Convertidor multiparámetro

- Alojamiento robusto de aluminio o bien higiénico de acero inoxidable
- Equipo multiparámetro
- Convertidor de dos canales

La documentación sólo está completa cuando se usa junto con la documentación relevante del sensor.
1 Características del producto

1.1 Convertidor de señal multiparamétrico para la medida analítica de líquidos 4
1.2 Diseño y opciones ... 6
1.3 Combinaciones de entradas de sensor .. 7
1.4 Principio de medida .. 7

2 Datos técnicos

2.1 Tabla de datos técnicos ... 8
2.2 Dimensiones y pesos .. 12
 2.2.1 Alojamiento de aluminio fundido ... 12
 2.2.2 Alojamiento de acero inoxidable .. 13
 2.2.3 Placa de montaje de aluminio fundido ... 14
 2.2.4 Placa de montaje de acero inoxidable ... 15

3 Instalación

3.1 Notas generales sobre la instalación .. 16
3.2 Uso previsto .. 16
3.3 Almacenamiento y transporte .. 16
3.4 Montaje en pared .. 17

4 Conexiones eléctricas

4.1 Instrucciones de seguridad .. 20
4.2 Abreviaturas empleadas .. 20
4.3 Notas importantes sobre conexión eléctrica específicas del equipo............................ 21
4.4 Apertura y cierre del alojamiento del convertidor de señal .. 22
 4.4.1 Alojamiento de aluminio fundido ... 22
 4.4.2 Alojamiento del convertidor de acero inoxidable ... 22
4.5 Vista de conjunto del compartimento de terminales ... 23
4.6 Conexión de los cables de señal .. 24
4.7 Conexión de la alimentación .. 25
4.8 Descripción y propiedades de la salida y la entrada ... 27
 4.8.1 Salida de corriente .. 27
 4.8.2 Salidas de relé ... 27
 4.8.3 Entrada de control (pasiva) .. 28
4.9 Diagramas de conexión de las salidas y entradas .. 29
 4.9.1 Notas importantes ... 29
 4.9.2 Descripción de los símbolos eléctricos ... 29
 4.9.3 Diagrama de bloques .. 30
 4.9.4 Salida de corriente (activa) .. 30
 4.9.5 Salidas de relé ... 31
 4.9.6 Entrada de control ... 31
4.10 Conexión eléctrica de las salidas y la entrada ... 32
 4.10.1 Conexión de las salidas de corriente ... 32
 4.10.2 Conexión de las salidas de relé ... 33
5 Información del pedido

5.1 Código de pedido

6 Notas
CARACTERÍSTICAS DEL PRODUCTO

1.1 Convertidor de señal multiparámetro para la medida analítica de líquidos

El MAC 100 se basa en un concepto de funcionamiento estandarizado y comprobado desde años en convertidores de señal para caudal y nivel. Con este equipo KROHNE es el primer fabricante en ofrecer un concepto de equipo unificado para medir parámetros físicos y analíticos. Los beneficios para usted son una rápida puesta en servicio, un fácil aprendizaje y la estandarización de su hardware, lo cual le permite simplificar el proceso operativo y reducir los costos.

① Pantalla
② Teclas de funcionamiento
③ Prensaestopas
Características principales

- Alojamiento sólido de aluminio (IP66/67)
- Alojamiento higiénico de acero inoxidable (IP66/67/IP69)
- Hasta 2 entradas de sensor + entrada de temperatura
- Compatible con la compensación de temperatura de diferentes parámetros
- Registro de calibración y errores
- Concepto General de Equipos (GDC) de KROHNE
- Concepto de funcionamiento estandarizado ampliado que incluye caudal y nivel así como los parámetros analíticos
- Equipo multiparámetro

Industrias

- Agua / Aguas residuales
- Industria energética
- Industria de proceso
- Alimentación y Bebidas
1.2 Diseño y opciones

Para soluciones personalizadas

"Estructura modular" significa que el equipo puede adaptarse perfectamente a sus requisitos: elija entre el alojamiento robusto de aluminio fundido y el alojamiento higiénico de acero inoxidable. Usted especifica la cantidad y el tipo de entradas y salidas de señal, usted establece la complejidad del punto de medida y la cantidad de parámetros. La interfaz de usuario estandarizada agiliza la puesta en marcha del equipo y brinda una amplia gama de funciones de diagnóstico para los equipos y los procesos.

Además del robusto alojamiento de aluminio, el MAC 100 brinda un alojamiento higiénico de acero inoxidable resultando así apto para casi todas las aplicaciones en la industria alimentaria y de las bebidas. La categoría de protección IP69 protege el equipo contra la alta presión y la limpieza a vapor. En combinación con los sensores OPTISENS, KROHNE brinda una solución para la industria alimentaria y de bebidas.

Series de los sensores

Puede conectar tanto los sensores analógicos de la serie OPTISENS como los sensores digitales de la serie OPTISENS 2000. Esto significa que un solo convertidor de señal es compatible con una amplia variedad de aplicaciones en diferentes industrias.
1.3 Combinaciones de entradas de sensor

Puede pedir el convertidor de señal como equipo de un canal o de dos canales.

<table>
<thead>
<tr>
<th>Combinaciones posibles</th>
<th>Entrada de sensor A</th>
<th>Entrada de sensor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versión de un solo canal</td>
<td>pH / Redox</td>
<td>-</td>
</tr>
<tr>
<td>Cl₂ / ClO₂ / O₃</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>conductividad conductiva</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>conductividad inductiva</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>medida óptica del oxígeno disuelto</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>medida amperimétrica del oxígeno disuelto</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>sólidos en suspensión</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>turbidez</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Versión de canal doble</td>
<td>pH / Redox</td>
<td>pH / Redox</td>
</tr>
<tr>
<td>pH / Redox</td>
<td>Conductividad conductiva</td>
<td></td>
</tr>
<tr>
<td>pH / Redox</td>
<td>Conductividad inductiva</td>
<td></td>
</tr>
<tr>
<td>Cl₂ / ClO₂ / O₃</td>
<td>pH / Redox</td>
<td></td>
</tr>
<tr>
<td>Conductividad conductiva</td>
<td>Conductividad conductiva</td>
<td></td>
</tr>
<tr>
<td>Conductividad inductiva</td>
<td>Conductividad inductiva</td>
<td></td>
</tr>
</tbody>
</table>

1.4 Principio de medida

El principio de medida depende del sensor utilizado (o los sensores); consulte el manual del sensor (o de los sensores) para más información.
2.1 Tabla de datos técnicos

- Los siguientes datos hacen referencia a aplicaciones generales. Si necesita datos más relevantes sobre su aplicación específica, contacte con nosotros o con su oficina de ventas.
- La información adicional (certificados, herramientas especiales, software...) y la documentación del producto completo puede descargarse gratis en nuestra página web (Centro de descargas).

