Digitaler konduktiver Leitfähigkeitssensor für die Kraftwerks-, Halbleiter- und Reinwasserindustrien

Elektronikrevision:
ER 1.0.0
(SW.REV 1.0.x)

© KROHNE 09/2015 - 4003649101 - MA SMARTPAT COND 3200 R01 de
Alle Rechte vorbehalten. Jegliche Vervielfältigung dieser Dokumentation, gleich nach welchem Verfahren, ist ohne vorherige schriftliche Genehmigung durch die KROHNE Messtechnik GmbH, auch auszugsweise untersagt.

Änderungen ohne vorherige Ankündigungen bleiben vorbehalten.

Copyright 2015 by
KROHNE Messtechnik GmbH - Ludwig-Krohne-Str. 5 - 47058 Duisburg [Deutschland]
1 Sicherheitshinweise

1.1 Bestimmungsgemäße Verwendung ... 5
1.2 Zertifizierungen .. 5
1.3 Sicherheitshinweise des Herstellers ... 6
 1.3.1 Urheberrecht und Datenschutz ... 6
 1.3.2 Haftungsausschluss ... 6
 1.3.3 Produkthaftung und Garantie .. 7
 1.3.4 Informationen zur Dokumentation ... 7
 1.3.5 Sicherheitszeichen und verwendete Symbole 8
1.4 Sicherheitshinweise für den Betreiber ... 8

2 Gerätebeschreibung

2.1 Lieferumfang .. 9
2.2 Gerätebeschreibung ... 10
2.3 Typenschild .. 11

3 Installation

3.1 Allgemeine Hinweise zur Installation ... 12
3.2 Lagerung und Transport ... 12
3.3 Voraussetzungen vor der Installation .. 13
3.4 Installationsverfahren .. 14

4 Elektrische Anschlüsse

4.1 Sicherheitshinweise ... 15
4.2 Spannungsversorgung .. 15
4.3 Erdung und Potenzialausgleich .. 16
4.4 Anschluss des Kabels für die Verbindung mit dem Sensor 16
4.5 Anschluss des Sensorkabels .. 17
4.6 Anschlussschema .. 17
4.7 Installation des Sensors ... 19
 4.7.1 Allgemeine Montagehinweise ... 19
 4.7.2 Vorschläge für die Installation ... 19

5 Betrieb

5.1 Konfiguration ... 22
5.2 Kalibrierung .. 22
 5.2.1 Kalibrierung mit PACTware™ ... 23
 5.2.2 Kalibrierung mit HART® Handheld 475 FIELD COMMUNICATOR 25
5.3 Fehlerbehebung .. 27
5.4 Statusmeldungen und Diagnose-Informationen .. 28
INHALT

SMARTPAT COND 3200

6 Service 29

6.1 Wartung .. 29
6.1.1 Reinigung .. 29
6.2 Verfügbarkeit von Serviceleistungen ... 29
6.3 Rücksendung des Geräts an den Hersteller .. 29
6.3.1 Allgemeine Informationen .. 29
6.3.2 Formular [Kopievorlage] zur Rücksendung eines Geräts ... 30
6.4 Entsorgung ... 30

7 Technische Daten 31

7.1 Messprinzip .. 31
7.1.1 Leitfähigkeitsmessung ... 31
7.2 Technische Daten ... 32
7.3 Abmessungen ... 34

8 Beschreibung HART-Schnittstelle 36

8.1 Allgemeine Beschreibung .. 36
8.2 Softwarehistorie .. 36
8.3 Anschlussvarianten .. 37
8.3.1 Punkt-zu-Punkt-Verbindung - Analog / Digital Modus [Point-to-Point] 38
8.4 Ein-/Ausgänge und HART® Dynamische Variable bzw. Gerätevariable 39
8.5 Field Communicator 475 [FC 475] .. 39
8.5.1 Installation .. 39
8.6 Field Device Tool / Device Type Manager (FDT/DTM) ... 40
8.6.1 Installation .. 40
8.7 Übersicht Menübaum Basis-DD (für Field Communicator 475) 40
8.8 Menübaum Basis-DD [Details für die Einstellung] ... 41
Sicherheitshinweise

1.1 Bestimmungsgemäße Verwendung

VORSICHT!
Die Verantwortung für den Einsatz der Messgeräte hinsichtlich Eignung, bestimmungsgemäßer Verwendung und Korrosionsbeständigkeit der verwendeten Werkstoffe gegenüber dem Messstoff liegt allein beim Betreiber.

INFORMATION!

INFORMATION!
Der Hersteller haftet nicht für Schäden, die aus unsachgemäßem oder nicht bestimmungsgemäßem Gebrauch entstehen.

Die bestimmungsgemäße Verwendung des SMARTPAT COND 3200 ist die Messung der Leitfähigkeit in leitfähigen Flüssigkeiten.

1.2 Zertifizierungen

CE Kennzeichnung

Das Messgerät erfüllt die gesetzlichen Anforderungen der EG-Richtlinien:
• Elektromagnetische Verträglichkeit (EMV):
 Richtlinie 2004/108/EG

sowie
• NAMUR Empfehlung NE 21

Der Hersteller bescheinigt die erfolgreiche Prüfung durch das Anbringen des CE-Zeichens.
1.3 Sicherheitshinweise des Herstellers

1.3.1 Urheberrecht und Datenschutz

Der Hersteller ist bemüht, stets die Urheberrechte anderer zu beachten bzw. auf selbst erstellte sowie lizenzfreie Werke zurückzugreifen.

Soweit in den Dokumenten des Herstellers personenbezogene Daten (beispielsweise Name, Anschrift oder E-Mail-Adressen) erhoben werden, erfolgt dies, soweit möglich, stets auf freiwilliger Basis. Die Nutzung der Angebote und Dienste ist, soweit möglich, stets ohne Angabe personenbezogener Daten möglich.

Wir weisen darauf hin, dass die Datenübertragung im Internet (z.B. bei der Kommunikation per E-Mail) Sicherheitslücken aufweisen kann. Ein lückenloser Schutz der Daten vor dem Zugriff durch Dritte ist nicht möglich.

Der Nutzung von im Rahmen der Impressumspflicht veröffentlichten Kontaktdaten durch Dritte, zur Übersendung von nicht ausdrücklich angeforderter Werbung und Informationsmaterialien, wird hiermit ausdrücklich widersprochen.

1.3.2 Haftungsausschluss

Der Hersteller ist nicht für Schäden jeder Art haftbar, die durch die Verwendung dieses Produkts entstehen, einschließlich aber nicht beschränkt auf direkte, indirekte oder beiläufig entstandene Schäden und Folgeschäden.

Dieser Haftungsausschluss gilt nicht, wenn der Hersteller vorsätzlich oder grob fahrlässig gehandelt hat. Sollten aufgrund eines geltenden Gesetzes derartige Einschränkungen der stillschweigenden Mängelhaftung oder der Ausschluss bzw. die Begrenzung bestimmter Schadenersatzleistungen nicht zulässig sein und derartiges Recht für Sie gelten, können der Haftungsausschluss, die Ausschlüsse oder Beschränkungen oben für Sie teilweise oder vollständig ungültig sein.

Für jedes erworbene Produkt gilt die Gewährleistung gemäß der entsprechenden Produktdokumentation sowie Verkaufs- und Lieferbedingungen des Herstellers.

Der Hersteller behält sich das Recht vor, den Inhalt der Dokumente, einschließlich dieses Haftungsausschlusses, in jeder Weise und zu jedem Zeitpunkt, gleich aus welchem Grund, unangekündigt zu ändern und ist in keiner Weise für mögliche Folgen derartiger Änderungen haftbar.
1.3.3 Produkthaftung und Garantie

1.3.4 Informationen zur Dokumentation

Um Verletzungen des Anwenders bzw. Schäden am Gerät zu vermeiden, ist es erforderlich, dass Sie die Informationen in diesem Dokument aufmerksam lesen. Darüber hinaus sind die geltenden nationalen Standards, Sicherheitsbestimmungen sowie Unfallverhütungsvorschriften einzuhalten.

Falls Sie Probleme haben, den Inhalt dieses Dokuments zu verstehen, wenden Sie sich für Unterstützung an die örtliche Niederlassung des Herstellers. Der Hersteller kann keine Verantwortung für Sach- oder Personenschäden übernehmen, die dadurch hervorgerufen wurden, dass Informationen in diesem Dokument nicht richtig verstanden wurden.

