？”。按 [↓] 或 [▲] 将显示屏设置为“是”。再次按 [→] 开始测试。仪表在 1 小时后返回常规模式。执行程序的最低访问级别：专家</td>
<td>最小至最大： 0...1,000 m³</td>
<td>1</td>
</tr>
<tr>
<td>B1.1.10</td>
<td>空距质量</td>
<td>这将仪表设置为给定的测试空距质量值。只有在菜单项 C3.1 编辑表中设置了转换（质量）表格时，此菜单项才可用。确保菜单项 C4.1.1 电流输出 1 Var. 在仪表模拟质量值之前设置为“空距质量”。该程序会发送一个与测试读数一致的输出信号。输出将更改为所选值，与测量数据无关。当您按 [←] 确认该值时，显示屏将显示“开始模拟？”的问题。按 [↓] 或 [▲] 将显示屏设置为“是”。再次按 [→] 开始测试。仪表在 1 小时后返回常规模式。执行程序的最低访问级别：专家</td>
<td>最小至最大： 0...10,000 kg</td>
<td>1</td>
</tr>
</tbody>
</table>
B1.2 输出

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.2.1</td>
<td>电流输出 1</td>
<td>这将模拟输出 1 设置为测试值 [mA]。输出将更改为选定值，与测量值无关。</td>
<td>3.6...21.5 mA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>当您按 [+] 确认该值时，显示屏将显示“开始模拟？”的问题。按 [▼] 或 [▲] 将显示屏设置为“是”。再次按 [▲] 或 [▼] 开始测试，仪表在 1 小时后返回常规模式。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

执行程序的最低访问级别： 专家

B2 实际值

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2.1</td>
<td>运行时间 [s]</td>
<td>这是仪表在短时间内通电的总时间。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.4</td>
<td>物位</td>
<td>此菜单项显示即时测量的物位读数，该测量数据是以在菜单 C7.5 单位中设置的单位显示的。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.5</td>
<td>距离</td>
<td>此菜单项显示即时测量的距离读数。该测量数据是以在菜单 C7.5 单位中设置的单位显示的。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.6</td>
<td>反射</td>
<td>该菜单项显示发射的雷达信号的百分比，该信号在罐罐介质的表面上反射，并被仪表接收。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.7</td>
<td>物位线性</td>
<td>该菜单项显示即时测量的物位读数（线性化）。该测量数据是以在菜单 C7.5 单位中设置的单位显示的。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.8</td>
<td>体积</td>
<td>该菜单项显示即时测量的体积读数。该测量数据是以在菜单 C7.5 单位中设置的单位显示的。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.9</td>
<td>质量</td>
<td>该菜单项显示即时测量的质量读数。该测量数据是以在菜单 C7.5 单位中设置的单位显示的。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.10</td>
<td>距离线性</td>
<td>该菜单项显示即时测量的距离读数（线性化）。该测量数据是以在菜单 C7.5 单位中设置的单位显示的。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.11</td>
<td>空距体积</td>
<td>该菜单项显示即时测量的空距体积读数。该测量数据是以在菜单 C7.5 单位中设置的单位显示的。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.12</td>
<td>空距质量</td>
<td>该菜单项显示即时测量的空距质量读数。该测量数据是以在菜单 C7.5 单位中设置的单位显示的。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.13</td>
<td>传感器温度</td>
<td>传感器线路板的温度。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>B2.14</td>
<td>转换器温度</td>
<td>转换器线路板的温度。如果温度低于 -20°C / -4°F 或高于 +70°C / +158°F，显示屏的运行可能会停止。</td>
<td>只读</td>
<td>—</td>
</tr>
</tbody>
</table>
菜单编号 | 功能 | 功能说明 | 选择列表 | 默认
--- | --- | --- | --- | ---

B3 原始频谱

| B3.2 | 原始频谱 | 该菜单项显示雷达信号的原始频谱数据，该信号在储罐介质的表面上反射并被仪表接收，该数据显示为满刻度信号相对于距离的百分比图表。 | 只读 | —

B4 修正频谱

| B4.2 | 修正频谱 | 该菜单项显示雷达信号校正后的频谱数据，该信号在储罐介质的表面上反射并被仪表接收。这是从功率谱数据中减去空罐的频谱数据的结果，该数据显示为满刻度信号相对于距离的百分比图表。 | 只读 | —

B5 空频谱

| B5.2 | 空频谱 | 该菜单项显示雷达信号的频谱，该信号在空罐内部的物体上进行反射（干扰信号）。该数据显示为满刻度信号相对于距离的百分比图表。 | 只读 | —

C - 完整设置菜单

C1 安装。参数

| C1.1 | 储罐类型 | 仪表使用的条件。如果产品表面平坦，请选择“储罐”；如果产品表面受到干扰，请选择“过程罐”；如果产品表面被涡流和泡沫搅动，请选择“搅拌器”。如果仪表安装在导波管中，请选择“导波管”。 | 处理 | ①

更改设置的最低访问级别：专家

最小至最大：
- 20000 mm / 787.40（扬声器，导波管，过程罐，储罐）
- 1.0000 m / 39.370（扬声器，导波管，过程罐，储罐）

C1.2 要高

扬高是从过程连接件的法兰面 / 螺纹止挡到罐底的距离。如果您将仪表用于LPR（露天）应用，则此值是仪表必须测量的最大距离（测量范围）。

更改设置的最低访问级别：专家

最小至最大：
- 0.0...100.00 mm / 0.0...39.331
- 0.0...196.85 ft / 65.617 ft

C1.3 导波管高度

导波管的高度。如果在菜单项 C.1.1 储罐类型中设置了“导波管”，则该菜单项可用。

更改设置的最低访问级别：专家

最小至最大：
- 0.000...20.000 m / 0.0...65.617 ft

C1.4 导波管直径

导波管的内径。如果在菜单项 C.1.1 储罐类型中设置了“导波管”，则该菜单项可用。

更改设置的最低访问级别：专家

最小至最大：
- 100 mm / 3.937

C1.5 死区

从法兰面或螺纹止挡到测量范围上限（用户设定的无法测量的区域）的距离。我们建议天线底部以下的最小死区为100 mm / 4"。如果距离小于死区，则仪表继续在显示屏上显示死区。

更改设置的最低访问级别：专家

最小至最大：
- 0.0...5000.00 mm / 0.0...196.85 ft
- 0.0...16.404 ft

备注：
- ① 默认值是开始模拟时的测量值
- ② 天线长度 + 天线延长管长度 +100 mm / 4"
### 菜单编号	功能	功能说明	选择列表	默认
C1.6	时间常数	使用此功能，仪表会处理多个测量读数以滤除干扰。增加时间常数将会理顺整 合的读数，减小会使读数不平整。s = 秒。	最小至最大：0.0...100.0 sec (秒)	3 s
更改设置的最低访问级别：	专家			
C1.7	天线类型	连接到仪表的天线类型。如果您更改了 天线，该设置将会影响 C1.2 罐高和 C1.5 尺。	金属喇叭 (DN40), 金属喇叭 (DN50), 金属喇叭 (DN65), 金属喇叭 (DN80), 金属喇叭 (DN100), 金属喇叭 (DN200), 水滴型 (PTFE, DN80), 水滴型 (PTFE, DN100), 水滴型 (PTFE, DN150), 水滴型 (PEEK, DN80), 水滴型 (PEEK, DN100), 水滴型 (PEEK, DN150), 卫生型 (PEEK, DN50)	客户订单中指定的
更改设置的最低访问级别：	专家			
C1.8	天线延长管	可选的天线延长管。这些连接在法兰和 天线之间。每段长为 105 mm / 4.1"。	最小至最大：0.0...1050 mm / 0.0...41.339" / 0.0...3.449 ft	0 mm / 0"
更改设置的最低访问级别：	专家			
C1.9	隔离段	转换器和过程连接件之间的可选隔离 段。这用于高温版本的仪表。每段长为 105 mm / 4.1"。	最小至最大：0.0...2000 mm / 0.0...78.740" / 0.0...6.5617 ft	0 mm / 0"
更改设置的最低访问级别：	专家			
C1.10	参考点偏移	与参考点位置 (距离) 有关的偏移。参 点点位置高于仪表法兰面时，此值为 正，如果低于法兰面，则为负值。如需 更多数据，请访问 / 请参考第 95 页 距 离测量。	最小至最大：-5000.0+0...+5000.0 m / -196.85+0.03...+196.85+0.03 ft	0 m / 0 ft
更改设置的最低访问级别：	专家			
C1.11	罐底偏移	与参考点位置 (物位) 有关的偏移。该 参数的仪表参考点是储罐底部 (在菜单 项 C1.2 罐高设置)。当参考点位置低 于罐底时，该值为正值，如果高于罐 底，则为负值。如需更多数据，请参 考第 96 页 物位测量。	最小至最大：-5000.0+0...+5000.0 m / -196.85+0.03...+196.85+0.03 ft	0 m / 0 ft
更改设置的最低访问级别：	专家			

C2 过程

C2.1 | 跟踪速度 | 此菜单项以米 / 分钟或英尺 / 分钟为单位设置最高物位变化率。测量值不能快 于跟踪速度。 | 最小至最大：1.2...60.0 m/ 分钟 / 3.94...196.85 ft | 500.03 m/ 分钟 / 1.64042 ft/ 分钟
| 更改设置的最低访问级别： | 专家 |
C2.2 | 介质 Epsilon R | 本仪表根据产品 εr 自动计算物位。如果 在菜单项 C2.4 测量模式中选择 "TBF Full1" 或 "TBF Auto"，则可以手动更改此 值来调整读数。 | 1.0...20 | 2.0
| 更改设置的最低访问级别： | 专家 |
C2.3 | 气体 Epsilon R | 雷达物位测量仪表的主要参数。这可适 用于含有特定气体的高压应用或储罐。 如果气体不是 1.0，则将 εr 值设置为气 体的 εr 值。 | 1.0...20 | 1.0
<p>| 更改设置的最低访问级别： | 专家 |</p>
<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2.4</td>
<td>测量模式</td>
<td>在“直接”模式下，物位信号是罐内介质表面的反射。如果介电常数非常低，仪表使用“TBF Auto”或“TBF Full”模式。处于“TBF”模式的仪表使用罐底的雷达反射（信号通过罐内介质）。罐底必须有平坦的底部以便仪表在“TBF”模式下正常运行。针对ε_r > 1.4的罐内介质，此菜单项默认设置为“直接”。如果ε_r非常低（< 1.4），则使用“TBF Full”。如果ε_r低（ε_r = 1.4 ... 1.5），则使用“TBF Auto”模式。“TBF Auto”是一种自动模式，可让仪表在“直接”模式和“TBF”模式之间进行选择。如果使用“TBF Full”或“TBF Auto”，请在菜单项C2.2介质Epsilon R中输入介电常数。另请参阅“测量原理”第116页。</td>
<td>直接，TBF Auto，TBF Full</td>
<td>直接</td>
</tr>
<tr>
<td>C2.5</td>
<td>满溢检测</td>
<td>如果此功能正在运行，即使仪表处于死区，其也将监视物位。显示屏上显示的输出保持固定在死区，但错误信息会警告用户储罐太满。</td>
<td>已禁用，已启用</td>
<td>已禁用</td>
</tr>
<tr>
<td>C2.6</td>
<td>满溢临界值</td>
<td>如果已将菜单项C2.5满溢检测设置为“已启用”，则此菜单项将可用。如果仪表在死区下不能轻松测量（参见菜单项C1.5），则可以更改满溢临界值。该值是雷达信号幅度的百分比。要输入正确的值，建议您与供应商进行口头或书面上的沟通。</td>
<td>最小至最大：0.0...100.0%</td>
<td>10%</td>
</tr>
<tr>
<td>C2.7</td>
<td>多重反射启用</td>
<td>多重反射会使仪表显示较小的物位读数。将仪表安装在检修孔上或拱顶的中心，高介电产品（ε_r > 5）可能会导致多重反射。非常平静的表面或具有小凸面或平顶的储罐也可能导致多重反射。如果此功能正在运行，则仪表将在过程连接件下方查找第一个信号峰值。然后使用该信号峰值来测量罐内介质的物位。如果此功能未运行，则仪表将在过程连接件下方查找最大的信号。</td>
<td>已禁用，已启用</td>
<td>已禁用</td>
</tr>
<tr>
<td>C2.8</td>
<td>空频谱启用</td>
<td>该功能启动和停止干扰信号滤波器。干扰信号是罐内固定和移动障碍物造成的。如果您必须进行频谱分析，请首先记录空频谱。在快速设置菜单中执行“空频谱”程序（菜单A4.2）。</td>
<td>已禁用，已启用</td>
<td>已禁用</td>
</tr>
</tbody>
</table>

C3 转换

C3.1 编辑表格

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3.1.1</td>
<td>擦除表格?</td>
<td>在创建转换表之前，必须先删除此时存储在仪表中的数据。如果您将此菜单项设置为“否”，则将保留菜单C3.1.1。如果将其设置为“是”，则将前往菜单项C3.1.3选择转换。</td>
<td>是，否</td>
<td>否</td>
</tr>
</tbody>
</table>
菜单编号 | 功能 | 功能说明 | 选择列表 | 默认
--- | --- | --- | --- | ---
C3.1.3 | 选择转换 | 如果您必须制作体积转换表，请将此菜单项设置为“体积”。如果您必须制作质量转换表，请将此菜单项设置为“质量”。如果您必须制作线性化表格以确保读数始终与参考点测量值一致，请将此菜单项设置为“线性化”。 | 体积，质量，线性化 | 体积

更改设置的最低访问级别： 专家

C3.2 输入表

| C3.2.2 | 点 | 这在转换表上增加了一个点。每次输入此菜单项时，此数字将自动递增 1。如果需要更改点的数据，请更改点数。按【进入】时，进入菜单项目 C3.2.4 物位。 | 最小至最大：001...050 | 001

执行程序的最低访问级别： 专家

| C3.2.4 | 物位 | 输入 C3.2.2 中给出的点的物位值。按【确认】确认物位值并前进 C3.2.5 转换值。 | 最小至最大：0.0...100.009 mm / 0.0...3937.00” | 0.0 mm / 0.0”

执行程序的最低访问级别： 专家

| C3.2.5 | 转换值 | 输入 C3.2.2 中给出的点的转换值（体积、质量或线性化）。按【确认】确认转换值并返回菜单 C3.2。 | 最小至最大：
体积：
0.0...100.009 m³ / 0.0...26.41712 gal质量：
0.0...100.009 kg / 0.0...220.4609 lb线性化：
0.0...100.012 mm / 0.0...3.93712” | 体积：
0.0 m³ / 0.0 gal质量：
0.0 kg / 0.0 lb线性化：
0.0 mm / 0.0”

执行程序的最低访问级别： 专家

C4 输出

C4.1 电流输出 1

| C4.1.1 | 电流输出 1 Var. | 从可用的输出功能中进行选择以缩放电流输出值。这在常规模式下不显示。 | 物位，距离，传感器值，反射 | 物位 ①

更改设置的最低访问级别： 专家

| C4.1.2 | 零点 | 向 0% 输出提供一个测量值（另请参阅菜单项 C4.1.1 电流输出 1 Var 以获取输出功能）。0% 输出 = 4 mA。如果将 C4.1.4 电流输出量程设置为“3.8-20.5 mA”，则输出可能小于 4 mA (<0%)。 | 最小至最大：-4.906...+5.106 mm / -192.9103...+200.7903 / -16076...+16732 ft | 0.0 mm ①

更改设置的最低访问级别： 专家

| C4.1.3 | 满量程值 | 向 100% 输出提供一个测量值（另请参阅菜单项 C4.1.1 电流输出 1 Var 以获取输出功能）。100% 输出 = 20 mA。如果将 C4.1.4 电流输出量程设置为“3.8-20.5 mA”，则输出可能大于 20 mA (>100%)。 | 最小至最大：-4.906...+5.106 mm / -192.9103...+200.7903 / -16076...+16732 ft | C1.2 坦高 - C1.5 死区 ①

更改设置的最低访问级别： 专家
<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4.1.4</td>
<td>电流输出量程</td>
<td>该菜单项将输出电流量程的限制值设置为 4 个可用选项中的 1 个：标准限制 (4...20 mA)，符合 NAMUR NE 43 的限制 (3.8...20.5 mA)，反向标准限制和反向符合 NAMUR NE 43 的限制。如果您希望 0% 输出为 4 mA，100% 输出为 20 mA，则使用标准限制。如果您希望 0% 输出为 20 mA 和 100% 输出为 4 mA，则使用反向限制。</td>
<td>4-20 mA, 3.8-20.5 mA （NAMUR）, 4-20 mA （反向）, 3.8-20.5 mA （反向）</td>
<td>4-20 mA 1</td>
</tr>
<tr>
<td>C4.1.5</td>
<td>报警类型</td>
<td>如果发生错误，则会设置电流输出 1 的行为。如果该菜单项设置为“关”，则不会给出信号（如果菜单项 C4.1.4 设置为“3.8-20.5 mA”（NAMUR）或“3.8-20.5 mA（反向）”，则此参数不可用）。如果该菜单项设置为“保持”，则输出电流保持在发生错误时的值（如果菜单项 C4.1.4 设置为“3.8-20.5 mA”（NAMUR）或“3.8-20.5 mA（反向）”，则此参数不可用）。如果该菜单项设置为“低”，如果发生错误，则输出电流将变为 3.5 mA（默认值）。如果该菜单项设置为“高”，如果发生错误，则输出电流将变为 21.5 mA（默认值）。您可以在菜单 C4.1.7 中更改低电流报警值。您可以在菜单 C4.1.8 中更改高电流报警值。</td>
<td>关, 低, 高, 保持</td>
<td>低 1</td>
</tr>
<tr>
<td>C4.1.7</td>
<td>低电流报警</td>
<td>如果 C4.1.5 报警功能设置为“低”，则此菜单项可用。如果发生错误，您可以更改电流输出将更改的值。</td>
<td>最小至最大：3.5...3.6 mA</td>
<td>3.5 mA</td>
</tr>
<tr>
<td>C4.1.8</td>
<td>高电流报警</td>
<td>如果 C4.1.5 报警功能设置为“高”，则此菜单项可用。如果发生错误，您可以更改电流输出将更改的值。</td>
<td>最小至最大：21.0...21.5 mA</td>
<td>21.5 mA</td>
</tr>
<tr>
<td>C4.1.9</td>
<td>微调</td>
<td>C4.1.9.2 4mA 微调</td>
<td>如果仪表的电流输出设置为 4 mA，但测得的回路电流不是 4 mA，则使用此菜单项。输入测量值。</td>
<td>最小至最大：0.0...25.0 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4.1.9.5 20mA 微调</td>
<td>如果仪表的电流输出设置为 20 mA，但测得的回路电流不是 20 mA，则使用此菜单项。输入测量值。</td>
<td>最小至最大：0.0...25.0 mA</td>
</tr>
</tbody>
</table>

C5 通讯

C5.1 HART

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5.1.1</td>
<td>电流环路模式</td>
<td>如果电流输出 1 的“主变量”也必须作为 4...20 mA 信号发送，请将此菜单项设置为“开”。如果此菜单项设置为“关”，则会停止 4...20 mA 信号并启动 HART® 多点模式。</td>
<td>开</td>
</tr>
<tr>
<td>菜单编号</td>
<td>功能</td>
<td>功能说明</td>
<td>选择列表</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>C5.1.2 参数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5.1.2.1</td>
<td>轮询地址</td>
<td>轮询地址超过 0 将启动 HART® 多点模式。如果启动 HART® 多点模式，电流输出会保持恒定在 4 mA。</td>
<td>000...063</td>
</tr>
<tr>
<td>C5.1.2.2</td>
<td>位号</td>
<td>使用此菜单项更改标签名称，它最多可以有 8 个字符。有关可用字符的更多信息，请访问第 65 页“键盘功能（菜单项中的值）”。</td>
<td>—</td>
</tr>
<tr>
<td>C5.1.2.3</td>
<td>长位号</td>
<td>使用此菜单项更改标签名称，它最多可以有 32 个字符。有关可用字符的更多信息，请访问第 65 页“键盘功能（菜单项中的值）”。</td>
<td>—</td>
</tr>
<tr>
<td>C5.1.2.4</td>
<td>制造商 ID</td>
<td>这是 HART™ Foundation 提供给供应商的制造商 ID 号码。</td>
<td>只读</td>
</tr>
<tr>
<td>C5.1.2.5</td>
<td>仪表类型</td>
<td>这是 HART™ Foundation 提供给供应商的仪表型号。</td>
<td>只读</td>
</tr>
<tr>
<td>C5.1.2.6</td>
<td>仪表 ID</td>
<td>这是 HART™ Foundation 提供给供应商的仪表 ID 号码。这表明 HART™ 仪表注册了 HART™ 仪表说明（DD）文件。</td>
<td>只读</td>
</tr>
<tr>
<td>C5.1.2.7</td>
<td>通用版本</td>
<td>这是仪表使用的 HART™ 协议版本。</td>
<td>只读</td>
</tr>
<tr>
<td>C5.1.2.8</td>
<td>仪表版本</td>
<td>这是 HART™ 仪表说明的版本号。</td>
<td>只读</td>
</tr>
<tr>
<td>C5.1.2.9</td>
<td>硬件版本</td>
<td>这是仪表硬件的版本号。</td>
<td>只读</td>
</tr>
<tr>
<td>C5.1.2.10</td>
<td>更改次数计数器</td>
<td>该功能用于统计 HART™ 仪表设置的更改次数。</td>
<td>只读</td>
</tr>
<tr>
<td>C5.1.3 设备信息</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5.1.3.1</td>
<td>描述符</td>
<td>您可以在此菜单项中给出仪表的简短说明（最多 16 个字符）。</td>
<td>—</td>
</tr>
<tr>
<td>C5.1.3.2</td>
<td>消息</td>
<td>您可以在此菜单项中输入更多数据（最多 32 个字符）。</td>
<td>—</td>
</tr>
<tr>
<td>C5.1.3.3</td>
<td>日期</td>
<td>您可以在此菜单项中输入日期（格式：年-月-日/YYYY-MM-DD）</td>
<td>—</td>
</tr>
<tr>
<td>C5.1.3.4</td>
<td>更改次数计数器</td>
<td>该功能用于统计 HART™ 仪表设置的更改次数</td>
<td>只读</td>
</tr>
<tr>
<td>C5.1.4 HART® 变量</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5.1.4.1</td>
<td>电流输出 1 Var.</td>
<td>这是 HART™ 控制器上显示的第一种测量类型。从列表中进行选择。</td>
<td>物位，距离，传感器值，反射#如果在菜单 C3 转换中创建线性化值表格，则“线性距离”和“线性物位”可用。如果您在菜单 C3 转换中创建了物位体积表，则“体积”和“空距体积”可用。如果在菜单 C3 转换中创建了物位质量表，则“质量”和“空距质量”可用。</td>
</tr>
</tbody>
</table>
菜单编号 | 功能 | 功能说明 | 选择列表 | 默认
---|---|---|---|---
C5.1.4.2 | HART/第二/C02 Var. | 这是 HART® 控制器上显示的第二测量类型。从列表中进行选择。 | 专家 | 物位
更改设置的最低访问级别： 专家