Sistema de medida

<table>
<thead>
<tr>
<th>Principio de medida</th>
<th>El principio de medida depende del sensor utilizado (o los sensores); consulte el manual del sensor (o de los sensores) para más información.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de aplicación</td>
<td>Medida continua de parámetros en aplicaciones de análisis de líquidos.</td>
</tr>
<tr>
<td>Rango de medida</td>
<td>El rango de medida depende del sensor utilizado (o los sensores); consulte el manual del sensor (o de los sensores) para más información.</td>
</tr>
</tbody>
</table>

Diseño

<table>
<thead>
<tr>
<th>Construcción</th>
<th>Un sistema de medida típico está formado por:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• MAC 100 convertidor multiparámetro</td>
</tr>
<tr>
<td></td>
<td>• 1 (o 2) sensores de la serie OPTISENS</td>
</tr>
<tr>
<td></td>
<td>• Cable del sensor</td>
</tr>
<tr>
<td></td>
<td>• Conjunto de montaje SENSOFIT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opción</th>
<th>El equipo está disponible en la versión de un canal (una entrada de señal) o en la versión de dos canales (dos entradas de señal). Puede conectar un sólo sensor a la versión de un canal y hasta dos sensores a la versión de dos canales.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sensores</th>
<th>Consulte el manual del sensor específico para más información.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tenga en cuenta asimismo la tabla con las combinaciones de las entradas de sensor en la página 7.</td>
</tr>
</tbody>
</table>
Pantalla e interfaz de usuario

<table>
<thead>
<tr>
<th>Pantalla gráfica</th>
<th>Pantalla LCD, iluminada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128 x 64 píxeles.</td>
</tr>
<tr>
<td>Nota: una temperatura ambiente inferior a -25°C / -13°F puede afectar la legibilidad de la pantalla.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elementos de operación</th>
<th>4 pulsadores para el control de funcionamiento del convertidor de señal sin abrir el alojamiento.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Menú de funcionamiento</th>
<th>El menú de operación consta del modo de medida y el modo menú:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modo de medida: 4 páginas (primera y segunda página de medida con resultados de medida, mensaje de estado y diagrama de tendencia).</td>
</tr>
<tr>
<td></td>
<td>Modo menú: varios menú principales y submenús que permiten personalizar el equipo según las exigencias específicas del punto de medida.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Idiomas de funcionamiento y de la pantalla</th>
<th>Inglés, alemán, francés, español, italiano, turco, chino, portugués</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unidades</th>
<th>Unidades métricas, británicas y norteamericanas seleccionables según sea necesario de las listas.</th>
</tr>
</thead>
</table>

Precisión de medida

<table>
<thead>
<tr>
<th>Error máximo de medida</th>
<th>Consulte el manual del sensor específico para más información.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetibilidad</td>
<td>Consulte el manual del sensor específico para más información.</td>
</tr>
<tr>
<td>Resolución</td>
<td>Temperatura: 0,1°C / 0,1°F</td>
</tr>
<tr>
<td></td>
<td>Consulte el manual del sensor específico para más información.</td>
</tr>
</tbody>
</table>

Condiciones de operación

<table>
<thead>
<tr>
<th>Temperatura Ambiente</th>
<th>-15...+55°C / +5...131°F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nota: el fabricante recomienda encarecidamente que el convertidor de señal se proteja contra fuentes externas de calor como la luz directa del sol, porque temperaturas más altas reducen la vida útil de todos los componentes electrónicos.</td>
</tr>
</tbody>
</table>

| Almacenamiento | -40...+70°C / -40...+158°F |
DATOS TÉCNICOS

Otras condiciones

<table>
<thead>
<tr>
<th>Humedad (ambiente)</th>
<th>Máx. 90% a 55°C / 131°F [sin condensación]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión</td>
<td>Puede encontrar más información sobre la presión de proceso del sensor utilizado (o los sensores) en la documentación del sensor correspondiente.</td>
</tr>
</tbody>
</table>
| Categoría de protección | IP66/67 conforme a IEC 60529
IP69 (sólo alojamiento de acero inoxidable) según IEC 60529
NEMA 4 / 4X |

Condiciones de instalación

<table>
<thead>
<tr>
<th>Instalación</th>
<th>Es posible sólo el montaje en pared, asegúrese siempre de que la orientación sea vertical.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensiones y pesos</td>
<td>Para más información, consulte el capítulo “Dimensiones y pesos”.</td>
</tr>
</tbody>
</table>

Materiales

| Alojamiento del convertidor de señal | Aluminio fundido [recubrimiento de poliuretano]
Acer o inoxidable 1.4404 [AISI 316L] |
| Sensor | Para los materiales del alojamiento, las conexiones a proceso, los recubrimientos, los electrodos de puesta a tierra y las juntas, consulte la documentación técnica del sensor. |

Conexiones eléctricas

<table>
<thead>
<tr>
<th>General</th>
<th>La conexión eléctrica debe realizarse en conformidad con la Directiva VDE 0100 “Reglas para las instalaciones eléctricas con tensiones de línea hasta 1000 V” o las reglas nacionales equivalentes.</th>
</tr>
</thead>
</table>
| Alimentación | Tensión
100…230 VAC (-15% / +10%), 50/60 Hz; 240 VAC + 5% incluido en el rango de tolerancia.
24 VAC/DC (AC: -25 / +30% o DC:+15% / -10%)
Consumo
5 W a 24 VDC
8 VA a 230 VAC
Fusible
0,8 AT/250V (alta capacidad de interrupción), 5 x 20 mm / 0,2 x 0,8”
Frecuencias de línea
50/60 Hz
Potencia nominal
22 VA [máxima]
Corriente de entrada
$I_{N, eff} = 97 mA, t_{15} = 1,5 ms, t_{Peak} = 200 \mu s, I_{Peak} = 22,6 A$
Prensaestopas
4 x M20
M20x1,5: plástico [poliamida 6]
M20 a 1/2-NPT [rosca hembra]: latón
M20x 1,5: Acero inoxidable [IP69] |
DATOS TÉCNICOS