Dieses Dokument hilft Ihnen, die Betriebsbedingungen so einzurichten, dass der sichere und effiziente Einsatz des Geräts gewährleistet ist. Außerdem sind im Dokument besonders zu berücksichtigende Punkte und Sicherheitsvorkehrungen beschrieben, die jeweils in Verbindung mit den nachfolgenden Symbolen erscheinen.
1 SICHERHEITSHINWEISE

1.3.5 Sicherheitszeichen und verwendete Symbole

Sicherheitshinweise werden durch die nachfolgenden Symbole gekennzeichnet.

GEFAHR!
Dieser Hinweis beschreibt die unmittelbare Gefahr beim Umgang mit Elektrizität.

GEFAHR!
Dieser Hinweis beschreibt die unmittelbare Gefahr von Verbrennungen durch Hitze oder heiße Oberflächen.

GEFAHR!
Dieser Hinweis beschreibt die unmittelbare Gefahr beim Einsatz des Geräts in explosionsgefährdeter Atmosphäre.

GEFAHR!
Diesen Warnungen ist ausnahmslos zu entsprechen. Selbst eine teilweise Nichtbeachtung dieser Warnung kann zu schweren Gesundheitsschäden bis hin zum Tode führen. Zudem besteht die Gefahr schwerer Schäden am Gerät oder Teilen der Betreiberanlage.

WARNUNG!
Durch die auch nur teilweise Nichtbeachtung dieses Sicherheitshinweises besteht die Gefahr schwerer gesundheitlicher Schäden. Zudem besteht die Gefahr von Schäden am Gerät oder Teilen der Betreiberanlage.

VORSICHT!
Durch die Missachtung dieser Hinweise können Schäden am Gerät oder Teilen der Betreiberanlage entstehen.

INFORMATION!
Diese Hinweise beschreiben wichtige Informationen für den Umgang mit dem Gerät.

RECHTLICHER HINWEIS!
Dieser Hinweis enthält Informationen über gesetzliche Richtlinien und Normen.

• HANDHABUNG
Dieses Symbol deutet auf alle Handhabungshinweise, die vom Bediener in der angegebenen Reihenfolge ausgeführt werden müssen.

• KONSEQUENZ
Dieses Symbol verweist auf alle wichtigen Konsequenzen aus den vorangegangenen Aktionen.

1.4 Sicherheitshinweise für den Betreiber

WARNUNG!
Dieses Gerät darf nur durch entsprechend ausgebildetes und autorisiertes Personal installiert, in Betrieb genommen, bedient und gewartet werden. Darüber hinaus sind die nationalen Vorschriften für Arbeitssicherheit einzuhalten.
2.1 Lieferumfang

INFORMATION!

INFORMATION!
Prüfen Sie die Packliste, um festzustellen, ob Sie Ihre Bestellung komplett erhalten haben.

INFORMATION!
Prüfen Sie anhand des Typenschilds, ob das gelieferte Gerät Ihrer Bestellung entspricht.

Abbildung 2-1: Standardmäßiger Lieferumfang

1. Bestellter Sensor
2. Dokumentation, einschließlich Kalibrierzertifikat
3. CD mit Sensor-Software

Optionales Zubehör
- SENSOFIT FLOW 1710 Serie – Durchflussarmaturen
- Kabel VP2-S [Kabel mit Schirm in verschiedenen Längen]
- SD 200 W/R - Anzeige für Wandmontage oder Schalttafeleinbau
- OPTIBRIDGE / SMARTBRIDGE – USB-Schnittstellenkabel
- SJB 200 W-Ex – Verteilerdose

Verbrauchsmaterialien / Ersatzteile
- Verschiedene Leitfähigkeit-Standardlösungen zur Sensorkalibrierung

INFORMATION!
Bitte wenden Sie sich für weitere Informationen an Ihr regionales Vertriebsbüro.
2.2 Gerätebeschreibung

Abbildung 2-2: Aufbau des Sensors

1. VP2 Steckverbinder
2. Vernickelter Messingkörper
3. Prozessanschluss: 65% A Außengewinde oder 3/4-14 NPT Außengewinde, PVDF
4. Elektroden: Edelstahl 1.4571 und PVDF (Isolator)
2.3 Typenschild

Abbildung 2-3: Beispiel für ein Typenschild auf dem Sensorkörper

1. Hersteller
2. Gerätenummer
3. Zellkonstante / Elektronikrevision (ER)
4. TAG-Nummer (optional)
5. Bestellschlüssel
6. Seriennummer
7. Herstellungsdatum / Schutzart
8. Kennzeichnung für die Entsorgung elektronischer/elektrischer Geräte; Montage- und Betriebsanweisungen beachten / Zulassungen

INFORMATION!
Prüfen Sie anhand des Typenschilds, ob das gelieferte Gerät Ihrer Bestellung entspricht.

Der Sensorotyp ist auf den Schildern der Sensorverpackung und am Sensor selbst angegeben.
3 INSTALLATION

3.1 Allgemeine Hinweise zur Installation

GEFAHR!
Bei Geräten, die in explosionsgefährdeten Bereichen eingesetzt werden, gelten zusätzlich die sicherheitstechnischen Hinweise in der Ex-Dokumentation.

GEFAHR!
Arbeiten an den elektrischen Anschlüssen dürfen nur bei ausgeschalteter Spannungsversorgung durchgeführt werden.

GEFAHR!
Beachten Sie die nationalen Installationsvorschriften!

WARNUNG!
Stellen Sie während der Installation des Gerätes sicher, dass Sie eine ESD- [elektrostatische Entladung] Schutzärzätsrüstung verwenden.

WARNUNG!

INFORMATION!

INFORMATION!
Prüfen Sie die Packliste, um festzustellen, ob Sie Ihre Bestellung komplett erhalten haben.

INFORMATION!
Prüfen Sie anhand des Typenschilds, ob das gelieferte Gerät Ihrer Bestellung entspricht.

VORSICHT!
Nehmen Sie keine mechanischen Änderungen am Sensor vor [Elektroden kürzen, anbohren, biegen oder verkratzen]. Dies kann anderenfalls den Verlust der ordnungsgemäßen Funktionsweise sowie der Gewährleistungsansprüche für das Gerät zur Folge haben.

- Transportieren und lagern Sie das Gerät in einer trockenen und staubfreien Umgebung.
- Transportieren und lagern Sie das Gerät bei einer Umgebungstemperatur von -40...+85°C / -40...+185°F.
3.3 Voraussetzungen vor der Installation

VORSICHT!
- Gerät nicht werfen oder herunterfallen lassen! Behandeln Sie das Gerät sorgfältig!
- Achten Sie darauf, die Elektroden des Sensors nicht zu verkratzen.
- Nehmen Sie keine mechanischen Änderungen am Sensor vor (Elektroden kürzen, anbohren, biegen oder verkratzen). Dies kann andererseits den Verlust der ordnungsgemäßen Funktionsweise sowie der Gewährleistungsansprüche für das Gerät zur Folge haben.
- Der Sensor muss sich für die Temperatur-, Druck- und Messstoffbedingungen eignen, die angegeben sind (einschließlich chemische Beständigkeit).

INFORMATION!
Es steht eine sensorspezifische DTM-Software zur Verwendung mit PACTware™ FDT zur Verfügung. Die DTM Software wird kostenlos auf einer CD (Lieferumfang) bereitgestellt oder kann von der KROHNE-Website (Downloadcenter) heruntergeladen werden.

Die notwendigen Schritte werden in den folgenden Kapiteln erklärt.

Auspacken des Sensors
- Entfernen Sie durch leiches Drehen und Ziehen die Schutzkappe vom Sensor ①.
- Legen Sie den Sensor auf eine ESD Unterlage oder ein weiches Papiertuch ②.
- Lassen Sie die Schutzkappe des VP-Steckverbinders aufgesteckt, solange der Sensor nicht an das Kabel angeschlossen ist.
3.4 Installationsverfahren

WARNUNG!
Stellen Sie während der Installation des Gerätes sicher, dass Sie eine ESD- (elektrostatische Entladung) Schutzausrüstung verwenden.

1. Schließen Sie den Sensor an die Verteilerdose oder direkt an das Prozessleitsystem an.
2. Installieren Sie den Sensor an der finalen Messstelle.
Elektrische Anschlüsse

4.1 Sicherheitshinweise

GEFAHR!
Bei Geräten, die in explosionsgefährdeten Bereichen eingesetzt werden, gelten zusätzlich die sicherheitstechnischen Hinweise in der Ex-Dokumentation.

GEFAHR!
Arbeiten an den elektrischen Anschlüssen dürfen nur bei ausgeschalteter Spannungsversorgung durchgeführt werden.

GEFAHR!
Beachten Sie die nationalen Installationsvorschriften!

WARNUNG!

INFORMATION!
Prüfen Sie anhand des Typenschilds, ob das gelieferte Gerät Ihrer Bestellung entspricht.

