Sensor de caudal electromagnético para tuberías parcialmente llenas

La documentación sólo está completa cuando se usa junto con la documentación relevante del convertidor.
Todos los derechos reservados. Queda prohibido la reproducción de esta documentación, o cualquier parte contenida en la misma, sin la autorización previa de KROHNE Messtechnik GmbH.

Sujeto a cambio sin previo aviso.

Copyright 2018 by
KROHNE Messtechnik GmbH - Ludwig-Krohne-Str. 5 - 47058 Duisburg (Alemania)
1 Instrucciones de seguridad

1.1 Uso previsto .. 5
1.2 Certificación .. 5
1.3 Instrucciones de seguridad del fabricante.. 6
 1.3.1 Copyright y protección de datos 6
 1.3.2 Desmentido ... 6
 1.3.3 Responsabilidad del producto y garantía ... 7
 1.3.4 Información acerca de la documentación .. 7
 1.3.5 Avisos y símbolos empleados... 8
1.4 Instrucciones de seguridad para el operador... 8

2 Descripción del equipo

2.1 Alcance del suministro ... 9
2.2 Descripción del equipo ... 9
2.3 Placas de identificación .. 10

3 Instalación

3.1 Notas generales sobre la instalación .. 12
3.2 Almacenamiento ... 12
3.3 Transporte .. 12
3.4 Requisitos de pre-instalación .. 12
3.5 Requisitos generales .. 13
 3.5.1 Vibraciones ... 13
 3.5.2 Campo magnético ... 13
3.6 Condiciones de instalación ... 14
 3.6.1 Entrada y salida ... 14
 3.6.2 Válvula de control .. 14
 3.6.3 Pendiente .. 14
 3.6.4 Consejo de montaje para situaciones difíciles ... 15
 3.6.5 Descarga abierta ... 15
 3.6.6 Limpieza del sensor de caudal ... 16
 3.6.7 Desviación de las bridas ... 16
 3.6.8 Posición de montaje .. 17
 3.6.9 Pares de apriete y presiones .. 17

4 Conexiones eléctricas

4.1 Instrucciones de seguridad .. 19
4.2 Notas importantes sobre la conexión eléctrica .. 19
4.3 Conexión de cables ... 20
 4.3.1 Longitud de los cables .. 22
 4.3.2 Conexiones de los cables de señal ... 23
 4.3.3 Conexión del TIDALFLUX 2000 F .. 24
 4.3.4 Caja de conexión del TIDALFLUX 2000 .. 26
 4.3.5 Conexión del IFC 300 F / PF .. 27
 4.3.6 Caja de conexión del IFC 300 F / PF .. 29
CONTENIDO

4.4 Cable de señal B (tipo BTS 300), construcción .. 30
4.5 Cable de señal A (tipo DS 300), construcción .. 30
4.6 Prepare el cable de señal A, conecte al sensor de caudal .. 31
4.7 Preparación del cable de señal B, conexión al sensor de caudal 32
4.8 Preparación del cable de corriente de campo C, conexión al sensor de caudal 33
4.9 Cable Interfaz ... 34
4.10 Puesta a tierra .. 36
4.10.1 Montaje de anillos de puesta a tierra ... 36
4.11 Antes de encender la alimentación .. 36

5 Servicio 37

5.1 Disponibilidad de recambios .. 37
5.2 Disponibilidad de servicios ... 37
5.3 Devolver el equipo al fabricante .. 37
5.3.1 Información general ... 37
5.3.2 Formulario (para copiar) para acompañar a un equipo devuelto 38
5.4 Eliminación ... 38

6 Datos técnicos 39

6.1 Principio de medida .. 39
6.2 Datos técnicos ... 40
6.3 Tamaño ... 44
6.4 Precisión de medida ... 46
6.5 Dimensiones y pesos .. 47

7 Notas 49
1.1 Uso previsto

¡PRECAUCIÓN!
El operador es el único responsable del uso de los equipos de medida por lo que concierne a idoneidad, uso previsto y resistencia a la corrosión de los materiales utilizados con los líquidos medidos.

¡INFORMACIÓN!
El fabricante no es responsable de los daños derivados de un uso inapropiado o diferente al previsto.

El TIDALFLUX 2300 F está diseñado especialmente para medir el caudal de líquidos conductivos en tubos parcialmente llenos. Se puede combinar solamente con el convertidor de caudal electromagnético IFC 300 PF.

¡AVISO!
Si el equipo no se utiliza según las condiciones de operación (consulte el capítulo Datos técnicos), la protección prevista podría verse perjudicada.

1.2 Certificación

Marcado CE

Al identificarlo con el marcado CE, el fabricante certifica que el producto ha superado con éxito las pruebas correspondientes.

Este equipo cumple los requisitos legales de las directivas UE pertinentes.
Para obtener información exhaustiva sobre las directivas y normas UE y los certificados aprobados, consulte la Declaración de conformidad de la UE o la página web del fabricante.
1.3 Instrucciones de seguridad del fabricante

1.3.1 Copyright y protección de datos

Los contenidos de este documento han sido hechos con sumo cuidado. Sin embargo, no proporcionamos garantía de que los contenidos estén correctos, completos o que incluyan la información más reciente.

Los contenidos y trabajos en este documento están sujetos al Copyright. Las contribuciones de terceras partes se identifican como tales. La reproducción, tratamiento, difusión y cualquier tipo de uso más allá de lo que está permitido bajo el copyright requiere autorización por escrito del autor respectivo y/o del fabricante.

El fabricante intenta siempre cumplir los copyrights de otros e inspirarse en los trabajos creados dentro de la empresa o en trabajos de dominio público.

La recogida de datos personales (tales como nombres, direcciones de calles o direcciones de e-mail) en los documentos del fabricante son siempre que sea posible, voluntarios. Será posible hacer uso de los servicios y regalos, siempre que sea factible, sin proporcionar ningún dato personal.

Queremos llamarle la atención sobre el hecho de que la transmisión de datos sobre Internet (por ejemplo, cuando se está comunicando por e-mail) puede crear fallos en la seguridad. No es posible proteger dichos datos completamente contra el acceso de terceros grupos. Por la presente prohibimos terminantemente el uso de los datos de contacto publicados como parte de nuestro deber para publicar algo con el propósito de enviarnos cualquier publicidad o material de información que no hayamos requerido nosotros expresamente.

1.3.2 Desmentido

El fabricante no será responsable de daño de ningún tipo por utilizar su producto, incluyendo, pero no limitado a lo directo, indirecto, fortuito, punitivo y daños consiguientes.

Esta renuncia no se aplica en caso de que el fabricante haya actuado a propósito o con flagrante negligencia. En el caso de que cualquier ley aplicable no permita tales limitaciones sobre garantías implicadas o la exclusión de limitación de ciertos daños, puede, si tal ley se le aplicase, no ser sujeto de algunos o todos de los desmentidos de arriba, exclusiones o limitaciones.

Cualquier producto comprado al fabricante se garantiza según la relevancia de la documentación del producto y nuestros Términos y Condiciones de Venta.

El fabricante se reserva el derecho a alterar el contenido de este documento, incluyendo esta renuncia en cualquier caso, en cualquier momento, por cualquier razón, sin notificación previa, y no será responsable de ningún modo de las posibles consecuencias de tales cambios.
1.3.3 Responsabilidad del producto y garantía

El operador será responsable de la idoneidad del equipo para el propósito específico. El fabricante no acepta ninguna responsabilidad de las consecuencias del mal uso del operador. Una inapropiada instalación y funcionamiento de los equipos (sistemas) anulará la garantía. Las respectivas "Condiciones y Términos Estándares" que forman la base del contrato de ventas también se aplicarán.

1.3.4 Información acerca de la documentación

Para prevenir cualquier daño al usuario o al aparato, es esencial que se lea la información de este documento y que se cumpla la normativa nacional pertinente, requisitos de seguridad y regulaciones de prevención.

Si este documento no está en su lengua nativa o si tiene cualquier problema de entendimiento del texto, le aconsejamos que se ponga en contacto con su oficina local para recibir ayuda. El fabricante no puede aceptar la responsabilidad de ningún daño o perjuicio causado por un malentendido de la información en este documento.