Entradas y salidas

<table>
<thead>
<tr>
<th>General</th>
<th>Todas las salidas y las entradas están eléctricamente aisladas entre ellas y de todos los demás circuitos. Todos los datos de operación y valores de salida se pueden ajustar.</th>
</tr>
</thead>
</table>

Descripción de las abreviaturas empleadas

- \(U_{\text{ext}} \) = voltaje externo;
- \(R_L \) = carga + resistencia;
- \(U_0 \) = tensión de terminal;
- \(I_{\text{nom}} \) = corriente nominal

Entradas

<table>
<thead>
<tr>
<th>Entradas de sensor</th>
<th>Hasta 2, según la versión. Consulte el manual del sensor específico para más información.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrada de control</td>
<td>Pasiva, insensible a la polaridad, (U_{\text{ext, máx}} \leq 32 \text{ VDC}), (I_{\text{nom}} \leq 6,5 \text{ mA}) con (U_{\text{ext}} = 24 \text{ VDC}), (I_{\text{nom}} \leq 8,2 \text{ mA}) con (U_{\text{ext}} = 32 \text{ VDC})</td>
</tr>
<tr>
<td></td>
<td>Punto de alarma para identificar “contacto abierto o cerrado”: contacto abierto ("\text{off}) a (U_0 \leq 2,5 \text{ V}) con (I_{\text{nom}} \leq 0,4 \text{ mA}), contacto cerrado ("\text{on}) a (U_0 \geq 8 \text{ V}) con (I_{\text{nom}} \leq 2,8 \text{ mA})</td>
</tr>
</tbody>
</table>

Salidas

<table>
<thead>
<tr>
<th>Salidas de corriente</th>
<th>Tres salidas aisladas ((4...20 \text{ mA})), todas aisladas galvánicamente, señales de error 3,25 mA y 22 mA, modo activo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Datos de salida: dependiendo del sensor</td>
</tr>
<tr>
<td></td>
<td>Datos de funcionamiento: (U_{\text{int, nom}} = 15 \text{ VDC}), (I = 0(4)...22 \text{ mA}), (I_{\text{máx}} \leq 22 \text{ mA}), (R_L \leq 550 \text{ Ω})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salidas de relé</th>
<th>Tres relés electromecánicos que pueden actuar como relés de alarma o interruptores límite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Condiciones posibles: NA (normalmente abierto) o NC (normalmente cerrado)</td>
</tr>
<tr>
<td></td>
<td>Valores nominales de los contactos:</td>
</tr>
<tr>
<td></td>
<td>• Relés para bajas tensiones: (U \leq 30 \text{ VDC}), (I \leq 1 \text{ A}), carga resistiva [MBTP / MBTS] o (U \leq 50 \text{ VAC}), (I \leq 4 \text{ A}), carga resistiva [MBPT / MBTS]</td>
</tr>
<tr>
<td></td>
<td>• Relés para altas tensiones: (U = 100...230 \text{ VAC}), (I \leq 4 \text{ A}), máx. 1000 VA carga resistiva</td>
</tr>
</tbody>
</table>

Aprobaciones y certificaciones

CE

El equipo cumple los requisitos básicos de las directivas UE. El marcado CE indica la conformidad del producto con la legislación de la Unión Europea aplicable al producto y que prevé el marcado CE.

Para obtener información exhaustiva sobre las directivas y normas UE y los certificados aprobados, consulte la declaración UE en la página web del fabricante.

Otras aprobaciones y estándares

- **Recomendación NAMUR**: NE 21 y NE 43
- **Resistencia al choque**: IEC 60068-2-27
2.2 Dimensiones y pesos

2.2.1 Alojamiento de aluminio fundido

Figura 2-1: Dimensiones del alojamiento de aluminio fundido

<table>
<thead>
<tr>
<th>Dimensiones y pesos en mm y kg</th>
<th>Dimensiones [mm]</th>
<th>Peso [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Versión de montaje en pared</td>
<td>241</td>
<td>161</td>
</tr>
</tbody>
</table>

Dimensiones y pesos en pulgadas y libras

<table>
<thead>
<tr>
<th>Dimensiones y pesos en pulgadas y libras</th>
<th>Dimensiones [pulgadas]</th>
<th>Peso [libras]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Versión de montaje en pared</td>
<td>9,50</td>
<td>6,34</td>
</tr>
</tbody>
</table>
2.2.2 Alojamiento de acero inoxidable

Figura 2-2: Dimensiones del alojamiento de acero inoxidable

Dimensiones y pesos en mm y kg

<table>
<thead>
<tr>
<th>Versión de montaje en pared</th>
<th>Dimensiones [mm]</th>
<th>Peso [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Versión de montaje en pared</td>
<td>268</td>
<td>187</td>
</tr>
</tbody>
</table>

Aprox. 3,5

Dimensiones y pesos en pulgadas y libras

<table>
<thead>
<tr>
<th>Versión de montaje en pared</th>
<th>Dimensiones [pulgadas]</th>
<th>Peso [libras]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Versión de montaje en pared</td>
<td>10,55</td>
<td>7,36</td>
</tr>
</tbody>
</table>

Aprox. 7,2
2.2.3 Placa de montaje de aluminio fundido

Figura 2-3: Dimensiones de la placa de montaje

<table>
<thead>
<tr>
<th>Dimensiones de la placa de montaje</th>
<th>[mm]</th>
<th>[pulgada]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Ø6,5</td>
<td>Ø0,26</td>
</tr>
<tr>
<td>b</td>
<td>87,2</td>
<td>3,4</td>
</tr>
<tr>
<td>c</td>
<td>241</td>
<td>9,5</td>
</tr>
</tbody>
</table>
2.2.4 Placa de montaje de acero inoxidable

<table>
<thead>
<tr>
<th>Dimensiones de la placa de montaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

Figura 2-4: Dimensiones de la placa de montaje
3.1 Notas generales sobre la instalación

Revise las cajas cuidadosamente por si hubiera algún daño o signo de manejo brusco. Informe del daño al transportista y a la oficina local del fabricante.