4.2 Spannungsversorgung

VORSICHT!
Bei Verwendung von Ex-Trennverstärkern mit integriertem 250 Ohm HART® Widerstand von einem Drittanbieter und der Anschlussdose SJB 200 W-Ex, darf nicht der 250 Ohm HART® Widerstand der Anschlussdose verwendet werden.

Der Sensor benötigt eine minimale Betriebsspannung von 15 VDC. Die Spannungsversorgung erfolgt über die 2-Leiter Schnittstelle (4...20mA).

Während der Initialisierung des Sensors erscheinen in der Anzeige des Menüpunkts “Messwert” folgende Werte:

Leitfähigkeit NaN
Widerstand NaN
Temperatur NaN
Schleifenstrom NaN

Die Angabe NaN (Not a Number) erlischt nach einigen Sekunden, sobald die Initialisierung des Sensors abgeschlossen ist. Danach werden die Messwerte angezeigt.
4.3 Erdung und Potenzialausgleich

Der Sensortyp SMARTPAT COND 3200 muss geerdet werden (Hart erden oder kapazitiver Anschluss auf Erde).

SJB 200 W-Ex Verteilerdose bietet diese Erdungsmöglichkeit. Weitere Informationen finden Sie im SJB 200 W-Ex Handbuch.

Nutzen Sie beim Anschluss des SMARTPAT COND Sensors nur ein VarioPin-Sensorkabel mit Erdungsanschluss, wie das Kabel VP2-5.

4.4 Anschluss des Kabels für die Verbindung mit dem Sensor

WARNUNG!
Stellen Sie während der Installation des Gerätes sicher, dass Sie eine ESD- (elektrostatische Entladung) Schutzausrüstung verwenden.

VORSICHT!
Feuchtigkeit am Steckverbinder des Sensors ist auf jeden Fall zu vermeiden! Feuchtigkeit kann zu einem Kurzschluss führen und damit zu einem Fehlverhalten des Sensors!
Wenn Feuchtigkeit in den Steckverbinder eingedrungen ist, trocknen Sie ihn anschließend mit Luft (z. B. mit einem Fön).

Abbildung 4-1: Anschluss des Kabels für die Verbindung mit dem Sensor

Anschluss des Kabels für die Verbindung mit dem Sensor

- Vergewissern Sie sich, dass sowohl das Kabel als auch der Sensor-Steckverbinder absolut trocken sind.
- Schrauben Sie den Kabelstecker auf den Sensor-Steckverbinder und ziehen Sie ihn von Hand fest. (max. 5 Nm)
4.5 Anschluss des Sensorkabels

GEFAHR!
Arbeiten an den elektrischen Anschlüssen dürfen nur bei ausgeschalteter Spannungsversorgung durchgeführt werden.

Kabel VP2-S

Transparent/Schwarz (innere Koaxialabschirmung)	Üb+
Weiß	Üb-
Schirm	S

4.6 Anschlussschema

Abbildung 4-2: SJB 200 W-Ex mit SMARTPAT Sensor, integriertem HART® Widerstand und ohne Anzeige (links).
SJB 200 W-Ex mit SMARTPAT Sensor, integriertem HART® Widerstand und Anzeige (rechts).

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Sensor+ [Üb+]</td>
<td>A Sensor+ [Üb+]</td>
</tr>
<tr>
<td>B Sensor- [Üb-]</td>
<td>B Sensor- [Üb-]</td>
</tr>
<tr>
<td>F Loop- w/o Display (ohne Anzeige)</td>
<td>C Display+</td>
</tr>
<tr>
<td>G Loop+ 250Ω</td>
<td>D Display-</td>
</tr>
<tr>
<td>E Loop- w/ Display (mit Anzeige)</td>
<td></td>
</tr>
<tr>
<td>G Loop+ 250Ω</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sensor+ [Ub+]</td>
</tr>
<tr>
<td>B</td>
<td>Sensor- [Ub-]</td>
</tr>
<tr>
<td>C</td>
<td>Display+</td>
</tr>
<tr>
<td>D</td>
<td>Display-</td>
</tr>
<tr>
<td>E</td>
<td>Loop- w/ Display (mit Anzeige)</td>
</tr>
<tr>
<td>H</td>
<td>Loop+</td>
</tr>
<tr>
<td>A</td>
<td>Sensor+ [Ub+]</td>
</tr>
<tr>
<td>B</td>
<td>Sensor- [Ub-]</td>
</tr>
<tr>
<td>F</td>
<td>Loop- w/o Display (ohne Anzeige)</td>
</tr>
<tr>
<td>H</td>
<td>Loop+</td>
</tr>
</tbody>
</table>
4.7 Installation des Sensors

4.7.1 Allgemeine Montagehinweise

WARNING!
Stellen Sie sicher, dass die Rohrleitung drucklos ist, bevor ein Sensor ein- oder ausgebaut wird!

INFORMATION!
Installieren Sie vor dem Einbau ein Absperrventil vor und hinter dem Gerät, damit der Sensor im Falle einer Prüfung herausgenommen werden kann.

INFORMATION!
Um zuverlässige Messergebnisse zu erzielen, müssen die Elektroden immer komplett mit dem Messmedium in Kontakt sein.

INFORMATION!
Prinzipiell ist jede Einbaulage möglich. Stellen Sie jedoch sicher, dass ausreichend Medium durch und um die Elektroden fließt (die leitfähigen Elektroden müssen immer komplett vom Medium umgeben sein). Bauliche Maßnahmen müssen getroffen werden, um die Unterbrechung des Durchflusses oder Gasblasen zu verhindern.

4.7.2 Vorschläge für die Installation

Abbildung 4-4: Typische Installation

- Installation gegen die Strömung, um den direkten Kontakt der Elektroden zu garantieren.
Diese Art der Installation wird nur empfohlen, wenn die Rohrleitung komplett gefüllt ist und sich keine Partikel oder Luftblasen in der Rohrleitung befinden.

Abbildung 4-5: Installation für sauberes Wasser
1. Durchflussrichtung
2. Bestellter Sensor

Abbildung 4-6: Mögliche Installation
1. Durchflussrichtung
2. Bestellter Sensor

Diese Art der Installation wird nur empfohlen, wenn die Rohrleitung komplett gefüllt ist und sich keine Partikel oder Luftblasen in der Rohrleitung befinden. Der Rohrleitungsdurchmesser muss berücksichtigt werden, d. h. vergleichen Sie die Nennweite [DN] der Rohrleitung mit der Eintauchlänge des Sensorschafts.
Diese Art der Installation wird nur empfohlen, wenn die Rohrleitung komplett gefüllt ist und sich keine Partikel oder Luftblasen in der Rohrleitung befinden.

Der Rohrleitungsdurchmesser muss berücksichtigt werden, d. h. vergleichen Sie die Nennweite (DN) der Rohrleitung mit der Eintauchlänge des Sensorschafts.
5.1 Konfiguration

INFORMATION!

Weitere Informationen siehe Übersicht Menübaum Basis-DD (für Field Communicator 475) auf Seite 40.

5.2 Kalibrierung

INFORMATION!

Weitere Informationen siehe Menübaum Basis-DD (Details für die Einstellung) auf Seite 41.
5.2.1 Kalibrierung mit PACTware™

Kalibrierung
- Starten Sie die Funktion Kalibrierung im Menümodus Quick Setup oder Setup

Kalibrierverfahren auswählen
- Wählen Sie Produktkalibrierung, um den Sensor mit Hilfe eines Referenzsensors zu kalibrieren
- Wählen Sie Kalibrierlösung, um den Sensor mit Hilfe einer Referenzlösung zu kalibrieren
- Wählen Sie Eingabe der Zellkonstante, um die kalibrierte Zellkonstante eines Sensors einzugeben

Produktkalibrierung
- Wählen Sie Produktkal, und drücken Sie Weiter um fortzufahren
- Aktivieren Sie die Funktion Messwert halten? um einen Alarm zu vermeiden
- Wählen Sie Ja
- Drücken Sie Weiter um fortzufahren
- Bitte warten Sie bis der Messwert stabil ist
- Drücken Sie Weiter um fortzufahren
- Bitte warten Sie ca. 10 Sekunden bis der folgende Wert erscheint:
 - Messwert
 - Status -> Fertig
- Drücken Sie Weiter um fortzufahren
- Stellen Sie den Referenzwert ein
- Drücken Sie Weiter um fortzufahren
- Die alte Zellkonstante und die berechnete neue Zellkonstante werden angezeigt
- Wenn Sie die neue Zellkonstante speichern möchten, drücken Sie Weiter um fortzufahren
- Stellen Sie das Kalibrierdatum im Format TT-MM-JJJJ ein
- Drücken Sie Weiter um fortzufahren
- Die Meldung Wert speichern? erscheint
- Wählen Sie Ja, um die Werte zu speichern (bei Auswahl von Nein wird auf die gleiche Weise fortgefahren, allerdings ohne die Werte zu speichern)
- Drücken Sie Weiter um fortzufahren
- Deaktivieren Sie die Funktion Messwert halten? indem Sie Nein auswählen
- Drücken Sie Weiter um das Kalibriermenü zu verlassen