Este documento se proporciona para ayudarle a establecer condiciones de funcionamiento, que permitirán un uso eficiente y seguro del aparato. Las consideraciones especiales y las precauciones están también descritas en el documento, que aparece en forma de iconos inferiores.
1.3.5 Avisos y símbolos empleados

Los avisos de seguridad están indicados con los siguientes símbolos.

¡PELIGRO!
Este aviso indica peligro inmediato al trabajar con electricidad.

¡PELIGRO!
Este aviso hace referencia al peligro inmediato de quemaduras causadas por el calor o por superficies calientes.

¡PELIGRO!
Este aviso se refiere al daño inmediato cuando utilice este equipo en una atmósfera peligrosa.

¡PELIGRO!
Estos avisos deben cumplirse sin falta. Hacer caso omiso de este aviso, incluso de forma parcial, puede provocar problemas de salud serios e incluso la muerte. También existe el riesgo de dañar el equipo o partes de la planta en funcionamiento.

¡AVISO!
Hacer caso omiso de este aviso de seguridad, incluso si es sólo de una parte, plantea el riesgo de problemas de seguridad serios. También existe el riesgo de dañar el equipo o partes de la planta en funcionamiento.

¡PRECAUCIÓN!
Hacer caso omiso de estas instrucciones puede dar como resultado el daño en el equipo o en partes de la planta en funcionamiento.

¡INFORMACIÓN!
Estas instrucciones contienen información importante para el manejo del equipo.

AVISO LEGAL
Esta nota contiene información sobre directivas de reglamentación y normativas.

MANEJO
Este símbolo indica todas las instrucciones de las acciones que se van a llevar a cabo por el operador en la secuencia especificada.

RESULTADO
Este símbolo hace referencia a todas las consecuencias importantes de las acciones previas.

1.4 Instrucciones de seguridad para el operador

¡AVISO!
En general, los equipos del fabricante sólo pueden ser instalados, programados, puestos en funcionamiento y hacer su mantenimiento por personal entrenado y autorizado. Este documento se suministra para ayudar a establecer las condiciones de funcionamiento, que permitirán un uso seguro y eficiente del equipo.
2.1 Alcance del suministro

![Figura 2-1: Alcance del suministro](image)

1. Caudalímetro pedido
2. Documentación del producto
3. Informe de calibración de fábrica
4. CD-ROM con documentación del producto
5. Anillos de puesta a tierra (opcionales)
6. Cable

Figura 2-1: Alcance del suministro

2.2 Descripción del equipo

Este caudalímetro puede medir el caudal de líquidos conductivos, incluso en tubos parcialmente llenos. Para hacerlo, se ha integrado en un caudalímetro electromagnético tradicional una medida de la altura capacitiva. De este modo, conociendo la fracción llena y la velocidad del fluido, es fácil calcular la cantidad de fluido que circula por el tubo.

¡INFORMACIÓN!
Podrá encontrar información específica sobre el producto y una especificación exhaustiva del mismo utilizando la herramienta web PICK, acrónimo de Product Information Center KROHNE.

La herramienta PICK se encuentra en el menú Servicios en la página web KROHNE.com.
2.3 Placas de identificación

¡INFORMACIÓN!
Compruebe la placa de identificación del equipo para comprobar que el equipo entregado es el que indicó en su pedido. Compruebe en la placa del fabricante la impresión correcta del voltaje para su suministro.

Figura 2-2: Ejemplo de placa de identificación del sensor y del convertidor

1. Información adicional, página web y logotipo de reciclaje
2. Marca CE con el número del organismo (o de los organismos) notificado
3. Nombre y dirección del fabricante
4. Designación de tipo con número de serie / CG
5. Fecha de fabricación y país de origen
6. Valores GK/GKL (constantes del sensor de medida), tamaño (mm/pulgadas), frecuencia de campo
7. Materiales de las partes húmedas o número de revisión electrónica
8. Valores eléctricos y categoría de protección
9. Datos PED, tipo I/II/III o SEP
Datos de conexión eléctrica de entradas/salidas (ejemplo de versión básica)

Figura 2-3: Ejemplo de pegatina de E/S

1. Alimentación (AC: L y N, DC: L+ y L-, PE para ≥ 24 VAC, FE para ≤ 24 VAC y VDC)
2. Datos de conexión del terminal de conexión D/D-
3. Datos de conexión del terminal de conexión C/C-
4. Datos de conexión del terminal de conexión B/B-
5. Datos de conexión del terminal de conexión A/A-; A+ sólo operable en la versión básica

- A = modo activo; el convertidor de señal suministra la alimentación para la conexión de los equipos subsiguientes
- P = modo pasivo; se requiere alimentación externa para el funcionamiento de los equipos subsiguientes
- N/C = terminales de conexión no conectados
3.1 Notas generales sobre la instalación

¡INFORMACIÓN!
Revise las cajas cuidadosamente por si hubiera algún daño o signo de manejo brusco. Informe del daño al transportista y a la oficina local del fabricante.

¡INFORMACIÓN!
Compruebe la lista de repuestos para verificar que ha recibido todo lo que pidió.

¡INFORMACIÓN!
Compruebe la placa de identificación del equipo para comprobar que el equipo entregado es el que indicó en su pedido. Compruebe en la placa del fabricante la impresión correcta del voltaje para su suministro.

3.2 Almacenamiento

- Almacene el equipo en un lugar seco y sin polvo.
- Evite la exposición directa prolongada al sol.
- Almacene el equipo en su caja original.
- Temperatura de almacenamiento: -50...+70°C / -58...+158°F

3.3 Transporte

Figura 3-1: Transporte

3.4 Requisitos de pre-instalación

Asegúrese de disponer de todas las herramientas necesarias:
- Llave Allen (4 mm)
- Destornillador pequeño
- Llave para prensaestopas
- Llave para el soporte de montaje en pared (sólo versión remota)
- Llave dinamométrica para instalar el caudalímetro en la tubería
3.5 Requisitos generales

¡INFORMACIÓN!
Se deben tomar las siguientes precauciones para asegurar una instalación fiable.
- Asegúrese de que hay espacio suficiente a ambos lados.
- Proteja el convertidor de señal de la luz del sol directa e instale un parasol si es necesario.
- Los convertidores de señal instalados en los armarios de control requieren una refrigeración adecuada, por ej. un ventilador o intercambiador de calor.
- No exponga el convertidor de señal a una vibración intensa. Los caudalímetros están probados para un nivel de vibración según IEC 68-2-64.

3.5.1 Vibraciones

Figura 3-2: Evite las vibraciones

3.5.2 Campo magnético

Figura 3-3: Evite los campos magnéticos
3.6 Condiciones de instalación

3.6.1 Entrada y salida

![Figura 3-4: Secciones de entrada y salida recomendadas, vista superior](image)

- \(\geq 5 \text{ DN} \)
- \(\geq 3 \text{ DN} \)

3.6.2 Válvula de control

![Figura 3-5: Instalación antes de una válvula de control](image)

¡PRECAUCIÓN!

La precisión está influenciada por la pendiente. Mantenga el \(\pm 1\% \) para conseguir las medidas más precisas.

![Figura 3-6: Pendiente recomendada](image)
3.6.4 Consejo de montaje para situaciones difíciles

Si no le satisfacen las condiciones de instalación, instale el caudalímetro entre dos contenedores. La entrada al caudalímetro debe ser mayor que la salida del fluido. De este modo tendrá un caudal calmado dentro del caudalímetro, dando como resultado una alta precisión de medida. Los tamaños de los contenedores deben ser proporcionales al tamaño del caudalímetro.

![Figura 3-7: Instalado en situaciones difíciles](image1)

1. Emplee un contenedor si la tubería de entrada tiene una pendiente de > 1%. Asegúrese de que el nivel de salida de esta tubería está por debajo de la entrada al caudalímetro.
2. Contenedor de entrada
3. Sección de entrada de 10 DN
4. Sección de salida de 5 DN
5. Contenedor de salida aconsejable si la tubería de salida tiene una pendiente > 1%.

¡PRECAUCIÓN!

Utilice siempre un tubo de salida libre para evitar un caudal de retorno en el sensor de caudal y de modo que la velocidad con el caudal máximo sea de al menos 1 m/s.