### 菜单编号	功能	功能说明	选择列表	默认
C5.1.4.3 | 第三 Var. | 这是 HART® 控制器上显示的第三测量类型。从列表中进行选择。 | 用户 | 物位
更改设置的最低访问级别： 用户

### 菜单编号	功能	功能说明	选择列表	默认
C5.1.4.4 | 第四 Var. | 这是 HART® 控制器上显示的第四测量类型。从列表中进行选择。 | 用户 | 物位
更改设置的最低访问级别： 用户

C6 显示

菜单编号	功能	功能说明	选择列表	默认
C6.1 | 语言 | 数据可以用存储在仪表中的一种语言显示。从列表中进行选择。 | 用户 | 英语
更改设置的最低访问级别： 用户

### 菜单编号	功能	功能说明	选择列表	默认
C6.2 | 背光 | 如果将此菜单项设置为“已启用”，则当您按下显示屏键盘上的按钮并且环路电流超过 6 mA 时，指示灯将亮起。 | 用户 | 已启用
更改设置的最低访问级别： 用户

### 菜单编号	功能	功能说明	选择列表	默认
C6.3 | 对比度 | 显示屏的对比度控制。您可以选择浅灰色（-10）和黑色（+10）之间的灰色阴影。 | 用户 | 最小至最大： -10...+10 0
更改设置的最低访问级别： 用户

C6.4 第一个测量页

菜单编号	功能	功能说明	选择列表	默认
C6.4.1 | 功能 | 此菜单项更改常规模式下显示屏上显示的数据配置。有两个测量页面可以用于常规模式下显示读数。该设置用于第一页。 | 用户 | 一个值，一个值和条形图，两个值，两个值和条形图，三个值
更改设置的最低访问级别： 用户

### 菜单编号	功能	功能说明	选择列表	默认
C6.4.2 | 第一值变量 | 这将更改测量页面上第一个值的测量类型。 | 用户 | 物位，距离，传感器值，反射
更改设置的最低访问级别： 用户

英文，德语，法语，意大利语，葡萄牙语，西班牙语，捷克语，波兰语，中文（简体），日语，俄语，土耳其语

已禁用，已启用

已启用

已禁用

已启用

已禁用

已禁用
C6.4.3 零点
这是常规模式下向条形图指示器提供的 0%值。量程与 C6.4.2 第一值变量中设置的测量类型有关。此菜单项仅在将 C6.4.1 功能设置为“一个值和条形图”或“两个值和条形图”时可用。
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
一个值和条形图
两个值和条形图
C6.4.4 满量程值
这是常规模式下向条形图指示器提供的 100%值。量程与 C6.4.2 第一值变量中设置的测量类型有关。此菜单项仅在将 C6.4.1 功能设置为“一个值和条形图”或“两个值和条形图”时可用。
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
X, X, X, X, X, XXX, X, XXXX, X, XXXXXX, 自动
C6.4.5 第一值格式
您可以更改常规模式下测量页面上显示的第一个值的小数位数。例如，如果将此菜单项设置为“X.X”，则显示的值将被修正为 2 位小数。如果将此菜单项设置为“自动”，则仪表将自动调整小数位数。
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
X, X, X, X, X, XXX, X, XXXX, X, XXXXXX, 自动
C6.4.6 第二值变量
这会更改测量页面上第二个值的测量类型。此菜单项仅在将 C6.4.1 功能设置为“两个值”、“两个值和条形图”或“三个值”时可用。
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
X, X, X, X, X, XXX, X, XXXX, X, XXXXXX, 自动
反射
C6.4.7 第二值格式
您可以更改常规模式下测量页面上显示的第二个值的小数位数。例如，如果将此菜单项设置为“X.X”，则显示的值将被修正为 2 位小数。如果将此菜单项设置为“自动”，则仪表将自动调整小数位数。
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
X, X, X, X, X, XXX, X, XXXX, X, XXXXXX, 自动
反射
C6.4.8 第三值变量
这将更改测量页面上第三个值的测量类型。此菜单项仅在将 C6.4.1 功能设置为“三个值”时可用。
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
X, X, X, X, X, XXX, X, XXXX, X, XXXXXX, 自动
反射
C6.4.9 第三值格式
您可以更改常规模式下测量页面上显示的第三个值的小数位数。例如，如果将此菜单项设置为“X.X”，则显示的值将被修正为 2 位小数。如果将此菜单项设置为“自动”，则仪表将自动调整小数位数。
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
X, X, X, X, X, XXX, X, XXXX, X, XXXXXX, 自动
Automatic 自动
C6.5 第2测量页
C6.5.1 功能
此菜单项更改常规模式下显示屏上显示的数据配置。有三个测量页面可用于常规模式下显示读数。该设置针对第二页。
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
更改设置的最低访问级别：用户
一个值；一个值和条形图；两个值；两个值和条形图；三个值
### 菜单编号	功能	功能说明	选择列表	默认
C6.5.2 | 第一值变量 | 这将更改测量页面上第一个值的测量类型。 | 物位，距离，传感器值，反射 ② | 距离
更改设置的最低访问级别： 用户

C6.5.3 | 零点 | 这是在常规模式下向条形图指示器提供的0%值。量程与C6.5.2第一值变量中设置的测量类型有关。此菜单项仅在将C6.5.1功能设置为“一个值和条形图”或“两个值和条形图”时可用。 | 请参阅”功能说明” | 请参阅”功能说明”
更改设置的最低访问级别： 用户

C6.5.4 | 满量程值 | 这是在常规模式下向条形图指示器提供的100%值。量程与C6.5.2第一值变量中设置的测量类型有关。此菜单项仅在将C6.5.1功能设置为“一个值和条形图”或“两个值和条形图”时可用。 | X, X, X, X, XX, X, XXX, X, XXXX, X, XXXXX, 自动 | X, XXX
更改设置的最低访问级别： 用户

C6.5.5 | 第一值格式 | 您可以更改常规模式下测量页面上显示的第一个值的小数位数。例如，如果将此菜单项设置为“X.X”，则显示的值将被修正为2位小数。 | X, X, X, X, XX, X, XXX, X, XXXX, X, XXXXX, 自动 | 自动
更改设置的最低访问级别： 用户

C6.5.6 | 第二值变量 | 这会更改测量页面上第二个值的测量类型。此菜单项仅在将C6.5.1功能设置为“两个值”，“两个值和条形图”或“三个值”时可用。 | 物位，距离，传感器值，反射 ② | 物位
更改设置的最低访问级别： 用户

C6.5.7 | 第二值格式 | 您可以更改常规模式下测量页面上显示的第二个值的小数位数。例如，如果将此菜单项设置为“X.X”，则显示的值将被修正为2位小数。 | X, X, X, X, XX, X, XXX, X, XXXX, X, XXXXX | X, XXX
更改设置的最低访问级别： 用户

C6.5.8 | 第三值变量 | 这将更改测量页面上第三个值的测量类型。此菜单项仅在将C6.5.1功能设置为“三个值”时可用。 | 物位，距离，传感器值，反射 ② | 反射
更改设置的最低访问级别： 用户

C6.5.9 | 第三值格式 | 您可以更改常规模式下测量页面上显示的第二个值的小数位数。例如，如果将此菜单项设置为“X.X”，则显示的值将被修正为2位小数。 | X, X, X, X, XX, X, XXX, X, XXXX, X, XXXXX, 自动 | Automatic 自动
更改设置的最低访问级别： 用户

C7 仪表

C7.1 信息

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.1.1</td>
<td>位号</td>
<td>使用此菜单项读取标签名称。</td>
<td>只读</td>
<td>TANK01 ①</td>
</tr>
<tr>
<td>C7.1.2</td>
<td>序列号</td>
<td>这是仪表制造编号</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.3</td>
<td>仪表名称</td>
<td>这提供了仪表系列名称和型号代码。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.4</td>
<td>V 代码</td>
<td>这是仪表配置的制造商选项代码。</td>
<td>只读</td>
<td>—</td>
</tr>
</tbody>
</table>
6 操作

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.1.5</td>
<td>机芯版本</td>
<td>这是硬件版本号。该号码符合 NAMUR NE 53 指令。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.6</td>
<td>软件版本</td>
<td>这是软件版本号。该号码符合 NAMUR NE 53 指令。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.7</td>
<td>电子部件序列号</td>
<td>这是硬件制造编号。该号码符合 NAMUR NE 53 指令。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.8</td>
<td>生产日期</td>
<td>这是制造商完成仪表的日期。日期格式为: 年-月-日。</td>
<td>只读</td>
<td>—</td>
</tr>
<tr>
<td>C7.1.9</td>
<td>校验日期</td>
<td>这是制造商校准仪表的日期。日期格式为: 年-月-日。</td>
<td>只读</td>
<td>—</td>
</tr>
</tbody>
</table>

C7.2 安全等级

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.2.1</td>
<td>登录</td>
<td>在此处输入适当的密码以更改设置。如果您未输入密码，则只能更改“用户”访问级别的设置。有关“运营商”和“专家”访问级别的更多数据和默认密码，请访问。请参考第 62 页 仪表设置保护（访问级别）。</td>
<td>4 位十六进制密码</td>
<td>请参阅“功能描述”</td>
</tr>
<tr>
<td>C7.2.2</td>
<td>更改密码</td>
<td>这将更改“操作员”和“专家”访问级别的密码。</td>
<td>4 位十六进制密码</td>
<td>请参阅“功能描述”</td>
</tr>
<tr>
<td>C7.2.3</td>
<td>重置密码</td>
<td>这是特殊密码，使您的“操作员”和“专家”访问级别的密码返回到默认密码。该密码由售后服务部门根据需要提供。</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

C7.3 错误

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.3.1</td>
<td>信息预览</td>
<td>仪表错误日志。向下滚动列表并按 [X] 显示错误详细信息。该错误将具有符合NAMUR NE 107指令的字母代码 (“F”, “S”, “M”, “C”和“I”)。</td>
<td>只读</td>
<td>—</td>
</tr>
</tbody>
</table>

C7.3.2 错误映射

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.3.2.1</td>
<td>传感器：信息</td>
<td>这允许您更改向事件提供的错误代码。更改设置的最低访问级别: 用户。</td>
<td>无, 信息 (I), 维护请求 (M), 超出规格 (S), 功能检查 (C), 故障 (F)</td>
<td>信息</td>
</tr>
</tbody>
</table>

C7.5 单位

<table>
<thead>
<tr>
<th>C7.5.1</th>
<th>长度</th>
<th>常规模式下显示的长度单位。如果您将此菜单项设置为“Cst.”（自定义长度单位），请在 C7.5.2.1 至 C7.5.2.3 菜单中进行设置。更改设置的最低访问级别: 用户。</th>
<th>m, cm, mm, ft, in, Cst.</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.5.2</td>
<td>Cst. 长度</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7.5.2.1</td>
<td>文本</td>
<td>输入自定义长度单位的文本（最多8个字符）。</td>
<td>—</td>
<td>Cst.</td>
</tr>
<tr>
<td>C7.5.2.2</td>
<td>偏移</td>
<td>输入偏移值。</td>
<td>—</td>
<td>0.0 m</td>
</tr>
<tr>
<td>C7.5.2.3</td>
<td>系数</td>
<td>输入系数。将测量值乘以该系数以将 m 转换为自定义长度单位。</td>
<td>—</td>
<td>1.0</td>
</tr>
</tbody>
</table>
6.4 程序模式下仪表配置的更多信息

6.4.1 标准设置

使用此程序（菜单项 A4.1 标准设置）可以改变长度单位、储罐类型、罐高（如果储罐类型设置为“导波管”，则此项包括导波管直径和导波管高度）、电流输出变量、0%量程、100%量程、电流输出量程和报错功能。下图中的“...”标记之间显示了可以更改的数值和参数。按正确顺序按下键盘按钮：

注意！
在使用仪表前，请确认执行这个步骤。此步骤的这个设置会影响仪表性能。

<table>
<thead>
<tr>
<th>菜单编号</th>
<th>功能</th>
<th>功能说明</th>
<th>选择列表</th>
<th>默认</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7.5.3</td>
<td>体积</td>
<td>如果您在 C3 转换菜单中创建了体积表，则在常规模式下显示的体积单位。如果将此菜单项设置为“Cst. 体积”（自定义体积单位），请在菜单项 C7.5.4.1 至 C7.5.4.3 中输入值。</td>
<td>m³, L, hl, in³, ft³, gal, impGal, yd³, bbl, bbl (啤酒, 美制), Cst. 体积</td>
<td>m³</td>
</tr>
</tbody>
</table>

更改设置的最低访问级别：用户

C7.5.4 Cst. 体积

C7.5.4.1	文本	输入自定义体积单位的文本（最多 8 个字符）。	—	Cst.
C7.5.4.2	偏移	输入偏移值。	—	0.0 m³
C7.5.4.3	系数	输入系数。将测量值乘以该系数以将 m³（立方米）更改为自定义体积单位。	—	1.0

C7.5.5 质量

| C7.5.5 | 质量 | 如果您在 C3 转换菜单中制作质量表，在常规模式下显示的质量单位。如果您将此菜单项设置为“Cst. 质量”（自定义质量单位），请在菜单项 C7.5.6.1 至 C7.5.6.3 中输入值。 | kg、t、lb、tn.sh.、tn.l.、Cst. 质量 | kg |

更改设置的最低访问级别：用户

C7.5.6 Cst. 质量

C7.5.6.1	文本	输入自定义体积单位的文本（最多 8 个字符）。	—	Cst.
C7.5.6.2	偏移	输入偏移值。	—	0.0kg
C7.5.6.3	系数	输入系数。将测量值乘以该系数以将 kg（千克）更改为自定义质量单位。	—	1.0

C7.6 出厂设置

| C7.6.1 | 恢复出厂设置? | 如果您设置此前菜单项为“YES”，仪表回到初始设置（由制造商在工厂中设定）。 | 是，否 | 否 |

更改设置的最低访问级别：专家

1. 如果在客户订单中未指定任何值或参数
2. 如果您在菜单 C3 转换中创建线性化值表格，则“线性距离”和“线性物位”可用。如果您在菜单 C3 转换中创建了物位体积表，则“体积”和“空距体积”可用。如果您在菜单 C3 转换中创建了物位质量表，则“质量”和“空距质量”可用。
信息！

电流输出和 LCD 显示屏设置

执行**标准设置**步骤时，LCD 显示屏上第一个测量页面上的测量值（在常规模式下）将自动使用具有与电流输出设置相同的参数和值（测量变量，0% 量程和 100% 量程）的设置。第一个测量页面默认显示“一个数值和条形图”。如果您必须显示一个或多个与传送的输出信号不同的测量值，请更改 C6.4 第 1 测量页面和 C6.5 第 2 测量页面菜单中的设置。有关更多信息，请参考第 74 页功能说明 - 请参见表 C 完整设置菜单（C6 显示屏）。

步骤

<table>
<thead>
<tr>
<th>屏幕</th>
<th>步骤</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 2 × [>]，2 × [▼] 和 [>]。</td>
<td>默认屏幕。进入程序模式并前往菜单项 A3 登录。</td>
</tr>
<tr>
<td></td>
<td>• 如果其为默认密码：2 × [>]，5 × [▲]，[>] 和 8 × [▲]。 • [▲] 确认设定值。</td>
<td>输入此时用于“专家”访问级别的密码。如果是默认密码，请输入“0058”。</td>
</tr>
<tr>
<td></td>
<td>• [▲] 和 2 × [>] • [▲]或[▼]可用于选择长度单位（m、m、Cst、m、in、ft、mm 或 cm）。 • [▲] 确认设定值。</td>
<td>按这些按钮以开始标准设置程序。长度单位。从参数列表中进行选择。</td>
</tr>
<tr>
<td></td>
<td>• [▲] 或 [▼] 可用于选择储罐类型（储罐、导波管、搅拌器或过程罐）。 • [▲] 确认设定值。</td>
<td>储罐类型。从参数列表中进行选择。如果产品表面平坦，请选择“储罐”。如果产品表面被涂装或泡沫乱动，请选择“搅拌器”。如果仪表安装在导波管中，请选择“导波管”。如果将 A4.1.2.1 储罐类型设置为“导波管”，则在菜单项 A4.1.2.2 罐高（后续步骤）之后还有两个步骤：A4.1.2.3 导波管高度和 A4.1.2.4 导波管直径。</td>
</tr>
</tbody>
</table>
| ![整体参数A4.1.2.2](image) | • [>] 改变光标位置。 • [▼] 减小数值（或将小数点向左移一位）或 [▲] 增加数值（或将小数点向右移一位）。 • [▲] 确认设定值。 | 罐高。从储罐连接件的法兰面/螺纹止挡向下到储罐底部的距离。如果储罐有盘状或锥形底部，则储罐的高度测量到储罐底部直接位于天线下方的一个点。
操作

<table>
<thead>
<tr>
<th>屏幕</th>
<th>步骤</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[▲] 或 [▼] 用于选择测量名称（距离、物位、传感器值或反射、体积（质量）、空距体积（空距质量））。</td>
<td>电流输出1变量。制造商在交付之前将电流输出变量（电流输出1）设置为“距离”。如果需要测量体积、空距体积、质量或空距质量，请参考第98页如何设置仪表测量体积或质量。</td>
</tr>
<tr>
<td></td>
<td>[】] 改变光标位置。</td>
<td>0%量程。使用该步骤给出储罐内的0%输出设置。请参阅下图。当菜单项A4.1.3.1电流输出1 Var.设置为“物位”时，图①显示0%输出的位置作为罐底以上的物位。当菜单项A4.1.3.1电流输出1 Var.设置为“距离”时，图②显示了0%输出的位置作为过程连接件的法兰面或螺纹止挡下方的距离。</td>
</tr>
<tr>
<td></td>
<td>[】] 改变光标位置。</td>
<td>100%量程。使用该步骤给出储罐内的100%输出设置。请参阅下图。当菜单项A4.1.3.1电流输出1 Var.设置为“物位”时，图①显示100%输出的设置。图②显示了距离设置。请参阅下图。当菜单项A4.1.3.1电流输出1 Var.设置为“物位”时，图①显示100%输出的设置。图②显示了距离设置。</td>
</tr>
<tr>
<td></td>
<td>[▲] 或 [▼] 用于选择电流输出量程（3.8-20.5 mA（NAMUR），4-20 mA，3.8-20.5 mA（反向）或4-20 mA（反向）。</td>
<td>电流输出量程。该菜单项向“0%量程”和“100%量程”步骤中给出的0%和100%值之间的测量范围提供了电流输出值。如果将此菜单项设置为“4-20 mA”或“3.8-20.5 mA”：0% 量程 = 4 mA 100% 量程 = 20 mA如果将此菜单项设置为“4-20 mA（反向）”或“3.8-20.5 mA（反向）”：0% 量程 = 20 mA 100% 量程 = 4 mA</td>
</tr>
</tbody>
</table>
6.4.2 空频谱记录

空频谱记录程序对仪表的性能至关重要。我们建议您在执行程序之前将储罐清空或仅填充到最低物位。

如果储罐内有固定和移动的物体，可能导致干扰信号，请使用此程序（菜单项 A4.2 空频谱）。本仪表可以扫描物体，而不改变它们在储罐内的垂直位置（加热管、搅拌器、燃料组件等）并记录数据。然后仪表可以使用这些数据将测量信号通过滤波器（空频谱）。

当空频谱滤波器打开时（当菜单项 C2.8 空频谱启用设置为“启用”时），它将忽略干扰信号。

注意！
确认是空罐或仅有极低的液位。

信息！
由于仪表记录了空频谱数据，因此如果断开仪表的电源，也无需再次执行该程序。

在进行空频谱记录程序之前，将仪表安装在储罐上。有关如何安装仪表的更多数据，请参考第20页 安装。

下图中的“...”标记之间显示了可以更改的数值和参数。按正确顺序按下键盘按钮：

<table>
<thead>
<tr>
<th>屏幕</th>
<th>步骤</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>低</td>
<td>[▲] 或 [▼] 用于选择报错功能（关、保持、高或低）。</td>
<td>[▲] 确认设定值。</td>
</tr>
<tr>
<td>保存设置？</td>
<td>3 × [▲] 确认设置值。</td>
<td>[▲] 或 [▼] 用于选择保存选项（是、否或返回）。</td>
</tr>
</tbody>
</table>
步骤

<table>
<thead>
<tr>
<th>屏幕</th>
<th>步骤</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANK01
距离 + 04.000 m</td>
<td>• 2 × [▶]，2 × [▼] 和 [>]。</td>
<td>默认屏幕。
进入程序模式并前往菜单项 A3 登录。</td>
</tr>
<tr>
<td>快速设置</td>
<td>• 如果其为默认密码: 2 × [▶]，5 × [▲]，[>] 和 8 × [▼]。
• [◄] 确认设定值。</td>
<td>输入此时用于“专家”访问级别的密码。如果是默认密码，请输入“0058”。</td>
</tr>
</tbody>
</table>
| 数谱记录 | • [▼]、[▶]、[▲] 和 2 × [>]。
• [▲] 或 [▼] 可用于选择空频谱类型（完整（平均）、完整（最大）、部分（平均）、部分（最大））。
• [◄] 确认设定值。 | 按下这些按钮以启动记录频率（空频谱）程序。
空频谱类型从参数列表中进行选择。如果您可以清空储罐，请将此菜单项设置为“完整，平均”或“完整，最大”。如果您不能清空储罐，请将此菜单项设置为“部分，平均”或“部分，最大”。
如果您在标准设置程序或菜单项 C1.1 中将储罐类型设置为“搅拌器”，请将空频谱类型设置为“完整，最大”或“部分，最大”。
| 数谱记录 | • [►] 改变光标位置。
• [▼] 减小数值（或将小数点向左移一位）或 [►] 增加数值（或将小数点向右移一位）。
• [◄] 确认设定值。 | 部分距离。如果将空频谱类型设置为“部分，平均”或“部分，最大”，则在此程序中还需要执行一个步骤。您必须给出一个“部分距离”值，该值小于或等于从过程连接件的法兰面或螺纹止挡到产品表面的距离。
注意！
如果“部分距离”值大于到产品表面的距离，则仪表将过滤物位信号，并且仪表将不会正确测量产品的物位。
• [◄] 确认设定值。 | 确保储罐已清空或者容物不超过最低数量。
通电并操作罐内移动的所有设备（例如搅拌器）。
• [◄] 确认设定值。 | 确保储罐已清空或者容物不超过最低数量。
通电并操作罐内移动的所有设备（例如搅拌器）。 |
| 数谱记录 | • [▼] 或 [▲] 可更改参数（“否”或“是”）。
• [◄] 确认设定值。 | 开始记录？将此菜单项设置为“是”继续后续步骤。将此菜单项设置为“否”返回到菜单。 |
6.4.3 HART® 网络设置