Kalibrierlösung
- Wählen Sie Kalibrierlösung und drücken Sie Weiter um fortzufahren
- Aktivieren Sie die Funktion Messwert halten? um einen Alarm zu vermeiden
- Wählen Sie Ja
- Drücken Sie Weiter um fortzufahren
- Stellen Sie die Einheit der Kalibrierlösung ein
- Wählen Sie die korrekte Einheit und drücken Sie Weiter um fortzufahren
- Stellen Sie den Wert der Kalibrierlösung ein
- Drücken Sie nach der Einstellung des Wertes Weiter, um fortzufahren
- Bitte warten Sie bis der Messwert stabil ist
- Drücken Sie Weiter um fortzufahren
- Bitte warten Sie ca. 10 Sekunden bis der folgende Wert erscheint:
 - Messwert
 - Status -> Fertig
• Drücken Sie **Weiter** um fortfahren
 - Die alte Zellkonstante und die berechnete neue Zellkonstante werden angezeigt.
• Wenn Sie die neue Zellkonstante speichern möchten, drücken Sie **Weiter** um fortfahren
• Stellen Sie das Kalibrierdatum im Format TT-MM-JJJJ ein
• Drücken Sie **Weiter** um fortfahren
 - Die Meldung **Wert speichern?** erscheint
• Wählen Sie **Ja** um die Werte zu speichern (bei Auswahl von **Nein** wird auf die gleiche Weise fortfahren, allerdings ohne die Werte zu speichern)
• Drücken Sie **Weiter** um fortfahren
• Deaktivieren Sie die Funktion **Messwert halten?** indem Sie **Nein** auswählen
• Drücken Sie **Weiter** um das Kalibriermenü zu verlassen

Eingabe der Zellkonstante
• Wählen Sie **Eingabe der Zellkonstante** und drücken Sie die Taste **Weiter**
• Aktivieren Sie die Funktion **Messwert halten?** um einen Alarm zu vermeiden
• Wählen Sie **Ja**
• Drücken Sie **Weiter** um fortfahren
• Geben Sie die neue Zellkonstante ein
 - Um die neue Zellkonstante zu speichern, drücken Sie **Weiter** um fortfahren
• Stellen Sie das Kalibrierdatum im Format TT-MM-JJJJ ein
• Drücken Sie **Weiter** um fortfahren
 - Die Meldung **Wert speichern?** erscheint
• Wählen Sie **Ja** um die Werte zu speichern (bei Auswahl von **Nein** wird auf die gleiche Weise fortfahren, allerdings ohne die Werte zu speichern)
• Drücken Sie **Weiter** um fortfahren
• Deaktivieren Sie die Funktion **Messwert halten?** indem Sie **Nein** auswählen
• Drücken Sie **Weiter** um das Kalibriermenü zu verlassen

VORSICHT!
Feuchtigkeit am Steckverbinder des Sensors ist auf jeden Fall zu vermeiden! Feuchtigkeit kann zu einem Kurzschluss führen und damit zu einem Fehlverhalten des Sensors!
Wenn Feuchtigkeit in den Steckverbinder eingedrungen ist, trocknen Sie ihn anschließend mit Luft (z. B. mit einem Fön).

VORSICHT!
• Nehmen Sie keine mechanischen Änderungen am Sensor vor (Elektroden kürzen, anbohren, biegen oder verkratzen).
• Vergewissern Sie sich, dass die Messelektroden sauber und staubfrei sind. Reinigen Sie die Elektrode bei Bedarf wie beschrieben auf Seite 29.
5.2.2 Kalibrierung mit HART® Handheld 475 FIELD COMMUNICATOR

Kalibrierung

- Starten Sie die Funktion Kalibrierung im Menümodus Quick Setup oder Setup

Kalibrierverfahren auswählen

- Wählen Sie Produktkalibrierung, um den Sensor mit Hilfe eines Referenzsensors zu kalibrieren
- Wählen Sie Kalibrierlösung, um den Sensor mit Hilfe einer Referenzlösung zu kalibrieren
- Wählen Sie Eingabe der Zellkonstante, um die kalibrierte Zellkonstante eines Sensors einzugeben

Produktkalibrierung

- Wählen Sie Produktkalibrierung und drücken Sie die Taste >> um einen Alarm zu vermeiden
- Wählen Sie Ja
- Drücken Sie Enter um fortzufahren
- Bitte warten Sie bis der Messwert stabil ist
- Drücken Sie OK um fortzufahren
- Bitte warten Sie ca. 10 Sekunden bis der folgende Wert erscheint:

□ Messwert
□ Status -> Fertig

□ Drücken Sie OK um fortzufahren
□ Sie werden nun aufgefordert, den Messwert zu speichern
□ Drücken Sie OK um fortzufahren
□ Wählen Sie die korrekte Einheit aus und drücken Sie Enter um fortzufahren
□ Stellen Sie den Referenzwert ein
□ Drücken Sie nach der Einstellung des Wertes Enter um fortzufahren

□ Die alte Zellkonstante und die berechnete neue Zellkonstante werden angezeigt
□ Wenn Sie neue Zellkonstante speichern wollen, drücken Sie OK um fortzufahren
□ Stellen Sie das Kalibrierdatum im Format MM-TT-JJJJ ein.
□ Drücken Sie Enter um fortzufahren
□ Die Meldung Werte speichern? erscheint
□ Wählen Sie Ja, um die Werte zu speichern [bei Auswahl von Nein wird auf die gleiche Weise fortgefahren, allerdings ohne die Werte zu speichern]
□ Drücken Sie Enter um fortzufahren
□ Deaktivieren Sie die Funktion Messwert halten? indem Sie Nein auswählen
□ Drücken Sie Enter, um das Kalibriermenü zu verlassen

Kalibrierlösung

- Wählen Sie Kalibrierlösung und drücken Sie die Taste >> um einen Alarm zu vermeiden
- Wählen Sie Ja
- Drücken Sie Enter um fortzufahren
- Wählen Sie die korrekte Einheit aus und drücken Sie Enter um fortzufahren
- Stellen Sie den Wert der Kalibrierlösung ein
- Drücken Sie nach der Einstellung des Wertes Enter um fortzufahren

□ Bitte warten Sie bis der Messwert stabil ist
□ Drücken Sie OK um fortzufahren
□ Bitte warten Sie ca. 10 Sekunden bis der folgende Wert erscheint:
Messwert
Status -> Fertig
• Drücken Sie OK um fortzufahren
• Die alte Zellkonstante und die berechnete neue Zellkonstante werden angezeigt
• Wenn Sie neue Zellkonstante speichern wollen, drücken Sie OK um fortzufahren
• Stellen Sie das Kalibrierdatum im Format MM-TT-JJJJ ein.
• Drücken Sie Enter um fortzufahren
• Die Meldung Werte speichern? erscheint
• Wählen Sie Ja, um die Werte zu speichern [bei Auswahl von Nein wird auf die gleiche Weise fortgefahren, allerdings ohne die Werte zu speichern]
• Drücken Sie Enter um fortzufahren
• Deaktivieren Sie die Funktion Messwert halten? indem Sie Nein auswählen
• Drücken Sie Enter, um das Kalibriermenü zu verlassen

Eingabe der Zellkonstante
• Wählen Sie Eingabe der Zellkonstante und drücken Sie die Taste →
• Aktivieren Sie die Funktion Messwert halten? um einen Alarm zu vermeiden
• Wählen Sie Ja
• Drücken Sie Enter um fortzufahren
• Geben Sie die neue Zellkonstante ein
• Drücken Sie Enter um fortzufahren
• Die Meldung Speichern der neuen Zellkonstante? sowie die Werte der alten und der neuen Zellkonstante werden angezeigt
• Drücken Sie OK um fortzufahren
• Stellen Sie das Kalibrierdatum im Format MM-TT-JJJJ ein
• Drücken Sie Enter um fortzufahren
• Die Meldung Werte speichern? erscheint
• Wählen Sie Ja, um die Werte zu speichern [bei Auswahl von Nein wird auf die gleiche Weise fortgefahren, allerdings ohne die Werte zu speichern]
• Drücken Sie Enter um fortzufahren
• Deaktivieren Sie die Funktion Messwert halten? indem Sie Nein auswählen
• Drücken Sie Enter, um das Kalibriermenü zu verlassen

VORSICHT!
Feuchtigkeit am Steckverbinder des Sensors ist auf jeden Fall zu vermeiden! Feuchtigkeit kann zu einem Kurzschluss führen und damit zu einem Fehlverhalten des Sensors!
Wenn Feuchtigkeit in den Steckverbinder eingedrungen ist, trocknen Sie ihn anschließend mit Luft [z. B. mit einem Fön].