3.6.5 Descarga abierta

![Figura 3-8: Descarga abierta](image2)

1. ≥ 5 DN
2. Asegúrese de que el nivel del agua está por debajo de la salida del tubo.
3.6.6 Limpieza del sensor de caudal

El sensor de caudal es altamente resistente a la suciedad y la medida es sólo raramente afectada por alguna circunstancia. Sin embargo, es aconsejable prever una opción de limpieza justo delante o detrás del sensor.

![Figura 3-9: Opción de limpieza de un sensor de caudal](image)

1. Abrirlo para limpiarlo

3.6.7 Desviación de las bridas

¡PRECAUCIÓN!
Desviación máx. permitida de caras de bridas de tubería:

\[L_{\text{máx}} - L_{\text{mín}} \leq 0,5 \text{ mm} / 0,02" \]

![Figura 3-10: Desviación de las bridas](image)

1. \(L_{\text{máx}} \)
2. \(L_{\text{mín}} \)
3.6.8 Posición de montaje

¡PRECAUCIÓN!
Instale solamente el sensor del caudal en la posición mostrada para mantener los electrodos bajo el agua. Limite la rotación a ±2° para mantener la precisión.

Figura 3-11: Posición de montaje

3.6.9 Pares de apriete y presiones

Apriete de los pernos
- Apriete siempre los pernos de manera uniforme y en cruz.
- No exceda el valor de par de apriete máximo.
- Paso 1: Aplicar aprox. el 50% del par de apriete máx. indicado en la tabla.
- Paso 2: Aplique aprox. 80% del máx. par de apriete dado en la tabla.
- Paso 3: Aplicar el 100% del par de apriete máx. indicado en la tabla.

Figura 3-12: Apriete de los pernos
¡INFORMACIÓN!
Apriete los tornillos uniformemente en orden diagonalmente opuesto.

Tamaño nominal DN [mm]

<table>
<thead>
<tr>
<th>Tamaño nominal DN [mm]</th>
<th>Presión nominal</th>
<th>Pernos</th>
<th>Par de apriete máx. [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>PN 10</td>
<td>8 x M 20</td>
<td>68</td>
</tr>
<tr>
<td>250</td>
<td>PN 10</td>
<td>12 x M 20</td>
<td>65</td>
</tr>
<tr>
<td>300</td>
<td>PN 10</td>
<td>12 x M 20</td>
<td>76</td>
</tr>
<tr>
<td>350</td>
<td>PN 10</td>
<td>16 x M 20</td>
<td>75</td>
</tr>
<tr>
<td>400</td>
<td>PN 10</td>
<td>16 x M 24</td>
<td>104</td>
</tr>
<tr>
<td>500</td>
<td>PN 10</td>
<td>20 x M 24</td>
<td>107</td>
</tr>
<tr>
<td>600</td>
<td>PN 10</td>
<td>20 x M 27</td>
<td>138</td>
</tr>
<tr>
<td>700</td>
<td>PN 10</td>
<td>24 x M 27</td>
<td>163</td>
</tr>
<tr>
<td>800</td>
<td>PN 10</td>
<td>24 x M 30</td>
<td>219</td>
</tr>
<tr>
<td>900</td>
<td>PN 10</td>
<td>28 x M 30</td>
<td>205</td>
</tr>
<tr>
<td>1000</td>
<td>PN 10</td>
<td>28 x M 33</td>
<td>261</td>
</tr>
<tr>
<td>1200</td>
<td>PN 6</td>
<td>32 x M 30</td>
<td>252</td>
</tr>
</tbody>
</table>

Tamaño nominal [pulgada]

<table>
<thead>
<tr>
<th>Tamaño nominal [pulgada]</th>
<th>Clase de la brida [lb]</th>
<th>Pernos</th>
<th>Par de apriete máx. [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>150</td>
<td>8 x 3/4"</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>12 x 7/8"</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>150</td>
<td>12 x 7/8"</td>
<td>104</td>
</tr>
<tr>
<td>14</td>
<td>150</td>
<td>12 x 1"</td>
<td>93</td>
</tr>
<tr>
<td>16</td>
<td>150</td>
<td>16 x 1"</td>
<td>91</td>
</tr>
<tr>
<td>18</td>
<td>150</td>
<td>16 x 1 1/8"</td>
<td>143</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>20 x 1 1/8"</td>
<td>127</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>20 x 1 1/4"</td>
<td>180</td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>28 x 1 1/4"</td>
<td>161</td>
</tr>
<tr>
<td>32</td>
<td>150</td>
<td>28 x 1 1/2"</td>
<td>259</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>32 x 1 1/2"</td>
<td>269</td>
</tr>
<tr>
<td>40</td>
<td>150</td>
<td>36 x 1 1/2"</td>
<td>269</td>
</tr>
</tbody>
</table>

¡INFORMACIÓN!
Existe información para tamaños más grandes bajo pedido.
4.1 Instrucciones de seguridad

¡PELIGRO!
Todo el trabajo relacionado con las conexiones eléctricas sólo se puede llevar a cabo con la alimentación desconectada. ¡Tome nota de los datos de voltaje en la placa de características!

¡PELIGRO!
¡Siga las regulaciones nacionales para las instalaciones eléctricas!

¡AVISO!
Se deben seguir sin excepción alguna las regulaciones de seguridad y salud ocupacional regionales. Cualquier trabajo hecho en los componentes eléctricos del equipo de medida debe ser llevado a cabo únicamente por especialistas entrenados adecuadamente.

¡INFORMACIÓN!
Compruebe la placa de identificación del equipo para comprobar que el equipo entregado es el que indicó en su pedido. Compruebe en la placa del fabricante la impresión correcta del voltaje para su suministro.

4.2 Notas importantes sobre la conexión eléctrica

¡PELIGRO!
La conexión eléctrica debe realizarse en conformidad con la Directiva VDE 0100 “Reglas para las instalaciones eléctricas con tensiones de línea hasta 1000 V” o las reglas nacionales equivalentes.

¡PRECAUCIÓN!
• Emplee entradas de cable adecuadas para todos los cables eléctricos.
• El sensor y el convertidor se han configurado en conjunto en la fábrica. Por esta razón, por favor, conéctelos en pares. Asegúrese de que las constantes del sensor de caudal GK (consulte la información sobre las placas de identificación) están idénticamente configurados.
• Tanto el sensor TIDALFLUX 2300 como el convertidor necesitan una alimentación separada.

¡INFORMACIÓN!
Para más información sobre la puesta a tierra del caudalímetro, vaya a Puesta a tierra en la página 36.
4.3 Conexión de cables

La ilustración muestra las diferentes conexiones y entradas del cable. El detalle “p” muestra [explicitamente] las entradas inferiores de los cables de señal y de corriente de campo en la caja de conexión del convertidor de señal.

¡INFORMACIÓN!
Para información más detallada consulte los esquemas de las conexiones eléctricas y las ilustraciones en el manual del TIDALFLUX 2300.

Figura 4-1: Entradas de cables para la conexión eléctrica

1. Ver “p” de la caja de conexión del convertidor de señal
2. Cable de corriente de campo
3. Cable de señal (DS o BTS)
4. Cable Interfaz
5. Sensor de caudal
¡INFORMACIÓN!
La ilustración siguiente muestra la situación para un cable de señal, tipo BTS. En el caso de un cable de señal tipo DS, los terminales 20 y 30 no se utilizan.

Figura 4-2: Diagrama de conexión

1. Caja de conexión del convertidor de señal
2. Caja de conexiones I/O del sensor de caudal
3. Caja de conexión del sensor de caudal
4. Conecte el blindaje del cable externo a través del aliviador de tensión
5. Cables etiquetados para conexión en las terminales E-C-D en la caja de conexión
4.3.1 Longitud de los cables

¡PRECAUCIÓN!
La distancia máxima permitida entre el sensor de caudal y el convertidor está determinada por la longitud del cable más corto.

