Caudalímetro electromagnético en versión "sándwich"

- Excepcional estabilidad a largo plazo y precisión
- Para líquidos altamente agresivos y abrasivos
- Completamente resistente al vacío con recubrimientos de cerámica de tecnología avanzada

La documentación sólo está completa cuando se usa junto con la documentación relevante del convertidor.

© KROHNE 08/2018 - 4004944502 - TD OPTIFLUX 5000 SW R07 es
1 Características del producto

1.1 Solución con cerámica de tecnología avanzada .. 3
1.2 Opciones y variantes... 5
1.3 Principio de medida.. 6

2 Datos técnicos

2.1 Datos técnicos .. 7
2.2 Precisión de medida .. 12
2.3 Dimensiones y pesos .. 14

3 Instalación

3.1 Uso previsto .. 18
3.2 Notas generales sobre la instalación .. 18
3.2.1 Vibraciones ... 18
3.2.2 Campo magnético .. 18
3.3 Condiciones de instalación ... 19
3.3.1 Secciones de entrada y salida .. 19
3.3.2 Codos en 2 o 3 dimensiones .. 19
3.3.3 Sección en T ... 20
3.3.4 Codos ... 20
3.4 Descarga abierta .. 21
3.5 Desvío de la brida ... 21
3.6 Bomba .. 21
3.7 Válvula de control .. 22
3.8 Purga del aire y fuerzas de vacío ... 22
3.9 Posición de montaje .. 23
3.10 Montaje .. 24
3.10.1 Pares de apriete y presiones ... 24

4 Conexiones eléctricas

4.1 Instrucciones de seguridad .. 26
4.2 Puesta a tierra .. 26
4.3 Referencia virtual para IFC 300 [versión C, W y F] ... 27
1.1 Solución con cerámica de tecnología avanzada

El OPTIFLUX 5000 es uno de los caudalímetros más precisos disponibles en el mercado hoy en día. Esto se debe a un diseño especial del tubo con partes cónicas que optimiza el perfil del caudal. Los principales institutos de metrología utilizan el OPTIFLUX 5000 como medidor maestro en combinación con el convertidor de señal de gama alta IFC 300.

① Versión “Sándwich”
② Recubrimiento de cerámica
③ Electrodes de cermet o platino
CARACTERÍSTICAS DEL PRODUCTO

Características principales
- Estabilidad a largo plazo y precisión excelentes
- Tubo de medida exclusivo
- Electrods fundidos de cermet o platino
- Estándar para la transferencia de custodia de las autoridades internacionales de metrología
- Para líquidos altamente agresivos y abrasivos
- Resistente al vacío total
- Recubrimientos de cerámica de tecnología avanzada
- Insensible a cambios bruscos de temperatura

Industrias
- Química
- Papel y pasta
- Agua y aguas residuales
- Minerales y minería
- Alimentaria y bebidas
- Maquinaria

Aplicaciones
- Caudalímetro maestro para medida de transferencia
- Dosificación volumétrica precisa de aditivos
- Inyección química
- Para ácidos, álcalis, lodos abrasivos y muchos otros productos agresivos
1.2 Opciones y variantes

La versión OPTIFLUX 5000 sándwich está disponible en un rango de diámetros de DN2,5 hasta DN100 - 1/10” hasta 4”. El sensor de caudal está disponible con un amplio rango de presiones nominales y puede configurarse con el convertidor de señal IFC 050, IFC 100 e IFC 300. Puede pedirse en la versión de acero inoxidable y está disponible para el uso en áreas peligrosas como opción. Los anillos de puesta a tierra están disponibles en aleaciones de alto grado.

La instalación del OPTIFLUX 5000 puede simplificarse eligiendo la opción de referencia virtual. Esto permite omitir los anillos de puesta a tierra. Esta opción es compatible sólo con el convertidor de señal IFC 300.
1.3 Principio de medida

Un líquido eléctricamente conductivo fluye a través de un tubo, eléctricamente aislado, a través de un campo magnético. El campo magnético es generado por una corriente que fluye a través de un par de bobinas magnéticas.