信息！
更多数据，请参考第51页网络。

本仪表使用HART®通信向HART®兼容设备发送信息。它可以在点对点或多点模式下运行。如果更改轮询地址，仪表将以多点模式进行通信。

注意！
确保本仪表的地址与多点网络中的其他地址不同。

信息！
确保菜单项C5.1.1电流回路模式设置为“开”。

如何从点对点转换为多点模式
- 进入程序模式
- 按2×[▼], [▼], 3×[▼], 2×[▼], [▼]和2×[▼]以前往菜单项C5.1.2.1轮询地址。
- 输入此时用于“专家”访问级别的密码。如果是默认密码，请输入“0058”。按[▼]进行确认。
- 输入一个介于001和063之间的值，然后按[▼]进行确认。

步骤

<table>
<thead>
<tr>
<th>屏幕</th>
<th>步骤</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>• [▼] 确认设定值。</td>
<td>具有空频谱记录结果的图表。</td>
</tr>
<tr>
<td>-</td>
<td>• [▼] 或[▼]可更改参数（“否”或“启用”）。 • [▼]确认设定值。</td>
<td>保存频谱？如果您将菜单项设置为“是”，则仪表将保留该空频谱记录。如果将菜单项设置为“否”，则仪表将拒绝该数据。</td>
</tr>
<tr>
<td>-</td>
<td>• [▼] 或[▼]可更改参数（“禁用”或“启用”）。 • [▼]确认设定值。</td>
<td>空频谱启用。如果您将菜单项设置为“启用”，则仪表将使用空频谱记录数据。如果将菜单项设置为“禁用”，则仪表此时不会使用空频谱记录数据。</td>
</tr>
<tr>
<td>-</td>
<td>4×[▼]确认设定值。 • [▼]或[▼]用于选择保存选项（是、否或返回）。 • [▼]确认设定值。</td>
<td>保存配置？屏幕。设置为“是”以保存并使用设置和数据并返回常规模式。设置为“否”以取消对仪表设置的更改并返回常规模式。设置为“返回”以保持程序模式。</td>
</tr>
</tbody>
</table>
• 反复按 [←] 返回保存配置屏幕。
• 按 [▲] 或 [▼] 将屏幕设置为“是”，然后按 [←]。

- 输出设置为多点模式。电流输出设置为 4 mA。该值在多点模式下不会改变。

如何从多点转换到点对点模式

• 进入程序模式
• 按 2 × [下], [上], 3 × [下], [下] 和 2 × [上] 以前往菜单项 C5.1.2.1 轮询地址。
• 输入此时用于“专家”访问级别的密码。如果是默认密码，请输入 "0058"。按 [←] 进行确认。
• 输入值 000 并按 [←] 确认。
• 反复按 [←] 返回保存配置屏幕。
• 按 [▲] 或 [▼] 将屏幕设置为“是”，然后按 [←]。

- 输出设置为点对点模式。电流输出更改为4...20 mA或3.8...20.5 mA的量程（该量程在菜单项 C4.1.4 流量输出量程中设置）。

6.4.4 距离测量

当菜单项 C4.1.1 电流输出 1 Var. （电流输出 1 变量）设置为“距离”时，仪表给出了与距离测量相关的电流输出信号。

如果 C6.4 第一测量页面或 C6.5 第二测量页面菜单中的一个或多个“数值变量”菜单项设置为“距离”，则仪表的显示屏可显示距离测量读数。

与距离测量有关的菜单项有：
• 电流输出 1 菜单（C4.1）
• 罐高（C1.2）
• 死区（C1.5）
• 参考点偏移（C1.10）
• 常规模式下的显示屏读数：第一测量页面（C6.4）菜单
• 常规模式下的显示屏读数：第二测量页面（C6.5）菜单

法兰面是距离测量（0 m / 0 ft / 0'）的参考点。测量比例的位置（由 0%量程和 100%量程设置规定）与该参考点有关。如果在 C4.1 电流输出 1 菜单中为电流输出信号配置了测量比例，则可以使用“标准比例”或“反转比例”。在标准比例上，0%量程测量值与4 mA 输出一致，100%量程测量值与20 mA 输出一致。在反转比例上，0%量程测量值与20 mA 输出一致，100%量程测量值与4 mA 输出一致。

您可以更改测量距离的参考点。使用此菜单项：
• 参考点偏移（C1.10）

信息！

菜单项 C1.10 参考点偏移

如果在法兰上方移动参考点，确保在给出 C4.1.2 0% 量程和 C4.1.3 100% 量程设置的距离时，添加菜单项 C1.10 参考点偏移中给出的值。如果在法兰下方移动参考点，确保在给出 C4.1.2 0% 量程和 C4.1.3 100% 量程设置的距离时，减去菜单项 C1.10 参考点偏移中给出的值。
6.4.5 物位测量

当菜单项 **C4.1.1 电流输出 1 Var.（电流输出 1 变量）** 设定为“物位”时，仪表会给出与物位测量相关的电流输出信号。

如果 C6.4 第一测量页面或 C6.5 第二测量页面菜单中的一个或多个“数值变量”菜单项设定为“物位”，则仪表的显示屏可以显示物位测量读数。

与物位测量相关的菜单项为：
- 电流输出 1 菜单 (C4.1)
- 罐高 (C1.2)

注意！
如果 C4.1.1 电流输出 1 Var. 设定为“距离”，并且 C4.1.2 0% 量程 (标准比例) 在死区中进行了设置，则仪表将无法使用完整电流输出量程。

信息！
常规模式下的条形图功能
在常规模式下的两个测量页面上显示了一个可选的条形图 (将 C6.4.1/ C6.5.1 (功能) 设置为“一个值和条形图”或“两个值和条形图”)。默认情况下，第一个测量页面上的条形图会显示与 C4.1 电流输出 1 菜单中指定的测量比例相关的值。在常规模式下，可以为条形图提供不同的测量比例和测量变量。有关更多信息，请参考第 74 页功能说明 - 请参见表 C. 完整设置菜单 (C6 显示)。条形图范围与菜单项 C6.4.2 和 C6.5.2 (第一值变量) 和菜单 C1 安装参数中给出的参数有关。

如果更改了 C1.10 参考点偏移，则建议按照相同的数量更改 C6.4.3 / C6.5.3 (0% 量程) 和 C6.4.4 / C6.5.4 (100% 量程)。

如需有关该菜单项的更多数据，请参考第 74 页 功能说明 - 表 C. 完整设置菜单。
• 死区 (C1.5)
• 罐底偏移 (C1.11)

常规模式下的显示屏读数：第一测量页面 (C6.4) 菜单
常规模式下的显示屏读数：第二测量页面 (C6.5) 菜单

罐底（在菜单项 C1.2 罐中进行了规定）是物位测量（0 m / 0 ft / 0”）的参考点。测量比例的位置（由 0%量程和 100%量程设置规定）与该参考点有关。如果在 C4.1 电流输出 1 菜单中为电流输出信号配置了测量比例，则可以使用“标准比例”或“反转比例”。在标准比例上，0%量程测量值与 4 mA 输出一致，100%量程测量值与 20 mA 输出一致。在反转比例上，0%量程测量值与 20 mA 输出一致，100%量程测量值与 4 mA 输出一致。

您可以更改测量物位的参考点。使用该菜单项：
• 罐底偏移 (C1.11)

信息！
C1.11 罐底偏移
如果在罐底下方移动罐底偏移，确保在给出 C4.1.2 0% 量程和 C4.1.3 100% 量程设置的物位时，添加 C1.11 罐底偏移中给出的值。如果在罐底上方移动罐底偏移，确保在给出 C4.1.2 0% 量程和 C4.1.3 100% 量程设置的物位时，减去 C1.11 罐底偏移中给出的值。

注意！
如果 C4.1.1 电流输出 1 Var. 设置为“物位”，并且 C4.1.3 100% 量程 (标准比例) 在死区中进行了设置，则仪表将无法使用完整电流输出量程。

图 6-8: 物位测量
① 罐高 (C1.2)
② 罐底参考点。您可以使用菜单项 C1.11 罐底偏移来移动罐底参考点的位置。
③ 死区 (C1.5)
④ 100%量程 (C4.1.3)，如果菜单项 C4.1.4 电流输出量程设置为“4–20mA”或“3.8–20.5mA”
⑤ 0%量程 (C4.1.2)，如果菜单项 C4.1.4 电流输出量程设置为“4–20mA”或“3.8–20.5mA”
⑥ 非测量区域

如需有关该菜单项的更多信息，请参考第 74 页 功能说明 – 表 C. 完整设置菜单。
6.4.6 如何设置仪表测量体积或质量

仪表可进行配置测量体积或质量。其还可配置为自定义数量以供测量。您可以在转换菜单中设置计量表（C3 转换）。每个条目都是一对数据（物位 - 体积，物位 - 质量或物位 - 自定义测量）。

计量表的条目数量最少为 2 个，最多为 50 个。表格的参考点是罐底（如菜单项罐高（C1.2）或导波管高度（C1.3）中提供的）。

如何设置一个罐容量表（Conversion table）

1. 进入程序模式
2. 按 \(2 \times [>]\)，按 \([>]\)，按 \(3 \times [>]\) 以前往 C7.5.1 长度。
3. 按 \([>]\) 和 \([\downarrow]\)，查找您将在表格中使用的体积单位。
4. 按 \(2 \times [\downarrow]\)，前往子菜单级别 “C7”，然后按 \(2 \times [>]\) 和 \(2 \times [>]\)，前往 C7.2.1 登录。输入此时用于 “专家” 访问级别的密码。如果是默认密码，请输入 “0058”。
5. 按 \(3 \times [\downarrow]\)，前往子菜单级别 “C3”，然后按 \(4 \times [\downarrow]\)，\(2 \times [>]\)，前往 C3.1 编辑表格，以删除此时仪表使用的计量表数据（擦除表格？）。按 \([\downarrow]\) 和 \([\uparrow]\)，将此菜单项设置为 “是” 以删除数据。
6. 按 \([\downarrow]\)，然后按 \([\downarrow]\) 和 \([\uparrow]\)，从转换表选项（体积、质量或线性化）中进行选择。
7. 按 \([\downarrow]\)，前往子菜单级别，然后按 \([\uparrow]\) 和 \([>]\) 输入表格上的第一个点。
8. 按 \([\downarrow]\)，制作计量表。
9. 输入物位值并按 \([\uparrow]\)。
10. 输入转换值并按 \([\downarrow]\) 前往子菜单级别。
11. 按 \([>]\) 以输入表格上的连续点（02、03、...、50）。
12. 重复最后 3 步直到完成整个转换表。
13. 如果表格已完成，请反复按 \([\downarrow]\) 返回到 “保存配置？” 屏幕。

注意！

根据一定数值序列输入数据（例如转换表项目 01, 02 等）。

如果在屏幕设置为 “是” 时按 \([\downarrow]\)，则仪表将存储用于计量表的数据并返回到常规模式。

假如输入越多的转换数据，仪表在以下区域就能给出更加准确的体积读数：

- 弯曲面。
- 截面积突然改变的部位。
参考下面的插图:

![插图](image_url)

图 6-9：体积或质量的换算表平面图。
① 有参考点的储罐
② 有标绘点的储罐

如何删除体积或者质量转换表

- 进入程序模式
 - 按 $2 \times [\downarrow]$, $2 \times [\uparrow]$ 和 $2 \times [\triangleright]$ 前往 C3.1.1 擦除表格。
- 要删除仪表此时使用的计量表数据（擦除表格？），按 $[\uparrow]$ 和 $[\downarrow]$ 将此菜单项设置为“是”。
- 反复按 $[\leftarrow]$ 返回到“保存配置？”屏幕。
- 仪表将要求您保存或取消您的设置。按 $[\uparrow]$ 或 $[\downarrow]$, 从是、否或后退中进行选择。返回使显示屏返回到程序模式。如果该屏幕设置为“是”或“否”，则按 $[\leftarrow]$ 接受（是）或拒绝（否）新设置。
- 如果在屏幕设置为“是”的情况下按 $[\leftarrow]$, 仪表将删除用于计量表的数据并返回常规模式。

6.4.7 如何在弯曲或锥形底部的储罐中进行正确测量

如果安装在具有盘状或锥形底部的储罐中，仪表可能无法找到储罐底部。储罐底部的形状会导致雷达反射延迟，并且仪表将显示错误消息“储罐底部的测量值丢失”。

您可以偏移储罐底部参考点以查找延迟的雷达反射。遵守以下指示:

- 用不同的测量方法测量真实的罐高。
- 清空储罐。
- 进入程序模式并前往菜单项 C.1.2 罐高。按下 $[\triangleright]$ 按钮。
- 输入此时用于“专家”访问级别的密码。如果是默认密码，请输入“0058”。按 $[\leftarrow]$, 然后按 $[\triangleright]$。
- 增加菜单项 C.1.2 罐高的值。该值必须比真实的罐高至少多 20%。
- 在常规模式下前往显示距离的测量页面。记下仪表测量的反射距离。
- 这是延迟的雷达反射。显示的距离将是新的罐高高度。
• 从真实的罐高中减去到反射的距离。
• 前往菜单项 C1.11 罐底偏移（程序模式 > 完整设置 > 安装参数 > 罐底偏移）。
• 输入您计算的差值作为负值。

注意：负值将在罐底上方移动参考点（如菜单项 C.1.2 罐高中提供的）。
• 按 [↑ …↓]，2 × [↑] 和 [X] 前往 C1.2 罐高。
• 键入常规模式下显示的距离。
• 按 4 × [↑]，退出“保存配置？”窗口。
• 选择并按 []。

注意：仪表将返回常规模式。

信息！
如需有关菜单项的更多数据，请参考第 74 页功能说明 - 表 C：完整设置。

6.4.8 如何制作滤波器以去除雷达信号干扰

如果仪表在包含障碍物（搅拌器、支架、加热管等）的储罐中测量物位，这些物体可能会产生雷达信号干扰（寄生信号）。您可以使用快速设置菜单中的空频谱功能（菜单 A4.2）制作滤波器，以消除雷达信号干扰。

信息！
我们建议您在储罐排空并且所有移动零件（搅拌器等）都在运行时进行空频谱扫描。

图 6-10：如何制作滤波器以去除雷达信号干扰

① 在仪表使用空频谱扫描之前清空储罐（显示反射图）
② 在仪表使用空频谱扫描之前部分填充储罐（显示反射图）
③ 在仪表使用空频谱扫描之后部分填充储罐（显示反射图）
④ 搅拌器叶片位置
⑤ 储罐底部信号
⑥ 仪表执行空频谱扫描之前的搅拌器叶片信号（干扰信号）
⑦ 仪表执行空频谱扫描之前的液体信号
⑧ 仪表使用空频谱扫描数据的反射信号。仪表仅使用液体表面的反射来测量距离。

• 进入程序模式后，将访问级别设置为“专家”。有关程序的更多数据，请访问、请参考第 62 页仪表设置保护（访问级别）。
6.5 状态消息和诊断数据

常规模式下，仪表状态和错误消息显示在仪表状态页上，程序模式下则显示在菜单项“C7.3.1 消息视图”中。显示的消息符合 NAMUR 指令 NE 107。仪表的错误消息分为状态组，每组具有一个状态信号。有 16 个具有固定状态信号的状态组和 8 个具有可更改状态信号的状态组。状态组也分为 4 个组：传感器、电子、组态和过程。

每个状态消息（或状态信号）均具有符合 NAMUR 指令的特殊符号。该符号与消息一起显示。

状态消息（NAMUR NE 107）

<table>
<thead>
<tr>
<th>符号</th>
<th>字母</th>
<th>消息</th>
<th>描述和影响</th>
</tr>
</thead>
<tbody>
<tr>
<td>❌</td>
<td>F</td>
<td>故障</td>
<td>无可行测量。</td>
</tr>
<tr>
<td>🚸</td>
<td>S</td>
<td>超限</td>
<td>测量可用，但不够精确。执行检查。</td>
</tr>
<tr>
<td>🤔</td>
<td>M</td>
<td>要求维护</td>
<td>测量仍然准确，但在短时间后可能会改变。</td>
</tr>
<tr>
<td>📊</td>
<td>C</td>
<td>功能检查</td>
<td>测试功能打开。显示的值不符合正确的测量值。</td>
</tr>
<tr>
<td>📚</td>
<td>I</td>
<td>信息</td>
<td>该状态消息对仪表测量没有影响。</td>
</tr>
</tbody>
</table>

常规模式：仪表状态符号

如果仪表状态发生改变，则常规模式下，仪表会在显示屏的左上角显示状态符号：

![仪表状态符号](image.png)

图 6-11：仪表状态：常规模式

① 仪表状态符号（NAMUR NE 107）
常规模式：仪表状态消息
常规模式下还有仪表状态页。该页面会显示短状态消息列表并会提供仪表此时的状态。按 [▲] 或 [▼] 按钮以在常规模式下进入状态仪表状态页面。

程序模式：仪表状态消息
程序模式下，仪表状态和错误消息会显示在菜单项“C7.3.1 消息视图”中。该菜单项的顶层会显示短状态消息列表。

按 [▲] 或 [▼] 按钮以在状态消息列表中进行选择。

然后按 [►] 按钮显示更多数据。

如果仪表显示错误消息，请参阅下表获取更多数据并查找问题的解决方案。
报警信息及纠正措施描述

<table>
<thead>
<tr>
<th>状态类型</th>
<th>错误信息</th>
<th>描述</th>
<th>纠正措施</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>传感器</td>
<td>传感器故障参数</td>
<td>传感器内存不良。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>无信号</td>
<td>天线无信号或者天线信号长时间较弱。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>微波调谐电压误差</td>
<td>出现微波错误。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>传感器通讯错误</td>
<td>内部总线通信错误或硬件故障。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>无测量值</td>
<td>转换器长时间没有接收到测量数据。</td>
</tr>
<tr>
<td>F</td>
<td>电子部件</td>
<td>重大转换器错误 (DM) ①</td>
<td>出现电子或硬件故障。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重大转换器错误 (CO) ②</td>
<td>出现电子或硬件故障。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重大转换器错误 (通用)</td>
<td>出现电子或硬件故障。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C0 安全响应 ③</td>
<td>电流输出安全响应。如果电流输出小于 3.6 mA 或大于 21 mA，则会显示此错误消息。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>内部通讯错误</td>
<td>内部总线通信错误。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>电源供电错误</td>
<td>内电压过低，无法启动传感器。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>传感器 / 转换器 固件版本不匹配</td>
<td>传感器固件版本与转换器固件版本不一致。这可能是由于固件更新失败造成的。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最大重启次数</td>
<td>在仪表断电并重新通电的给定次数之后，仪表将不能启动测量模式。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>参数矛盾</td>
<td>内部总线通信错误。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>传感器通讯错误</td>
<td>内部总线通信错误或硬件故障。</td>
</tr>
<tr>
<td>状态类型</td>
<td>错误信息</td>
<td>描述</td>
<td>纠正措施</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>F</td>
<td>组态</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NVRAM 不匹配</td>
<td>参数内存中的数据不正确。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>转换器标校数据矛盾</td>
<td>转换器模块中的校准数据不正确。</td>
<td>联系供应商。</td>
</tr>
<tr>
<td></td>
<td>传感器标校数据矛盾</td>
<td>传感器模块中的校准数据不正确。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NVRAMs 不匹配</td>
<td>显示屏的序列号与电子模块的序列号不一致。</td>
<td>确保显示屏与电子模块一致。进入完整设置 > 仪表 > 信息 > 机芯版本和软件版本中，如有必要，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>转换器 NVRAM 布局错误</td>
<td>参数内存中的数据不正确。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>显示屏 NVRAM 布局错误</td>
<td>更新固件后数据不正确。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 浮充错误 ②</td>
<td>由于仪表设置不正确，其无法使用测量数据。</td>
<td>必须使仪表返回其出厂设置。进入程序模式，将仪表设置为"专家"访问级别，前往完整设置 > 仪表 > 出厂默认设置 > 重置为出厂默认设置，并将此菜单项设置为"是"。然后返回至常规模式并将"保存配置"页面设置为"是"。断电后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td>C</td>
<td>电子部件</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>固件更新</td>
<td>转换器模块的固件更新将继续。等待固件更新完成。</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>组态</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>激活传感器模拟</td>
<td>仪表模拟在菜单项 B1.1 设置值中设置的测量值。该测量值可以是物位、距离或反射值。如果制作了计算表，则仪表还可以模拟体积或质量值。</td>
<td>按"输入"以终止测试。</td>
</tr>
<tr>
<td></td>
<td>激活电流输出模拟</td>
<td>仪表模拟在菜单项 B1.2 输出中设置的电流输出值。电流输出测试范围是 3.6...21.5 mA。</td>
<td>按"输入"以终止测试。</td>
</tr>
<tr>
<td></td>
<td>激活 HART 模拟</td>
<td>仪表模拟测量值。您可使用仪表的 HART® 界面模拟测量值。</td>
<td>使用 HART® 界面终止测试。</td>
</tr>
<tr>
<td></td>
<td>LCO 模拟激活</td>
<td>仪表模拟模拟在菜单 B1 模拟中设置的电流输出值（距离、物位、空距体积、空距质量、线性化距离、体积、质量或线性化物位）。</td>
<td>按"输入"以终止测试。</td>
</tr>
<tr>
<td></td>
<td>SysMon 模拟激活</td>
<td>系统监视器将仪表设置为模拟的电流输出值。</td>
<td>重启仪表。</td>
</tr>
<tr>
<td>状态类型</td>
<td>错误信息</td>
<td>描述</td>
<td>纠正措施</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>S 传感器</td>
<td>传感器电压低</td>
<td>向传感器提供的电压过低。</td>
<td>检查电源。</td>
</tr>
<tr>
<td></td>
<td>强信号</td>
<td>信号幅度太大。信号可能饱和。</td>
<td>请确保仪表安装符合手册中的数据。 如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>尖峰丢失（液位丢失）</td>
<td>搜索窗口中长时间（>20 s）找不到信号峰值。</td>
<td>请确保仪表安装符合手册中的数据。 天线必须处于正确位置并且不能安装于储罐内物体的上方。如有必要，更改仪表设置并执行新的空频谱记录。 如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>溢出</td>
<td>信号峰值处于死区内（请参阅菜单项 C1.5 死区），存在储罐过满的风险。</td>
<td>确保仪表设置正确并且过程条件处于指定限值内。</td>
</tr>
<tr>
<td></td>
<td>电子部件温度超限</td>
<td>传感器的温度未处于指定的限值内。</td>
<td>请确保仪表在允许的环境温度范围内运行。</td>
</tr>
<tr>
<td>S 电子部件</td>
<td>电子部件温度超限</td>
<td>转换器的温度不在指定的限值内。</td>
<td>确保仪表在允许的环境温度范围内运行。</td>
</tr>
<tr>
<td>S 过程</td>
<td>输出饱和电流低 ②</td>
<td>测量值小于电流输出量程的最小值。电流输出不能低于其最小值，因此不符合正确的测量值。</td>
<td>检查过程条件和最小电流输出值。</td>
</tr>
<tr>
<td></td>
<td>输出饱和电流高 ②</td>
<td>测量值大于电流输出量程的最大值。电流输出不能超过其最大值，因此不符合正确的测量值。</td>
<td>检查过程条件和最大电流输出值。</td>
</tr>
<tr>
<td>M 传感器</td>
<td>弱信号</td>
<td>信号幅度太小。</td>
<td>请确保仪表安装符合手册中的数据。 如果该消息再次显示，可能必须要安装不同的天线。联系供应商。</td>
</tr>
<tr>
<td></td>
<td>测量质量差（旧测量）</td>
<td>测量值不正确且超过10s没有变化。</td>
<td>请确保仪表安装符合手册中的数据。 如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>空频谱无效</td>
<td>空频谱记录与此时的过程条件不一致（例如，罐高发生改变）。</td>
<td>执行新的空频谱记录。</td>
</tr>
<tr>
<td>状态类型</td>
<td>错误信息</td>
<td>描述</td>
<td>纠正措施</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>传感器信息</td>
<td>传感器 MCU 测试失败</td>
<td>传感器电子元件执行连续的自检程序。测试发现一个错误。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>传感器输入测试失败</td>
<td>传感器电子元件执行连续的自检程序。测试发现一个错误。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>频谱质量差</td>
<td>信号强度有很大的变化。</td>
<td>请确保仪表安装符合手册中的数据。如果消息再次显示，我们建议您将仪表安装在导波管中。</td>
</tr>
<tr>
<td></td>
<td>储罐底部丢失的峰值</td>
<td>信号在储罐底部附近丢失。球形或锥形储罐可能导致仪表显示该状态消息。</td>
<td>如果您填充储罐，仪表将测量罐内介质的物位。如果显示该消息，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>RC-振荡器越界</td>
<td>传感器电子元件执行连续的自检程序。测试发现一个错误。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>传感器参考点超出范围</td>
<td>传感器电子元件执行连续的自检程序。测试发现一个错误。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>XCO 越界</td>
<td>传感器电子元件执行连续的自检程序。测试发现一个错误。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>微波锁定错误</td>
<td>传感器电子元件执行连续的自检程序。测试发现一个错误。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>微波扫描持续时间错误</td>
<td>传感器电子元件执行连续的自检程序。测试发现一个错误。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
<tr>
<td></td>
<td>微波电源电压错误</td>
<td>传感器电子元件执行连续的自检程序。测试发现一个错误。</td>
<td>断电，然后重新启动仪表。如果消息再次显示，请联系供应商。</td>
</tr>
</tbody>
</table>