VORSICHT!
• Nehmen Sie keine mechanischen Änderungen am Sensor vor (Elektroden kürzen, anbohren, biegen oder verkratzen).
• Vergewissern Sie sich, dass die Messelektroden sauber und staubfrei sind. Reinigen Sie die Elektrode bei Bedarf wie beschrieben, auf Seite 29.
5.3 Fehlerbehebung

<table>
<thead>
<tr>
<th>Problem</th>
<th>Mögliche Ursache</th>
<th>Behebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Leitfähigkeitsensor liefert kein HART®- oder k...20 mA-Signal.</td>
<td>Unterbrechung oder Feuchtigkeit zwischen den Anschlüssen.</td>
<td>Überprüfen Sie die Verdrahtung des Sensorskabels an der Verteilerdose. Schließen Sie den Sensor andererfalls an das erste Mastergerät wie z. B. PACTware® FTD/DTM oder an das HART®-Handheld an, um einen Schaden am Sensor auszuschließen.</td>
</tr>
<tr>
<td>Luftblasen in der Rohrleitung</td>
<td>Wählen Sie eine geeignete Temperaturkompensation aus.</td>
<td></td>
</tr>
<tr>
<td>Keine Temperaturmessung (nur anwendbar über HART®DD oder PACTware® FDT/DTM).</td>
<td>Temperaturfühler fehlerhaft.</td>
<td>Leitfähigkeitsensor austauschen.</td>
</tr>
</tbody>
</table>
5.4 Statusmeldungen und Diagnose-Informationen

Messungen außerhalb der Spezifikation

<table>
<thead>
<tr>
<th>Meldung</th>
<th>Beschreibung DD</th>
<th>Beschreibung DTM</th>
<th>Aktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>LF > Max. LF</td>
<td>Leitfähigkeit > Max. Leitfähigkeit</td>
<td>Beachten Sie die Messbereichsgrenzen; wählen Sie anderenfalls einen für die Prozessbedingungen der Anwendung geeigneten Sensor.</td>
</tr>
<tr>
<td>S02</td>
<td>LF < Min. LF</td>
<td>Leitfähigkeit < Min. Leitfähigkeit</td>
<td></td>
</tr>
<tr>
<td>S03</td>
<td>Spez. R > Max.</td>
<td>Spez. Widerstand > Max. spez. Widerstand</td>
<td></td>
</tr>
<tr>
<td>S04</td>
<td>Spez. R < Min.</td>
<td>Spez. Widerstand < Min. spez. Widerstand</td>
<td></td>
</tr>
<tr>
<td>S05</td>
<td>T > Temp. Max.</td>
<td>Temperatur > Max. Temperatur</td>
<td></td>
</tr>
<tr>
<td>S06</td>
<td>T < Temp. Min.</td>
<td>Temperatur < Min. Temperatur</td>
<td></td>
</tr>
</tbody>
</table>

Wartung

<table>
<thead>
<tr>
<th>Meldung</th>
<th>Beschreibung DD</th>
<th>Beschreibung DTM</th>
<th>Beschreibung DTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>Kal. Daten Grenzen</td>
<td>Kalibrierdaten außerhalb der Grenzen</td>
<td>Fehler bei der Kalibrierung; Abweichung der Zellkonstante</td>
</tr>
<tr>
<td>M02</td>
<td>Wartungsintervall</td>
<td>Wartungsintervall überschritten</td>
<td>Wartungsintervall abgelaufen</td>
</tr>
</tbody>
</table>
6.1 Wartung

6.1.1 Reinigung

Die konduktiven Leitfähigkeitelektroden sind in direktem Kontakt mit dem Medium. Die Reinigung muss daher regelmäßig, entsprechend der Anfälligkeit des Mediums für Verschmutzungen, durchgeführt werden!
Für die Reinigung können alle gebräuchlichen Haushaltsreiniger verwendet werden.
Scheuermittel sind nur bedingt geeignet!
Die Messemittroden dürfen nicht mechanisch beschädigt werden!
Verdünnte Salzsäure oder die Reinigung im Ultraschallbad können hilfreich sein, um verschiedene Ablagerungen zu vermeiden.

6.2 Verfügbarkeit von Serviceleistungen

INFORMATION!
Für genaue Informationen wenden Sie sich bitte an Ihr regionales Vertriebsbüro.

6.3 Rücksendung des Geräts an den Hersteller

6.3.1 Allgemeine Informationen

VORSICHT!
Sollte es dennoch erforderlich sein, ein Gerät zum Zweck der Inspektion oder Reparatur zurückzusenden, so beachten Sie unbedingt folgende Punkte:
• Aufgrund von Rechtsvorschriften zum Umweltschutz und zum Schutz der Gesundheit und Sicherheit des Personals darf der Hersteller nur solche zurückgesendeten Geräte handhaben, prüfen und reparieren, die in Kontakt mit Produkten gewesen sind, die keine Gefahr für Personal und Umwelt darstellen.
• Dies bedeutet, dass der Hersteller ein Gerät nur dann warten kann, wenn nachfolgende Bescheinigung (siehe nächster Abschnitt) beiliegt, mit dem seine Gefährdungsfreiheit bestätigt wird.

VORSICHT!
Wenn das Gerät mit toxischen, ätzenden, entflammbaren oder wassergefährdenden Produkten betrieben wurde, muss:
• geprüft und sichergestellt werden, wenn nötig durch Spülen oder Neutralisieren, dass keine Gefahr für Personal und Umwelt darstellen.
• dem Gerät eine Bescheinigung beigelegt werden, mit der bestätigt wird, dass der Umgang mit dem Gerät sicher ist und in der das verwendete Produkt benannt wird.
6.3.2 Formular (Kopiervorlage) zur Rücksendung eines Geräts

VORSICHT!
Um alle Risiken für unser Wartungspersonal auszuschließen, muss dieses Formular von Außen an der Verpackung des zurückgesendeten Geräts zugänglich sein.

<table>
<thead>
<tr>
<th>Firma:</th>
<th>Adresse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abteilung:</td>
<td>Name:</td>
</tr>
<tr>
<td>Tel.-Nr.:</td>
<td>Fax-Nr. und/oder E-Mail-Adresse:</td>
</tr>
<tr>
<td>Kommissions- bzw. Seriennummer des Herstellers:</td>
<td></td>
</tr>
</tbody>
</table>

Das Gerät wurde mit folgendem Messstoff betrieben:

Dieser Messstoff ist:
- radioaktiv
- wassergefährdend
- giftig
- ätzend
- brennbar
- Wir haben alle Hohlräume des Geräts auf Freiheit von diesen Stoffen geprüft.
- Wir haben alle Hohlräume des Geräts gespült und neutralisiert.

Wir bestätigen hiermit, dass bei der Rücksendung dieses Messgeräts keine Gefahr für Menschen und Umwelt durch darin enthaltene Messstoffreste besteht.

<table>
<thead>
<tr>
<th>Datum:</th>
<th>Unterschrift:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stempel:</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Entsorgung

VORSICHT!
Die Entsorgung hat unter Einhaltung der in Ihrem Land geltenden Gesetzgebung zu erfolgen.

Getrennte Sammlung von Elektro- und Elektronikaltgeräten in der Europäischen Union:

Gemäß WEEE-Richtlinie 2012/19/EU dürfen Kontroll- und Steuerungsgeräte, die mit dem WEEE-Symbol gekennzeichnet sind, am Ende ihrer Lebensdauer **nicht mit dem Hausmüll entsorgt werden**.

Der Anwender muss Elektro- und Elektronikaltgeräte bei einer geeigneten Sammelstelle für das Recycling von elektrischen und elektronischen Altgeräten abgeben oder die Geräte an unsere Niederlassung vor Ort oder an einen bevollmächtigten Vertreter zurücksenden.
7.1 Messprinzip

7.1.1 Leitfähigkeitsmessung

Zwei Regeln sind für die Leitfähigkeitsmessung maßgeblich:
1. Je größer der Abstand zwischen den beiden Elektroden, desto größer ist der Widerstand
2. Je größer die Elektrodenoberfläche, desto niedriger ist der Widerstand.