Cable interfaz: la longitud máxima es 600 m / 1968 pies

Tipo B (BTS) cable de señal: la longitud máxima es 600 m / 1968 pies

Tipo A (DS) cable de señal: la longitud máxima depende de la conductividad del fluido:

<table>
<thead>
<tr>
<th>Conductividad eléctrica</th>
<th>Longitud máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>[μS/cm]</td>
<td>[m]</td>
</tr>
<tr>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>≥400</td>
<td>600</td>
</tr>
</tbody>
</table>

Cable de corriente de campo: La sección transversal del cable determina la longitud máxima:

<table>
<thead>
<tr>
<th>Sección transversal</th>
<th>Longitud máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm²]</td>
<td>[AWG] [m] [pies]</td>
</tr>
<tr>
<td>2 x 0,75</td>
<td>2 x 18 150 492</td>
</tr>
<tr>
<td>2 x 1,5</td>
<td>2 x 16 300 984</td>
</tr>
<tr>
<td>2 x 2,5</td>
<td>2 x 14 600 1968</td>
</tr>
</tbody>
</table>
4.3.2 Conexiones de los cables de señal

Figura 4-3: Esquema de conexión para el cable de señal tipo A (DS)
1. Caja de conexiones del convertidor
2. I / O caja de conexión del sensor
3. Caja de conexión del sensor
4. Blindaje externo conectado mediante prensaestopas.

Figura 4-4: Esquema de conexión para el cable de señal tipo B (BTS)
1. Caja de conexiones del convertidor
2. I / O caja de conexión del sensor
3. Caja de conexión del sensor
4. Blindaje externo conectado mediante prensaestopas.
4.3.3 Conexión del TIDALFLUX 2000 F

El sensor de caudal y el convertidor de señal deben incluirse en el sistema de conexión equipotencial de la instalación. Esto se puede realizar internamente conectando el conductor de tierra de protección [PE] del sistema de alimentación de red al borne interno PE, o bien externamente conectando un conductor de conexión equipotencial separado entre los dos bornes PE externos (tamaño M5). El conductor de conexión equipotencial separado debe tener una sección transversal mínima de 4 mm².

Mantenga las roscas limpias y bien engrasadas (p. ej. con grasa PTFE). La grasa ayuda a evitar que las roscas se bloqueen debido a la corrosión.

Para desenroscar las cubiertas, primero suelte los dispositivos de bloqueo (uno en cada cubierta). Desenrosque el tornillo con cabeza hexagonal M4 utilizando una llave hexagonal o Allen n.º 2,5 hasta que el dispositivo de bloqueo pueda girarse. Una vez enroscadas de nuevo las cubiertas en el alojamiento, asegúrese de volver a colocar correctamente los dispositivos de bloqueo.

¡PRECAUCIÓN!
Tanto el sensor TIDALFLUX 2300 como el convertidor necesitan una alimentación separada.

![Figura 4-5: Conexiones eléctricas](image)
Descripción de las conexiones

<table>
<thead>
<tr>
<th>Terminales</th>
<th>Color de los hilos de los cables</th>
<th>Función, datos eléctricos</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, N</td>
<td></td>
<td>Conexiones de la alimentación de red, Tipo de protección Ex e, 100...230 VAC, +10%/-15%, 9 VA</td>
</tr>
<tr>
<td>L+, L-</td>
<td>negro 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>negro 1</td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>negro 2</td>
<td>Conexiones del circuito RS 485, Tipo de protección Ex ia.</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.4 Caja de conexión del TIDALFLUX 2000

La caja de conexión del TIDALFLUX 2000 está situada debajo del "alojamiento doble". Aquí deben introducirse los cables de señal y de corriente de campo, además es necesario conectar los cables separados en los contactos como se describe en la figura siguiente (véase también la tabla "Descripción de las conexiones").

Figura 4-7: Conexiones eléctricas

1. gire la cubierta en sentido contrario a las agujas del reloj
2. retire la cubierta de la caja de conexión
3. entradas del cable
4. abra la caja de conexión en el sensor
5. conexión de los aliviadores de tensión

Descripción de las conexiones

<table>
<thead>
<tr>
<th>Terminales</th>
<th>Color de los hilos de los cables</th>
<th>Función, datos eléctricos</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>blanco</td>
<td>Conexiones del cable de corriente de campo conexión 9 = sin conectar</td>
</tr>
<tr>
<td>8</td>
<td>verde</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Conexiones del cable de señal conexión 4 = sin conectar</td>
</tr>
<tr>
<td>2</td>
<td>blanco</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>rojo</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.5 Conexión del IFC 300 F / PF

El sensor de caudal y el convertidor de señal deben incluirse en el sistema de conexión equipotencial de la instalación. Esto se puede realizar internamente conectando el conductor de tierra de protección (PE) del sistema de alimentación de red al borne interno PE, o bien externamente conectando un conductor de conexión equipotencial separado entre los dos bornes PE externos (tamaño M5). El conductor de conexión equipotencial separado debe tener una sección transversal mínima de 4 mm².

Mantenga las roscas limpias y bien engrasadas (p. ej. con grasa PTFE). La grasa ayuda a evitar que las roscas se bloqueen debido a la corrosión. Para desenroscar las cubiertas, primero suelte los dispositivos de bloqueo (uno en cada cubierta). Desenrosque el tornillo con cabeza hexagonal M4 utilizando una llave hexagonal o Allen n.º 2,5 hasta que el dispositivo de bloqueo pueda girarse. Una vez enroscadas de nuevo las cubiertas en el alojamiento, asegúrese de volver a colocar correctamente los dispositivos de bloqueo.

Figura 4-8: Conexiones eléctricas

1. Desenrosque el tornillo de cabeza hexagonal de interbloqueo
2. Gire la cubierta en sentido contrario a las agujas del reloj y retírela
3. Abra / cierre la tapa de seguridad de la sección de alimentación de red
4. Terminales de alimentación de red y señal / datos
Desenrosque el tornillo de cabeza hexagonal de interbloqueo
2. Gire la cubierta en sentido contrario a las agujas del reloj y retírela
3. Abra / cierre la tapa de seguridad de la sección de alimentación de red
4. Terminales de alimentación de red y señal / datos

Figura 4-9: Conexiones eléctricas

Descripción de las conexiones

<table>
<thead>
<tr>
<th>Terminales</th>
<th>Función, datos eléctricos</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, N</td>
<td>Conexiones de la alimentación de red; Tipo de protección Ex e, 100...230 VAC, +10%/-15%, 22 VA 12...24 VDC, +30%/-10% [corta duración: -25%], 12 W 24 VAC, +10%/-15%, 22 VA 24 VDC, +30%/-25%, 12 W $U_m = 253$ V</td>
</tr>
<tr>
<td>L+, L-</td>
<td>Conexiones de las E/S de señal [circuitos MBTP] Tipo de protección Ex e o Ex ia, depende de la versión específica del convertidor pedido. Consulte las tablas con los números CG para más detalles.</td>
</tr>
<tr>
<td>A, A-, A+</td>
<td></td>
</tr>
<tr>
<td>B, B-</td>
<td></td>
</tr>
<tr>
<td>C, C-</td>
<td></td>
</tr>
<tr>
<td>D, D-</td>
<td></td>
</tr>
</tbody>
</table>
4.3.6 Caja de conexión del IFC 300 F/PF

La caja de conexión del convertidor de señal IFC 300 cuenta con una entrada del cable adicional. Esta entrada del cable está situada a la derecha, justo debajo de las demás entradas. El cable de corriente de campo debe introducirse por esta entrada y debe conectarse en los contactos según se describe en la figura siguiente (véase también la tabla “Descripción de las conexiones”).