1. DM = 数据管理器
2. CO = 电流输出
3. 如果仪表处于 SIL 模式，则会显示此错误消息。CO = 电流输出。
7.1 周期性维护

7.1.1 常规注意事项

在正常的操作条件下，没有必要维护。如果有必要，维修必须由经批准的人员（制造商或制造商批准的人员）完成。

注意！
对于防爆或其他认证的仪表的定期检查和维护程序的更多数据，请查阅相关补充说明。

7.1.2 维护外壳盖的 O 形圈

如果显示屏盖①或外壳的接线盒盖②打开和关闭，请确保 O 形圈正确涂抹油脂，或者在必要时更换。有关更换 O 形圈的更多信息，请参考第 156 页 备件。

注意！
使用适用于 O 形圈运行温度范围的多用途润滑脂，其特性如下：
- 运行温度范围为 -40...+130°C / -40...+266°F，对 O 形圈的润滑没有负面影响
- 没有硅胶
- 粘合性能必须符合要求
- 锂皂化
- 防水
- 与 O 形圈材料一致
7.1.3 如何清洁仪表的顶部表面

警告！
请勿使仪表顶部表面上的灰尘积聚超过 5 mm / 0.2"。这在潜在的爆炸环境中是可能的起火源。

危险！
灰色塑料遮阳罩的静电放电风险。

遵守这些说明：
• 保持接线腔体端盖的螺纹清洁。
• 如果污垢聚集在仪表上，请清洁。用湿布擦拭塑料遮阳罩。

7.1.4 如何在过程条件下清洁喇叭天线

如果有可能会积聚或凝结，金属喇叭天线可使用吹扫选项。每隔一段时间清除一次天线，确保天线内表面保持清洁，仪表准确测量。欲了解更多关于尺寸的数据，请参考第 128 页 尺寸和重量（清除和加热 / 冷却系统选项）。

警告！
使用适用于该过程的干气或液体吹扫天线。

注意！
每隔一段时间清除一次天线，确保天线内表面保持清洁，仪表准确测量。

如需更多数据，请参阅下表：

<table>
<thead>
<tr>
<th>如何使用吹扫</th>
<th>过程条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>每隔一段时间进行吹扫。使用压缩空气、氮气或适用于过程的其他气体，最高可达 6 bar / 87 psi。</td>
<td>天线内存在积聚的风险。</td>
</tr>
<tr>
<td>每隔一段时间进行吹扫。使用液体（热水、溶剂或适用于该过程的其他液体）将天线中结冰的液体融化。</td>
<td>天线内有积聚或积聚的风险</td>
</tr>
<tr>
<td>连续使用。使用低压气体去除天线上的冷凝水。</td>
<td>仪表比该过程中的其他元件更冷。天线中可能会有凝结。</td>
</tr>
</tbody>
</table>

过程条件
7.1.5 在过程条件下对喇叭天线伴热或冷却

伴热 / 冷却系统选项适用于 DN50 / 2”、 DN80 / 3” 和 DN100 / 4” 金属喇叭天线。天线外表面被密封在金属伴热 / 冷却加套中。法兰顶部有伴热 / 冷却夹套的进出口。更多尺寸数据，请参考第 128 页 尺寸和重量 (伴热和伴热 / 冷却系统选项)

警告！
确保加热 / 冷却系统的压力必须不能大于 6 bar / 87 psi。确保法兰温度不高于上限。更多信息，请参考第 118 页技术数据。伴热 / 冷却系统亦可使用吹扫系统。更多信息，请参考第 108 页 如何在过程条件下清洁喇叭天线。

7.2 服务保修

警告！
只有认可的操作人员才可以对仪表进行检查和维修。如果你发现问题，将仪表退回供应商处进行检查和 / 或维修。

信息！
在过程条件下，转换器外壳可以与过程连接组件相分离。如需更多数据，请访问、请参考第 41 页 如何旋转或移除信号转换器。

客户的服务受限于以下质保内容：

- 仪表的安装和拆卸。
- 信号转换器的拆卸和安装（具有防护罩，如果该选件已附加）。如需更多数据，请访问、请参考第 41 页 如何旋转或移除信号转换器。
- 其它雷达仪表的信号转换器的更换 OPTIWAVE 7300 信号转换器的拆卸和 OPTIWAVE 7400 信号转换器的安装。如需步骤，请参考第 110 页 用 OPTIWAVE7400 转换器替换 OPTIWAVE7300 转换器。

当你在寄回以前，如需如何准备该仪表，请联系供应商，请参考第 113 页 仪器送返生产厂家。
7.3 用 OPTIWAVE 7400 转换器替换 OPTIWAVE 7300 转换器

信息！
按顺序完成 4 步操作。

所需设备

![所需设备图](image)

图 7-2: 所需设备

1. 5 mm 内六角扳手（不提供）
2. OPTIWAVE 7300 雷达物位变送器。
3. OPTIWAVE 7400 转换器（无过程连接和天线）。如果 OPTIWAVE 7300 是 2009 年之前生产的，需要订购 OPTIWAVE 7400 转换器和相应的适配器。订货代码，请参考第 149 页 订货代码。
4. 所有仪表的手册（包含于 DVD-ROM 内）。

注意！
和 OPTIWAVE 7300
记录下设备铭牌上 OPTIWAVE 7300 的序列号。将序列号随同 OPTIWAVE 7400 转换器的订单一起发送。
请确保已经记录了仪表设置 OPTIWAVE 7300。设置包括基本配置（罐高，距离等），输出，应用环境，显示和表格数据。您能在管理员模式下找到这些数据。

步骤 1: 记录设备仪表号（OPTIWAVE 7300 雷达物位计）并下订单采购 OPTIWAVE 7400 转换器。
- 找到仪表号，位于 OPTIWAVE 7300 铭牌上。
- 记录此号码
- 生成 OPTIWAVE 7400 转换器的订单号。如果 OPTIWAVE 7300 早于 2009 年，需确保 OPTIWAVE 7400 转换器有适配于 OPTIWAVE 7300 法兰的接口。
步骤2: 如何拆除转换器（OPTIWAVE 7300 雷达物位变送器）

图 7-3: 步骤2: 如何拆除转换器（OPTIWAVE 7300 雷达物位变送器）

① 接线盒
② 电缆格兰头
③ 锁紧螺纹
④ 信号转换器
⑤ 过程连接

信息！
更多有关电气连接的步骤，请参考第46页电气安装：2线制，回路供电。

- 将OPTIWAVE 7300断电。
- 拆卸接线盒的端盖，并松开电缆格兰头。
- 将连接线从端子上断开。将线从接线盒内拆除，装上接线端子腔体的端盖。
- 使用一个5mm六角扳手松开转换器底部的螺丝。
- 将转换器从过程连接上拆除。
步骤 3: 如何安装 OPTIWAVE 7400 转换器。

1. 将 OPTIWAVE 7400 转换器安装到 OPTIWAVE 7300 法兰系统上。确保法兰与转换器的连接部分完全安装到位。
2. 使用一个 5 mm 六角扳手旋紧转换器底部的螺钉。
3. 拆卸接线盒的端盖，并松开电缆格兰头。
4. 将线放入接线盒内，并将线头接到端子上。
5. 装上接线盒的端盖。拧紧电缆密封接头。

信息！
更多有关电气连接的步骤，请参考第 46 页电气安装：2 线制，回路供电。

步骤 4: 仪表配置（OPTIWAVE 7400）
• 如需快速配置步骤请参考第 89 页标准设置。更多仪表配置信息，请参考第 59 页操作。

注意！
在安装 OPTIWAVE 7400 物位变送器前，请先记录 OPTIWAVE 7300 的转换器配置。在新转换器的编程模式下输入这些设置。
7.4 备件可用性

原则上来说，对于每台仪表的备件或每个重要附件，生产厂家在其最后一次生产供货后的 3 年内可为其提供备件。

该规定仅用于正常运行过程中容易出现损耗的备件。

7.5 可提供的服务

保修期结束后，生产厂家仍可向客户提供一系列的服务。这些服务包括维修、维护、技术支持和培训。

信息！
更多准确信息，请联系您当地的销售处。

7.6 仪器送返生产厂家

7.6.1 基本信息

该仪器经过精心制造和测试。若按本操作说明进行安装和操作，很少会出现问题。

警告！
若仍需将仪器送回进行检查或维修，则请务必注意下列几点：
• 根据环境保护的法律规定，并为保障我方人员的健康与安全，生产厂家仅对那些不会对人员和环境造成伤害的返还仪器进行处理、测试和维修。
• 这表示生产厂家仅对那些附有下列证书（参见下一章节）的仪器进行处理。

警告！
若仪器曾用于有毒的，腐蚀性，放射性，易燃性或危害水体的产品上，则必须：
• 进行检查并确保所有腔体内不含有这些危险物质，必要时可进行清洗或中和处理；
• 出具一张可安全处理该仪器的证明，并注明所使用过的产品。
7.6.2 送返仪器时附带的表格（可复印）

注意！
为避免对服务人员的伤害，该文件必须可以从包装外部获得。

<table>
<thead>
<tr>
<th>公司：</th>
<th>地址：</th>
</tr>
</thead>
<tbody>
<tr>
<td>部门：</td>
<td>姓名：</td>
</tr>
<tr>
<td>电话号码：</td>
<td>传真号：</td>
</tr>
<tr>
<td>生产厂家的订单号或序列号：</td>
<td></td>
</tr>
<tr>
<td>仪表曾用于下列介质的测量：</td>
<td></td>
</tr>
<tr>
<td>该介质是：</td>
<td>放射性</td>
</tr>
<tr>
<td></td>
<td>危害水体</td>
</tr>
<tr>
<td></td>
<td>有毒</td>
</tr>
<tr>
<td></td>
<td>腐蚀性</td>
</tr>
<tr>
<td></td>
<td>易燃性</td>
</tr>
<tr>
<td>我们已检查该仪表，并确认所有腔体内不含有这些危险物质。</td>
<td></td>
</tr>
<tr>
<td>我们已对该仪器的所有腔体进行了清洗和中和处理。</td>
<td></td>
</tr>
</tbody>
</table>

特此证明，送返仪器中不含有对人员和环境造成伤害的残留介质。

<table>
<thead>
<tr>
<th>日期：</th>
<th>签名：</th>
</tr>
</thead>
<tbody>
<tr>
<td>盖章：</td>
<td></td>
</tr>
</tbody>
</table>
7.7 处理

法律声明！
必须根据您所在国家的有关法规进行处理。

欧盟对 WEEE（废弃电子电器设备）的分类收集指令：

根据欧盟 2012/19 号指令，带有 WEEE 标志的监控仪表在达到使用寿命之后 不得与其他废弃物混合处理。使用方必须将 WEEE 送往指定的 WEEE 回收点处理或者将其送回本司在当地的机构或授权代表处。
8.1 测量原理

天线发射雷达波，经介质表面反射在一段时间 t 后被天线接收。雷达测量原理为 FMCW（调频连续波）。

FMCW 雷达发出高频波段的信号，在其测量相域内，雷达波的频率线性增高（称之为扫频）。信号的发射、从介质表面反射到接收对应着一个时间差 Δt_1。时间差，$\Delta t = \frac{2d}{c}$，d 表示雷达和介质表面的距离，c 为雷达波在介质表面上方的行进速度，即光速。

通过比对实际传送频率和接收频率的差值 Δf_1，进行信号处理。该频率差和距离成正比。频率差越大也就表明距离越大，反之亦然。经过快速傅立叶转换（FFT），频率差 Δf 被转换成频谱，并以此计算得出距离。物位结果由罐高及测量距离差得出。

图 8-1：FMCW 雷达测量原理

1. 变送器
2. 混频器
3. 天线
4. 频率的变化与至介质表面的距离成正比
5. 时间差，Δt
6. 频率差，Δf
7. 传输的频率
8. 接收的频率
9. 频率
10. 时间
测量模式

“直接”模式
如果液体的介电常数很高（$\varepsilon_r \geq 1.4$），液位信号就是从液体表面反射的。

“自动罐底跟踪”模式
如果液体的介电常数较低（对于长距离测量$\varepsilon_r < 1.4$...1.5），您必须使用“自动罐底跟踪”模式进行准确的液位测量。“自动罐底跟踪”模式是一种自动功能，让仪表自动选择“直接”模式还是“罐底跟踪”模式。如果仪表在“罐底区域”上方（罐体高度下方20%）发现大量雷达反射，仪表会使用“直接”模式。如果仪表在“罐底区域”发现大量雷达反射，仪表会使用“罐底跟踪”模式。此模式只能用在平底罐或底部有参考板的导波管的场合。

“满量程罐底跟踪”模式
TBF = 罐底跟踪。如果液体的介电常数非常低（$\varepsilon_r < 1.4$），您必须使用“满量程罐底跟踪”模式进行准确的液位测量。仪表使用罐底（信号穿过液体）的雷达反射。此模式只能用在平底罐或底部有参考板的导波管的场合。

注意！
“满量程罐底跟踪”和“自动罐底跟踪”模式
在菜单 C2.2 Epsilon R Product（产品介电常数）里输入正确的介电常数值是非常重要的。如果此数值有误，仪表将不能精确的测量液位。
8.2 技术数据

信息！
- 以下数据仅适用于通用性的应用场合。如需特殊应用场合的相关技术参数，请联系当地销售机构。
- 附加信息（证书，专用工具，软件，...）和产品的完整文档可从销售公司英文网站下载。

测量系统

<table>
<thead>
<tr>
<th>测量原理</th>
<th>两线制回路供电物位变送器：FMCW 调频连续波雷达</th>
</tr>
</thead>
<tbody>
<tr>
<td>频率范围</td>
<td>K-波段 （24...26 GHz）</td>
</tr>
<tr>
<td>辐射功率最大值．（EIRP）</td>
<td>＜ -41.3 dBm 根据 ETSI EN 307 372 （TLPR） 和 ETSI EN 302 729 （LPR）</td>
</tr>
<tr>
<td>应用范围</td>
<td>液体，糊状物和浆料的液位测量。</td>
</tr>
<tr>
<td>原始测量值</td>
<td>距离和反射率</td>
</tr>
<tr>
<td>推导测量值</td>
<td>物位，体积和质量</td>
</tr>
</tbody>
</table>

设计

<table>
<thead>
<tr>
<th>构造</th>
<th>测量系统由测量传感器（天线）和信号转换器组成</th>
</tr>
</thead>
<tbody>
<tr>
<td>选项</td>
<td>一体式液晶显示屏（-20...+70°C / -4...+158°F）；如果环境温度不在此范围内，显示屏会失效</td>
</tr>
<tr>
<td></td>
<td>一段天线延长管（长度 105 mm / 4.1”）</td>
</tr>
<tr>
<td></td>
<td>最大延长管长度，金属喇叭天线：1050 mm / 41.3”</td>
</tr>
<tr>
<td></td>
<td>最大延长管长度，水滴型天线：525 mm / 20.7”</td>
</tr>
<tr>
<td></td>
<td>天线吹扫系统（配有上半PTFE螺纹）</td>
</tr>
<tr>
<td></td>
<td>冷热 / 冷却系统（带或不带天线吹扫系统）</td>
</tr>
<tr>
<td></td>
<td>- 仅用于 DN50/2”金属喇叭天线（最小 DN80/3”法兰），DN80/3”金属喇叭天线（最小 DN150/6”法兰），及 DN100/4”金属喇叭天线（DN200/8”法兰）</td>
</tr>
<tr>
<td></td>
<td>PTFE 法兰保护盘和延长保护管（天线延长管PTFE保护层）</td>
</tr>
<tr>
<td></td>
<td>PEEK 法兰保护盘</td>
</tr>
<tr>
<td></td>
<td>防护罩</td>
</tr>
</tbody>
</table>

最大测量范围（天线）

<table>
<thead>
<tr>
<th>天线</th>
<th>金属喇叭口， DN40 （1½”）：15 m / 49.2 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>金属喇叭口， DN50 （2”）：20 m / 65.6 ft</td>
</tr>
<tr>
<td></td>
<td>金属喇叭口， DN65 （2½”）：25 m / 82 ft</td>
</tr>
<tr>
<td></td>
<td>- 用于 BM 26 A 磁翻板液位计</td>
</tr>
<tr>
<td></td>
<td>金属喇叭口， DN80 （3”）：50 m / 164 ft</td>
</tr>
<tr>
<td></td>
<td>金属喇叭口， DN100 （4”）：80 m / 262.5 ft</td>
</tr>
<tr>
<td></td>
<td>金属喇叭口， DN150 （6”）和 DN200 （8”）：100 m / 328.1 ft</td>
</tr>
<tr>
<td></td>
<td>PTFE 或 PEEK 水滴型， DN80 （3”）：50 m / 164 ft</td>
</tr>
<tr>
<td></td>
<td>PTFE 水滴型， DN100 （4”）：80 m / 262.5 ft</td>
</tr>
<tr>
<td></td>
<td>PTFE 水滴型， DN150 （6”）：100 m / 328.1 ft</td>
</tr>
<tr>
<td></td>
<td>也请参考“测量精度”第124页</td>
</tr>
</tbody>
</table>

最小罐高

| 最小罐高（天线） | 0.2 m / 8” |

建议的最小死区

| 建议的最小死区 | 天线延长管长度 + 天线长度 + 0.1 m / 4” |
波束角 (天线)

<table>
<thead>
<tr>
<th>喇叭口类型</th>
<th>DN</th>
<th>角度</th>
</tr>
</thead>
<tbody>
<tr>
<td>金属喇叭口</td>
<td>40</td>
<td>17°</td>
</tr>
<tr>
<td>金属喇叭口</td>
<td>50</td>
<td>16°</td>
</tr>
<tr>
<td>金属喇叭口</td>
<td>65</td>
<td>不适用</td>
</tr>
<tr>
<td>金属喇叭口</td>
<td>100</td>
<td>8°</td>
</tr>
<tr>
<td>金属喇叭口</td>
<td>150</td>
<td>6°</td>
</tr>
<tr>
<td>金属喇叭口</td>
<td>200</td>
<td>5°</td>
</tr>
<tr>
<td>PTFE 水滴型</td>
<td>80</td>
<td>8°</td>
</tr>
<tr>
<td>PTFE 水滴型</td>
<td>100</td>
<td>7°</td>
</tr>
<tr>
<td>PTFE 水滴型</td>
<td>150</td>
<td>4°</td>
</tr>
<tr>
<td>PEEK 水滴型</td>
<td>80</td>
<td>9°</td>
</tr>
<tr>
<td>PEEK 水滴型</td>
<td>100</td>
<td>7°</td>
</tr>
<tr>
<td>PEEK 水滴型</td>
<td>150</td>
<td>4°</td>
</tr>
</tbody>
</table>

显示和用户界面

| 显示 | 背光液晶显示屏128×64像素点，64阶灰度可调，4个按键 |
| 界面语言 | 英语，法语，德语，意大利语，西班牙语，葡萄牙语，简体中文，日语，俄语，捷克语，波兰语和土耳其语 |

测量精度

分辨率	±1 mm / ±0.04"
重复性	±1 mm / ±0.04"
精度	标准：±2 mm / ±0.08"，当测量距离 ≤ 10 m / 33 ft；±0.02%测量值，当测量距离> 10 m / 33 ft。对于更多数据，请参考第124页。

基准条件

依据 EN 61298-1

温度	+15...+25°C / +59...+77°F
压力	1013 mbar ±50 mbar / 14.69 psia ±0.73 psi
相对空气湿度	60% ±15%
目标	敞开室内的金属板

操作条件

温度

环境温度	-40...+80°C / -40...+176°F
相对湿度	0...99%
储存温度	-40...+85°C / -40...+185°F
过程连接温度（更高温度请查询）	金属喇叭天线：-50...+200°C / -58...+392°F （过程连接的温度必须遵循密封材料的温度限制。参见此表中的“材质”） Ex：见附加操作手册或批准证书
水滴型天线（PTFE）	-50...+150°C / -58...+302°F （过程连接的温度必须遵循密封材料的温度限制。参见此表中的“材质”） Ex：见附加操作手册或批准证书
PEEK 水滴型天线	-50...+200°C / -58...+392°F （过程连接的温度必须遵循密封材料的温度限制。参见此表中的“材质”） Ex：见附加操作手册或批准证书
压力