Die Oberfläche (A) und der Abstand (L) müssen genau auf den gewünschten Messbereich abgestimmt sein. Dies ist die sogenannte "Zellkonstante", die als $c=L/A$ definiert wird.
7.2 Technische Daten

INFORMATION!
- Die nachfolgenden Daten berücksichtigen allgemeingültige Applikationen. Wenn Sie Daten benötigen, die Ihre spezifische Anwendung betreffen, wenden Sie sich bitte an uns oder Ihren lokalen Vertreter.
- Zusätzliche Informationen (Zertifikate, Arbeitsmittel, Software,...) und die komplette Dokumentation zum Produkt können Sie kostenlos von der Internetseite [Downloadcenter] herunterladen.

<table>
<thead>
<tr>
<th>Messsystem</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Messprinzip</td>
<td>Leitfähigkeitsmessung - Konduktiv</td>
</tr>
</tbody>
</table>
| Messbereich | 0,05 ... 10 µS/cm (c=0,01) bei 25°C / 77°F
1 ... 1000 µS/cm (c=0,1) bei 25°C / 77°F |

<table>
<thead>
<tr>
<th>Design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatursensor</td>
<td>Pt1000</td>
</tr>
<tr>
<td>Steckverbinder</td>
<td>VarioPin 2.0 (VP2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Betriebsbedingungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozesstemperatur</td>
<td>0...+135°C / +32...+275°F</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>-10...+85°C / +14...+185°F</td>
</tr>
<tr>
<td>Lagertemperatur</td>
<td>-40...+85°C / -40...+185°F</td>
</tr>
</tbody>
</table>
| Prozessdruck | 16 bar bei 25°C / 232 psi bei 77°F,
9 bar bei 60°C / 130,5 psi bei 140°F |
| Messgenauigkeit | ±3% vom Messwert |

<table>
<thead>
<tr>
<th>Einbaubedingungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schutzart</td>
<td>IP68</td>
</tr>
<tr>
<td>Gewicht</td>
<td>Ca. 341 g / 0,75 lb</td>
</tr>
<tr>
<td>Prozessanschluss</td>
<td>G3/4 A Außengewinde oder 3/4-14 NPT Außengewinde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Werkstoffe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessanschluss</td>
<td>PVDF</td>
</tr>
<tr>
<td>Elektroden</td>
<td>Edelstahl (1.4571 / 316Ti)</td>
</tr>
<tr>
<td>Sensorkopf</td>
<td>Vernickelter Messingkörper mit VP2 Steckverbinder</td>
</tr>
<tr>
<td>Isolator</td>
<td>PVDF</td>
</tr>
</tbody>
</table>
TECHNISCHE DATEN

SMARTPAT COND 3200

Kommunikation

<table>
<thead>
<tr>
<th>Messbereich</th>
<th>0,05...10 µS/cm (c=0,01) bei 25°C / 77°F (für c=0,01 ist die angezeigte Einheit µS/cm für die Leitfähigkeit und MOhm*cm für den spezifischen Widerstand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Außengangsignal</td>
<td>4...20 mA (passiv)</td>
</tr>
<tr>
<td>Auflösung Ausgang</td>
<td>20 µA</td>
</tr>
<tr>
<td>Feldkommunikation</td>
<td>HART® 7 - FSK 1200 Physical Layer für die Definition der Bit-Übertragung</td>
</tr>
<tr>
<td>Filtereinstellung</td>
<td>1...60 Sekunden</td>
</tr>
</tbody>
</table>

Elektrische Anschlüsse

<table>
<thead>
<tr>
<th>Spannungsversorgung</th>
<th>15...30 VDC stromschleifengespeist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgang</td>
<td>4...20 mA + HART®-Protokoll</td>
</tr>
<tr>
<td>Bürde</td>
<td>Minimal 8 Ω; maximal R_L = [(U_external - 15 VDC) / 22 mA]</td>
</tr>
<tr>
<td>HART®®</td>
<td>HART®-Protokoll über Stromausgang HART®</td>
</tr>
<tr>
<td>GeräteRevision</td>
<td>1</td>
</tr>
<tr>
<td>Physical Layer</td>
<td>FSK</td>
</tr>
<tr>
<td>GeräteKategorie</td>
<td>Sensor galvanisch getrennt</td>
</tr>
<tr>
<td>Systemvoraussetzungen</td>
<td>250 Ω Bürde für HART®-Kommunikation</td>
</tr>
<tr>
<td>Multidrop-Betrieb</td>
<td>4 mA; in einem Multidrop-Kommunikationssystem können bis zu 32 Geräte angeschlossen werden. Beachten Sie bei der Installation in einem Multidrop-Kommunikationssystem bitte den Spannungsabfall für die 250 Ω Bürde für die HART®-Kommunikation. Die Versorgungsspannung muss entsprechend angepasst werden.</td>
</tr>
</tbody>
</table>

Zulassungen

<table>
<thead>
<tr>
<th>CE</th>
<th>Dieses Messgerät erfüllt die gesetzlichen Anforderungen der EG-Richtlinien. Der Hersteller bescheinigt die erfolgreiche Prüfung durch das Anbringen des CE-Zeichens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektromagnetische</td>
<td>Richtlinie 2004/108/EG, NAMUR NE21</td>
</tr>
<tr>
<td>Verträglichkeit</td>
<td>IEC 60068-2-31, Umgebungstest – Teil 2: Test Ec</td>
</tr>
</tbody>
</table>

www.krohne.com
7.3 Abmessungen

Abbildung 7-2: SMARTPAT COND 3200

<table>
<thead>
<tr>
<th>Prozessanschluss G3/4 A Außengewinde</th>
<th>Abmessungen [mm]</th>
<th>Abmessungen [Zoll]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>186,2</td>
<td>7,33</td>
</tr>
<tr>
<td>b</td>
<td>156</td>
<td>6,14</td>
</tr>
<tr>
<td>c</td>
<td>76</td>
<td>2,99</td>
</tr>
<tr>
<td>d</td>
<td>55</td>
<td>2,17</td>
</tr>
<tr>
<td>e</td>
<td>5W 36</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>G3/4 A Außengewinde</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Ø45</td>
<td>Ø1,77</td>
</tr>
<tr>
<td>h</td>
<td>Ø22</td>
<td>Ø0,87</td>
</tr>
<tr>
<td>i</td>
<td>Ø20,5</td>
<td>Ø0,87</td>
</tr>
<tr>
<td>k</td>
<td>VarioPin</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>7</td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td>Abmessungen [mm]</td>
<td>Abmessungen [Zoll]</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>a</td>
<td>193,2</td>
<td>7,61</td>
</tr>
<tr>
<td>b</td>
<td>163</td>
<td>6,42</td>
</tr>
<tr>
<td>c</td>
<td>80</td>
<td>3,15</td>
</tr>
<tr>
<td>d</td>
<td>55</td>
<td>2,17</td>
</tr>
<tr>
<td>e</td>
<td>SW 36</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>3/4-14 NPT Außengewinde</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Ø45</td>
<td>Ø1,77</td>
</tr>
<tr>
<td>h</td>
<td>Ø22</td>
<td>Ø0,87</td>
</tr>
<tr>
<td>i</td>
<td>Ø20,5</td>
<td>Ø0,81</td>
</tr>
<tr>
<td>k</td>
<td>VarioPin</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>7</td>
<td>0,28</td>
</tr>
</tbody>
</table>
Beschreibung HART-Schnittstelle

8 BESCHREIBUNG HART-SCHNITTSTELLE

SMARTPAT COND 3200

8.1 Allgemeine Beschreibung

Das offene HART®-Protokoll für die Kommunikation, welches frei verfügbar ist, ist im Sensor integriert.

Geräte, die das HART®-Protokoll unterstützen, sind unterteilt in Bedien- und Feldgeräte. Als Bediengeräte (Master) kommen zum Einsatz Handbediengeräte (Secondary Master) und PC-gestützte Arbeitsplätze (Primary Master) z. B. in einer Leitstelle.

Die HART®-Daten sind per FSK-Modem auf das analoge 4...20 mA-Signal aufmoduliert. Damit können alle angeschlossenen Geräte über das HART®-Protokoll digital miteinander kommunizieren bei gleichzeitiger Übertragung der analogen Signale.

Bei den Feldgeräten und Handbediengeräten ist das FSK- bzw. HART®-Modem integriert. Wenn ein PC verwendet wird, muss ein externes Modem an die serielle Schnittstelle (USB-Schnittstelle) angeschlossen werden. Es gibt aber noch weitere Anschlussvarianten, die den nachfolgenden Anschlussbildern entnommen werden können.