Figura 4-10: Conexiones eléctricas

1. gire la cubierta en sentido contrario a las agujas del reloj
2. retire la cubierta de la caja de conexión
3. entradas del cable arriba izquierda/derecha y abajo derecha
4. conexión del cable de corriente de campo y de señal (depende del cable utilizado BTS / DS 300)
5. conexión del cable abajo derecha [cicuito RS 485]
6. convertidor de señal

<table>
<thead>
<tr>
<th>Terminales</th>
<th>Color de los hilos de los cables</th>
<th>Función, datos eléctricos</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>blanco</td>
<td>Conexiones del cable de corriente de campo</td>
</tr>
<tr>
<td>8</td>
<td>verde</td>
<td>conexión 9 = sin conectar</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>negro 3</td>
<td>Conexiones del circuito RS 485</td>
</tr>
<tr>
<td>C</td>
<td>negro 1</td>
<td>Tipo de protección Ex e o Ex ia,</td>
</tr>
<tr>
<td>D</td>
<td>negro 2</td>
<td></td>
</tr>
<tr>
<td>1 - 20</td>
<td>blanco</td>
<td>tierra</td>
</tr>
<tr>
<td>3 - 30</td>
<td>rojo</td>
<td>Conexiones del cable de señal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Depende del cable utilizado BTS / BS 300]</td>
</tr>
</tbody>
</table>
4.4 Cable de señal B (tipo BTS 300), construcción

- El cable de señal B es un cable con triple protección para la transmisión de las señales entre el sensor de caudal y el convertidor de señal.
- Radio de curva: ≥ 50 mm / 2”

![Diagrama del cable de señal B]

Figura 4-11: Construcción del cable de señal B

1. Hilo trenzado para la protección interna [10], 1,0 mm² Cu / AWG 17 (no aislado, desnudo)
2. Hilo de aislamiento [2], 0,5 mm² Cu / AWG 20 con hilo trenzado [20] de protección
3. Hilo de aislamiento [3], 0,5 mm² Cu / AWG 20 con hilo trenzado [30] de protección
4. Funda exterior
5. Capas de aislamiento
6. Hilo trenzado [6] para la protección externa [60], 0,5 mm² Cu / AWG 20 (no aislado, desnudo)

4.5 Cable de señal A (tipo DS 300), construcción

- El cable de señal A es un cable con doble protección para la transmisión de las señales entre el sensor de caudal y el convertidor de señal.
- Radio de curva: ≥ 50 mm / 2”

![Diagrama del cable de señal A]

Figura 4-12: Cable de señal de construcción A

1. Hilo trenzado [1] para la protección interna [10], 1,0 mm² Cu / AWG 17 (no aislado, desnudo)
2. Hilo de aislamiento [2], 0,5 mm² Cu / AWG 20
3. Hilo de aislamiento [3], 0,5 mm² Cu / AWG 20
4. Funda exterior
5. Capas de aislamiento
4.6 Prepare el cable de señal A, conecte al sensor de caudal

¡INFORMACIÓN!
Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

Materiales necesarios
- Tubo de aislamiento de PVC, Ø2,0...2,5 mm / 0,08...0,1”
- Tubo termorretráctil
- Férula según DIN 46 228: E 1,5-8 para los hilos trenzados (1) y (6)
- 2 férulas según DIN 46 228: E 0,5-8 para los conductores aislados (2, 3)

Figura 4-13: Prepare el cable de señal A, conecte al sensor de caudal
a = 50 mm / 2”

1. Pele el conductor hasta la dimensión a.
2. Corte las protecciones externas (60) y (10). Asegúrese de no dañar los hilos trenzados (1) y (6).
3. Tuerza los hilos trenzados (6) de la protección externa y el hilo trenzado (1) de la protección interna (10).
4. Deslice un tubo de aislamiento sobre los hilos trenzados (1) y (6).
5. Engarce las férulas sobre los conductores 2 y 3 y los hilos trenzados (1) y (6).
6. Tirar del tubo termorretráctil sobre el cable de señal preparado.
4.7 Preparación del cable de señal B, conexión al sensor de caudal

¡INFORMACIÓN!
Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

Materiales necesarios
- Tubo de aislamiento de PVC, Ø2,0...2,5 mm / 0,08...0,1”
- Tubo termorretráctil
- Férula según DIN 46 228: E 1,5-8 para los hilos trenzados (1) y (6)
- 2 férulas según DIN 46 228: E 0,5-8 para los conductores aislados (2, 3)

1. Pele el conductor hasta la dimensión a.
2. Corte las protecciones externas (60), (10), las protecciones de los conductores aislados (2, 3) y los hilos trenzados (20, 30). Asegúrese de no dañar los hilos trenzados (1) y (6).
3. Tuerza los hilos trenzados (6) de la protección externa y el hilo trenzado (1) de la protección interna (10).
4. Deslice un tubo aislante sobre los hilos trenzados (1) y (6).
5. Engarce las férulas sobre los conductores 2 y 3 y los hilos trenzados (1) y (6).
6. Tirar del tubo termorretráctil sobre el cable de señal preparado.

Figura 4-14: Preparación del cable de señal B, conexión al sensor de caudal

a = 50 mm / 2”
4.8 Preparación del cable de corriente de campo C, conexión al sensor de caudal

¡INFORMACIÓN!
Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

- El cable de corriente de campo no forma parte del suministro.
- La protección está conectada en el compartimento de terminales del convertidor de señal directamente mediante la protección y un clip.
- La protección está conectada al sensor de caudal por medio de un prensaestopa especial.
- Radio de curva: ≥ 50 mm / 2"

Materiales necesarios
- Cable de cobre aislado a 2 hilos con protección
- Tubo de aislamiento de tamaño conforme al cable que se utiliza
- Tubo termorretráctil
- Férulas DIN 46 228: tamaño conforme al cable que se utiliza

Figura 4-15: Preparación del cable de corriente de campo C

a = 125 mm / 5"

b = 10 mm / 0,4"

- Pele el conductor hasta la dimensión a.
- Corte la protección externa según la dimensión b y tire de ella sobre la funda externa.
- Engarce las férulas en ambos conductores.
4.9 Cable Interfaz

El cable del interfaz de datos es un cable blindado 3 x 1,5 mm² LIYCY.

Preparando el cable interfaz

1. Pele el conductor hasta la dimensión a.
2. Corte la protección externa según la dimensión b y tire de ella sobre la funda externa.
3. Engarce las férulas en los conductores 1, 2 y 3.

Conecte la protección a ambos lados de la vía del cable de la prensaestopa del cable especial.

Al lado del convertidor de señal:

Conectando la capa de protección bajo la caja de fijación de conexión del convertidor

- **Figura 4-17:** Conexión de los protectores
 ① Cable de corriente de campo
 ② Cable de señal
Al lado del sensor de caudal:
Conectando la protección por medio de un prensaestopa especial

Figura 4-18: Conectando la protección dentro del prensaestopa

1. Hilos
2. Aislamiento
3. Protección
4. Aislamiento
5. Pase el cable por la tuerca e inserte la fijación del conector de doble blindaje en su conector. Asegúrese de que las mallas trenzadas de protección se solapan con la junta tórica por 2 mm / 3/32”.
6. Empuje el conector dentro del cuerpo.
7. Apriete la tuerca.
4 CONEXIONES ELÉCTRICAS

4.10 Puesta a tierra

¡PELIGRO!
El aparato debe estar conectado a tierra según la regulación para proteger al personal de descargas eléctricas.

4.10.1 Montaje de anillos de puesta a tierra

¡PRECAUCIÓN!
Para conseguir una medición de calidad es **absolutamente necesario** que la parte conexión interior de la tubería sea eléctricamente conductiva y esté conectada a tierra. Si no, se pueden instalar anillos de puesta a tierra hechos a medida. Por favor, póngase en contacto con su agencia local en caso de duda.

![Diagrama de conexión a tierra](image)

Figura 4-19: Conectando a tierra los anillos de puesta a tierra.

1. Tubería existente
2. Anillos de puesta a tierra, personalizados para el diámetro interno de la tubería
3. TIDALFLUX
4. Inserte la parte cilíndrica del anillo de puesta a tierra dentro de la tubería. Use una junta apropiada entre el anillo de puesta a tierra y la brida.

¡INFORMACIÓN!
Los tamaños de los anillos de puesta a tierra dependen del diámetro y están disponibles si se piden.

4.11 Antes de encender la alimentación

Antes de encender la alimentación, compruebe por favor que el sistema haya sido instalado correctamente. Esto incluye:

- El equipo se debe montar mecánicamente de manera segura en cumplimiento de la normativa.
- Las conexiones eléctricas deben cumplir con las regulaciones.
- Asegúrese de que todas las conexiones eléctricas estén hechas y que las tapas de los compartimentos de terminales estén cerrados.
- Compruebe que los datos de funcionamiento eléctrico de la fuente de alimentación sean correctos.

- Encienda la alimentación.

¡INFORMACIÓN!
El sensor no puede ser programado o cambiado de ninguna manera. Todas las funciones programables están incluidas en el convertidor. Por favor, consulte la documentación pertinente al convertidor para más información.
5.1 Disponibilidad de recambios

El fabricante se adhiere al principio básico que los recambios adecuados funcionalmente, para cada aparato o cada accesorio importante estarán disponibles durante un periodo de 3 años después de la entrega de la última producción en serie del aparato.

Esta regulación sólo se aplica a los recambios que se encuentran bajo condiciones de funcionamiento normal sujetos a daños por su uso habitual.