Compruebe la lista de repuestos para verificar que ha recibido todo lo que pidió.

Compruebe la placa de identificación del equipo para comprobar que el equipo entregado es el que indicó en su pedido. Compruebe en la placa de identificación que la tensión de suministro es correcta.

3.2 Uso previsto

No instale ni accione nunca el equipo en áreas potencialmente explosivas: esto podría provocar una explosión que puede causar lesiones mortales.

Si el equipo no se utiliza según las condiciones de operación (consultar el capítulo "Datos técnicos"), la protección prevista podría verse perjudicada.

En combinación con los diferentes sensores de la serie OPTISENS, el MAC 100 mide parámetros analíticos en aplicaciones en agua y aguas residuales.

3.3 Almacenamiento y transporte

No realice modificaciones mecánicas en el equipo. Esto puede causar la pérdida de la correcta funcionalidad y de los derechos ligados a la garantía del equipo.

- Almacene y transporte el equipo en un lugar seco y sin polvo.
- Evite la exposición continua a la luz solar directa.
- Almacene y transporte el equipo en un lugar a una temperatura de -40...+70°C / -40...+158°F.
- El embalaje original está diseñado para proteger el equipo. Es obligatorio utilizarlo tanto para transportar el equipo como para devolverlo al fabricante a fin de prevenir daños al equipo.
3.4 Montaje en pared

No instale ni accione nunca el equipo en áreas potencialmente explosivas: esto podría provocar una explosión que puede causar lesiones mortales.

Preste siempre atención a los siguientes factores para asegurar una instalación adecuada y segura:

- Asegúrese de que hay espacio suficiente a ambos lados.
- El equipo no debe calentarse por efecto del calor radiado (por ej. por exposición al sol) hasta una temperatura de superficie del alojamiento de la electrónica superior a la temperatura ambiente máxima admitida. Si fuera necesario prevenir los daños derivados de las fuentes de calor, habrá que instalar una protección térmica (por ej. una protección solar).
- Los convertidores de señal instalados en los armarios de control requieren una refrigeración adecuada, por ej. un ventilador o intercambiador de calor.
- No exponga el convertidor de señal a una vibración intensa.
- Utilice materiales y herramientas de montaje conformes a las directivas de seguridad y salud laboral aplicables (los materiales y herramientas de montaje no están incluidos en el suministro).

La instalación, ensamblaje, puesta en marcha y mantenimiento sólo puede ser realizado por personal entrenado. Siempre se deben seguir las directrices de seguridad y salud ocupacional.

El equipo se entrega con la placa de montaje fijada en la parte trasera del equipo. Las figuras siguientes muestran el montaje correcto:

Debe aplicarse un sistema de montaje con una fuerza de carga mínima de 0,1 kN (por ejemplo FISCHER tipo UX10) apto para el fondo.

Montaje en pared con espigas

Figura 3-1: Procedimiento de montaje en pared

- Observe la figura arriba y marque todos los orificios taladrados con un bolígrafo ①.
- Sujete firmemente el equipo a la pared utilizando un taladro, espigas, tornillos y la placa de montaje ②.
Montaje en pared de varios equipos (aluminio fundido)

Figura 3-2: Dimensiones y distancias

<table>
<thead>
<tr>
<th></th>
<th>[mm]</th>
<th>[“]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Ø6,5</td>
<td>Ø0,26</td>
</tr>
<tr>
<td>b</td>
<td>87,2</td>
<td>3,4</td>
</tr>
<tr>
<td>c</td>
<td>241</td>
<td>9,5</td>
</tr>
<tr>
<td>d</td>
<td>310</td>
<td>12,2</td>
</tr>
<tr>
<td>e</td>
<td>257</td>
<td>10,1</td>
</tr>
</tbody>
</table>
Montaje en pared de varios equipos (acero inoxidable)

Figura 3-3: Dimensiones y distancias

<table>
<thead>
<tr>
<th></th>
<th>[mm]</th>
<th>[pulgada]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Ø6,5</td>
<td>Ø0,26</td>
</tr>
<tr>
<td>b</td>
<td>40</td>
<td>1,6</td>
</tr>
<tr>
<td>c</td>
<td>268</td>
<td>10,5</td>
</tr>
<tr>
<td>d</td>
<td>336</td>
<td>13,2</td>
</tr>
<tr>
<td>e</td>
<td>257</td>
<td>10,1</td>
</tr>
</tbody>
</table>
Conexiones eléctricas

4.1 Instrucciones de seguridad

Todo el trabajo relacionado con las conexiones eléctricas sólo se puede llevar a cabo con la alimentación desconectada. ¡Tome nota de los datos de voltaje en la placa de características!

¡Siga las regulaciones nacionales para las instalaciones eléctricas!

Para equipos que se empleen en áreas peligrosas, se aplican notas de seguridad adicionales; por favor consulte la documentación Ex.

Se deben seguir sin excepción alguna las regulaciones de seguridad y salud ocupacional regionales. Cualquier trabajo hecho en los componentes eléctricos del equipo de medida debe ser llevado a cabo únicamente por especialistas entrenados adecuadamente.

Compruebe la placa de identificación del equipo para comprobar que el equipo entregado es el que indicó en su pedido. Compruebe en la placa de identificación que la tensión de suministro es correcta.

4.2 Abreviaturas empleadas

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>Entrada de control pasiva</td>
</tr>
<tr>
<td>I_a</td>
<td>Salida de corriente activa</td>
</tr>
<tr>
<td>I_máx</td>
<td>Corriente máxima</td>
</tr>
<tr>
<td>I_nom</td>
<td>Corriente nominal</td>
</tr>
<tr>
<td>R_L</td>
<td>Resistencia de carga</td>
</tr>
<tr>
<td>R y número [por ej. R1]</td>
<td>Contacto de relé</td>
</tr>
<tr>
<td>P</td>
<td>Alimentación</td>
</tr>
<tr>
<td>U_ext</td>
<td>Fuente de alimentación externa</td>
</tr>
<tr>
<td>U_ext, máx</td>
<td>Tensión máxima de la fuente de alimentación externa</td>
</tr>
<tr>
<td>U_int, nom</td>
<td>Tensión interna nominal</td>
</tr>
<tr>
<td>U_on</td>
<td>Tensión para activar la entrada de control [encendido]</td>
</tr>
<tr>
<td>U_off</td>
<td>Tensión para activar la entrada de control [apagado]</td>
</tr>
</tbody>
</table>
4.3 Notas importantes sobre conexión eléctrica específicas del equipo

No instale ni accione nunca el equipo en áreas potencialmente explosivas: esto podría provocar una explosión que puede causar lesiones mortales!