8.2 Softwarehistorie

INFORMATION!

In der nachfolgenden Tabelle steht "x" als Platzhalter für mögliche mehrstellige Zahlen-Buchstaben-Kombinationen, abhängig von der vorhandenen Version.

<table>
<thead>
<tr>
<th>Freigabedatum</th>
<th>ER version</th>
<th>SW Version</th>
<th>HW Version</th>
<th>HART® Geräte-Revision</th>
<th>DD-Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.08.2015</td>
<td>1.0.0_x</td>
<td>1.0.x</td>
<td>1.0.x</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

HART® ID- und Revisionsnummern

Hersteller-ID:	69 (0x45)
Gerät:	194 (0xC2)
Geräte-Revision:	1
DD Revision:	1
HART® Universal Revision:	7
FC 475 System SW.Rev.:	≥ 3.8
PDM-Ausführung:	≥ 6,1
FDT-Ausführung:	≥ 1,2

www.krohne.com
8.3 Anschlussvarianten

VORSICHT!
Beachten Sie beim Einbau in ein Multidrop-Kommunikationssystem bitte den Spannungsabfall für die 250 Ohm Belastung für die HART®-Kommunikation. Die Versorgungsspannung muss entsprechend angepasst werden.

Der Sensor ist ein 2-Leiter-Gerät mit einem passiven 4...20 mA Stromausgang und HART®-Schnittstelle.

- **Multidrop-Betrieb wird unterstützt**
 In einem Multidrop-Kommunikationssystem können bis zu 32 Geräte an eine gemeinsame Übertragungsleitung angeschlossen sein.

- **Burst-Mode wird nicht unterstützt**
 Im Burst-Mode sendet ein Slavegerät zyklisch vordefinierte Antworttelegramme, um einen höheren Datendurchsatz zu erreichen.

INFORMATION!
Detaillierte Informationen zum elektrischen Anschluss des Sensors für HART®, siehe Anschlussschema auf Seite 17.

Die HART®-Kommunikation ist auf zwei Arten nutzbar:

- als Punkt-zu-Punkt-Verbindung (Point-to-Point) sowie
- als Multi-Drop-Verbindung mit 2-Leiteranschluss.
8.3.1 Punkt-zu-Punkt-Verbindung - Analog / Digital Modus (Point-to-Point)

Der Stromausgang des Geräts ist passiv.

Abbildung 8-1: Point-to-Point-Verbindung

1. Erstes Mastergerät (Primary Master), z. B. mit PACTware™ FDT/DTM
2. FSK-Modem
3. HART®-Signal
4. SD 200 W/R oder SMARTMAC 200 W (optional)
5. Sensor
6. Zweites Mastergerät mit HART®-DD (Secondary Master)
7. Hilfsenergie für Geräte (Slaves) mit passivem Stromausgang
8. Last ≥ 250 Ω (Ohm)
8.4 Ein-/Ausgänge und HART® Dynamische Variable bzw. Gerätevariable

<table>
<thead>
<tr>
<th>HART® Dynamische Variable</th>
<th>PV</th>
<th>SV</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitfähigkeit (spezifischer Widerstand)</td>
<td>Leitfähigkeit</td>
<td>Spezifischer Widerstand</td>
<td>Temperatur</td>
</tr>
</tbody>
</table>

Code = Codierung der Gerätevariablen

<table>
<thead>
<tr>
<th>HART® Gerätevariable</th>
<th>Code</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitfähigkeit</td>
<td>0</td>
<td>linear</td>
</tr>
<tr>
<td>Spez. Widerstand</td>
<td>1</td>
<td>linear</td>
</tr>
<tr>
<td>Temperatur</td>
<td>2</td>
<td>linear</td>
</tr>
</tbody>
</table>

Die dynamische HART®-Variable PV kann zwischen Leitfähigkeit und spezifischem Widerstand umgeschaltet werden. Wenn PV auf Leitfähigkeit eingestellt ist, ist SV auf spezifischem Widerstand eingestellt und umgekehrt.

8.5 Field Communicator 475 (FC 475)

8.5.1 Installation

8.6 Field Device Tool / Device Type Manager (FDT/DTM)

Ein Field Device Tool Container (FDT Container) ist im Allgemeinen ein PC-Programm zur Konfiguration eines Feldgeräts über HART®. Zur Anpassung an verschiedene Geräte verwendet der FDT Container sogenannte Device Type Manager (DTM).

8.6.1 Installation

Wenn die DTM für den Sensor noch nicht auf dem FDT-Container installiert ist, ist ein Setup nötig, als Download auf der Internetseite oder auf CD-ROM erhältlich. Für die Installation der DTM mit dem Setup siehe mitgelieferte Dokumentation.

8.7 Übersicht Menübaum Basis-DD (für Field Communicator 475)

<table>
<thead>
<tr>
<th>Hauptmenü</th>
<th>Untermenü</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Messwerte</td>
<td>1 Leitfähigkeit</td>
</tr>
<tr>
<td></td>
<td>2 Spez. Widerstand</td>
</tr>
<tr>
<td></td>
<td>3 Temperatur</td>
</tr>
<tr>
<td></td>
<td>4 Messgröße</td>
</tr>
<tr>
<td></td>
<td>5 Schleifenstrom</td>
</tr>
<tr>
<td></td>
<td>6 Fehler</td>
</tr>
<tr>
<td></td>
<td>7 Gerätestatus</td>
</tr>
<tr>
<td>2 Quick Setup</td>
<td>1 TAG</td>
</tr>
<tr>
<td></td>
<td>2 Messwert halten</td>
</tr>
<tr>
<td></td>
<td>3 I/O</td>
</tr>
<tr>
<td></td>
<td>4 Kalibrierung</td>
</tr>
<tr>
<td>3 Logbücher</td>
<td>1 Kalibrierlogbuch lesen</td>
</tr>
<tr>
<td></td>
<td>2 Fehlertagbuch lesen</td>
</tr>
<tr>
<td>4 Setup</td>
<td>1 Prozesseingang</td>
</tr>
<tr>
<td></td>
<td>2 I/O</td>
</tr>
<tr>
<td></td>
<td>3 I/O HART®</td>
</tr>
<tr>
<td></td>
<td>4 Gerät</td>
</tr>
<tr>
<td>5 Service</td>
<td>1 Service Kalibrierung</td>
</tr>
<tr>
<td></td>
<td>2 Service Parameter</td>
</tr>
<tr>
<td></td>
<td>3 Sensor sperren</td>
</tr>
</tbody>
</table>
8.8 Menübaum Basis-DD (Details für die Einstellung)

1 Messwert

<table>
<thead>
<tr>
<th>1 Leitfähigkeit</th>
<th>Anzeige des gemessenen Leitfähigkeitwerts im Prozessleitsystem, HART® Handheld oder SMARTMAC 200 W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Spez. Widerstand</td>
<td>Anzeige des gemessenen spezifischen Widerstandswerts im Prozessleitsystem, HART®, Handheld oder SMARTMAC 200 W.</td>
</tr>
<tr>
<td>3 Temperatur</td>
<td>Anzeige der gemessenen Temperatur in °C / °F im Prozessleitsystem, HART®-Handheld oder SMARTMAC 200 W.</td>
</tr>
<tr>
<td>4 Messgröße</td>
<td>Anzeige des Messwerts im Prozessleitsystem, HART®, Handheld oder SMARTMAC 200 W.</td>
</tr>
<tr>
<td>5 Schleifenstrom</td>
<td>Anzeige des gemessenen Schleifenstroms in mA im Prozessleitsystem, HART®-Handheld oder SMARTMAC 200 W.</td>
</tr>
<tr>
<td>7 Gerätestatus</td>
<td>Anzeige des Symbols für Statusinformationen für den Sensor gemäß NAMUR NE 107.</td>
</tr>
</tbody>
</table>

2 Quick Setup

<table>
<thead>
<tr>
<th>1 TAG</th>
<th>1 TAG (TAG einstellen und anzeigen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Langes TAG</td>
<td>Langes TAG (einstellen und anzeigen)</td>
</tr>
<tr>
<td>3 Vorheriger Langes TAG</td>
<td>nur lesen</td>
</tr>
<tr>
<td>2 Messwert halten</td>
<td>1 Ja</td>
</tr>
<tr>
<td></td>
<td>2 Nein</td>
</tr>
<tr>
<td>3 I/O</td>
<td>Funktion Messwert halten aktivieren oder deaktivieren.</td>
</tr>
<tr>
<td>1 Messgröße</td>
<td>Leitfähigkeit</td>
</tr>
<tr>
<td></td>
<td>Spez. Widerstand</td>
</tr>
<tr>
<td></td>
<td>2 Messwert bei 4 mA (einstellen und anzeigen)</td>
</tr>
<tr>
<td></td>
<td>3 Messwert bei 20 mA (einstellen und anzeigen)</td>
</tr>
<tr>
<td></td>
<td>4 Zeitkonstante (Einstellen und Anzeigen der Zeitkonstante für 4...20 mA)</td>
</tr>
<tr>
<td></td>
<td>Aktualisierungsrate (1...60 Sekunden, Standardeinstellung: 1 Sekunde)</td>
</tr>
</tbody>
</table>