5.2 Disponibilidad de servicios

El fabricante ofrece un rango de servicios para apoyar al cliente después de que haya expirado la garantía. Estos incluyen reparación, soporte técnico y periodo de formación.

¡INFORMACIÓN!
Para más información precisa, contacte con su representante local.

5.3 Devolver el equipo al fabricante

5.3.1 Información general

Este equipo ha sido fabricado y probado cuidadosamente. Si se instala y maneja según estas instrucciones de funcionamiento, raramente presentará algún problema.

¡AVISO!
Si necesita devolver el equipo para su inspección o reparación, por favor, preste atención a los puntos siguientes:

- Debido a las normas reglamentarias de protección medioambiental y protección de la salud y seguridad de nuestro personal, el fabricante sólo puede manejar, probar y reparar los equipos devueltos que han estado en contacto con productos sin riesgo para el personal y el medio ambiente.
- Esto significa que el fabricante sólo puede hacer la revisión de este equipo si va acompañado del siguiente certificado (vea la siguiente sección) confirmando que el equipo se puede manejar sin peligro.

¡AVISO!
Si el equipo ha sido manejado con productos tóxicos, cáusticos, radiactivos, inflamables o que suponen un peligro al contacto con el agua, se le pedirá amablemente:

- comprobar y asegurarse, si es necesario aclarando o neutralizando, que todas las cavidades estén libres de tales sustancias peligrosas.
- adjuntar un certificado con el equipo confirmando que es seguro para su manejo y mostrando el producto empleado.
5.3.2 Formulario (para copiar) para acompañar a un equipo devuelto

¡PRECAUCIÓN!
Para excluir la posibilidad de que surjan riesgos para nuestro personal de servicio, debe ser posible acceder a este formulario desde el exterior del embalaje que contiene el dispositivo devuelto.

<table>
<thead>
<tr>
<th>Empresa:</th>
<th>Dirección:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departamento:</td>
<td>Nombre:</td>
</tr>
<tr>
<td>Nº de teléfono:</td>
<td>Nº de fax o dirección de correo electrónico:</td>
</tr>
<tr>
<td>Nº de pedido del fabricante o nº de serie:</td>
<td></td>
</tr>
</tbody>
</table>

El equipo ha sido puesto en funcionamiento a través del siguiente medio:

<table>
<thead>
<tr>
<th>Este medio es:</th>
<th>Radiactivo</th>
<th>Peligrosidad en el agua</th>
<th>Tóxico</th>
<th>Cáustico</th>
<th>Inflamable</th>
<th>Comprobamos que todas las cavidades del equipo están libres de tales sustancias.</th>
<th>Hemos limpiado con agua y neutralizado todas las cavidades del equipo.</th>
</tr>
</thead>
</table>

Por la presente confirmamos que no hay riesgo para las personas o el medio ambiente a través de ningún medio residual contenido en el equipo cuando se devuelve.

<table>
<thead>
<tr>
<th>Fecha:</th>
<th>Firma:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sello:</td>
<td></td>
</tr>
</tbody>
</table>

5.4 Eliminación

AVISO LEGAL
La disposición se debe llevar a cabo según la legislación pertinente en su país.

Recogida separada según la directiva de residuos de aparatos eléctricos y electrónicos (WEEE):

En virtud de la directiva 2012/19/UE, los instrumentos de monitorización y control que están marcados con el símbolo WEEE y alcanzan el final de su vida útil **no pueden eliminarse con otro tipo de residuos**.

El usuario debe llevar los residuos de aparatos eléctricos y electrónicos a un punto de recogida adecuado para proceder a su reciclaje, o bien enviarlos a nuestra oficina local o a un representante autorizado.
6.1 Principio de medida

TIDALFLUX 2000 es un sensor de caudal electromagnético con un sistema de medida de nivel integrado, diseñado para líquidos de proceso conductivos eléctricamente. El rango del caudal \(Q(t) \) a través del tubo es:

\[
Q(t) = v(t) \times A(t)
\]

en el cual:

\(v(t) = \) velocidad del caudal del producto del líquido

\(A(t) = \) área mojada de la sección del tubo.

La velocidad de caudal se determina en base al principio de medida electromagnético conocido. Los dos electrodos de medida se encuentran en la parte inferior del tubo de medida, a un nivel de aprox. el 10% del diámetro interno del tubo, con el fin de obtener una medida fiable hasta un nivel del 10%.

Un líquido conductor de electricidad fluye dentro de un tubo, eléctricamente aislado, a través de un campo magnético. El campo magnético es generado por una corriente que fluye a través de un par de bobinas magnéticas. Dentro del líquido se genera una tensión \(U \):

\[
U = v \times k \times B \times D
\]

siendo:

\(v = \) velocidad de caudal media

\(k = \) factor de corrección de la geometría

\(B = \) fuerza del campo magnético

\(D = \) distancia entre los electrodo

La tensión de la señal \(U \) es recogida por los electrodo y es proporcional a la velocidad de caudal media \(v \) y, por consiguiente, al caudal \(q \). La tensión de la señal es más bien pequeña (normalmente 1 mV a \(v = 3 \) m/s / 10 ft/s y alimentación de bobina de campo de 1 W). Por último, se utiliza un convertidor de señal para amplificar la tensión de la señal, filtrarla (separarla del ruido) y convertirla en señales para la totalización, el registro y el procesamiento de la salida.

El área mojada \(A \) es calculada desde el diámetro interno conocido del tubo por el sistema de medida de nivel patentado integrado en el recubrimiento del tubo de medida. La unidad electrónica requerida está alojada en un alojamiento compacto montado en la parte superior del sensor de medida. Esta electrónica está conectada al convertidor remoto IFC 300 F por medio de una línea de comunicación digital.
6.2 Datos técnicos

¡INFORMACIÓN!
- Los siguientes datos hacen referencia a aplicaciones generales. Si necesita datos más relevantes sobre su aplicación específica, contacte con nosotros o con su oficina de ventas.
- La información adicional (certificados, herramientas especiales, software...) y la documentación del producto completo puede descargarse gratis en nuestra página web (Centro de descargas).

<table>
<thead>
<tr>
<th>Sistema de medida</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Principio de medida</td>
<td>Ley de Faraday</td>
</tr>
<tr>
<td>Rango de aplicación</td>
<td>Líquidos eléctricamente conductivos</td>
</tr>
<tr>
<td>Valor medido</td>
<td></td>
</tr>
<tr>
<td>Valor primario medido</td>
<td>Velocidad de caudal</td>
</tr>
<tr>
<td></td>
<td>Nivel</td>
</tr>
<tr>
<td>Valor secundario medido</td>
<td>Caudal volumétrico</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diseño</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Características</td>
<td>Versión bridada con tubo de medida de sección total</td>
</tr>
<tr>
<td></td>
<td>Clasificaciones de la presión estándares y superiores</td>
</tr>
<tr>
<td></td>
<td>Amplia gama de tamaños nominales</td>
</tr>
<tr>
<td>Construcción modular</td>
<td>El sistema de medida consiste en un sensor de caudal y un convertidor de señal. Se encuentra disponible como versión remota. Se puede encontrar más información sobre el convertidor de señal en la documentación del convertidor de señal.</td>
</tr>
<tr>
<td>Versión remota</td>
<td>En la versión de campo [F] con convertidor IFC 300: TIDALFLUX 2300 F.</td>
</tr>
<tr>
<td></td>
<td>Nota: versiones compactas no disponibles.</td>
</tr>
<tr>
<td>Diámetro nominal</td>
<td>DN200...1600 / 8...64"</td>
</tr>
</tbody>
</table>
Precisión de medida

<table>
<thead>
<tr>
<th>Error máximo de medida</th>
<th>Relativo al volumen de caudal (VM = Valor Medido, EC = Escala Completa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Para más información sobre la precisión de medida, vaya a Precisión de medida en la página 46</td>
</tr>
<tr>
<td></td>
<td>Estos valores se refieren a la salida de pulsos / frecuencia</td>
</tr>
<tr>
<td></td>
<td>La desviación de medida típica adicional para la salida de corriente es de ±10 μA</td>
</tr>
</tbody>
</table>

Parcialmente lleno:

- v ≥ escala completa: ≥ 1 m/s / 3,3 pies/s: ≤ 1% de la escala completa

Completamente lleno:

- v ≥ 1 m/s / 3,3 pies/s: ≤ 1% del VM
- v < 1 m/s / 3,3 pies/s: ≤ 0,5% del VM + 5 mm/s (0,2 pulgada/s)

Nivel mínimo: 10% del diámetro interior

Condiciones de operación

Temperatura

- **Temperatura de proceso:** 0...+60° C / +32...+140° F
- **Temperatura ambiente:**
 - No ATEX: -40...+65° C / -40...+149° F
 - ATEX zona 1: -20...+65° C / -4...+149° F
 - QPS, Clase 1 División 2: -20...+60° C / -4...+140° F

Proteja la electrónica contra el calentamiento con temperaturas ambientales superiores a +55° C / +131° F.