El aparato debe estar conectado a tierra según la regulación para proteger al personal de descargas eléctricas.

Cuando instale y cablee el equipo, tenga en cuenta las normas de seguridad más recientes. Cumpla también las siguientes instrucciones para evitar lesiones mortales, destrucción o deterioro del equipo o errores de medida:

• Desconecte los cables de alimentación antes de empezar las tareas de instalación.
• Instale siempre los cables de entrada y de control separados entre ellos y de los cables de corriente de alta tensión.
• Asegúrese de que todos los cables de las entradas y salidas de corriente están protegidos. Conecte las protecciones solamente a un lado, por ej. al equipo.
• Al utilizar relés, recuerde que si hay cargas inductivas debe suprimir las interferencias.
• Asegúrese de que todos los trabajos de conexión eléctrica cumplen la Directiva VDE 0100 “Reglas para las instalaciones eléctricas con tensiones de línea hasta 1000 V” o las normas nacionales equivalentes.
• Utilice prensaestopas adecuados para los diversos cables eléctricos y cables de conexión que sean apropiados para el respectivo ámbito de aplicación. El diámetro exterior de los cables de conexión debe caber en los prensaestopas.
• La tensión nominal del cable de conexión debe adecuarse a la tensión de funcionamiento del equipo.

Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.
4.4 Apertura y cierre del alojamiento del convertidor de señal

Limpie y engrase todas las roscas cada vez que abra el alojamiento. Utilice solamente grasa sin resinas y sin ácidos. Antes de cerrar la cubierta, asegúrese de que la junta del alojamiento está colocada adecuadamente, limpia y sin daños.

4.4.1 Alojamiento de aluminio fundido

- Afloje los 4 tornillos ① con un destornillador de estrella.
- Levantar el alojamiento desde la parte superior e inferior al mismo tiempo ②.
- Deslice la cubierta del alojamiento hacia atrás ③.
 - La cubierta del alojamiento es guiada y está sujeta por la bisagra interna; ahora tiene acceso al compartimento de terminales ④.

Una vez terminado el trabajo, cierre el alojamiento del convertidor.

4.4.2 Alojamiento del convertidor de acero inoxidable

- Afloje los 8 tornillos de cabeza hexagonal ① con una llave de tubo de 10 mm.
- Levantar el alojamiento desde la parte superior e inferior al mismo tiempo ②.
- Deslice la cubierta del alojamiento hacia atrás ③.
 - La cubierta del alojamiento es guiada y está sujeta por la bisagra interna; ahora tiene acceso al compartimento de terminales ④.
Una vez terminado el trabajo, cierre el alojamiento del convertidor. Para que el equipo esté bien sellado, apriete los tornillos en la secuencia siguiente con un par de apriete de 5 Nm.

Figura 4-3: Apriete de los tornillos

4.5 Vista de conjunto del compartimento de terminales

1. Cubierta del terminal de alimentación
2. Cubierta del terminal de salidas de relé
3. Terminal de salida de corriente
4. Protección de los terminales
5. Terminales de entrada de sensor A
6. Terminales de entrada de sensor B
7. Posibilidad de conectar una puesta a tierra funcional (válido sólo para la versión de 24 V)
8. Prensaestopas
4.6 Conexión de los cables de señal

Los prensaestopas instalados por el fabricante están dimensionados para un cable de 8 a 13 mm de diámetro. Si utiliza cables con un diámetro mayor, tiene que sustituir los prensaestopas del fabricante por los prensaestopas adecuados.

Para toda la información sobre los cables de señal del sensor utilizado (o de los sensores) y su conexión, consulte el manual (o los manuales) del sensor correspondiente.
4.7 Conexión de la alimentación

El aparato debe estar conectado a tierra según la regulación para proteger al personal de descargas eléctricas.

No instale ni accione nunca el equipo en áreas potencialmente explosivas: esto podría provocar una explosión que puede causar lesiones mortales!

Al conectar la alimentación, observe siempre las normas de seguridad vigentes. Para evitar lesiones mortales, la destrucción o daños del equipo o errores de medida, tenga en cuenta asimismo los siguientes factores:

- Desconecte los cables de alimentación antes de empezar las tareas de instalación!
- Mantenga siempre cerrado el alojamiento del equipo cuando no está realizando tareas de instalación. La función del alojamiento es proteger el equipo electrónico del polvo y la humedad.
- Asegúrese de que hay un fusible de protección para el circuito de alimentación de entrada \(I_{nom} \leq 16 \) A, y también un equipo de desconexión (interruptor, disyuntor) para aislar el convertidor de señal.
- Observe la placa de identificación y compruebe que la alimentación corresponde a la tensión y frecuencia del equipo. El equipo puede funcionar dentro del rango de 100…230 VAC con una tolerancia de -15/+10%, con 240 VAC +5% incluido en el rango de tolerancia. La versión de 24 VAC/DC puede funcionar con 24 VDC con una tolerancia de -25/+30% o con 24 VAC con una tolerancia de +15%/-10%. Si la alimentación no se ajusta a estos valores, el equipo puede resultar seriamente dañado!
- Compruebe para la versión de 100…230 VAC que el conductor de tierra de protección (PE) es más largo que el conductor L y el conductor N.

El fabricante ha dimensionado todas las distancias de fuga y los juegos según las normas VDE 0110 e IEC 60664 para la categoría de contaminación 2. Los circuitos de alimentación son conformes a la categoría de sobretensión III y los circuitos de salida son conformes a la categoría de sobretensión II.