<table>
<thead>
<tr>
<th>基本类型</th>
<th>压力范围</th>
<th>压力单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>水滴型天线（PTFE）</td>
<td>-1...40 barg / -14.5...580 psig</td>
<td></td>
</tr>
<tr>
<td>水滴型天线（PEEK）</td>
<td>-1...40 barg / -14.5...580 psig</td>
<td></td>
</tr>
<tr>
<td>金属喇叭天线</td>
<td>-1...40 barg / -14.5...580 psig</td>
<td></td>
</tr>
<tr>
<td>可选：-1...100 barg / -14.5...1450 psig</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

以使用的过程连接和过程连接温度为准。对于更多数据，请参考第 126 页 最大操作压力指令。

其他条件

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>介电常数（(\varepsilon_r)）</td>
<td>直接模式：(\geq 1.4)
 镜像测试模式：(\geq 1.1)</td>
</tr>
<tr>
<td>防护等级</td>
<td>IEC 60529: IP66 / IP68 (0.1 barg / 1.45 psig)
 NEMA 250: NEMA type 6 - 6P（外壳）和 type 6P（天线）</td>
</tr>
<tr>
<td>最大跟踪速率</td>
<td>60 m/min / 196 ft/min</td>
</tr>
</tbody>
</table>

安装条件

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>过程连接尺寸</td>
<td>公称直径（DN）应当大于或等于天线直径。
 如果公称直径（DN）小于天线直径，请择一：
 - 让仪表装在罐体上更大的过程连接处（比如，带槽的盘面），或
 - 使用原先的过程连接，但是在安装前先将天线部分从仪表移除然后从罐体内部再装配。</td>
</tr>
<tr>
<td>过程连接位置</td>
<td>确保仪表的过程连接正下方没有障碍物。对于更多数据，请参考第 20 页 安装。</td>
</tr>
<tr>
<td>尺寸和重量</td>
<td>对于尺寸和重量数据，请参考第 128 页 尺寸和重量。</td>
</tr>
</tbody>
</table>

材质

<table>
<thead>
<tr>
<th>部分</th>
<th>材质</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>外壳</td>
<td>标准：铸铝，聚酯漆
 可选：不锈钢（1.4404 / 316L） - 仅限于非防爆仪表。防爆认证将于 2018 年第二季度可选。</td>
<td></td>
</tr>
<tr>
<td>接液部分，包括天线</td>
<td>金属喇叭天线：不锈钢（1.4404 / 316L）
 标准水滴型天线：PTFE; PEEK
 PTFE 水滴型天线选项：PTFE 法兰保护盘和 PTFE 保护层的天线延长管
 PEEK 水滴型天线选项：PEEK 法兰保护盘</td>
<td></td>
</tr>
<tr>
<td>过程连接</td>
<td>不锈钢（1.4404 / 316L） - PTFE 或 PEEK 法兰保护盘的选项也适用于水滴型天线</td>
<td></td>
</tr>
<tr>
<td>密封圈（和可选的天线延长管 O 圈）</td>
<td>PTFE 水滴型天线：FKM/FPM (-40...+150°C / -40...+302°F)；Kalrez® 6375 (-20...+150°C / -4...+302°F)；EPDM (-50°C...+150°C / -58...+392°F) ①
 PEEK 水滴型天线：FKM/FPM (-40...+200°C / -40...+392°F)；Kalrez® 6375 (-20...+200°C / -4...+392°F)；EPDM (-50°C...+150°C / -58...+392°F) ①
 金属喇叭天线：FKM/FPM (-40...+200°C / -40...+392°F)；Kalrez® 6375 (-20...+200°C / -4...+392°F)；EPDM (-50°C...+150°C / -58...+392°F) ①</td>
<td></td>
</tr>
<tr>
<td>馈通</td>
<td>标准：PEI （-50...+200°C / -58...+392°F - 最大范围）
 馈通温度必须遵循密封材料和天线形式的温度限制
 可选：Metaglas® （-30...+200°C / -22...+392°F - 最大范围）
 馈通温度必须遵循密封材料和天线形式的温度限制</td>
<td></td>
</tr>
<tr>
<td>电缆接口</td>
<td>标准：无
 可选：塑料（非防爆：黑色，防爆：蓝色）；镀镍黄铜；不锈钢；M12（4 针接头）</td>
<td></td>
</tr>
</tbody>
</table>
天气防护罩（可选）
不锈钢（1.4404 / 316L）

过程连接

<table>
<thead>
<tr>
<th>螺纹</th>
<th>G 1½（ISO 228）; 1½ NPT（ASME B1.20.1）</th>
</tr>
</thead>
<tbody>
<tr>
<td>法兰型</td>
<td>EN 1092-1</td>
</tr>
<tr>
<td></td>
<td>低压法兰：DN50...200 in PN01；标准法兰：DN50...200 in PN16（Type B1）; DN40...200 in PN40（Type B1）; DN40...150 in PN63或PN100（Type B1）；其他规格请咨询。用于标准法兰的可选法兰密封面：Type A, B2, C, D, E 和 F</td>
</tr>
<tr>
<td></td>
<td>ASME B16.5</td>
</tr>
<tr>
<td></td>
<td>低压法兰：2"...8" in 150 lb（最大15 psig）; 标准法兰：1¼"...8" in 150 lb RF或300 lb RF；1½"...4" in 600 lb RF; 3"...4" in 900 lb RF; 1½"...2" in 900/1500 lb RJ；其他规格请咨询。用于标准法兰的可选法兰密封面：FF（全平面）和RJ（环接）</td>
</tr>
<tr>
<td></td>
<td>JIS B2220</td>
</tr>
<tr>
<td></td>
<td>40...200A in 10K RF；其他规格请咨询</td>
</tr>
<tr>
<td>其他</td>
<td>其他请咨询</td>
</tr>
</tbody>
</table>

电气连接

<table>
<thead>
<tr>
<th>电源</th>
<th>输出端子 – Non-Ex / Ex i:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12...30 VDC；最小 / 最大值时端子输出 21.5 mA</td>
</tr>
<tr>
<td></td>
<td>输出端子 – Ex d:</td>
</tr>
<tr>
<td></td>
<td>16...36 VDC；最小 / 最大值时端子输出 21.5 mA</td>
</tr>
<tr>
<td></td>
<td>最大电流</td>
</tr>
<tr>
<td></td>
<td>电流输出阻抗</td>
</tr>
<tr>
<td></td>
<td>Ex d: (R_t [\Omega] \leq \frac{(U_{ext} - 16 V)}{21.5 mA})。对于更多数据，请参考第125页 最小供电电压。</td>
</tr>
<tr>
<td></td>
<td>电缆接口</td>
</tr>
<tr>
<td></td>
<td>电缆接口容量（端子）</td>
</tr>
</tbody>
</table>

输入输出

<table>
<thead>
<tr>
<th>电流输出</th>
<th>传输信号</th>
<th>标准: 4...20 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>可选: 3.8...20.5 mA 根据NAMUR NE 43; 4...20 mA（反向）; 3.8...20.5 mA（反向）根据NAMUR NE 43</td>
<td></td>
</tr>
<tr>
<td>输出方式</td>
<td>无源</td>
<td></td>
</tr>
<tr>
<td>分辨率</td>
<td>±5 µA</td>
<td></td>
</tr>
<tr>
<td>温度漂移</td>
<td>典型值 50 ppm/K</td>
<td></td>
</tr>
<tr>
<td>错误信号</td>
<td>高: 21.5 mA；低: 3.5 mA 根据NAMUR NE 43</td>
<td></td>
</tr>
<tr>
<td>HART®</td>
<td>描述</td>
<td>随电流输出信号一起传输的数字信号（HART®协议）②</td>
</tr>
<tr>
<td></td>
<td>版本号</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>负载</td>
<td>≥250 Ω</td>
</tr>
<tr>
<td></td>
<td>数字量温度漂移</td>
<td>最大 ±15 mm / 0.6”（满量程温度）</td>
</tr>
<tr>
<td></td>
<td>多点通讯</td>
<td>是，电流输出 = 4 mA。进入编程模式改变轮询地址（1...63）。</td>
</tr>
<tr>
<td></td>
<td>可用的驱动</td>
<td>FC475, AMS, PDM, FDT/DTM</td>
</tr>
</tbody>
</table>
认证和证书

CE
仪表满足欧盟指令的基本规范。制造商证明该产品成功的通过测试，从而可使用 CE 标志。

针对更多关于此仪表的欧盟指令和欧洲标准的信息，请参考欧盟符合性声明。您可以从随仪表发货的 DVD-ROM 中找到此文件，或免费从网站下载。

抗震性
EN 60068-2-6 和 EN 60721-3-4 (1...9 Hz: 3 mm / 10...200 Hz: 1g, 10g shock 1⁄₂ sinus: 11 ms)

防爆

ATEX （欧洲型式批准）

- II 1/2 G Ex ia IIC T6...T3 Ga/Gb;
- II 1/2 D Ex ia IIC T85°C...T*C Da/Db; ③
- II 1/2 G Ex db ia IIC T6...T3 Ga/Gb;
- II 1/2 D Ex ia tb IIC T85°C...T*C Da/Db ③

ATEX （型式批准）

- II 3 G Ex nA IIC T6...T3 Gc;
- II 3 G Ex ic IIC T6...T3 Gc;
- II 3 D Ex ic IIC T85°C...T*C Dc ③

IECEx

- Ex ia IIC T6...T3 Ga/Gb;
- Ex ia IIC T85°C...T*C Da/Db; ③
- Ex db ia IIC T6...T3 Ga/Gb;
- Ex ia tb IIC T85°C...T*C Da/Db; ③
- Ex ic IIC T6...T3 Gc;
- Ex ic IIC T85°C...T*C Gc ③

cQPSus

区域等级
XP=IS, Class I, Div 1, GPS ABCD, T6...T3 – 2017 年 9 月可用;
DIP, Class II, III, Div 1, GPS EFG, T85°C...T*C – 2017 年 9 月可用; ③
IS, Class I, Div 1, GPS ABCD, T6...T3;
IS, Class II, III, Div 1, GPS EFG, T85°C...T*C; ③
NI, Class I, Div 2, GPS ABCD, T6...T3 – 2017 年 9 月可用;
NI, Class II, III, Div 2, GPS EFG, T85°C...T*C – 2017 年 9 月可用 ③

区域等级
Class I, Zone 1, AEx db ia [ia Ga] IIC T6...T3 Gb (US) – 天线可用于 0 区 – 2017 年 9 月可用;
Ex db ia [Ex ia Ga] IIC T6...T3 Gb (Canada) – 天线可用于 0 区 – 2017 年 9 月可用;
Class I, Zone 0, AEx ia IIC T6...T3 Ga (US);
Ex ia IIC T6...T3 Ga (Canada);
Class I, Zone 2, AEx na IIC T6...T3 Gc (US);
Ex na IIC T6...T3 Gc (Canada);
Zone 20, AEx ia IIC T85°C...T*C Da (US);
Ex ia IIC T85°C...T*C Da (Canada); ③
Zone 21, AEx ia tb [ia Da] IIC T85°C...T*C Db (US) – 天线可用于 20 区 – 2017 年 9 月可用;
Ex ia tb [Ex ia Da] IIC T85°C...T*C Db (Canada) – 天线可用于 20 区 – 2017 年 9 月可用 ③
NEPSI
(2017 年 9 月可用)

<table>
<thead>
<tr>
<th>Ex ia IIC T3~T6 Ga/Gb;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ia IIC T3~T6 Ga/Gb;</td>
</tr>
<tr>
<td>Ex iaD 20/21 T85°C...T*°C IP6X; (3)</td>
</tr>
<tr>
<td>Ex iaD tD A20/A21 T85°C...T*°C IP6X (3)</td>
</tr>
</tbody>
</table>

EAC-EX
(2017 年 11 月可用)

<table>
<thead>
<tr>
<th>Ga/Gb Ex ia IIC T6...T3;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga/Gb Ex ia IIC T6...T3;</td>
</tr>
<tr>
<td>Ga/Gb Ex d ia IIC T6...T3;</td>
</tr>
<tr>
<td>Ex ia tb IIC T85°C...T*°C Da/Db; (3)</td>
</tr>
</tbody>
</table>

其他标准和认证

| 电磁兼容性 | EU: 电磁兼容指令 (EMC) |
| 无线电批准证书 | EU: 无线电设备指令 (RED) |
|■ FCC 规范: 第 15 部分 |
|■ 加拿大工业部: RSS-211 |
| 电气安全 | EU: 满足低电压指令 (LVD) 的安全规范 |
|■ 美国和加拿大: 符合 NEC 和 CEC 在普通场所的安装规范 |
| NAMUR | NAMUR NE21 工业过程及实验室控制设备的电磁兼容性指令 (EMC) |
|■ NAMUR NE43 数字变送器故障信息的信号电平标准 |
|■ NAMUR NE53 现场仪表和信号处理设备配数字机芯的软件和硬件 |
|■ NAMUR NE 107 现场设备的自监控和诊断 |
| CRN | 2017 年 9 月可选。此证书适用于加拿大所有省份和领土。更多数据，请参考网站。 |

(1) Kalrez® 是杜邦公司的注册商标
(2) HART® 是 HART 通讯基金会的注册商标
(3) T*°C = 150°C 或 200°C。更多数据，请参考相关 Ex 批准证书。
8.3 测量精度

对于给定的距离，请使用此表定义测量精度

信息！
为了计算从天线处开始的给定距离的精度，请参阅第 118 页技术数据（测量精度）。
8.4 最小供电电压

使用此表可找到在给定的电流输出负载下最小的供电电压。

非防爆及危险区域认证 (Ex i / IS) 仪表

图 8-4: 端口电流输出为 21.5 mA 的最小供电电压 (非防爆及危险区域认证 (Ex i / IS))
X: 供电电压 U [VDC]
Y: 电流输出负载 RL [Ω]

防爆及危险区域认证 (Ex d / XP/NI) 仪表

图 8-5: 端口电流输出为 21.5 mA 的最小供电电压 (防爆及危险区域认证 (Ex d / XP/NI))
X: 供电电压 U [VDC]
Y: 电流输出负载 RL [Ω]
8.5 最大操作压力指令

警告！请确保仪表在其操作限定条件下工作。

图 8-6：压力/温度降级（EN 1092-1），法兰和螺纹连接，单位 °C 和 barg

图 8-7：压力/温度降级（EN 1092-1），法兰和螺纹连接，单位 °F 和 psig

1. 过程压力，p [barg]
2. 过程连接温度，T [°C]
3. 过程压力，p [psig]
4. 过程连接温度，T [°F]
5. 螺纹连接，G (ISO 228-1)
6. 法兰连接，PN100
7. 法兰连接，PN63
8. 法兰连接，PN40
9. 法兰连接，PN16
信息！

CRN 认证（2017 年 9 月可用）
针对满足 ASME 标准的过程连接的仪表可选 CRN 认证。对于所有安装在压力容器上并在加拿大使用的仪表必须要有此认证。

图 8-8: 压力 / 温度降级 (ASME B16.5)，法兰和螺纹连接，单位 °C 和 barg

图 8-9: 压力 / 温度降级 (ASME B16.5)，法兰和螺纹连接，单位 °F 和 psig

1. 过程压力, p [barg]
2. 过程连接温度, T [°C]
3. 过程压力, p [psig]
4. 过程连接温度, T [°F]
5. 法兰连接, Class 900 和 Class 1500, 螺纹连接, NPT (ASME B1.20.1)
6. 法兰连接, Class 600
7. 法兰连接, Class 300
8. 法兰连接, Class 150
8.6 尺寸和重量

螺纹连接的金属喇叭天线

图 8-10: G 或 NPT 螺纹连接的金属喇叭天线

信息！
• 非防爆，本安和隔爆仪表的电缆接头根据需求提供。
• 电缆外护套的直径必须为 7...12 mm 或 0.28...0.47"。
• cQPSus 认证的仪表的电缆接头必须由客户提供。
• 所有仪表都能提供作为配件选项的防护罩。
螺纹连接的金属喇叭天线：尺寸单位 mm

<table>
<thead>
<tr>
<th>喇叭天线</th>
<th>尺寸 [mm]</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Øe</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN40/1¼"</td>
<td>151</td>
<td>272</td>
<td>143 Ø</td>
<td>416 Ø</td>
<td>39</td>
<td>179</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DN50/2"</td>
<td>151</td>
<td>272</td>
<td>157 Ø</td>
<td>429 Ø</td>
<td>43</td>
<td>179</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DN65/2½"</td>
<td>151</td>
<td>272</td>
<td>233 Ø</td>
<td>505 Ø</td>
<td>65</td>
<td>179</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DN80/3"</td>
<td>151</td>
<td>272</td>
<td>267 Ø</td>
<td>539 Ø</td>
<td>75</td>
<td>179</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DN100/4"</td>
<td>151</td>
<td>272</td>
<td>336 Ø</td>
<td>608 Ø</td>
<td>95</td>
<td>179</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DN150/6"</td>
<td>151</td>
<td>272</td>
<td>491 Ø</td>
<td>763 Ø</td>
<td>140</td>
<td>179</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>DN200/8"</td>
<td>151</td>
<td>272</td>
<td>663 Ø</td>
<td>935 Ø</td>
<td>190</td>
<td>179</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

注：此尺寸为不带天线延长管的选项，最多有 10 节天线延长管可选。每节天线延长管长 105 mm。

螺纹连接的金属喇叭天线：尺寸单位 inches

<table>
<thead>
<tr>
<th>喇叭天线</th>
<th>尺寸 [inches]</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Øe</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN40/1¼"</td>
<td>5.94</td>
<td>10.71</td>
<td>5.63 Ø</td>
<td>16.38 Ø</td>
<td>1.54</td>
<td>7.05</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>DN50/2"</td>
<td>5.94</td>
<td>10.71</td>
<td>6.18 Ø</td>
<td>16.89 Ø</td>
<td>1.69</td>
<td>7.05</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>DN65/2½"</td>
<td>5.94</td>
<td>10.71</td>
<td>9.17 Ø</td>
<td>19.88 Ø</td>
<td>2.56</td>
<td>7.05</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>DN80/3"</td>
<td>5.94</td>
<td>10.71</td>
<td>10.51 Ø</td>
<td>21.22 Ø</td>
<td>2.95</td>
<td>7.05</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>DN100/4"</td>
<td>5.94</td>
<td>10.71</td>
<td>13.23 Ø</td>
<td>23.94 Ø</td>
<td>3.74</td>
<td>7.05</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>DN150/6"</td>
<td>5.94</td>
<td>10.71</td>
<td>13.33 Ø</td>
<td>30.04 Ø</td>
<td>5.51</td>
<td>7.05</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>DN200/8"</td>
<td>5.94</td>
<td>10.71</td>
<td>26.10 Ø</td>
<td>36.81 Ø</td>
<td>7.48</td>
<td>7.05</td>
<td>3.70</td>
<td></td>
</tr>
</tbody>
</table>

注：此尺寸为不带天线延长管的选项，最多有 10 节天线延长管可选。每节天线延长管长 4.1"。
法兰连接的金属喇叭天线

图 8-11: 法兰连接的金属喇叭天线
① 法兰连接的金属喇叭天线
② 基于螺纹连接的法兰连接配金属喇叭天线

信息！
- 非防爆，本安和隔爆仪表的电缆接头根据需求提供。
- 电缆外护套的直径必须为 7…12 mm 或 0.28…0.47”。
- cQPSus 认证的仪表的电缆接头必须由客户提供。
- 所有仪表都能提供作为配件选项的防护罩。
<table>
<thead>
<tr>
<th>过程连接种类</th>
<th>喇叭天线</th>
<th>尺寸 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>标准法兰连接</td>
<td>DN40/1½”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN50/2”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN65/2½”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN80/3”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN100/4”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN150/6”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN200/8”</td>
<td>151</td>
</tr>
<tr>
<td>低压法兰连接</td>
<td>DN40/1½”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN50/2”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN65/2½”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN80/3”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN100/4”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN150/6”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN200/8”</td>
<td>151</td>
</tr>
</tbody>
</table>

①此尺寸为不带天线延长管的选项，最多有10节天线延长管可选。每节天线延长管长105 mm。

法兰连接的金属喇叭天线：尺寸单位 inches

<table>
<thead>
<tr>
<th>过程连接方式</th>
<th>喇叭天线</th>
<th>尺寸 [inches]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>标准法兰连接</td>
<td>DN40/1½”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN50/2”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN65/2½”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN80/3”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN100/4”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN150/6”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN200/8”</td>
<td>5.94</td>
</tr>
<tr>
<td>低压法兰连接</td>
<td>DN40/1½”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN50/2”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN65/2½”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN80/3”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN100/4”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN150/6”</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN200/8”</td>
<td>5.94</td>
</tr>
</tbody>
</table>

①此尺寸为不带天线延长管的选项，最多有10节天线延长管可选。每节天线延长管长4.1”。
螺纹连接的水滴型天线

图 8-12: 螺纹连接的水滴型天线

信息！

- 非防爆、本安和隔爆仪表的电缆接头根据需求提供。
- 电缆外护套的直径必须为 7...12 mm 或 0.28...0.47“。
- cQP'Sus 认证的仪表的电缆接头必须由客户提供。
- 所有仪表都能提供作为配件选项的防护罩。
螺纹连接的水滴型天线：尺寸单位 mm

<table>
<thead>
<tr>
<th>水滴型天线</th>
<th>尺寸 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>151</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>151</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>151</td>
</tr>
</tbody>
</table>

① 此尺寸为不带天线延长管的选项。最多有 5 节天线延长管可选。每节天线延长管长 105 mm。

螺纹连接的水滴型天线：尺寸单位 inches

<table>
<thead>
<tr>
<th>水滴型天线</th>
<th>尺寸 [inches]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>5.94</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>5.94</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>5.94</td>
</tr>
</tbody>
</table>

① 此尺寸为不带天线延长管的选项。最多有 5 节天线延长管可选。每节天线延长管长 4.1"。
法兰连接的水滴型天线

图 8-13：法兰连接的水滴型天线
① 法兰连接的水滴型天线
② 带有法兰保护盘的法兰连接的水滴型天线
③ 低压法兰连接的水滴型天线

信息！
- 非防爆，本安和隔爆仪表的电缆接头根据需求提供。
- 电缆外护套的直径必须为 7…12 mm 或 0.28…0.47"。
- cQPSus 认证的仪表的电缆接头必须由客户提供。
- 所有仪表都能提供作为配件选项的防护罩。
法兰连接的水滴型天线：尺寸单位 mm