- **Temperatura de almacenamiento:** -50...+70° C / -58...+158° F

Rango de medida: -50...+70° C / -58...+158° F

- **Carga en vacío (DN200...DN1600 / 8...64")**
 - 500 mbar abs. a $T_{process} = 40°C / 600 mbar abs. a $T_{process} = 60°C$
 - 7,3 psia a $T_{process} = 104 °F / 8,7 psia a $T_{process} = 140 °F$

Propiedades químicas

- **Condición física:** Líquidos conductivos
- **Conductividad eléctrica:** ≥ 50 μS/cm
- **Contenido en sólidos permitido (volumen):** ≤ 20%

Si el líquido del proceso tiene lodo: densidad < 1,15 kg/dm³.
Condiciones de instalación

<table>
<thead>
<tr>
<th>Instalación</th>
<th>Para más información, vaya a Instalación en la página 12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirección de caudal</td>
<td>Hacia adelante y hacia atrás.</td>
</tr>
<tr>
<td></td>
<td>Una flecha en el sensor de caudal indica la dirección de caudal positiva.</td>
</tr>
<tr>
<td>Sección de entrada</td>
<td>≥ 5 DN (sin interferencias del caudal, tras un codo simple de 90°)</td>
</tr>
<tr>
<td></td>
<td>≥ 10 DN (tras un codo doble 2x 90°)</td>
</tr>
<tr>
<td></td>
<td>≥ 10 DN (detrás de una válvula de control)</td>
</tr>
<tr>
<td>Sección de salida</td>
<td>≥ 3 DN</td>
</tr>
<tr>
<td>Dimensiones y pesos</td>
<td>Para más información, vaya a Dimensiones y pesos en la página 47.</td>
</tr>
</tbody>
</table>

Materiales

<table>
<thead>
<tr>
<th>Alojamiento del sensor</th>
<th>Estándar: chapa de acero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Otros materiales bajo pedido</td>
</tr>
<tr>
<td>Tubo de medida</td>
<td>Acero inoxidable austenítico</td>
</tr>
<tr>
<td>Brida</td>
<td>Estándar: acero de carbono, revestimiento en poliuretano</td>
</tr>
<tr>
<td></td>
<td>Otros materiales bajo pedido</td>
</tr>
<tr>
<td>Recubrimiento</td>
<td>Poliuretano</td>
</tr>
<tr>
<td>Caja de conexión</td>
<td>IP 67: Aluminio fundido</td>
</tr>
<tr>
<td></td>
<td>IP 68: acero inoxidable</td>
</tr>
<tr>
<td>Recubrimiento</td>
<td>Recubrimiento estándar: Polisiloxano</td>
</tr>
<tr>
<td></td>
<td>Opcional: recubrimiento protector (para off-shore, instalación enterrada)</td>
</tr>
<tr>
<td>Electrodes de medida</td>
<td>Hastelloy® C</td>
</tr>
<tr>
<td>Anillos de puesta a tierra</td>
<td>Acero inoxidable</td>
</tr>
<tr>
<td></td>
<td>Hecho a medida para el diámetro interno de la conexión de la tubería</td>
</tr>
<tr>
<td></td>
<td>Es necesario si la parte interna de la conexión a la tubería no es eléctricamente conductiva.</td>
</tr>
</tbody>
</table>

Conexiones a proceso

<table>
<thead>
<tr>
<th>Brida</th>
<th>EN 1092-1</th>
<th>DN200...1600 en PN 6...40 [otros a petición]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME</td>
<td>8...64” en 150...300 lb RF [otros bajo pedido]</td>
<td></td>
</tr>
<tr>
<td>JIS</td>
<td>DN200...1600 en JIS 10...20 K [otros bajo pedido]</td>
<td></td>
</tr>
<tr>
<td>Diseño de la superficie de la junta</td>
<td>RF [otros tipos bajo pedido]</td>
<td></td>
</tr>
</tbody>
</table>
Conexiones eléctricas

<table>
<thead>
<tr>
<th>Característica</th>
<th>Información</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>La conexión eléctrica debe realizarse en conformidad con la Directiva VDE 0100 “Reglas para las instalaciones eléctricas con tensiones de línea hasta 1000 V” o especificaciones nacionales equivalentes.</td>
</tr>
<tr>
<td>Alimentación</td>
<td>Estándar: 100...230 VAC [-15%/+10%], 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>Opción: 12...24 VDC [-55%/+10%]</td>
</tr>
<tr>
<td></td>
<td>12 VDC: -10% incluido en el rango de tolerancia.</td>
</tr>
<tr>
<td>Consumo</td>
<td>AC: 22 VA</td>
</tr>
<tr>
<td>Cable de corriente de campo</td>
<td>Debe utilizarse un cable protegido (no suministrado)</td>
</tr>
<tr>
<td>Cable de señal</td>
<td>DS 300 (tipo A)</td>
</tr>
<tr>
<td></td>
<td>Longitud máx.: 600 m / 1968 pies (dependiendo de la conductividad eléctrica).</td>
</tr>
<tr>
<td></td>
<td>BTS 300 (tipo B)</td>
</tr>
<tr>
<td></td>
<td>Longitud máx: 600 m / 1968 pies</td>
</tr>
<tr>
<td>Datos del cable interfaz</td>
<td>Para la transmisión del nivel medido al IFC 300 F.</td>
</tr>
<tr>
<td></td>
<td>Cable protegido LIYC, 3 x 0,75 mm²</td>
</tr>
<tr>
<td>Entradas de los cables</td>
<td>Estándar: 2x M20 x 1,5 + 2x M16 x 1,5 tipo EMC</td>
</tr>
<tr>
<td></td>
<td>Opción: ½” NPT</td>
</tr>
</tbody>
</table>

Aprobaciones y certificados

| CE | Este equipo cumple los requisitos legales de las directivas UE. Al identificarlo con el marcado CE, el fabricante certifica que el producto ha superado con éxito las pruebas correspondientes. |
| | Para obtener información exhaustiva sobre las directivas y normas UE y los certificados aprobados, consulte la Declaración de conformidad de la UE o la página web del fabricante. |

<table>
<thead>
<tr>
<th>Áreas peligrosas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX / IECEx</td>
<td>Opción: zona Ex 1, IECEx</td>
</tr>
<tr>
<td></td>
<td>DEKRA 12ATEX0235 X</td>
</tr>
<tr>
<td></td>
<td>IECEx DEKRA 12.0079X</td>
</tr>
<tr>
<td>QPS</td>
<td>Clase 1, División 2</td>
</tr>
<tr>
<td></td>
<td>LR1338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otras aprobaciones y estándares</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opcional: IP 68 [NEMA 6P]</td>
</tr>
<tr>
<td>Resistencia a las vibraciones</td>
<td>IEC 60068-2-6</td>
</tr>
<tr>
<td>Prueba de vibración aleatoria</td>
<td>IEC 60068-2-34</td>
</tr>
<tr>
<td>Prueba de choque</td>
<td>IEC 60068-2-27</td>
</tr>
</tbody>
</table>
6.3 Tamaño

¡INFORMACIÓN!
Estas tablas indican la velocidad de caudal en un tubo parcialmente lleno, en función de la pendiente, el nivel de llenado, el diámetro interno y los factores de fricción del tubo. Los valores se calculan según la ecuación de Manning-Strickler. Los resultados no tienen en cuenta: los depósitos, la distorsión de perfil, el agua de retorno, la fricción del aire y el diámetro interior ligeramente más pequeño del TIDALFLUX.