Dentro del líquido se genera una tensión U:

$$U = v \cdot k \cdot B \cdot D$$

siendo:

- v = velocidad de caudal media
- k = factor de corrección de la geometría
- B = fuerza del campo magnético
- D = diámetro interno del caudalímetro

La tensión de señal U es recogida por los electrodos y es proporcional a la velocidad de caudal media v y, por consiguiente, a la velocidad de caudal Q. Se utiliza un convertidor de señal para amplificar la tensión de señal, filtrarla y convertirla en señales para la totalización, el registro y el procesamiento de la salida.

Figura 1-1: Principio de medida

- 1 Bobinas
- 2 Campo magnético
- 3 Electrodos
- 4 Tensión inducida (proportional a la velocidad de caudal)
2.1 Datos técnicos

- Los siguientes datos hacen referencia a aplicaciones generales. Si necesita datos más relevantes sobre su aplicación específica, contacte con nosotros o con su oficina de ventas.
- La información adicional (certificados, herramientas especiales, software...) y la documentación del producto completo puede descargarse gratis en nuestra página web (Centro de descargas).

Sistema de medida

<table>
<thead>
<tr>
<th>Principio de medida</th>
<th>Ley de Faraday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de aplicación</td>
<td>Líquidos eléctricamente conductivos</td>
</tr>
<tr>
<td>Valor primario medido</td>
<td>Velocidad de caudal</td>
</tr>
<tr>
<td>Valor secundario medido</td>
<td>Caudal en volumen, caudal másico, conductividad eléctrica, temperatura de la bobina</td>
</tr>
</tbody>
</table>

Diseño

<table>
<thead>
<tr>
<th>Características</th>
<th>Versión Sándwich con tubo de medida optimizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción modular</td>
<td>El sistema de medida consiste en un sensor de caudal y un convertidor de señal. Está disponible en versión compacta y remota. Se puede encontrar más información sobre el convertidor de señal en la documentación del convertidor de señal.</td>
</tr>
<tr>
<td>Versión compacta</td>
<td>Con convertidor de señal IFC 050 : OPTIFLUX 5050 C</td>
</tr>
<tr>
<td></td>
<td>Con convertidor de señal IFC 100 : OPTIFLUX 5100 C</td>
</tr>
<tr>
<td></td>
<td>Con convertidor de señal IFC 300 : OPTIFLUX 5300 C DN2,5...15 / 1/10...1/2" disponible sólo con alojamiento del convertidor en aluminio</td>
</tr>
<tr>
<td>Versión remota</td>
<td>Versión de montaje en pared (W) con convertidor de señal IFC 050: OPTIFLUX 5050 W</td>
</tr>
<tr>
<td></td>
<td>Versión de montaje en pared (W) con convertidor de señal IFC 100: OPTIFLUX 5100 W</td>
</tr>
<tr>
<td></td>
<td>Versión de montaje en campo (F), pared (W) o rack (R) con convertidor de señal IFC 300: OPTIFLUX 5300 F, W o R</td>
</tr>
<tr>
<td>Diámetro nominal</td>
<td>DN2,5...100 / 1/10...4”</td>
</tr>
</tbody>
</table>

Precisión de medida

Error máximo de medida	IFC 050: hasta el 0,5% del valor medido ± 1 mm/s
	IFC 100: hasta el 0,3% del valor medido ± 1 mm/s
	IFC 300: hasta el 0,15% del valor medido ± 1 mm/s
Repetibilidad	±0,1% del VM, mínimo 1 mm/s
Calibración	**Estándar**: calibración 2 puntos por comparación directa de volumen. **Opcional**: calibración especial bajo pedido

Para más información vaya a Precisión de medida en la página 12.
Condiciones de operación