<table>
<thead>
<tr>
<th>过程连接方式</th>
<th>水滴型天线</th>
<th>尺寸 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>标准法兰连接</td>
<td>DN80/3"</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN100/4"</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN150/6"</td>
<td>151</td>
</tr>
<tr>
<td>带法兰保护盘的法兰连接</td>
<td>DN80/3"</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN100/4"</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN150/6"</td>
<td>151</td>
</tr>
<tr>
<td>低压法兰连接</td>
<td>DN80/3"</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN100/4"</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>DN150/6"</td>
<td>151</td>
</tr>
</tbody>
</table>

1 此最大尺寸为不带天线延长管的选项。最多有 5 节天线延长管可选。每节天线延长管长 105 mm。

法兰连接的水滴型天线：尺寸单位 inches

<table>
<thead>
<tr>
<th>过程连接方式</th>
<th>水滴型天线</th>
<th>尺寸 [inches]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>标准法兰连接</td>
<td>DN80/3"</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN100/4"</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN150/6"</td>
<td>5.94</td>
</tr>
<tr>
<td>带有法兰保护盘的法兰连接</td>
<td>DN80/3"</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN100/4"</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN150/6"</td>
<td>5.94</td>
</tr>
<tr>
<td>低压法兰连接</td>
<td>DN80/3"</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN100/4"</td>
<td>5.94</td>
</tr>
<tr>
<td></td>
<td>DN150/6"</td>
<td>5.94</td>
</tr>
</tbody>
</table>

1 此最大尺寸为不带天线延长管的选项。最多有 5 节天线延长管可选。每节天线延长管长 4.1"。
吹扫和加热 / 冷却系统选项

图 8-14: 吹扫和加热 / 冷却系统选项

1. 吹扫系统的 G ¼ 管螺纹连接（插头由制造商提供）
2. 加热 / 冷却系统出口的 G ¼ 管螺纹连接（插头由制造商提供）
3. 加热 / 冷却系统进口的 G ¼ 管螺纹连接（插头由制造商提供）

信息！

加热 / 冷却系统
此选项仅针对 DN50、DN80 和 DN100 的法兰连接的金属喇叭天线。法兰的压力等级必须达到 PN16 或 PN40 (EN 1092-1) 、或 Class 150 或 300 (ASME B16.5)。法兰最小直径为:
- DN50 金属喇叭天线: DN80 或 3"
- DN80 金属喇叭天线: DN150 或 6"
- DN100 金属喇叭天线: DN200 或 8"

信息！
加热 / 冷却系统的所有接液部分（法兰、天线和加热 / 冷却夹套）的材质均为 316L / 1.4404。

信息！

吹扫系统
此选项适用于所有金属天线。法兰的压力等级必须达到 PN01、PN16 或 PN40 (EN 1092-1) 、或 Class 150 或 300 (ASME B16.5)。

吹扫系统和加热 / 冷却系统尺寸

<table>
<thead>
<tr>
<th></th>
<th>DN50 / 2"</th>
<th>DN80 / 3"</th>
<th>DN100 / 4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[inch]</td>
<td>[mm]</td>
<td>[inch]</td>
</tr>
<tr>
<td>m</td>
<td>157</td>
<td>6.18</td>
<td>267</td>
</tr>
<tr>
<td>∅p</td>
<td>76</td>
<td>2.99</td>
<td>114</td>
</tr>
</tbody>
</table>
防护罩：尺寸和重量

<table>
<thead>
<tr>
<th>尺寸</th>
<th>重量 [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[inch]</td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

防护罩
177 6.97 153 6.02 216 8.50 1.3 2.9

转换器重量

<table>
<thead>
<tr>
<th>外壳类型</th>
<th>重量 [kg]</th>
<th>[lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>一体式铝外壳</td>
<td>3.0</td>
<td>6.6</td>
</tr>
<tr>
<td>一体式不锈钢外壳</td>
<td>5.4</td>
<td>11.9</td>
</tr>
</tbody>
</table>

天线选项重量

<table>
<thead>
<tr>
<th>天线选项</th>
<th>最小 / 最大重量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[kg]</td>
</tr>
</tbody>
</table>

标准选项，不带转换器

<table>
<thead>
<tr>
<th>天线选项</th>
<th>最小 / 最大重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN40 / 1.5"金属喇叭天线配过程连接，标准长度 ①</td>
<td>2.3...58.7</td>
</tr>
<tr>
<td>DN50 / 2"金属喇叭天线配过程连接，标准长度 ①</td>
<td>2.3...58.7</td>
</tr>
<tr>
<td>DN65 / 2.5"金属喇叭天线配过程连接，标准长度 ①</td>
<td>2.5...58.9</td>
</tr>
<tr>
<td>DN80 / 3"金属喇叭天线配过程连接，标准长度 ①</td>
<td>2.5...58.9</td>
</tr>
<tr>
<td>DN100 / 4"金属喇叭天线配过程连接，标准长度 ①</td>
<td>2.6...59</td>
</tr>
<tr>
<td>DN150 / 6"金属喇叭天线配过程连接，标准长度 ①</td>
<td>3...59.4</td>
</tr>
<tr>
<td>DN200 / 8"金属喇叭天线配过程连接，标准长度 ①</td>
<td>3.7...60</td>
</tr>
<tr>
<td>DN80 PTFE水滴型天线配过程连接，标准长度 ①</td>
<td>3.1...59.2</td>
</tr>
<tr>
<td>DN100 PTFE水滴型天线配过程连接，标准长度 ①</td>
<td>3.8...60.2</td>
</tr>
<tr>
<td>DN150 PTFE水滴型天线配过程连接，标准长度 ①</td>
<td>7.2...63.6</td>
</tr>
</tbody>
</table>
天线选项

<table>
<thead>
<tr>
<th>天线选项</th>
<th>最小 / 最大重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>[kg]</td>
<td>[lb]</td>
</tr>
<tr>
<td>DN80 PEEK 水滴型天线配过程连接，标准长度 ①</td>
<td>2.8...59.2</td>
</tr>
</tbody>
</table>

天线延长管选项

<table>
<thead>
<tr>
<th>天线延长管</th>
<th>+0.92</th>
<th>+2.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>直管延长管，长度 105 mm ②</td>
<td></td>
<td></td>
</tr>
<tr>
<td>直管延长管，长度 210 mm ②</td>
<td>+1.84</td>
<td>+4.06</td>
</tr>
<tr>
<td>直管延长管，长度 315 mm ②</td>
<td>+2.76</td>
<td>+6.08</td>
</tr>
<tr>
<td>直管延长管，长度 420 mm ②</td>
<td>+3.68</td>
<td>+8.11</td>
</tr>
<tr>
<td>直管延长管，长度 525 mm ②</td>
<td>+4.60</td>
<td>+10.14</td>
</tr>
<tr>
<td>直管延长管，长度 630 mm ③</td>
<td>+5.52</td>
<td>+12.17</td>
</tr>
<tr>
<td>直管延长管，长度 735 mm ③</td>
<td>+6.44</td>
<td>+14.20</td>
</tr>
<tr>
<td>直管延长管，长度 840 mm ③</td>
<td>+7.36</td>
<td>+16.23</td>
</tr>
<tr>
<td>直管延长管，长度 945 mm ③</td>
<td>+8.28</td>
<td>+18.25</td>
</tr>
<tr>
<td>直管延长管，长度 1050 mm ③</td>
<td>+9.20</td>
<td>+20.28</td>
</tr>
</tbody>
</table>

其他选项

<table>
<thead>
<tr>
<th>其他选项</th>
<th>最小 / 最大重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>[kg]</td>
<td>[lb]</td>
</tr>
<tr>
<td>法兰盘选项，DN80 PTFE 水滴型天线</td>
<td>+0.3</td>
</tr>
<tr>
<td>法兰盘选项，DN100 PTFE 水滴型天线</td>
<td>+0.5</td>
</tr>
<tr>
<td>法兰盘选项，DN150 PTFE 水滴型天线</td>
<td>+0.7</td>
</tr>
<tr>
<td>法兰盘选项，DN80 PEEK 水滴型天线</td>
<td>+0.2</td>
</tr>
</tbody>
</table>

① 标准长度 = 无天线延长管
② 此选项适用于金属喇叭和水滴型天线
③ 此选项适用于金属喇叭天线
9.1 综述

HART® 协议是一种用于工业的开放性数字通讯协议。任何人都可免费使用。它包含在嵌入 HART 兼容仪表的信号转换器的软件中。

有两种仪表支持 HART 协议：操作仪表和现场仪表。同时由两种设备（主站）：电脑工作站（一级主站）和手动控制单元（二级主站）。这些可以被用在控制中心或其他区域。HART 现场仪表包括传感器，转换器和执行器。现场仪表包括二线制和四线制仪表，同时为在危险场合使用的本安版本。

HART 仪表有两种运作方式：点对点通讯和多回路通讯。

如果仪表使用的是点对点模式，HART® 协议使用的是贝尔 202 标准，该数字信号夹杂在 4...20 mA 信号上。所连接的仪表通过 HART 协议发送和接收数字信号，并同时发送模拟信号。仅有一个仪表能够被连接至信号电缆。

如果仪表被连接至多回路模式，则该网络仅可使用 HART® 通讯的数字信号。回路电流则被锁死在 4mA。你可以连接最多 63 台仪表到一根信号电缆中。

FSK 或 HART® 调制解调器包含在分体仪表和手动控制装置中。对于 PC 支持的工作站，必须有一个外部调制解调器。外部调制解调器连接到串行或 USB 接口。

9.2 软件历史

信息！

在下表中，“x”为可能出现的多位数字字数字组合的占位符，而这取决于当前可用版本。

<table>
<thead>
<tr>
<th>发布日期</th>
<th>仪表</th>
<th>HART®</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>仪表版本</td>
</tr>
<tr>
<td>2016-04</td>
<td>所有版本</td>
<td>1</td>
</tr>
</tbody>
</table>

HART® 标识码和版本号码

<table>
<thead>
<tr>
<th>制造商 ID</th>
<th>69 (0x45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>扩展仪表类型</td>
<td>0x45b9</td>
</tr>
<tr>
<td>仪表版本</td>
<td>1</td>
</tr>
<tr>
<td>DD 版本</td>
<td>1</td>
</tr>
<tr>
<td>DD 版本 (NAMUR)</td>
<td>01.11</td>
</tr>
<tr>
<td>HART® 通用版本</td>
<td>7.4</td>
</tr>
<tr>
<td>FC 475 系统 SW, Rev.</td>
<td>≥ 3.7</td>
</tr>
<tr>
<td>AMS 版本</td>
<td>≥ 11.1</td>
</tr>
<tr>
<td>PDM 版本</td>
<td>≥ 6.0</td>
</tr>
<tr>
<td>FDT 版本</td>
<td>≥ 1.2</td>
</tr>
</tbody>
</table>
9.3 连接变量

信号转换器是二线制带 4...20mA 信号输出和 HART® 接口。

- 支持多点模式
 在多点通信系统中，超过 1 个仪表连接至一个共用的传输电缆。

- 不支持触发模式

HART® 通信有两种使用方法：

- 作为点到点连接
- 带有 2 线制的多点连接。

9.3.1 点到点连接 - 模拟 / 数字模式

信号转换器和 HART® 盘之间的点到点连接。

仪表的电流输出是无源的。

也是 请参考第 51 页 点到点连接。

9.3.2 多点连接 （2 线制连接）

多达 63 个仪表可以并联安装（该信号转换器和其他 HART® 仪表）。

多点网络示图, 请参考第 52 页 多点网络。

多点模式通讯数据, 请参考第 94 页 HART® 网络设置。

9.4 HART® 仪表变量

<table>
<thead>
<tr>
<th>HART® 仪表变量</th>
<th>代码</th>
<th>类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>传感器数值</td>
<td>0</td>
<td>线性</td>
</tr>
<tr>
<td>物位</td>
<td>1</td>
<td>线性</td>
</tr>
<tr>
<td>距离</td>
<td>2</td>
<td>线性</td>
</tr>
<tr>
<td>反射</td>
<td>3</td>
<td>线性</td>
</tr>
<tr>
<td>液位线性化 ①</td>
<td>4</td>
<td>线性</td>
</tr>
<tr>
<td>体积转换 ②</td>
<td>5</td>
<td>线性</td>
</tr>
<tr>
<td>质量转换 ②</td>
<td>6</td>
<td>线性</td>
</tr>
<tr>
<td>距离线性化 ①</td>
<td>7</td>
<td>线性</td>
</tr>
<tr>
<td>空距体积转换 ②</td>
<td>8</td>
<td>线性</td>
</tr>
<tr>
<td>空距质量转换 ②</td>
<td>9</td>
<td>线性</td>
</tr>
</tbody>
</table>

① 如果您在转换菜单中创建了一个线性化表格则该 HART 变量可用
② 如果您创建了一个转换表格该 HART 变量可用
HART® 变量 PV（第一变量），SV（第二变量），TV（第三变量），QV（第四变量）能够定义为任何仪表测量变量。

HART® 变量 PV 总是定义为 HART® 默认电流输出的变量，例如，液位测量。

9.5 手操器 475 (FC 475)

手操器是一种设计用于设置 HART® 和 FF 仪表的 Emerson 过程管理手持终端。设备描述文件（DDs）是用来整合不同仪表接入手操器。

9.5.1 安装

警告！
除非设备描述（DD）文件已经安装，不然手操器不能对仪表进行正确设置、操作或读取数据。

手操器的系统和软件要求
• 系统芯片包括“简易升级选项”
• 手操器简易升级编程
• HART® 设备描述文件

更多信息，请参考手操器用户手册。

9.5.2 操作

信息！
手操器不能访问服务菜单。仿真仅可电流输出。

手操器与仪表就地显示使用同样的步骤来操作信号转换器。对于每个菜单的在线帮助基于在就地仪表显示上每个菜单的功能编号。设置通过保护与就地显示一致。

手操器总是保存全部设置用于和 AMS 通讯。

9.6 资产管理系统（AMS®）

资产管理系统设备管理软件（AMS®）是艾默生过程管理公司基于 HART®、PROFIBUS 和 Foundation Fieldbus 通讯开发的 PC 程序。设备描述文件（DDs）用于在其 AMS® 程序中集成不同的设备。

9.6.1 安装

请阅读安装工具包中的 README.txt 文件。

如果此时尚未安装仪表描述，请安装安装套件 HART® AMS。本仪表附带的 DVD-ROM 中提供了.exe 文件，您也可以从我们的网站下载该文件。

对于安装数据，请参考“AMS Intelligent Device Manager Books Online” 中的章节“Basic AMS Functionality > Device Configurations > Installing Device Types > Procedures > Install device types from media”。
9 HART 接口

9.6.2 操作

由于 AMS 系统的要求和协议，通过 AMS 系统和通过设备操作界面进行信号转换器操作时，这两者之间存在差异。不支持对服务参数操作及模拟测试仅针对电流输出。每个参数的在线帮助包含其功能码作为本地设备显示的参考。

9.6.3 基本配置参数

9.7 现场仪表工具 / 仪表类型管理器 (FDT / DTM)

FDT 容器为用来设置 HART，Profibus 与 FF 仪表的电脑程序。为了设置一台仪表，FDT 容器使用 DTM 设备管理软件。

9.7.1 安装

在你操作仪表前，设备管理软件 DTM 必须被安装于 FDT 容器中。该 .msi 文件从随机提供的 DVD 中提取。您同样可以在我们的网站上下载该文件。

9.7.2 操作

DTM 和仪表就地显示总是使用同样的步骤来操作信号转换器。更多的数据，请参考第 59 页 操作。

9.8 过程设备管理（PDM）

过程设备管理软件（PDM）是由西门子针对 HART® 和 PROFIBUS 所开发的 PC 程序。设备描述文件（DDs）用于将不同的设备集成到 PDM 中。

9.8.1 安装

安装 Device Install HART® PDM 文件夹内设备描述文件。通过 SIMATIC PDM 管理的现场设备均需要相对应的设备描述文件。该文件可以从网站上下载或随机光盘中获得。

如果您使用 PDM 5.2 版，请参考 PDM 操作手册第 11.1 章 - Install device / Integrate device into SIMATIC PDM with Device Install。

如果您使用 PDM 6.0 版，请参考 PDM 操作手册第 13 章 - Integrating devices。

更多信息，请参考“readme.txt”您可以在安装工具包内查看此文档。

9.8.2 操作

信息！
对于更多数据，请参考第 145 页 PDM 的 HART® 树形菜单。

SIMATIC PDM 软件工具中的菜单与仪表显示屏上显示的菜单的名称之间可能存在差异。请参阅 SIMATIC PDM 中的在线帮助以查找每个菜单项的功能号。该功能号与仪表菜单中的功能号一致。
使用相同的程序保护主管菜单中的参数。

9.9 AMD 的 HART® 菜单结构

下列表格的缩写:
- Opt 可选，视仪表版本及配置而定
- Rd 只读

9.9.1 AMS 菜单结构总览（菜单结构中的位置）

<table>
<thead>
<tr>
<th>组态 / 设置</th>
<th>快速设置</th>
<th>通用</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>安全</td>
</tr>
<tr>
<td></td>
<td></td>
<td>单位</td>
</tr>
<tr>
<td></td>
<td></td>
<td>应用</td>
</tr>
<tr>
<td>满罐设置</td>
<td>过程</td>
<td>输出</td>
</tr>
<tr>
<td></td>
<td></td>
<td>显示</td>
</tr>
<tr>
<td></td>
<td></td>
<td>仪表</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hart</td>
</tr>
<tr>
<td>服务 Opt</td>
<td>校准</td>
<td>信息</td>
</tr>
</tbody>
</table>

仪表诊断

<table>
<thead>
<tr>
<th></th>
<th>仪表状态</th>
</tr>
</thead>
<tbody>
<tr>
<td>实际值</td>
<td></td>
</tr>
<tr>
<td>模拟</td>
<td></td>
</tr>
<tr>
<td>测试 / 复位</td>
<td></td>
</tr>
<tr>
<td>信息</td>
<td></td>
</tr>
</tbody>
</table>

过程变量

<table>
<thead>
<tr>
<th></th>
<th>测量值</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入 / 输出</td>
<td></td>
</tr>
</tbody>
</table>

9.9.2 AMS 菜单结构（具体设置）

<table>
<thead>
<tr>
<th>组态 / 设置</th>
<th>通用</th>
<th>语言 / 位号 / 长位号</th>
</tr>
</thead>
<tbody>
<tr>
<td>快速设置</td>
<td></td>
<td>登录 / 修改密码 / 重置密码 / 锁定状态 Rd / 锁定 / 解锁</td>
</tr>
<tr>
<td></td>
<td></td>
<td>仪表 / 写保护 Rd / (非) 激活写保护 / 解锁扩展量程</td>
</tr>
<tr>
<td>安全</td>
<td></td>
<td>单位长度 / 单位容积 / 单位质量</td>
</tr>
<tr>
<td>单位</td>
<td></td>
<td>标准设置 / 记录空频谱</td>
</tr>
<tr>
<td>应用设置助手</td>
<td></td>
<td>储罐类型 / 罐高 / 罐低 / 时间常数 / 天线形式 / 天线延长管 / 隔离段 / 参考点偏移 / 罐底偏移</td>
</tr>
</tbody>
</table>

满罐设置

<table>
<thead>
<tr>
<th>过程</th>
<th>安装参数</th>
<th>转换</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>跟踪速度 / 介质 Epsilon R / 气体 Epsilon R / 测量模式 / 满溢检测 / 满溢临界值</td>
<td>选择转换 / 入口计数 Rd / 转换表</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>过程</th>
<th>安装参数</th>
<th>转换</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>跟踪速度 / 介质 Epsilon R / 气体 Epsilon R / 测量模式 / 满溢检测 / 满溢临界值</td>
<td>选择转换 / 入口计数 Rd / 转换表</td>
</tr>
<tr>
<td>满罐设置</td>
<td>输出</td>
<td>通用</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>电流输出 1</td>
<td>电流输出 1 变量 / 0% 量程 / 100% 量程 / 电流输出量程 / 报错功能设置 / 故障低电流 / 故障高电流 / D/A trim PVopt</td>
</tr>
<tr>
<td>满罐设置</td>
<td>显示</td>
<td>通用</td>
</tr>
<tr>
<td></td>
<td>第一测量页面</td>
<td>功能 / 第一数值变量 / 第一数值格式 / 第二数值变量 Opt / 第二数值格式 Opt / 第三数值变量 Opt / 第三数值格式 Opt / 0% 量程 Opt / 100% 量程 Opt</td>
</tr>
<tr>
<td></td>
<td>第二测量页面</td>
<td>功能 / 第一数值变量 / 第一数值格式 / 第二数值变量 Opt / 第二数值格式 Opt / 第三数值变量 Opt / 第三数值格式 Opt / 0% 量程 Opt / 100% 量程 Opt</td>
</tr>
<tr>
<td>满罐设置</td>
<td>仪表</td>
<td>信息</td>
</tr>
<tr>
<td></td>
<td>安全</td>
<td>登录 / 修改密码 / 重置密码 / 锁定状态 Rd / 锁定 / 解锁仪表 / 写保护 Rd / (非) 激活写保护 / 解锁扩展量程</td>
</tr>
<tr>
<td></td>
<td>单位</td>
<td>单位长度 / 单位容积 / 单位质量</td>
</tr>
<tr>
<td></td>
<td>日志</td>
<td>运行时间 Rd / 日志信息复位</td>
</tr>
<tr>
<td>满罐设置</td>
<td>HART</td>
<td>识别和信息</td>
</tr>
<tr>
<td></td>
<td>服务</td>
<td>校准</td>
</tr>
<tr>
<td></td>
<td>传感器</td>
<td>手动修正偏移 / 手动修正系数 / 修正偏移 Rd / 修正系数 Rd / 修正偏移扩展 Rd, Opt / 修正系数扩展 Rd, Opt</td>
</tr>
</tbody>
</table>
仪表诊断

<table>
<thead>
<tr>
<th>仪表状态</th>
<th>凝聚状态（NE 107）</th>
<th>凝聚状态（NE 107）Rd / 仪表仿真激活Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>标准</td>
<td>仪表状态Rd / 外设状态Rd / 写保护Rd / 仪表诊断状态Crd / 仪表诊断状态1Rd / AO饱和Rd / AO锁定Rd</td>
<td></td>
</tr>
<tr>
<td>附加</td>
<td>仪表状态仿真Rd / 故障（F）Rd / 功能检查（C）Rd / 输出范围（S）Rd / 需要维护（M）Rd / 电子部件信息Rd / 传感器信息Rd</td>
<td></td>
</tr>
<tr>
<td>分区检查</td>
<td>管号Rd / 群故障检查Rd</td>
<td></td>
</tr>
<tr>
<td>模拟</td>
<td>过程变量Rd / 模拟量Rd / 允许 / 禁止状态模拟 / 状态模拟Op</td>
<td></td>
</tr>
<tr>
<td>测试 / 复位</td>
<td>重启仪表 / 重设参数更改标志</td>
<td></td>
</tr>
<tr>
<td>信息</td>
<td>位号Rd / 长位号Rd / 序列号Rd / 制造商Rd / 仪表名称Rd / V NumberRd / 机芯版本Rd / 固件版本Rd / 软件版本Rd / 硬件版本Rd / 电子序列号Rd / 制造日期Rd / 校准日期Rd / 运行时间Rd</td>
<td></td>
</tr>
</tbody>
</table>