4 Kalibrierung

<table>
<thead>
<tr>
<th>1 Produktkalibrierung</th>
<th>2 Kalibriermethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Eingabe der Zeitkonstante</td>
<td>Kalibrierverfahren starten. Weitere Informationen siehe Kalibrierung auf Seite 22.</td>
</tr>
</tbody>
</table>

3 Logbücher

<table>
<thead>
<tr>
<th>1 Kalibrier-Logbuch</th>
<th>1 Speicherblock</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kalibriermethode</td>
<td>3 Zeitkonstante</td>
</tr>
<tr>
<td>3 Zellkonstante</td>
<td>4 Fabrik Zellkonstante</td>
</tr>
<tr>
<td>5 Referenzwert</td>
<td>6 Kalibriermethode</td>
</tr>
<tr>
<td>7 Kalibrierzähler</td>
<td>8 Kalibriertag</td>
</tr>
<tr>
<td>2 Fehler-Logbuch</td>
<td>1 Speicherblock</td>
</tr>
<tr>
<td>2 Fehlerzähler</td>
<td>3 Fehler</td>
</tr>
<tr>
<td>4 Fehlerzeit</td>
<td></td>
</tr>
</tbody>
</table>
4 Setup

1 Prozesseingang

<table>
<thead>
<tr>
<th>1 Temperatur</th>
<th>1 Temperatureinheit [einstellen und anzeigen]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Temperatur-Offset [einstellen und anzeigen]</td>
</tr>
<tr>
<td></td>
<td>3 Datum des Offsets [nur lesen]</td>
</tr>
<tr>
<td></td>
<td>4 Temperaturkompensation [einstellen und anzeigen]</td>
</tr>
<tr>
<td></td>
<td>5 Temperaturkoeffizient [einstellen und anzeigen]</td>
</tr>
<tr>
<td></td>
<td>Wird nur angezeigt, wenn die Temperaturkompensation auf linear eingestellt ist. Standardwerte: 2%/K</td>
</tr>
<tr>
<td></td>
<td>6 Referenztemperatur [einstellen und anzeigen]</td>
</tr>
<tr>
<td></td>
<td>Wird nur angezeigt, wenn die Temperaturkompensation auf linear eingestellt ist. Standardwerte: 25°C / 77°F</td>
</tr>
</tbody>
</table>

2 Kalibrierung

<table>
<thead>
<tr>
<th>1 Produktkalibrierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kalibrierlösung</td>
</tr>
<tr>
<td>3 Eingabe der Zellkonstante</td>
</tr>
<tr>
<td>Weitere Informationen siehe Kalibrierung auf Seite 22.</td>
</tr>
</tbody>
</table>

3 Zellkonstante

<table>
<thead>
<tr>
<th>1 Anzeige der Zellkonstante [nur lesbar]</th>
</tr>
</thead>
</table>

4 Wartung intervall

<table>
<thead>
<tr>
<th>1 Anzeige der verbleibenden Wartungszeit [nur lesbar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Anzeige des Wartungsintervalls [nur lesbar]</td>
</tr>
</tbody>
</table>

6 Reset Intervall

<table>
<thead>
<tr>
<th>1 Nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Ja</td>
</tr>
</tbody>
</table>

2 I/O

1 Messgröße

<table>
<thead>
<tr>
<th>1 Leitfähigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Spez. Widerstand</td>
</tr>
</tbody>
</table>

3 Messwert bei 4 mA (einstellen und anzeigen)

<table>
<thead>
<tr>
<th>1 Messwert bei 20 mA [einstellen und anzeigen]</th>
</tr>
</thead>
</table>

4 Zeitkonstante [einstellen und anzeigen]

<table>
<thead>
<tr>
<th>1 Zeitkonstante für 4...20 mA, Aktualisierungsrate 1...60 Sekunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardwerte: 1 Sekunde</td>
</tr>
</tbody>
</table>

3 I/O HART

1 TAG

<table>
<thead>
<tr>
<th>1 TAG (TAG einstellen und anzeigen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Langes TAG (Langes TAG einstellen und anzeigen)</td>
</tr>
<tr>
<td>3 Vorheriger Langes TAG [nur lesen]</td>
</tr>
</tbody>
</table>

2 Nachricht

<table>
<thead>
<tr>
<th>HART®-Meldung einstellen und anzeigen (32 gepackte ASCII)</th>
</tr>
</thead>
</table>

3 Polling Adresse

<table>
<thead>
<tr>
<th>1 Polling Adresse [Anzeige- und Eingabemöglichkeit für Polling-Adresse und Schleifenstrom-Betrieb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Schleifenstrom [nur lesen]</td>
</tr>
</tbody>
</table>

4 Gerätevariablen

<table>
<thead>
<tr>
<th>PV</th>
<th></th>
<th>1 Leitfähigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 Max. Leitfähigkeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Min. Leitfähigkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SV</th>
<th></th>
<th>1 Spez. Widerstand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 Max. Spez. Widerstand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Min. Spez. Widerstand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TV</th>
<th></th>
<th>1 Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 Max. Temperatur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Min. Temperatur</td>
</tr>
</tbody>
</table>
BESCHREIBUNG HART-SCHNITTSTELLE

4 Gerät

<table>
<thead>
<tr>
<th>1 Information</th>
<th>1 Sensorinformationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Nur lesen)</td>
<td>Order Code</td>
</tr>
<tr>
<td></td>
<td>Gerätename</td>
</tr>
<tr>
<td></td>
<td>Seriennummer</td>
</tr>
<tr>
<td></td>
<td>HART® ID</td>
</tr>
<tr>
<td></td>
<td>Polling Adresse</td>
</tr>
<tr>
<td></td>
<td>Hersteller-ID</td>
</tr>
<tr>
<td></td>
<td>Herstellungsdatum</td>
</tr>
<tr>
<td></td>
<td>SW Version</td>
</tr>
<tr>
<td></td>
<td>HW Version</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Kalibrierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messgröße</td>
</tr>
<tr>
<td>Zellkonstante</td>
</tr>
<tr>
<td>Kalibrierlösung</td>
</tr>
<tr>
<td>Anzahl Kalibrierungen</td>
</tr>
<tr>
<td>SIP-Zähler</td>
</tr>
<tr>
<td>OIP-Zähler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Betriebsparameter (OP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbetriebnahmedatum</td>
</tr>
<tr>
<td>Betriebsstunden</td>
</tr>
<tr>
<td>Max. OP Temperatur</td>
</tr>
<tr>
<td>Max. Temperatur</td>
</tr>
<tr>
<td>Temperaturkompensation</td>
</tr>
<tr>
<td>Temp. koeffizient</td>
</tr>
<tr>
<td>Referenztemp.</td>
</tr>
</tbody>
</table>

5 Service

<table>
<thead>
<tr>
<th>1 Service Kalibrierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimnung bei 4 mA (+/-)</td>
</tr>
<tr>
<td>Trimnung bei 20 mA (+/-)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Service Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset (Sensor Neustart)</td>
</tr>
<tr>
<td>1 Nein</td>
</tr>
<tr>
<td>2 Ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Werkseinstellungen laden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenn Sie Ja wählen, werden die folgenden Einstellungen auf den Standardwert zurückgesetzt: Messgröße (PV), E/A, Kalibrierintervall, Trimnung, TAG und Langes TAG. Die Polling Adresse wird auf 0 gesetzt und der Schleifenstrom wird deaktiviert.</td>
</tr>
<tr>
<td>1 Nein</td>
</tr>
<tr>
<td>2 Ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Sensor sperren</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sensor sperren</td>
</tr>
<tr>
<td>1 Nein</td>
</tr>
<tr>
<td>2 Ja</td>
</tr>
</tbody>
</table>
KROHNE – Prozessinstrumentierung und Messlösungen

- Durchfluss
- Füllstand
- Temperatur
- Druck
- Prozessanalyse
- Services

Hauptsitz KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Deutschland)
Tel.: +49 203 301 0
Fax: +49 203 301 10389
sales.de@krohne.com

Die aktuelle Liste aller KROHNE Kontakte und Adressen finden Sie unter:
www.krohne.com