Temperatura

| Temperatura de proceso | Versión compacta: -40...+140°C / -40...+284°F
| | Tamaño DN 2,5...15 / 1/10...1/2": -20...+120°C / -4...+248°F
| | Versión remota: -40...+180°C / -40...+356°F
| | Tamaño DN 2,5...15 / 1/10...1/2": -20...+180°C / -4...+356°F
| | Para las versiones Ex pueden aplicarse diferentes rangos de temperatura. Para más detalles se remite a la documentación Ex correspondiente. |

| Variación máxima de la temperatura (choque) | DN2,5...25 / 1/10...1": < 3 K/s
| | DN40...100 / 11/2...4": < 0,2 K/s

| Temperatura ambiente | -40...+65°C / -40...+149°F
| | Para IFC 100 acero inoxidable: -40...+60°C / -40...+140°F
| | Para las versiones Ex pueden aplicarse diferentes rangos de temperatura. Para más detalles se remite a la documentación Ex correspondiente. |

| Temperatura de almacenamiento | -50...+70°C / -58...+158°F

Rango de medida

| Rango de medida | -12...+12 m/s / -40...+40 ft/s

Presión

<table>
<thead>
<tr>
<th>Presión nominal de la brida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estándar:</td>
</tr>
<tr>
<td>EN 1092-1</td>
</tr>
<tr>
<td>DN100: PN 16</td>
</tr>
<tr>
<td>DN2,5...80: PN 40</td>
</tr>
<tr>
<td>Opcional:</td>
</tr>
<tr>
<td>DN100: PN 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASME B16.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estándar:</td>
</tr>
<tr>
<td>1/10...4": 150 lb</td>
</tr>
<tr>
<td>Opcional:</td>
</tr>
<tr>
<td>1/10...4": 300 lb</td>
</tr>
</tbody>
</table>

| Carga en vacío | 0 mbar / 0 psi

| Rangos de presión para la contención secundaria | Resistente a una presión de hasta 40 bar / 580 psi
| | Presión de rotura de hasta ~ 160 bar / 2320 psi

Propiedades químicas

Condición física	Líquidos

Conductividad eléctrica	Sin agua:
	DN25...100 / 1...4": ≥ 1 μS/cm
	DN4...15 / 3/8...1/2": ≥ 5 μS/cm
	DN2,5 / 1/10": ≥ 10 μS/cm
	Agua fría desmineralizada:
	DN2,5...100 / 1/10...4": ≥ 20 μS/cm

Contenido en gases permitido (volumen)	≤ 5%

Contenido en sólidos permitido (volumen)	IFC 050: ≤ 10%
	IFC 100: ≤ 10%
	IFC 300: ≤ 70%

www.krohne.com
08/2918 - 4084944502 - TD OPTIFLUX 5000 SW R07 es
Condiciones de instalación

Instalación	Prestar atención para que el sensor de caudal esté siempre completamente lleno. Para más información vaya a Instalación en la página 18.
Dirección de caudal	Hacia adelante y hacia atrás. Una flecha en el sensor de caudal indica la dirección de caudal positiva.
Sección de entrada	\(\geq 5 \text{ DN} \) [sin interferencias del caudal, tras un codo simple de 90°] \(\geq 10 \text{ DN} \) [tras un codo doble = 2x 90°]
Sección de salida	\(\geq 2 \text{ DN} \)
Dimensiones y pesos	Para más información vaya a Dimensiones y pesos en la página 14.