过程变量

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>输入 / 输出</td>
<td>PV Rd / PV%范围Rd / PV输出电流Rd / SYRd / TVRd / QVRd</td>
</tr>
</tbody>
</table>

9.10 PDM 的 HART® 树形菜单

下列表格的缩写：
- Opt 可选，视仪表版本及配置而定
- Rd 只读
- Cust 监管保护锁
- Loc 本地 PDM，只作用在 PDM 视图

9.10.1 PDM 菜单树总览（菜单树中的位置）

概述：仪表菜单

下载到仪表...
上传到 PG/PC...
概述：视图菜单

概述：诊断

9.10.2 PDM 菜单结构（具体设置）
快速设置

<table>
<thead>
<tr>
<th>部分</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>通用</td>
<td>语言 / 位号 / 长位号</td>
</tr>
<tr>
<td>安全</td>
<td>登录 / 修改密码 / 重置密码 / 锁定状态 rd / 锁定 / 解锁 仪表 / 写保护 rd / （非）激活写保护 / 解锁扩展量程</td>
</tr>
<tr>
<td>单位</td>
<td>单位长度 / 单位容积 / 单位质量</td>
</tr>
<tr>
<td>应用设置助手</td>
<td>标准设置 / 记录频谱</td>
</tr>
</tbody>
</table>

满罐设置

<table>
<thead>
<tr>
<th>部分</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>过程</td>
<td>安装参数 / 储罐类型 / 罐高 / 死区 / 时间常数 / 天线形式 / 天线延长管 / 阻塞段 / 参考点偏移 / 罐底偏移</td>
</tr>
<tr>
<td>过程</td>
<td>跟踪速度 / 介质 Epsilon R / 气体 Epsilon R / 测量模式 / 满溢检测 / 满溢溢出值 opt / 多重反射启用 / 空频谱启用 / 所需最小峰值 / 最小窗口宽度</td>
</tr>
<tr>
<td>转换</td>
<td>选择转换 / 入口计数 rd / 转换表</td>
</tr>
<tr>
<td>输出</td>
<td>通用 / 通道 A 的 10 类型 rd / 通道 B 的 10 类型 rd</td>
</tr>
<tr>
<td>输出</td>
<td>电流输出 1 / 电流输出 2 变量 / 0% 量程 / 100% 量程 / 电流输出量程 / 报错功能设置 / 故障低电流 / 故障高电流 / D/A trim PVOpt</td>
</tr>
<tr>
<td>显示</td>
<td>通用 / 背光</td>
</tr>
<tr>
<td>第一测量页面</td>
<td>功能 / 第一数值变量 / 第一数值格式 / 第二数值变量 opt / 第二数值格式 opt / 第三数值变量 opt / 第三数值格式 opt / 0% 量程 opt / 100% 量程 opt</td>
</tr>
<tr>
<td>第二测量页面</td>
<td>功能 / 第一数值变量 / 第一数值格式 / 第二数值变量 opt / 第二数值格式 opt / 第三数值变量 opt / 第三数值格式 opt / 0% 量程 opt / 100% 量程 opt</td>
</tr>
<tr>
<td>仪表</td>
<td>信息 / 位号 rd / 长位号 rd / 序列号 rd / 制造商 rd / 仪表名称 rd / 订货号 rd / 机芯版本 rd / 现场仪表版本 rd / 软件版本 rd / 硬件版本 rd / 电子部件序列号 rd / 生产日期 rd</td>
</tr>
<tr>
<td>安全</td>
<td>登录 / 修改密码 / 重置密码 / 锁定状态 rd / 锁定 / 解锁 仪表 / 写保护 rd / （非）激活写保护 / 解锁扩展量程</td>
</tr>
<tr>
<td>单位</td>
<td>单位长度 / 单位容积 / 单位质量</td>
</tr>
<tr>
<td>日志</td>
<td>运行时间 rd / 日志信息复位</td>
</tr>
<tr>
<td>出厂默认设置</td>
<td>恢复出厂设置</td>
</tr>
</tbody>
</table>

HART

| 识别和信息 | 回路电流形式 / 在线方式 / 寻址地址 / 位号 / 长位号 / 制造商 *rd* / 型号 *rd* / 仪表识别代码 *rd* / 通用版本 *rd* / 固件版本 *rd* / DD- 版本 *rd* / 描述符 / 信息 / Date / 最终装配号 / 配置变更计数 *rd* / 软件版本 *rd* / 硬件版本 *rd* / 写保护 *rd* / 请求报文数 *rd* / 应答报文数 *rd* |

| 识别和信息 | 回路电流模式 / 在线模式 / 轮询地址 / 位号 / 长位号 / 制造商 *rd* / 型号 *rd* / 仪表识别代码 *rd* / 通用版本 *rd* / 分体仪表版本 *rd* / DD- 版本 *rd* / 描述符 / 信息 / Date / 最终装配号 / 配置变更计数 *rd* / 软件版本 *rd* / 硬件版本 *rd* / 写保护 *rd* / 请求报文数 *rd* / 应答报文数 *rd* |
服务

<table>
<thead>
<tr>
<th>校准</th>
<th>校准</th>
<th>电流输出 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>传感器</td>
<td>手动修正偏移 / 手动修正系数 / 修正偏移 (R_d) / 修正系数 (R_d) / 修正偏移扩展 (R_d), Opt / 修正系数扩展 (R_d), Opt</td>
<td></td>
</tr>
</tbody>
</table>

查看菜单

测量值

| 传感器值 \(R_d \) / 介质液位 \(R_d \) / 距离 \(R_d \) / 反射 \(R_d \) / 物位线性 Opt, \(R_d \) / 容积 Opt, \(R_d \) / 质量 Opt, \(R_d \) / 距离 |

输入 / 输出

| PV \(R_d \) / PV % 范围 \(R_d \) / PV 输出电流 \(R_d \) / Sy \(R_d \) / TV \(R_d \) / Qv \(R_d \) |

诊断

仪表状态

<table>
<thead>
<tr>
<th>聚集状态 (NE 107)</th>
<th>凝聚状态 (NE 107) (R_d) / 仪表仿真激活 (R_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>标准</td>
<td>仪表状态 (R_d) / 外设状态 (R_d) / 写保护 (R_d) / 仪表诊断状态 (0^{rd}) / 仪表诊断状态 (1^{rd}) / AO 饱和 (R_d) / AO 锁定 (R_d)</td>
</tr>
<tr>
<td>附加</td>
<td>仪表状态仿真 (R_d) / 故障 (F) (R_d) / 功能检查 (C) (R_d) / 输出范围 (S) (R_d) / 需要</td>
</tr>
<tr>
<td>分区检查</td>
<td>簇号 (R_d) / 群故障检查 (R_d)</td>
</tr>
</tbody>
</table>

实际值

| 运行时间 \(R_d \) / 传感器值 \(R_d \) / 介质液位 \(R_d \) / 距离 \(R_d \) / 反射 \(R_d \) / 物位线性 \(R_d \), Opt / 容积 \(R_d \), Opt / 质量 \(R_d \), Opt / 距离线性 \(R_d \), Opt / 空距体积 \(R_d \), Opt / 空距质量 \(R_d \), Opt / 传感器温度 \(R_d \) / 转换器温度 \(R_d \) |

模拟

<table>
<thead>
<tr>
<th>过程变量</th>
<th>模拟量</th>
</tr>
</thead>
<tbody>
<tr>
<td>仪表状态</td>
<td>允许 / 禁止状态模拟 / 状态模拟 Opt</td>
</tr>
<tr>
<td>I/O</td>
<td>环路测试</td>
</tr>
</tbody>
</table>

测试 / 复位

| 重启仪表 / 重设参数更改标志 |

信息

| 位号 \(R_d \) / 长位号 \(R_d \) / 序列号 \(R_d \) / 制造商 \(R_d \) / 仪表名称 \(R_d \) / V Number \(R_d \) / 机芯版本 \(R_d \) / 固件版本 \(R_d \) / 软件版本 \(R_d \) / 硬件版本 \(R_d \) / 电子序列号 \(R_d \) / 制造日期 \(R_d \) / 校准日期 \(R_d \) / 运行时间 \(R_d \) |
10.1 订货代码

在每一列中都做出选择，得到一个订货代码。

<table>
<thead>
<tr>
<th>VFDE</th>
<th>4</th>
<th>0</th>
<th>OPTIWAVE 7400 C 24 GHz 雷达 (FMCW) 物位变送器 用于有搅拌和腐蚀性液体 (高达 100 barg (1450 psig) 和 200°C (392°F))</th>
</tr>
</thead>
</table>

区域指令
1. 欧洲
2. 中国
3. 美国
4. 加拿大
5. 巴西
6. 澳大利亚
A. 俄罗斯
B. 哈萨克斯坦
C. 白俄罗斯
W. 全球

防爆认证
0. 无
1. ATEX II 1/2 G Ex ia IIC T6...T3 Ga/Gb + II 1/2 D Ex ia IIC T85°C...T150°C 或 T85°C...T200°C Da/Db
2. ATEX II 1/2 GD Ex db ia IIC T6...T3 Ga/Gb + II 1/2 D Ex ia tb IIC T85°C...T150°C 或 T85°C...T200°C Da/Db
3. ATEX II 3 G Ex ic IIC T6...T3 Gc + II 3 D Ex ic IIC T85°C...T150°C 或 T85°C...T200°C Dc
4. ATEX II 3 G Ex nA T6...T3 Gc
5. NEPSI Ex ia IIC T6...T3 Ga/Gb + Ex iaD 20/21 T85°C...T150°C 或 T85°C...T200°C IP6X (1)
6. NEPSI Ex d ia IIC T6...T3 Ga/Gb + Ex iaD tD A20/A21 T85°C...T150°C 或 T85°C...T200°C IP6X (1)

<table>
<thead>
<tr>
<th>VFDE</th>
<th>4</th>
<th>0</th>
<th>订货代码 (在下页中完成这个代码)</th>
</tr>
</thead>
</table>
构造

0	无
2	CRN / ASME B31.3 ①
3	NACE 结构 (MR0175 / MR0103 / ISO 15156)
4	ASME B31.3
A	CRN / ASME B31.3 + NACE (MR0175 / MR0103 / ISO 15156) ①
B	NACE (MR0175 / MR0103 / ISO 15156) + ASME B31.3

转换器型号（外壳材质 / 防护等级）

| 1 | C / 一体型（铝外壳，IP66/68 0.1 barg） |
| 2 | C / 一体型（不锈钢外壳，IP66/68 0.1 barg ④） |

输出

| 1 | 2 线制 / 4...20mA 无源 HART® |

电缆入口 / 电缆格兰头

1	M20×1.5 / 无
2	M20×1.5 / 1 × 塑料 + 堵头
3	M20×1.5 / 1 × 铜镀镍 + 堵头
4	M20×1.5 / 1 × 不锈钢 + 堵头
5	M20×1.5 / 1 × M12（4-针）+ 堵头
6	M20×1.5 / 2 × 塑料
7	M20×1.5 / 2 × 铜镀镍
8	M20×1.5 / 2 × 不锈钢
A	M20×1.5 / 2 × M12（4-针）
C	½ NPT / 无
D	½ NPT / 1 × 铜镀镍 + 堵头
E	½ NPT / 1 × 不锈钢 + 堵头
F	½ NPT / 2 × 铜镀镍
G	½ NPT / 2 × 不锈钢

显示

| 0 | 无（无显示，无显示屏外壳） |
| 4 | 插入式显示屏（带显示盖） |

VFDE 4 0 1 订货代码（在下页中完成这个代码）
<table>
<thead>
<tr>
<th>显示 - 文档语言</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 英语</td>
</tr>
<tr>
<td>2 德语</td>
</tr>
<tr>
<td>3 法语</td>
</tr>
<tr>
<td>4 意大利语</td>
</tr>
<tr>
<td>5 西班牙语</td>
</tr>
<tr>
<td>6 葡萄牙语</td>
</tr>
<tr>
<td>7 日语</td>
</tr>
<tr>
<td>8 中文（简体）</td>
</tr>
<tr>
<td>A 俄语</td>
</tr>
<tr>
<td>B 捷克语</td>
</tr>
<tr>
<td>C 土耳其语</td>
</tr>
<tr>
<td>D 波兰语</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>操作条件 (压力，温度，材质和标识) / 工艺密封</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 无</td>
</tr>
<tr>
<td>1 1...40 barg (-14.5...580 psig) / -40°C...+200°C (-40°F...+392°F) / FKM/FPM (5)</td>
</tr>
<tr>
<td>2 1...40 barg (-14.5...580 psig) / -50°C...+150°C (-58°F...+302°F) / EPDM (5)</td>
</tr>
<tr>
<td>3 1...40 barg (-14.5...580 psig) / -20°C...+200°C (-4°F...+392°F) / Kalrez® 6375 (6)</td>
</tr>
<tr>
<td>5 1...40 barg (-14.5...580 psig) / -30°C...+200°C (-22°F...+302°F) / FKM/FPM (6)</td>
</tr>
<tr>
<td>6 1...40 barg (-14.5...580 psig) / -30°C...+150°C (-22°F...+302°F) / EPDM (6)</td>
</tr>
<tr>
<td>7 1...40 barg (-14.5...580 psig) / -20°C...+200°C (-4°F...+392°F) / Kalrez® 6375 (6)</td>
</tr>
<tr>
<td>A 1...100 barg (-14.5...1450 psig) / -40°C...+200°C (-40°F...+392°F) / FKM/FPM (7)</td>
</tr>
<tr>
<td>B 1...100 barg (-14.5...1450 psig) / -50°C...+150°C (-58°F...+302°F) / EPDM (7)</td>
</tr>
<tr>
<td>C 1...100 barg (-14.5...1450 psig) / -20°C...+200°C (-4°F...+392°F) / Kalrez® 6375 (7)</td>
</tr>
<tr>
<td>E 1...100 barg (-14.5...1450 psig) / -30°C...+200°C (-22°F...+392°F) / FKM/FPM (8)</td>
</tr>
<tr>
<td>F 1...100 barg (-14.5...1450 psig) / -30°C...+150°C (-22°F...+302°F) / EPDM (8)</td>
</tr>
<tr>
<td>G 1...100 barg (-14.5...1450 psig) / -20°C...+200°C (-4°F...+392°F) / Kalrez® 6375 (8)</td>
</tr>
</tbody>
</table>

VFDE 4 0 0 1 0 订货代码（在下页中完成这个代码）
<table>
<thead>
<tr>
<th>天线（天线种类、材质、无线电认证）</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 无</td>
<td></td>
</tr>
<tr>
<td>1 金属喇叭，DN40（1.5”) / 316L / TLPR</td>
<td></td>
</tr>
<tr>
<td>2 金属喇叭，DN50（2”) / 316L / TLPR</td>
<td></td>
</tr>
<tr>
<td>3 金属喇叭，用于BM26A的DN65（2.5”) / 316L / TLPR</td>
<td></td>
</tr>
<tr>
<td>4 金属喇叭，DN80（3”) / 316L / LPR</td>
<td></td>
</tr>
<tr>
<td>5 金属喇叭，DN100（4”) / 316L / LPR</td>
<td></td>
</tr>
<tr>
<td>6 金属喇叭，DN150（6”) / 316L / LPR</td>
<td></td>
</tr>
<tr>
<td>7 金属喇叭，DN200（8”) / 316L / LPR</td>
<td></td>
</tr>
<tr>
<td>E 透镜，DN80（3”) / PEEK / LPR</td>
<td></td>
</tr>
<tr>
<td>F 透镜，DN100（4”) / PEEK / LPR</td>
<td></td>
</tr>
<tr>
<td>G 透镜，DN150（6”) / PEEK / LPR</td>
<td></td>
</tr>
<tr>
<td>K 透镜，DN80（3”) / PEEK / LPR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>天线延长管 / 法兰保护盘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 无</td>
<td></td>
</tr>
<tr>
<td>延长管</td>
<td></td>
</tr>
<tr>
<td>1 105 mm（4") / 316L</td>
<td></td>
</tr>
<tr>
<td>2 210 mm（8") / 316L</td>
<td></td>
</tr>
<tr>
<td>3 315 mm（12") / 316L</td>
<td></td>
</tr>
<tr>
<td>4 420 mm（17") / 316L</td>
<td></td>
</tr>
<tr>
<td>5 525 mm（21") / 316L</td>
<td></td>
</tr>
<tr>
<td>6 630 mm（24") / 316L 用于金属喇叭天线</td>
<td></td>
</tr>
<tr>
<td>7 735 mm（29") / 316L 用于金属喇叭天线</td>
<td></td>
</tr>
<tr>
<td>8 840 mm（33") / 316L 用于金属喇叭天线</td>
<td></td>
</tr>
<tr>
<td>A 945 mm（37") / 316L 用于金属喇叭天线</td>
<td></td>
</tr>
<tr>
<td>B 1050 mm（41") / 316L 用于金属喇叭天线</td>
<td></td>
</tr>
<tr>
<td>法兰保护盘</td>
<td></td>
</tr>
<tr>
<td>D 无 / 配法兰保护盘</td>
<td></td>
</tr>
<tr>
<td>延长管配法兰和延长管保护管</td>
<td></td>
</tr>
<tr>
<td>M PTFE 水滴型 / PTFE 为105 mm（4")</td>
<td></td>
</tr>
<tr>
<td>N PTFE 水滴型 / PTFE 为210 mm（8")</td>
<td></td>
</tr>
<tr>
<td>P PTFE 水滴型 / PTFE 为315 mm（12")</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>过程连接：尺寸 / 压力等级 / 法兰面</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ISO 228 （螺纹连接）</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>ASME B1.20.1 （螺纹连接）</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A</td>
</tr>
</tbody>
</table>

VFDE 4 0 0 1 0 订货代码（在下页中完成这个代码）
低压法兰（连接在 G 1½"

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>C</td>
<td>7</td>
<td>DN50 PN01</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>C</td>
<td>7</td>
<td>DN80 PN01</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>C</td>
<td>7</td>
<td>DN100 PN01</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>7</td>
<td>DN150 PN01</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>C</td>
<td>7</td>
<td>DN200 PN01</td>
<td></td>
</tr>
</tbody>
</table>

低压法兰（连接在 1½ NPT）

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>B</td>
<td>2" 150 lb 15 psig max.</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>B</td>
<td>3" 150 lb 15 psig max.</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>B</td>
<td>4" 150 lb 15 psig max.</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>B</td>
<td>6" 150 lb 15 psig max.</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>1</td>
<td>B</td>
<td>8" 150 lb 15 psig max.</td>
<td></td>
</tr>
</tbody>
</table>

EN 1092-1 法兰

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G</td>
<td>1</td>
<td>DN40 PN40 – Type B1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>1</td>
<td>DN40 PN63 – Type B1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>K</td>
<td>1</td>
<td>DN40 PN100 – Type B1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>E</td>
<td>1</td>
<td>DN50 PN16 – Type B1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>G</td>
<td>1</td>
<td>DN50 PN40 – Type B1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>1</td>
<td>DN50 PN63 – Type B1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>K</td>
<td>1</td>
<td>DN50 PN100 – Type B1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>E</td>
<td>1</td>
<td>DN80 PN16 – Type B1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>G</td>
<td>1</td>
<td>DN80 PN40 – Type B1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>1</td>
<td>DN80 PN63 – Type B1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>K</td>
<td>1</td>
<td>DN80 PN100 – Type B1</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>E</td>
<td>1</td>
<td>DN100 PN16 – Type B1</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>G</td>
<td>1</td>
<td>DN100 PN40 – Type B1</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>1</td>
<td>DN100 PN63 – Type B1</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>K</td>
<td>1</td>
<td>DN100 PN100 – Type B1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>E</td>
<td>1</td>
<td>DN150 PN16 – Type B1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>G</td>
<td>1</td>
<td>DN150 PN40 – Type B1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>H</td>
<td>1</td>
<td>DN150 PN63 – Type B1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>K</td>
<td>1</td>
<td>DN150 PN100 – Type B1</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>E</td>
<td>1</td>
<td>DN200 PN16 – Type B1</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>G</td>
<td>1</td>
<td>DN200 PN40 – Type B1</td>
<td></td>
</tr>
</tbody>
</table>

VFDE 4 0 0 1 0 订货代码（在下页中完成这个代码）
<table>
<thead>
<tr>
<th></th>
<th>ASME B16.5 法兰</th>
<th></th>
<th>JIS B2220 法兰</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1</td>
<td>1/2” 150 lb RF</td>
<td>G U</td>
<td>40A JIS 10K RF</td>
<td></td>
</tr>
<tr>
<td>G 2</td>
<td>1/2” 300 lb RF</td>
<td>H U</td>
<td>50A JIS 10K RF</td>
<td></td>
</tr>
<tr>
<td>G 3</td>
<td>1/2” 600 lb RF</td>
<td>L U</td>
<td>80A JIS 10K RF</td>
<td></td>
</tr>
<tr>
<td>G 4</td>
<td>1 1/2” 900 lb RJ</td>
<td>M U</td>
<td>100A JIS 10K RF</td>
<td></td>
</tr>
<tr>
<td>G 5</td>
<td>1 1/2” 1500 lb RJ</td>
<td>P U</td>
<td>150A JIS 10K RF</td>
<td></td>
</tr>
<tr>
<td>H 1</td>
<td>2” 150 lb RF</td>
<td>R U</td>
<td>200A JIS 10K RF</td>
<td></td>
</tr>
<tr>
<td>H 2</td>
<td>2” 300 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 3</td>
<td>2” 600 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 4</td>
<td>2” 900 lb RJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 5</td>
<td>2” 1500 lb RJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 1</td>
<td>3” 150 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 2</td>
<td>3” 300 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 3</td>
<td>3” 600 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 4</td>
<td>3” 900 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 1</td>
<td>4” 150 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 2</td>
<td>4” 300 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 3</td>
<td>4” 600 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 4</td>
<td>4” 900 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 1</td>
<td>6” 150 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 2</td>
<td>6” 300 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 1</td>
<td>8” 150 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 2</td>
<td>8” 300 lb RF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

替代法兰面

- EN 1092-1 法兰
- Type B2 （订单中必须指定表面粗糙度）
- Type C （带榫）
- Type D （带槽）
- Type E （套管）
- Type F （凹面）
- Type A （平面）