Caudal y velocidad a un nivel del 100%, por gravedad, los valores métricos

<table>
<thead>
<tr>
<th>DN</th>
<th>Acero / PVC</th>
<th>Hormigón liso</th>
<th>Cemento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tamaño nominal</td>
<td>v [m/s]</td>
<td>C [m3/h]</td>
</tr>
<tr>
<td>pendiente 0,5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0,96</td>
<td>109</td>
<td>0,86</td>
</tr>
<tr>
<td>250</td>
<td>1,11</td>
<td>196</td>
<td>1,00</td>
</tr>
<tr>
<td>300</td>
<td>1,26</td>
<td>321</td>
<td>1,13</td>
</tr>
<tr>
<td>350</td>
<td>1,39</td>
<td>481</td>
<td>1,25</td>
</tr>
<tr>
<td>400</td>
<td>1,52</td>
<td>688</td>
<td>1,37</td>
</tr>
<tr>
<td>500</td>
<td>1,77</td>
<td>1251</td>
<td>1,59</td>
</tr>
<tr>
<td>600</td>
<td>2,00</td>
<td>2036</td>
<td>1,8</td>
</tr>
<tr>
<td>700</td>
<td>2,21</td>
<td>3062</td>
<td>1,99</td>
</tr>
<tr>
<td>800</td>
<td>2,42</td>
<td>4379</td>
<td>2,18</td>
</tr>
<tr>
<td>900</td>
<td>2,62</td>
<td>6000</td>
<td>2,35</td>
</tr>
<tr>
<td>1000</td>
<td>2,81</td>
<td>7945</td>
<td>2,53</td>
</tr>
<tr>
<td>1200</td>
<td>3,17</td>
<td>12906</td>
<td>2,85</td>
</tr>
<tr>
<td>1400</td>
<td>3,51</td>
<td>19451</td>
<td>3,16</td>
</tr>
<tr>
<td>1600</td>
<td>3,84</td>
<td>27794</td>
<td>3,45</td>
</tr>
</tbody>
</table>

| pendiente 1,0% |
200	1,36	154	1,22	138	0,81	92
250	1,57	277	1,42	251	0,94	166
300	1,78	453	1,6	407	1,07	272
350	1,97	682	1,77	613	1,18	409
400	2,15	973	1,94	878	1,29	584
500	2,5	1767	2,25	1590	1,5	1060
600	2,82	2870	2,54	2585	1,69	1720
700	3,13	4336	2,82	3907	1,88	2605
800	3,42	6189	3,08	5573	2,05	3709
900	3,7	8474	3,33	7626	2,22	5084
1000	3,97	11225	3,57	10094	2,38	6729
1200	4,48	18240	4,03	16408	2,69	10952
1400	4,97	27542	4,47	24771	2,98	16514
1600	5,43	39302	4,89	35394	3,26	23596
EJEMPLO:

Considere un caudal máximo para medir de 1200 m³/h. El material del tubo es acero y la pendiente es del 1,0%.

Desde la tabla tiene que seleccionarse un caudal máximo que sea mayor que el caudal que se va a medir. Selección: DN500, Qₘₐₓ = 1767 m³/h y vₘₐₓ = 2,5 m/s.

Para determinar el nivel en el tubo a 1200 m³/h, calculada la relación Q / Qₘₐₓ = 1200 / 1767 = 0,68.

Observe la figura arriba y lea la relación de H/DN y v/vₘₐₓ:

1. H/DN = 0,6 o 0,6 x 500 mm = 300 mm,
2. En H/DN = 0,6, encuentre v/vₘₐₓ = 1,05, así que v = 1,05 x 2,5 = 2,63 m/s.

¡INFORMACIÓN!
Una herramienta de selección se encuentra disponible en la página web del fabricante.
6.4 Precisión de medida

Todo caudalímetro electromagnético se calibra por comparación directa del volumen. La calibración en húmedo valida el rendimiento del caudalímetro en las condiciones de referencia respecto a los límites de precisión. Por lo general, los límites de precisión de los caudalímetros electromagnéticos son el resultado del efecto combinado de linealidad, estabilidad del punto cero e incertidumbre de calibración.

Condiciones de referencia
- Producto: agua
- Temperatura: +5...35°C / +41...95°F
- Presión de operación: 0,1...5 barg / 1,5...72,5 psig
- Sección de entrada: ≥ 10 DN
- Sección de salida: ≥ 5 DN

La precisión de medida para tubos parcialmente llenos y tubos completamente llenos es distinta. En los gráficos se supone que la velocidad a un valor de escala completa es de al menos 1 m/s (que es también el valor estándar de calibración, ya que es el que proporciona las medidas más precisas). Condiciones adicionales: pendiente del tubo 0%, conductividad eléctrica del producto 50...5000 μS/cm.

Parcialmente lleno:
- \(v \geq 1 \text{ m/s} / 3,3 \text{ pies/s} \leq 1\% \) de la escala completa

Completamente lleno:
- \(v \geq 1 \text{ m/s} / 3,3 \text{ pies/s} \leq 1\% \) del VM
- \(v < 1 \text{ m/s} / 3,3 \text{ pies/s} \leq 0,5\% \) del VM + 5 mm/s / 0,2 pulgada/s (ver siguiente gráfico)

Tuberías completamente llenas

Figura 6-3: Error máximo de medida del valor medido (=Y)
6.5 Dimensiones y pesos

El diámetro interno del tubo debe coincidir con el diámetro interno del caudalímetro. Ya que el diámetro interno no es un tamaño DN estándar, elija un diámetro interno del tubo un poco mayor que el diámetro del caudalímetro. Si se espera una gran cantidad de sedimento o grasa, la solución óptima es utilizar un anillo de compensación del diámetro a ambos lados para obtener tránsitos suaves.

¡INFORMACIÓN!
Esquemas 2D y 3D detallados está disponibles en la página web el fabricante.

EN 1092-1

<table>
<thead>
<tr>
<th>Tamaño nominal</th>
<th>Dimensiones [mm]</th>
<th>Peso aprox. [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN</td>
<td>PN</td>
<td>a</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
<td>350</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>300</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>350</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>400</td>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>600</td>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>700</td>
<td>10</td>
<td>700</td>
</tr>
<tr>
<td>800</td>
<td>10</td>
<td>800</td>
</tr>
<tr>
<td>900</td>
<td>10</td>
<td>900</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>1200</td>
<td>6</td>
<td>1200</td>
</tr>
<tr>
<td>1400</td>
<td>6</td>
<td>1400</td>
</tr>
<tr>
<td>1600</td>
<td>6</td>
<td>1600</td>
</tr>
</tbody>
</table>
Bridas 150 lb

<table>
<thead>
<tr>
<th>Tamaño nominal</th>
<th>Dimensiones [pulgadas]</th>
<th>Peso aproxim. [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>ASME ① PN [psi]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 284</td>
<td>13,78</td>
<td>22,93</td>
</tr>
<tr>
<td>10 284</td>
<td>15,75</td>
<td>24,80</td>
</tr>
<tr>
<td>12 284</td>
<td>19,69</td>
<td>26,76</td>
</tr>
<tr>
<td>14 284</td>
<td>27,56</td>
<td>30,22</td>
</tr>
<tr>
<td>16 284</td>
<td>31,5</td>
<td>31,13</td>
</tr>
<tr>
<td>20 284</td>
<td>31,5</td>
<td>35,21</td>
</tr>
<tr>
<td>24 284</td>
<td>31,5</td>
<td>39,50</td>
</tr>
<tr>
<td>28 Clase D</td>
<td>35,43</td>
<td>44,71</td>
</tr>
<tr>
<td>32 Clase D</td>
<td>39,37</td>
<td>49,51</td>
</tr>
<tr>
<td>36 Clase D</td>
<td>43,31</td>
<td>54,42</td>
</tr>
<tr>
<td>40 Clase D</td>
<td>47,24</td>
<td>58,14</td>
</tr>
<tr>
<td>48 Clase D</td>
<td>55,12</td>
<td>66,61</td>
</tr>
</tbody>
</table>

① Tamaño nominal ≤ 24”: ASME; > 24”: AWWA
KROHNE – Equipos de proceso y soluciones de medida

- Caudal
- Nivel
- Temperatura
- Presión
- Análisis de procesos
- Servicios