Materiales

| Alojamiento del sensor | DN2,5...15 / 1/10...1/2": acero inoxidable 1.4408 / 316
|| DN25...100 / 1...4": acero inoxidable 1.4306 / 304L |
| Tubo de medida | Cerámica |
| Caja de conexión [sólo versión remota] |
| **Estándar:** Aluminio fundido a presión con recubrimiento de poliuretano
| **Opcional:** Acero inoxidable |
| Anillos de puesta a tierra |
| **Estándar:** Acero inoxidable
| **Opcional:** Hastelloy® C, titanio, tántalo
| Otros materiales bajo pedido.
| Los anillos de puesta a tierra se pueden omitir con la referencia virtual opcional para el convertidor de señal IFC 300. |
| Materiales de montaje |
| **Estándar:** manguitos de centrado de goma
| **Opcional:** espárragos y tuercas de acero inoxidable o acero galvanizado |
| Juntas |
| DN2,5...15 / 1/10...1/2": juntas tóricas: FKM, EPDM, FFKM
| DN25...100 / 1...4": juntas planas: PTFE relleno, grafito, PTFE / PF-29
| Otros materiales bajo pedido. |
| Electrods de medida |
| DN2,5...25 / 1/10...1": cermet
| DN40...100 / 1 1/2...4": platino |
Conexiones a proceso

<table>
<thead>
<tr>
<th>Estándar:</th>
<th>Opcional:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 1092-1</td>
<td></td>
</tr>
<tr>
<td>DN100: PN 16</td>
<td>DN100: PN 25</td>
</tr>
<tr>
<td>DN2,5…80: PN 40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estándar:</th>
<th>Opcional:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME</td>
<td></td>
</tr>
<tr>
<td>1/10…4": 150 lb</td>
<td>1/10…4": 300 lb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JIS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DN2,5…100: 10…20 K</td>
<td></td>
</tr>
</tbody>
</table>

Conexiones eléctricas

Para más información se remite a la documentación correspondiente del convertidor de señal.

<table>
<thead>
<tr>
<th>Cable de señal (sólo versiones remotas)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo A [DS]</td>
<td>En combinación con el convertidor de señal IFC 100 e IFC 300 Cable estándar, blindaje doble. Longitud máx.: 600 m / 1950 ft (dependiendo de la conductividad eléctrica y del sensor de medida).</td>
</tr>
<tr>
<td>Tipo B [BTS]</td>
<td>Sólo en combinación con el convertidor de señal IFC 300 Cable opcional, blindaje triple. Longitud máx.: 600 m / 1950 ft (dependiendo de la conductividad eléctrica y del sensor de medida).</td>
</tr>
<tr>
<td>E/S</td>
<td>Para más detalles sobre las opciones de E/S, transmisión de datos y protocolos inclusive, se remite a los datos técnicos del convertidor de señal correspondiente.</td>
</tr>
</tbody>
</table>
Aprobaciones y certificaciones

<table>
<thead>
<tr>
<th>CE</th>
<th>Este equipo cumple los requisitos legales de las directivas UE. Al identificarlo con el marcado CE, el fabricante certifica que el producto ha superado con éxito las pruebas correspondientes. Para obtener información exhaustiva sobre las directivas y normas UE y los certificados aprobados, consulte la declaración CE o en la página web del fabricante.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Áreas peligrosas</td>
<td>No Ex</td>
</tr>
<tr>
<td>ATEX</td>
<td>KEMA 04 ATEX 2126 x</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Para más detalles, se remite a la documentación Ex del sensor de caudal y del convertidor de señal.</td>
</tr>
<tr>
<td>FM</td>
<td>Clase I, Div 2, grupos A, B, C y D</td>
</tr>
<tr>
<td>CSA</td>
<td>Clase I, Div 2, grupos A, B, C y D</td>
</tr>
<tr>
<td></td>
<td>Clase III, Div 2, grupos F y G</td>
</tr>
<tr>
<td></td>
<td>Clase II, Div 2, grupos F y G</td>
</tr>
<tr>
<td>IECEx</td>
<td>En preparación</td>
</tr>
<tr>
<td>NEPSI</td>
<td>GYJ15.1313X</td>
</tr>
<tr>
<td></td>
<td>Ex e ia mb IIC T6...T3 y Ex de ia IIC T6...T3</td>
</tr>
<tr>
<td>Categoría de protección según IEC 529 / EN 60529</td>
<td>Estándar:</td>
</tr>
<tr>
<td></td>
<td>IP 66/67 [NEMA 4/4X/6]</td>
</tr>
<tr>
<td></td>
<td>Opcional:</td>
</tr>
<tr>
<td></td>
<td>IP 68 [NEMA 6P]</td>
</tr>
<tr>
<td></td>
<td>IP68 sólo disponible para la versión remota y con caja de conexión de acero inoxidable.</td>
</tr>
<tr>
<td></td>
<td>IP 67/69 con convertidor de señal [de acero inoxidable] IFC 100 SS</td>
</tr>
<tr>
<td>Higiene</td>
<td>Materiales homologados FDA</td>
</tr>
<tr>
<td>Prueba de choque</td>
<td>IEC 68-2-27</td>
</tr>
<tr>
<td></td>
<td>30 g para 18 ms</td>
</tr>
<tr>
<td>Prueba de vibraciones</td>
<td>IEC 68-2-64</td>
</tr>
<tr>
<td></td>
<td>f = 20 - 2000 Hz, rms = 4,5 g, t = 30 min.</td>
</tr>
</tbody>
</table>
2.2 Precisión de medida