Antes de conectar los cables de alimentación, observe el siguiente dibujo donde se indica la funcionalidad de los terminales:

![Diagrama de conexiones eléctricas]

Figura 4-4: A - 100…230 VAC / B - 24 VAC/DC

1. Fase (L)
2. Neutro (N)
3. Tierra de protección (PE) o tierra funcional (FE)
Posteriormente conecte los cables de alimentación consecuentemente:

Desconecte los cables de alimentación con la ayuda de un equipo apropiado (interruptor, disyuntor).
*Abra el alojamiento del convertidor de señal (para más información vaya a *Apertura y cierre del alojamiento del convertidor de señal* en la página 22).*
Retire la cubierta del terminal de alimentación 1 empujándola hacia abajo y tirando de ella hacia adelante al mismo tiempo ② y ③, preste atención para no romper la tira de retención (impide que se pierda la cubierta).
Utilice un destornillador con una punta de 3,5 x 0,5 mm / 0,14 x 0,02” para empujar la palanca hacia abajo, conecte los hilos a los terminales y tire hacia arriba de las palancas ④ y ⑤.
Vuelva a apretar la cubierta del terminal de alimentación, cierre el alojamiento del convertidor de señal y apriete todos los tornillos del alojamiento.
4.8 Descripción y propiedades de la salida y la entrada

4.8.1 Salida de corriente

No instale ni accione nunca el equipo en áreas potencialmente explosivas: esto podría provocar una explosión que puede causar lesiones mortales.

Para más información, consulte los esquemas de conexión y la tabla de datos técnicos.

- Todas las salidas están eléctricamente aisladas unas de otras y de todos los demás circuitos.
- Todos los datos de funcionamiento y las funciones se pueden ajustar.
- Datos de salida: resultados de medida de las entradas de sensor A y B incluyendo un valor de temperatura.
- Modo activo: rango de salida 0(4)...20 mA, resistencia de carga $R_L \leq 550 \Omega$ a $I_{\text{max}} \leq 22 mA$,
 $U_{\text{INT, nom}} = 15 VDC$
- Auto-monitorización: interrupción o resistencia de carga demasiado alta en el lazo de salida de corriente
- Señalización de error posible a través de relés de alarma, indicación de error en la pantalla LC.
- La detección del error de valor puede ajustarse.

4.8.2 Salidas de relé

No instale ni accione nunca el equipo en áreas potencialmente explosivas: esto podría provocar una explosión que puede causar lesiones mortales.

Para más información consulte los diagramas en la página 30 y en la página 31 además de la tabla de datos técnicos en la página 8.

El equipo tiene tres relés electromecánicos que pueden actuar como relés de alarma o interruptores límite:

- Los contactos de relé están eléctricamente aislados unos de otros y de todos los demás circuitos.
- Las etapas de salida de las salidas de estado/alarmas se comportan como contactos de relé.
- Condiciones posibles: NA (normalmente abierto) o NC (normalmente cerrado).
- Valores nominales de los contactos:
 - Relés para bajas tensiones: $U \leq 50 VDC$, $I \leq 1 A$, carga resistiva (MBTP / MBTS) o $U \leq 50 VAC$, $I \leq 4 A$, carga resistiva (MBPT / MBTS)
 - Relés para altas tensiones: $U = 100...230 VAC$, $I \leq 4 A$, máx. 1000 VA carga resistiva
- Los circuitos de contacto tienen que ser circuitos MBTP / MBTS o circuitos para tensiones peligrosas.
4.8.3 Entrada de control (pasiva)

Preste atención a los valores máximos de tensión y corriente que pueden aplicarse a la entrada de control. La aplicación de alimentación fuera del rango admitido puede destruir o dañar el equipo.

¡La entrada de control viene inhabilitada de fábrica!

La entrada de control pasiva puede activar diferentes eventos en el convertidor de señal desde fuera. Se activa aplicando una tensión de $U_{\text{encendido}} > 8 \text{ VDC}$ y se desactiva aplicando una tensión de $U_{\text{apagado}} < 2,5 \text{ VDC}$. Las propiedades detalladas son las siguientes:

- Pasiva, insensible a la polaridad
- Estado “apagado”: $U_{\text{off}} \leq 2,5 \text{ VDC}$ con $I_{\text{nom}} = 0,4 \text{ mA}$
- Estado “encendido”: $U_{\text{on}} \geq 8 \text{ VDC}$ con $I_{\text{nom}} = 2,8 \text{ mA}$
- $U_{\text{ext, máx.}} \leq 32 \text{ VDC}$
- $I_{\text{nom}} = 6,5 \text{ mA con } U_{\text{ext}} = 24 \text{ VDC}$
- $I_{\text{nom}} = 8,2 \text{ mA con } U_{\text{ext}} = 32 \text{ VDC}$

Por ejemplo, la entrada de control puede trabajar con un monitor de caudal que monitoriza el caudal muestra y proporciona una señal si el caudal llega por debajo de un determinado umbral. En este caso, si la entrada de control está ajustada a “control caudal”, activa un “error de aplicación F” (este error indica la presencia de un error ligado a la aplicación, sin embargo el equipo es fiable). Para más información, consulte la tabla de la categoría de error “Fuera de especif.” en el manual.

La entrada de control puede utilizarse para otras finalidades. Para más información consulte la función C3.5 y señaladamente C3.5.1 en la tabla de funciones correspondiente del manual.
4.9 Diagramas de conexión de las salidas y entradas

4.9.1 Notas importantes

No instale ni accione nunca el equipo en áreas potencialmente explosivas: esto podría provocar una explosión que puede causar lesiones mortales.

- Todos los grupos están eléctricamente aislados unos de otros y de todos los circuitos de entrada y salida.
- Modo de funcionamiento activo: el convertidor de señal suministra la alimentación para el funcionamiento (activación) de los equipos subsecuentes, observe los datos máximos de operación.
- Los terminales no utilizados no deben tener conexión conductiva con otras piezas eléctricamente conductivas.