<p>| VFDE | 4 | 0 | 0 | 1 | 0 | 订货代码（在下页中完成这个代码） |</p>
<table>
<thead>
<tr>
<th>标定证书</th>
<th>0</th>
<th>无：精度±2mm（±0.08”）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>标定证书±2mm（±0.08”）最高至10m（32.81ft），2点</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>标定证书±2mm（±0.08”）最高至10m（32.81ft），5点</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>标定证书±2mm（±0.08”）最高至10m（32.81ft），5点由客户指定最小≥400mm（16”）</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>选项</th>
<th>0</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>拌热/冷却+吹扫（仅用于金属喇叭天线）</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>吹扫系统（仅用于金属喇叭天线）</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>拌热/冷却+吹扫（仅用于金属喇叭天线）</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>附件/铭牌</th>
<th>0</th>
<th>无</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>防护罩</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OPTIWAVE 7300 C法兰系统适配器，2009年6月之前</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>不锈钢铭牌（最多18个字符）</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>防护罩+OPTIWAVE 7300 C法兰系统适配器，2009年6月之前</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>防护罩+不锈钢铭牌（最多18个字符）</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>防护罩+不锈钢铭牌（最多18个字符）+OPTIWAVE 7300 C法兰系统适配器，2009年6月之前</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>不锈钢铭牌（最多18个字符）+OPTIWAVE 7300 C法兰系统适配器，2009年6月之前</td>
<td></td>
</tr>
</tbody>
</table>

| 订货代码 | VFDE | 4 | 0 | 0 | 1 | 0 |

1. 2017年9月可选
2. 2017年9月可选，DIP = 粉尘防爆
3. 2017年11月可选
4. 仅用于非防爆仪表，防爆认证将于2018年第二季度可选
5. 用于金属喇叭和水滴型天线
6. METAGLAS®用于金属喇叭和水滴型天线的双过程密封
7. 用于金属喇叭天线
8. METAGLAS®用于金属喇叭天线的双过程密封
9. LPR = 您可将天线安装在封闭罐体或室外（但是天线必须朝下，及不要置于敏感设备旁（例如射电天文台）），TLPR = 您必须将天线安装在封闭罐体内。
10.拣热/冷却系统：≥DN80（≥3”）法兰用于DN50（2”）喇叭天线，≥DN150（≥6”）法兰用于DN80（3”）喇叭天线或≥DN200（≥8”）法兰用于DN100（4”）喇叭天线
10.2 备件

我们为该设备提供备件。当您下订单采购机械部件的备件，请使用下面表格中参考码。当您下订单采购电子部件的备件，请参考第 149 页 订货代码 请使用 VFDE 订货代码。

机械备件

<table>
<thead>
<tr>
<th>XFDE</th>
<th>4</th>
<th>0</th>
<th>W</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPTIWAVE 7400 C 24 GHz 雷达 (FMCW) 物位变送器 用于有搅拌和腐蚀性液体 (高达 100 barg (1450 psig) 和 200°C (392°F))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>操作条件（压力，温度，材质和标识） / 工艺密封</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XFDE</th>
<th>4</th>
<th>0</th>
<th>W</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>订货代码（在下页中完成这个代码）</td>
<td></td>
</tr>
</tbody>
</table>
天线（天线种类，材质，无线电认证）

<table>
<thead>
<tr>
<th>编号</th>
<th>材质和尺寸</th>
<th>无线电认证</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>1</td>
<td>金属喇叭， DN40（1.5") / 316L / TLPR</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>金属喇叭， DN50（2") / 316L / TLPR</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>金属喇叭，用于BM26A的DN65（2.5") / 316L / TLPR</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>金属喇叭，DN80（3") / 316L / LPR</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>金属喇叭，DN100（4") / 316L / LPR</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>金属喇叭，DN150（6") / 316L / LPR</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>金属喇叭，DN200（8") / 316L / LPR</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>水滴型，DN80（3") / PEEK / LPR</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>水滴型，DN100（4") / PEEK / LPR</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>水滴型，DN150（6") / PEEK / LPR</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>水滴型，DN80（3") / PEEK / LPR</td>
<td>5</td>
</tr>
</tbody>
</table>

天线延长管 / 法兰保护盘

<table>
<thead>
<tr>
<th>编号</th>
<th>尺寸 / 压力等级 / 法兰面光滑度</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无</td>
</tr>
<tr>
<td>1</td>
<td>105 mm（4") / 316L</td>
</tr>
<tr>
<td>2</td>
<td>210 mm（8") / 316L</td>
</tr>
<tr>
<td>3</td>
<td>315 mm（12") / 316L</td>
</tr>
<tr>
<td>4</td>
<td>420 mm（17") / 316L</td>
</tr>
<tr>
<td>5</td>
<td>525 mm（21") / 316L</td>
</tr>
<tr>
<td>6</td>
<td>630 mm（24") / 316L</td>
</tr>
<tr>
<td>7</td>
<td>735 mm（29") / 316L</td>
</tr>
<tr>
<td>8</td>
<td>840 mm（33") / 316L</td>
</tr>
<tr>
<td>A</td>
<td>945 mm（37") / 316L</td>
</tr>
<tr>
<td>B</td>
<td>1050 mm（41") / 316L</td>
</tr>
</tbody>
</table>

过程连接 / 尺寸 / 压力等级 / 法兰面光滑度

<table>
<thead>
<tr>
<th>编号</th>
<th>尺寸 / 压力等级 / 法兰面光滑度</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无</td>
</tr>
<tr>
<td>ISO 228</td>
<td>无</td>
</tr>
<tr>
<td>G</td>
<td>P 0 G 1½ A</td>
</tr>
<tr>
<td>ASME B1.20.1</td>
<td>无</td>
</tr>
<tr>
<td>G</td>
<td>A 0 1½ NPT</td>
</tr>
</tbody>
</table>

| XFDE | 4 0 W 0 0 0 0 0 0 0 0 0 |

附录 10
低压法兰（连接在 G 1\(\frac{1}{2}\)A）

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>C</td>
<td>7</td>
<td>DN50 PN01</td>
</tr>
<tr>
<td>L</td>
<td>C</td>
<td>7</td>
<td>DN80 PN01</td>
</tr>
<tr>
<td>M</td>
<td>C</td>
<td>7</td>
<td>DN100 PN01</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>7</td>
<td>DN150 PN01</td>
</tr>
<tr>
<td>R</td>
<td>C</td>
<td>1</td>
<td>DN200 PN01</td>
</tr>
</tbody>
</table>

低压法兰（连接在 1\(\frac{1}{2}\) NPT）

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>B</td>
<td>2" 150 lb 15 psig max.</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>B</td>
<td>3" 150 lb 15 psig max.</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>B</td>
<td>4" 150 lb 15 psig max.</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>B</td>
<td>6" 150 lb 15 psig max.</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
<td>B</td>
<td>8" 150 lb 15 psig max.</td>
</tr>
</tbody>
</table>

EN 1092-1 法兰

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G</td>
<td>1</td>
<td>DN40 PN40 – Type B1</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>1</td>
<td>DN40 PN63 – Type B1</td>
</tr>
<tr>
<td>G</td>
<td>K</td>
<td>1</td>
<td>DN40 PN100 – Type B1</td>
</tr>
<tr>
<td>H</td>
<td>E</td>
<td>1</td>
<td>DN50 PN16 – Type B1</td>
</tr>
<tr>
<td>H</td>
<td>G</td>
<td>1</td>
<td>DN50 PN40 – Type B1</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>1</td>
<td>DN50 PN63 – Type B1</td>
</tr>
<tr>
<td>H</td>
<td>K</td>
<td>1</td>
<td>DN50 PN100 – Type B1</td>
</tr>
<tr>
<td>L</td>
<td>E</td>
<td>1</td>
<td>DN80 PN16 – Type B1</td>
</tr>
<tr>
<td>L</td>
<td>G</td>
<td>1</td>
<td>DN80 PN40 – Type B1</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>1</td>
<td>DN80 PN63 – Type B1</td>
</tr>
<tr>
<td>L</td>
<td>K</td>
<td>1</td>
<td>DN80 PN100 – Type B1</td>
</tr>
<tr>
<td>M</td>
<td>E</td>
<td>1</td>
<td>DN100 PN16 – Type B1</td>
</tr>
<tr>
<td>M</td>
<td>G</td>
<td>1</td>
<td>DN100 PN40 – Type B1</td>
</tr>
<tr>
<td>M</td>
<td>H</td>
<td>1</td>
<td>DN100 PN63 – Type B1</td>
</tr>
<tr>
<td>M</td>
<td>K</td>
<td>1</td>
<td>DN100 PN100 – Type B1</td>
</tr>
<tr>
<td>P</td>
<td>E</td>
<td>1</td>
<td>DN150 PN16 – Type B1</td>
</tr>
<tr>
<td>P</td>
<td>G</td>
<td>1</td>
<td>DN150 PN40 – Type B1</td>
</tr>
<tr>
<td>P</td>
<td>H</td>
<td>1</td>
<td>DN150 PN63 – Type B1</td>
</tr>
<tr>
<td>P</td>
<td>K</td>
<td>1</td>
<td>DN150 PN100 – Type B1</td>
</tr>
<tr>
<td>R</td>
<td>E</td>
<td>1</td>
<td>DN200 PN16 – Type B1</td>
</tr>
<tr>
<td>R</td>
<td>G</td>
<td>1</td>
<td>DN200 PN40 – Type B1</td>
</tr>
</tbody>
</table>

订货代码 (在下页中完成这个代码)
ASME B16.5 法兰

G	1	A	1\(\frac{1}{4}\)"	150 lb RF
G	2	A	1\(\frac{1}{2}\)"	300 lb RF
G	3	A	1\(\frac{3}{4}\)"	600 lb RF
G	4	M	2"	900 lb RJ
G	5	M	2"	1500 lb RJ
H	1	A	2"	150 lb RF
H	2	A	2"	300 lb RF
H	3	A	2"	600 lb RF
H	4	M	2"	900 lb RJ
H	5	M	2"	1500 lb RJ
L	1	A	3"	150 lb RF
L	2	A	3"	300 lb RF
L	3	A	3"	600 lb RF
L	4	A	3"	900 lb RF
M	1	A	4"	150 lb RF
M	2	A	4"	300 lb RF
M	3	A	4"	600 lb RF
M	4	A	4"	900 lb RF
P	1	A	6"	150 lb RF
P	2	A	6"	300 lb RF
R	1	A	8"	150 lb RF
R	2	A	8"	300 lb RF

JIS B2220 法兰

G	U	P	40A JIS 10K RF
H	U	P	50A JIS 10K RF
L	U	P	80A JIS 10K RF
M	U	P	100A JIS 10K RF
P	U	P	150A JIS 10K RF
R	U	P	200A JIS 10K RF

替代法兰面

- **EN 1092-1 法兰**
 - 2 Type B2 (订单中必须指定表面粗糙度)
 - 3 Type C (带榫)
 - 4 Type D (带槽)
 - 5 Type E (套管)
 - 6 Type F (凹面)
 - 7 Type A (平面)

- **ASME B16.5 法兰**
 - B FF (平面)
 - M RJ (环接)
附录

<table>
<thead>
<tr>
<th>选项</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无</td>
</tr>
<tr>
<td>1</td>
<td>拌热 / 冷却系统 （仅用于金属喇叭天线）④</td>
</tr>
<tr>
<td>2</td>
<td>吹扫系统 （仅用于金属喇叭天线）</td>
</tr>
<tr>
<td>3</td>
<td>拌热 / 冷却 + 吹扫系统 （仅用于金属喇叭天线）④</td>
</tr>
</tbody>
</table>

附件 / 铭牌

<table>
<thead>
<tr>
<th>选项</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无</td>
</tr>
<tr>
<td>1</td>
<td>防护罩</td>
</tr>
<tr>
<td>2</td>
<td>OPTIWAVE 7300 C 法兰系统适配器，用于 2009 年 6 月之前生产的 OPTIWAVE 7300 C</td>
</tr>
<tr>
<td>3</td>
<td>不锈钢铭牌 （最多 18 个字符）</td>
</tr>
<tr>
<td>5</td>
<td>防护罩 + OPTIWAVE 7300 C 法兰系统适配器，2009 年 6 月之前生产的 OPTIWAVE 7300 C</td>
</tr>
<tr>
<td>6</td>
<td>防护罩 + 不锈钢铭牌 （最多 18 个字符）</td>
</tr>
<tr>
<td>7</td>
<td>防护罩 + 不锈钢铭牌 （18 个字符） + OPTIWAVE 7300 C 法兰系统适配器，2009 年 6 月之前生产的 OPTIWAVE 7300 C</td>
</tr>
<tr>
<td>8</td>
<td>不锈钢铭牌 （最多 18 个字符） + OPTIWAVE 7300 C 法兰系统适配器，2009 年 6 月之前生产的 OPTIWAVE 7300 C</td>
</tr>
</tbody>
</table>

订货代码

<table>
<thead>
<tr>
<th>XFDE</th>
<th>订货代码</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

① 用于金属喇叭和水滴型天线
② METAGLAS® 用于金属喇叭和水滴型天线的双过程密封
③ 用于金属喇叭天线
④ METAGLAS® 用于金属喇叭天线的双过程密封
⑤ LPR = 您可将天线安装在封闭罐体或室外（但天线必须朝下，及不要置于敏感设备旁（例如射电天文台）。TLPR = 您必须将天线安装在封闭罐体内。
⑥ 拌热 / 冷却系统：≥DN80 （2½”）法兰用于 DN50 （2”）喇叭天线， ≥DN150 （6”）法兰用于 DN80 （3”）喇叭天线或 ≥DN200 （8”）法兰用于 DN100 （4”）喇叭天线
图 10-1：其他备件
① 端盖紧固组件
② 接线端子腔的盖子
③ 接线端子腔的盖子密封圈 ②
④ 终端盒
⑤ 电缆接口
⑥ 信号转换器
⑦ 显示模块
⑧ 显示表盖密封圈 ⑨ 或盲盖 ⑪⑪
⑨ 显示表盖
⑩ 虚拟模块
⑪⑪ 盲盖
⑫ 铰链
⑬ 显示表盖的塑料遮阳盖 ⑨

<table>
<thead>
<tr>
<th>描述</th>
<th>数量</th>
<th>零件参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>铝制盲盖 (11) + 密封圈 (8) + 盖板 (1)</td>
<td>1</td>
<td>XFDX010100</td>
</tr>
<tr>
<td>不锈钢盲盖 (11) + 密封圈 (8) + 盖板 (1)</td>
<td>1</td>
<td>XFDX010200</td>
</tr>
<tr>
<td>铝制显示表盖 (9) + 密封圈 (8)</td>
<td>1</td>
<td>XFDX010300</td>
</tr>
</tbody>
</table>
10 附录

<table>
<thead>
<tr>
<th>描述</th>
<th>数量</th>
<th>零件参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>不锈钢显示表盖 (9) + 密封圈 (8)</td>
<td>1</td>
<td>XFDX010400</td>
</tr>
<tr>
<td>铝制接线盒盖 (2) + 密封圈 (3) + 盖板 (1)</td>
<td>1</td>
<td>XFDX010500</td>
</tr>
<tr>
<td>不锈钢接线盒盖 (2) + 密封圈 (3) + 盖板 (1)</td>
<td>1</td>
<td>XFDX010600</td>
</tr>
<tr>
<td>显示表盖的塑料遮阳盖 (13) + 铰链 (12)</td>
<td>2</td>
<td>XFDX010700</td>
</tr>
<tr>
<td>O 型圈密封圈组 (3)(3) + (8)(8)(8)</td>
<td>5</td>
<td>XFDX010800</td>
</tr>
</tbody>
</table>

显示

<table>
<thead>
<tr>
<th>描述</th>
<th>数量</th>
<th>零件参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>显示模块 (7)</td>
<td>1</td>
<td>XFDX020100</td>
</tr>
<tr>
<td>显示模块 (7) + 铝制显示表盖 (9)(9)(9) + 密封圈 (8)(8)(8)</td>
<td>1</td>
<td>XFDX020200</td>
</tr>
<tr>
<td>显示模块 (7) + 不锈钢显示表盖 (9)(9)(9) + 密封圈 (8)(8)(8)</td>
<td>1</td>
<td>XFDX020300</td>
</tr>
<tr>
<td>虚拟模块 (10)</td>
<td>1</td>
<td>XFDX020400</td>
</tr>
</tbody>
</table>

后端电子板

<table>
<thead>
<tr>
<th>描述</th>
<th>数量</th>
<th>零件参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>信号转换器，HART® 2 线</td>
<td>1</td>
<td>XFDX030100</td>
</tr>
</tbody>
</table>

终端盒

<table>
<thead>
<tr>
<th>描述</th>
<th>数量</th>
<th>零件参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>终端盒非防爆（GP）或防爆 i（IS）</td>
<td>1</td>
<td>XFDX040100</td>
</tr>
<tr>
<td>接线盒 Ex d（XP）</td>
<td>1</td>
<td>XFDX040200</td>
</tr>
</tbody>
</table>

电缆接口 / 电缆入口

<table>
<thead>
<tr>
<th>描述</th>
<th>数量</th>
<th>零件参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>电缆接口 / M20×1.5 塑料黑色非防爆（GP）</td>
<td>10</td>
<td>XFDX050100</td>
</tr>
<tr>
<td>电缆接口 / M20×1.5 塑料蓝色防爆 i（IS）</td>
<td>10</td>
<td>XFDX050200</td>
</tr>
<tr>
<td>电缆接口 / M20×1.5 镀镍铜 Ex d（XP）</td>
<td>5</td>
<td>XFDX050300</td>
</tr>
<tr>
<td>电缆接口 / M20×1.5 不锈钢 Ex d（XP）</td>
<td>2</td>
<td>XFDX050400</td>
</tr>
<tr>
<td>电缆接口 / M20×1.5 镀镍铜非防爆（GP） / 防爆 i（IS）</td>
<td>5</td>
<td>XFDX050500</td>
</tr>
<tr>
<td>电缆接口 / M20×1.5 不锈钢非防爆（GP） / 防爆 i（IS）</td>
<td>2</td>
<td>XFDX050600</td>
</tr>
<tr>
<td>接头 M12×1（4 针接头）</td>
<td>5</td>
<td>XFDX050700</td>
</tr>
<tr>
<td>电缆入口 / ½ NPT 镀镍铜 Ex d</td>
<td>5</td>
<td>XFDX050800</td>
</tr>
<tr>
<td>电缆入口 / ½ NPT 镀镍铜 cQPSus</td>
<td>5</td>
<td>XFDX050900</td>
</tr>
<tr>
<td>电缆入口 / ½ NPT 不锈钢非防爆（GP） / 防爆 i</td>
<td>2</td>
<td>XFDX051000</td>
</tr>
<tr>
<td>电缆入口 / ½ NPT 不锈钢 Ex d</td>
<td>2</td>
<td>XFDX051100</td>
</tr>
<tr>
<td>电缆入口 / ½ NPT 不锈钢 cQPSus</td>
<td>2</td>
<td>XFDX051200</td>
</tr>
</tbody>
</table>
10.3 附件

我们为仪表提供配件。当您发送配件订单时，请提供以下参考编号：

图 10-2: 附件
① 防护罩
② Viator RS232 / HART 转换器
③ Viator USB / HART 转换器
④ 显示提取器、磁笔和盖扳手

<table>
<thead>
<tr>
<th>项目</th>
<th>描述</th>
<th>数量</th>
<th>零件参考号</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>防护罩</td>
<td>1</td>
<td>XFDX060100</td>
</tr>
<tr>
<td>②</td>
<td>Viator RS232 / HART 转换器</td>
<td>1</td>
<td>XFDX060200</td>
</tr>
<tr>
<td>③</td>
<td>Viator USB / HART 转换器</td>
<td>1</td>
<td>XFDX060300</td>
</tr>
<tr>
<td>④</td>
<td>显示提取器、磁笔和盖扳手</td>
<td>5</td>
<td>XFDX060400</td>
</tr>
<tr>
<td>—</td>
<td>USB / 24 VDC 供电</td>
<td>1</td>
<td>XFDX060500</td>
</tr>
</tbody>
</table>

10.4 术语表

D

Dielectric constant (介电常数)
产品的电气属性，也称为 εr、DK 和相对介电常数。该属性定义了反射回仪表信号转换器的波强度。

Distance (距离)
法兰面到物位面（1 个产品）或产品顶部表面（2 个或更多产品）的距离。请参阅本节末尾的图表。

Drop antenna (水滴型天线)
采用 PTFE 或 PEEK 制造的新一代天线。它具有椭圆形的形状，可以更精确地发射雷达信号。

DTM
仪表类型管理器，用于 PACTware™ 程序的驱动程序。仪表的所有数据和功能都包含在其中。

E

Electromagnetic compatibility (EMC)
(电磁兼容性)
定义在运行期间，产生电磁场的仪表影响或受其它仪表影响的程度。如需更多详细信息，请参阅欧洲标准 EN 61326-1。
F

FMCW（调频连续波）
调频连续波雷达技术。信号持续存在，但是频率通常以随时间的连续线性斜坡（频率扫描）进行调制。

H

Hazardous area（防爆区域）
具有潜在爆炸环境的地区，经过培训的人员可以在该区域安装和使用仪表。必须使用适当的选件订购仪表。仪表需要与现场规范相关的认证（ATEX、IECEx、cQPSus、NEPSI等）。您可以在“防爆手册”和“防爆合格证书”中找到有关危险区域的更多数据。

Horn（cone）antenna
（喇叭（锥形）天线）
适用于大部分应用的通用天线。用于雷达信号的控制发射和收集。

I

Interference signals
（干扰信号）
虚假雷达反射通常是由储罐中的设备造成的。

L

Level（物位）
从储罐底部（用户定义）到产品顶部表面的高度（储罐高度 - 距离）。请参阅本节末尾的图表。

M

Mass（质量）
罐内介质的总质量。

P

PACTware™
从远程工作站操作和配置现场仪表的软件。没有必要使用制造商开发的现场总线软件或程序。

R

Radar reflection（雷达反射）
罐内介质表面反射的信号。

S

Signal converter
（信号转换器）
仪表中的一组电子元件，通过一些信号滤波器发送测量信号。它们会识别和测量罐内介质的物位。

T

TBF
储罐底部跟踪（TBF）模式是另一种测量模式。它使仪表能够以非常低的介电常数测量罐内介质。TBF模式利用罐底反射来间接测量罐内介质的液位。
U

Ullage volume（空距体积） 未填充的体积，请参阅本节末尾的图表。

V

Volume（体积） 罐内介质的总体积。

图 10-3：测量的定义：距离
① 距离
② 死区
③ 法兰面
④ 气体（空气）
⑤ 罐高
⑥ 空距体积或空距质量

图 10-4：测量的定义：物位
① 物位
② 体积或质量
科隆 — 过程仪表和测量解决方案供应商

- 流量仪表
- 物位仪表
- 温度仪表
- 压力仪表
- 过程分析仪表
- 科隆服务

科隆测量仪器（上海）有限公司
上海市徐汇区桂林路 396 号（浦原科技园）
1 号楼 9 楼（200233）
电话：021-3339 7222
传真：021-6451 6408
k.web@krohne.com

KROHNE 的最新联系人和地址可在 KROHNE 网站获得：www.krohnechina.com