Todo caudalímetro electromagnético se calibra por comparación directa del volumen. La calibración en húmedo valida el rendimiento del caudalímetro en las condiciones de referencia respecto a los límites de precisión.

Por lo general, los límites de precisión de los caudalímetros electromagnéticos son el resultado del efecto combinado de linealidad, estabilidad del punto cero e incertidumbre de calibración.

Condiciones de referencia

- Producto: agua
- Temperatura: +5...35°C / +41...95°F
- Presión de operación: 0,1...5 barg / 1,5...72,5 psig
- Sección de entrada: ≥ 5 DN
- Sección de salida: ≥ 2 DN

Figura 2-1:

X (m/s): velocidad de caudal
Y [%]: desviación del valor real medido (vm)
<table>
<thead>
<tr>
<th></th>
<th>Precisión</th>
<th>Curva</th>
</tr>
</thead>
<tbody>
<tr>
<td>En combinación con IFC 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN2,5...6 / 1/10...1/4"</td>
<td>0,3% del vm + 2 mm/s</td>
<td>③</td>
</tr>
<tr>
<td>DN10...100 / 3/8...4"</td>
<td>0,15% del vm + 1 mm/s</td>
<td>①</td>
</tr>
<tr>
<td>En combinación con IFC 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN2,5...6 / 1/10...1/4"</td>
<td>0,4% del vm + 1 mm/s</td>
<td>As ② + 0,1%</td>
</tr>
<tr>
<td>DN10...100 / 3/8...4"</td>
<td>0,3% del vm + 1 mm/s</td>
<td>②</td>
</tr>
<tr>
<td>En combinación con IFC 050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN2,5...6 / 1/10...1/4"</td>
<td>0,5% del vm + 1 mm/s</td>
<td>④</td>
</tr>
<tr>
<td>DN10...100 / 3/8...4"</td>
<td>0,5% del vm + 1 mm/s</td>
<td></td>
</tr>
</tbody>
</table>

Opcional para IFC050 e IFC100; calibración extendida en 2 puntos para una precisión mejorada. Para más información sobre la precisión mejorada, consulte la documentación del convertidor de señal correspondiente.
2.3 Dimensiones y pesos

| Versión remota: |
|-----------------|---|
| DN2,5...15 / 1/10...1/2” |
| a = 88 mm / 3,5”
| b = 139 mm / 5,5”
| c = 106 mm / 4,2”
| Altura total = H + a |

| Versión remota: |
|-----------------|---|
| DN25...100 / 1...4” |
| a = 88 mm / 3,5”
| b = 139 mm / 5,5”
| c = 106 mm / 4,2”
| Altura total = H + a |

| Versión compacta con IFC 300 |
|----------------|---|
| a = 155 mm / 6,1”
| b = 230 mm / 9,1”
| c = 260 mm / 10,2”
| Altura total = H + a |