4.9.2 Descripción de los símbolos eléctricos

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA+R_L</td>
<td>Medidor de mA, 0...20 mA o 4...20 mA y otros, R_L es la resistencia interna del punto de medida incluyendo la resistencia del cable</td>
</tr>
<tr>
<td>U_ext</td>
<td>Fuente de voltaje DC (U_ext), alimentación externa, cualquier polaridad de conexión</td>
</tr>
<tr>
<td>U_ext</td>
<td>Fuente de voltaje DC (U_ext), observe la polaridad de conexión según los diagramas de conexión</td>
</tr>
<tr>
<td>U_int</td>
<td>Fuente de voltaje DC interno</td>
</tr>
<tr>
<td></td>
<td>Fuente de alimentación interna controlada en el equipo</td>
</tr>
<tr>
<td></td>
<td>Botón, SIN contacto o similar</td>
</tr>
</tbody>
</table>
4.9.3 Diagrama de bloques

Figura 4-5: Diagrama de bloques
1. Alimentación (100...230 VAC o 24 VAC/DC)
2. Entrada de control (no polarizada), 8...32 VDC
3. Entrada de sensor B, consulte el manual del sensor (los terminales P, U y X muestran un ejemplo con una resistencia NTC)
4. Entrada de sensor A, consulte el manual del sensor (los terminales P, U y X muestran un ejemplo con una resistencia Pt100/1000)
5. Salidas de corriente A, B y C
6. Salidas de relé R1, R2 y R3

4.9.4 Salida de corriente (activa)

Para evitar daños o deterioro del equipo, tenga siempre en cuenta lo siguiente:

- ¡Observe la polaridad de conexión!
- Tenga en cuenta las propiedades de la salida de corriente. Para más información vaya a Salida de corriente en la página 27.

Diagrama de conexión de la salida de corriente (activa)

Figura 4-6: Salida de corriente (activa)
4.9.5 Salidas de relé

Para evitar daños o la destrucción del equipo, tenga siempre en cuenta las propiedades de las salidas de relé; para más información en la página 27.

Figura 4-7: Ejemplo: diferentes condiciones de una salida de relé

1. Funcionamiento normal: equipo en funcionamiento y ningún mensaje de error de corriente, piloto apagado, contacto de relé abierto.
2. Condición de alarma: mensaje de error, piloto encendido, equipo desconectado o en anomalía de funcionamiento, contacto de relé cerrado.

4.9.6 Entrada de control

Para evitar daños o la destrucción del equipo, tenga siempre en cuenta las propiedades de la entrada de control, para más información en la página 28.

Figura 4-8: Entrada de control

1. Señal
4.10 Conexión eléctrica de las salidas y la entrada

Todo el trabajo relacionado con las conexiones eléctricas sólo se puede llevar a cabo con la alimentación desconectada. ¡Tome nota de los datos de voltaje en la placa de características!

Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

- Abra la cubierta del alojamiento (vaya a Apertura y cierre del alojamiento del convertidor de señal en la página 22).
- Empuje los cables preparados a través de la entrada de cables y conecte los conductores necesarios.
- Cierre la protección.
- Apriete firmemente la conexión roscada de la entrada del cable.
- Selle con un tapón todas las entradas de cable que no necesite.
- Cierre la cubierta del alojamiento (vaya a Apertura y cierre del alojamiento del convertidor de señal en la página 22).

Asegúrese de que la junta del alojamiento está colocada adecuadamente, limpia y sin daños.

4.10.1 Conexión de las salidas de corriente

Utilice el prensaestopa correcto. Para más información consulte el manual de este equipo.

- Introduzca los cables con la protección prefabricada a través de los prensaestopas correctos 1 y 2.
- Introduzca el cable en el terminal 3.
- Para retirar el cable empuje la palanca hacia abajo con una herramienta adecuada 4 y tire del cable para extraerlo del terminal 5.
4.10.2 Conexión de las salidas de relé

Para evitar tensiones peligrosas, la tensión de conmutación para los contactos de relé debe cumplir una de las condiciones siguientes: debe proceder de la misma red de la alimentación del convertidor de señal incluyendo el prefusible y el separador (consulte el capítulo 4.6), o bien debe proceder de una red MBTP o MBTS. Durante la instalación, atégase siempre a las reglamentaciones y normas nacionales e internacionales vigentes.

Si desea conmutar cargas inductivas (incluso relés o bobinas de protección), primero siempre se tiene que suprimir las interferencias. De lo contrario pueden producirse interferencias con la señal de medida. Tenga además en cuenta lo siguiente:

- Si utiliza tensión DC, suprima las interferencias de la bobina de relé con un diodo supresor; consulte la tabla siguiente y la figura siguiente "Supresión de interferencias".
- Si no es posible suprimir las interferencias, tiene que asegurarse de que el contacto de relé está protegido por un circuito de protección RC. Consulte también la tabla siguiente.
- Si utiliza salidas de relé sin potencial, asegúrese de instalar en la línea de alimentación en el campo un dispositivo de apagado adecuado y un prefusible.
- Al conmutar cargas inductivas, el fabricante recomienda un circuito de protección para evitar quemaduras del contacto de relé debidas a un contacto alto innecesario.

El equipo se entrega con los contactos de relé aptos también para corrientes de señal bajas (a partir de aprox. 1 mA). Tenga en cuenta que el revestimiento de oro se quemará durante la conmutación cuando se utilicen corrientes mayores (a partir de aprox. 100 mA). Posteriormente, los relés ya no conmutarán fiablemente a corrientes pequeñas.

Tensión AC: condensadores y resistencias necesarias para la supresión de interferencias

<table>
<thead>
<tr>
<th>Corriente hasta</th>
<th>Condensador</th>
<th>Resistencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mA</td>
<td>10 nF / 260 V</td>
<td>390 Ω / 2 W</td>
</tr>
<tr>
<td>70 mA</td>
<td>47 nF / 260 V</td>
<td>22 Ω / 2 W</td>
</tr>
<tr>
<td>150 mA</td>
<td>100 nF / 260 V</td>
<td>47 Ω / 2 W</td>
</tr>
<tr>
<td>1,0 A</td>
<td>220 nF / 260 V</td>
<td>47 Ω / 2 W</td>
</tr>
</tbody>
</table>
Propiedades necesarias de los cables

- Sección máxima del hilo: 1,5 mm² / 0,06 pulgadas cuadradas
- Longitud mínima para pelar los cables: 8 mm / 0,31”

Siga el procedimiento siguiente, retire la cubierta y conecte los cables consecuentemente:

Paso 1: retirada de la cubierta

![Figura 4-10: Retirada de la cubierta](image)

El tornillo debajo de la cubierta 5 no se tiene que utilizar como conexión del cable. No afloje ni retire la cubierta o el tornillo.