| Versión compacta con IFC 100 (0°) |
|-------------------------------|---|
| a = 82 mm / 3,2”
| b = 161 mm / 6,3”
| c = 257 mm / 10,1”
| Altura total = H + a |

| Versión compacta con IFC 100 (45°) |
|-------------------------------|---|
| a = 186 mm / 7,3”
| b = 161 mm / 6,3”
| c = 184 mm / 2,7”
<p>| Altura total = H + a |</p>
<table>
<thead>
<tr>
<th>Versión compacta de acero inoxidable con IFC 100 SS (10°)</th>
<th></th>
<th>Versión compacta con IFC O50 (10°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = 100 mm / 4"</td>
<td></td>
<td>a = 100 mm / 4"</td>
</tr>
<tr>
<td>b = 187 mm / 7,36"</td>
<td></td>
<td>b = 157 mm / 6,18"</td>
</tr>
<tr>
<td>c = 270 mm / 10,63"</td>
<td></td>
<td>c = 260 mm / 10,24"</td>
</tr>
<tr>
<td>Altura total = H + a</td>
<td></td>
<td>Altura total = H + a</td>
</tr>
</tbody>
</table>

1 El valor puede variar según los prensaestopas utilizados.
Todos los datos proporcionados en las siguientes tablas se basan sólo en las versiones estándares del sensor de medida.

Especially para los tamaños nominales más pequeños del sensor de medida, el convertidor puede ser más grande que el sensor de medida.

Cabe observar que para las clasificaciones de la presión diferentes a la mencionada, las dimensiones pueden ser diferentes.

Para más información sobre las dimensiones del convertidor de señal, se remite a la documentación correspondiente.
DATOS TÉCNICOS

OPTIFLUX 5000

www.krohne.com 08/2018 - 4004944502 - TD OPTIFLUX 5000 SW R07 es

<table>
<thead>
<tr>
<th>Diámetro nominal</th>
<th>Dimensiones [mm]</th>
<th>Aprox. peso [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DN</td>
<td>L</td>
</tr>
<tr>
<td>2,5</td>
<td>65</td>
<td>123</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
<td>123</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>123</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>123</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>123</td>
</tr>
<tr>
<td>25</td>
<td>58</td>
<td>116</td>
</tr>
<tr>
<td>40</td>
<td>83</td>
<td>131</td>
</tr>
<tr>
<td>50</td>
<td>103</td>
<td>149</td>
</tr>
<tr>
<td>80</td>
<td>153</td>
<td>181</td>
</tr>
<tr>
<td>100</td>
<td>203</td>
<td>206</td>
</tr>
</tbody>
</table>

1. Longitud total de instalación del caudalímetro con anillos integrados: dimensión L + 2 x espesor de la junta.
2. Longitud de instalación total del caudalímetro sin anillos: sólo dimensión L.

Diámetro nominal

<table>
<thead>
<tr>
<th>Dimensiones [pulgadas]</th>
<th>Aprox. Peso [libras]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME</td>
<td>L</td>
</tr>
<tr>
<td>1/10"</td>
<td>2,56</td>
</tr>
<tr>
<td>1/8"</td>
<td>2,56</td>
</tr>
<tr>
<td>¼"</td>
<td>2,56</td>
</tr>
<tr>
<td>3/8"</td>
<td>2,56</td>
</tr>
<tr>
<td>½"</td>
<td>2,56</td>
</tr>
<tr>
<td>1"</td>
<td>2,28</td>
</tr>
<tr>
<td>1½"</td>
<td>3,27</td>
</tr>
<tr>
<td>2"</td>
<td>4,06</td>
</tr>
<tr>
<td>3"</td>
<td>6,02</td>
</tr>
<tr>
<td>4"</td>
<td>7,99</td>
</tr>
</tbody>
</table>

1. Longitud total de instalación del caudalímetro con anillos integrados: dimensión L + 2 x espesor de la junta.
2. Longitud de instalación total del caudalímetro sin anillos: sólo dimensión L.
3.1 Uso previsto

El operador es el único responsable del uso de los equipos de medida por lo que concierne a idoneidad, uso previsto y resistencia a la corrosión de los materiales utilizados con los líquidos medidos.