- Empiece a retirar la cubierta de las salidas de relé 1 empujándola hacia abajo 2.
- Tire de la cubierta hacia adelante 3, luego hacia arriba para separarla del clip y retírela 2 y 4.
- Retire la cubierta del terminal de puesta a tierra tirando de ella hacia arriba 5.
- Puede ver el bloque de terminales de 10 pines que tiene montado un puente conectado.
Paso 2: conexión de los cables

- Conecte los cables a los terminales de relé ① según se muestra en la figura anterior ②; tome nota de las propiedades necesarias para los cables.
- Si desea soltar un cable de los terminales de relé, primero desbloquee el dispositivo de bloqueo ③ con una herramienta adecuada y tire del cable para sacarlo ④.

Si se aplica una tensión de conmutación a la conexión “C” ⑤ en la figura anterior, los contactos de relé R1, R2 y R3 se alimentan en paralelo con la ayuda del conector ⑥. Esto permite que la tensión conmutada de los relés se transfiera. Puede quitar el puente si no necesita esta alimentación.

- Una vez conectados todos los cables, vuelva a fijar la cubierta de las salidas de relé.
- Cierre el alojamiento del convertidor de señal y apriete todos los tornillos del alojamiento.
(Para más información vaya a Apertura y cierre del alojamiento del convertidor de señal en la página 22).
5.1 Código de pedido

Los caracteres del código de pedido resaltados en gris claro describen el estándar.

<table>
<thead>
<tr>
<th>VGA K 4</th>
<th>Tipo / Alojamiento del convertidor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 MAC 100 (aluminio fundido)</td>
</tr>
<tr>
<td></td>
<td>2 MAC 100 (acero inoxidable)</td>
</tr>
</tbody>
</table>

Entrada de sensor A

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conductividad conductiva</td>
</tr>
<tr>
<td>2</td>
<td>Conductividad inductiva</td>
</tr>
<tr>
<td>3</td>
<td>pH/Redox (preconfigurado para pH)</td>
</tr>
<tr>
<td>4</td>
<td>Cl₂ 0,03...5 mg/l</td>
</tr>
<tr>
<td>5</td>
<td>ClO₂: 0,05...5 mg/l</td>
</tr>
<tr>
<td>6</td>
<td>O₃: 0,05...5 mg/l</td>
</tr>
<tr>
<td>8</td>
<td>Cl₂ 0,03...20 mg/l</td>
</tr>
<tr>
<td>A</td>
<td>pH/Redox (preconfigurado para Redox)</td>
</tr>
<tr>
<td>M</td>
<td>DO para OPTISENS ODO 2000 (oxígeno disuelto, óptico)</td>
</tr>
<tr>
<td>N</td>
<td>TUR para OPTISENS TUR 2000 (turbidez)</td>
</tr>
<tr>
<td>P</td>
<td>DO para OPTISENS ADO 2000 (oxígeno disuelto, amperométrico)</td>
</tr>
<tr>
<td>R</td>
<td>TSS para OPTISENS TSS 2000 (total de sólidos en suspensión)</td>
</tr>
</tbody>
</table>

Entrada de sensor B

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sin</td>
</tr>
<tr>
<td>1</td>
<td>Conductividad conductiva</td>
</tr>
<tr>
<td>2</td>
<td>Conductividad inductiva</td>
</tr>
<tr>
<td>3</td>
<td>pH/Redox (preconfigurado para pH)</td>
</tr>
<tr>
<td>A</td>
<td>pH/Redox (preconfigurado para Redox)</td>
</tr>
</tbody>
</table>

Salida de señal

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3 x 0/4...20 mA (activo)</td>
</tr>
</tbody>
</table>

Aprobaciones

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sin</td>
</tr>
</tbody>
</table>

Relés

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sin</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3 x libremente programables [mecánicos]; necesarios para el OPTISENS ADO 2000</td>
</tr>
</tbody>
</table>

VGA K 4 Continúa en la página siguiente
<table>
<thead>
<tr>
<th>Idioma de funcionamiento</th>
<th>1</th>
<th>Inglés</th>
<th>2</th>
<th>Alemán</th>
<th>3</th>
<th>Francés</th>
<th>4</th>
<th>Español</th>
<th>5</th>
<th>Turco</th>
<th>6</th>
<th>Italiano</th>
<th>7</th>
<th>Portugués</th>
<th>8</th>
<th>Chino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentación</td>
<td>1</td>
<td>100...230 VAC</td>
<td>2</td>
<td>24 VAC/DC</td>
<td></td>
</tr>
<tr>
<td>Opciones</td>
<td>1</td>
<td>Montaje en pared incluido</td>
<td></td>
</tr>
<tr>
<td>Documentación</td>
<td>0</td>
<td>Sin</td>
<td>1</td>
<td>Inglés</td>
<td>2</td>
<td>Alemán</td>
<td>3</td>
<td>Francés</td>
<td>4</td>
<td>Español</td>
<td>5</td>
<td>Checo</td>
<td>6</td>
<td>Polaco</td>
<td>7</td>
<td>Italiano</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Turco</td>
<td>B</td>
<td>Ruso</td>
<td></td>
</tr>
<tr>
<td>Prensaestopa</td>
<td>1</td>
<td>4 x M20 (poliamida)</td>
<td>2</td>
<td>4 x 1/2 NPT (latón)</td>
<td>5</td>
<td>4 x M20 (acero inoxidable)</td>
<td></td>
</tr>
<tr>
<td>Equipos adicionales</td>
<td>0</td>
<td>Sin</td>
<td>1</td>
<td>ASR Limpieza automática del sensor (sólo para Cl₂, ClO₂, O₃)</td>
<td></td>
</tr>
<tr>
<td>Código completo de pedido</td>
<td>VGA K 4</td>
<td>Código completo de pedido</td>
<td></td>
</tr>
</tbody>
</table>
KROHNE – Equipos de proceso y soluciones de medida

- Caudal
- Nivel
- Temperatura
- Presión
- Análisis de procesos
- Servicios

Oficina central KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Alemania)
Tel.: +49 203 301 0
Fax: +49 203 301 10389
info@krohne.com

La lista actual de los contactos y direcciones de KROHNE se encuentra en:
www.krohne.com