El fabricante no es responsable de los daños derivados de un uso impropio o diferente al previsto.

El caudalímetro OPTIFLUX 5000 mide la velocidad de caudal volumétrico de líquidos eléctricamente conductivos, ácidos, soluciones alcalinas, pastas y lodos, incluso con alto contenido en sólidos.

3.2 Notas generales sobre la instalación

Revise las cajas cuidadosamente por si hubiera algún daño o signo de manejo brusco. Informe del daño al transportista y a la oficina local del fabricante.

Compruebe la lista de repuestos para verificar que ha recibido todo lo que pidió.

Compruebe la placa de identificación del equipo para comprobar que el equipo entregado es el que indicó en su pedido. Compruebe en la placa del fabricante la impresión correcta del voltaje para su suministro.

3.2.1 Vibraciones

![Figura 3-1: Evite las vibraciones](image1)

3.2.2 Campo magnético

![Figura 3-2: Evite los campos magnéticos](image2)
3.3 Condiciones de instalación

3.3.1 Secciones de entrada y salida

Utilice secciones rectas de entrada y salida para evitar la distorsión de caudal o remolinos causados por codos o secciones en T.

![Figura 3-3: Secciones de entrada y salida recomendadas](image)

1 Consulte el capítulo “Codos en 2 o 3 dimensiones”
2 ≥ 2 DN

3.3.2 Codos en 2 o 3 dimensiones

![Figura 3-4: Sección de entrada al utilizar codos en 2 o 3 dimensiones aguas arriba respecto al caudalímetro](image)

Longitud de la sección de entrada: al utilizar codos en 2 dimensiones: ≥ 5 DN; codos en 3 dimensiones: ≥ 10 DN

_Codos en 2 dimensiones ocurren sólo en un plano vertical _o bien_ en un plano horizontal, mientras que _codos en 3 dimensiones ocurren en un plano tanto vertical como horizontal._
3.3.3 Sección en T

Figura 3-5: Distancia detrás de una sección en T

3.3.4 Codos

Evite el drenaje o llenado parcial del sensor de caudal
3.4 Descarga abierta

Figura 3-6: Instalación en frente de una descarga abierta

3.5 Desvío de la brida

Desviación máx. permitida de caras de bridas de tubería:

$L_{\text{máx.}} - L_{\text{mín.}} \leq 0,5 \text{ mm} / 0,02"$

Figura 3-7: Desviación de las bridas

1. $L_{\text{máx}}$
2. $L_{\text{mín}}$

3.6 Bomba

Figura 3-8: Instalación detrás de la bomba
3.7 Válvula de control

Figura 3-9: Instalación en frente de una válvula de control

3.8 Purga del aire y fuerzas de vacío

Figura 3-10: Purga del aire
1. $\geq 5\ m / 17\ ft$
2. Punto de ventilación del aire

Figura 3-11: Vacío
1. $\geq 5\ m / 17\ ft$
3.9 Posición de montaje

- Instale el sensor de caudal alineado con el eje del tubo.
- Las caras de las bridas del tubo deben estar paralelas entre ellas.

Figura 3-12: Posición de montaje
3.10 Montaje

3.10.1 Pares de apriete y presiones

- Se ruega utilizar pernos de acero inoxidable clase A2 / 6.9.
- Asegúrese de que las bridas de conexión son del tipo con la cara realizada (RF).

Figura 3-13: Apretar los pernos según un orden fijo, ver la figura.

Par de apriete máx.:
- Paso 1: aprox. el 50% del par de apriete máx.
- Paso 2: aprox. el 80% del par de apriete máx.
- Paso 3: el 100% del par de apriete máx. indicado en las tablas

EN 1092-1

<table>
<thead>
<tr>
<th>Diámetro nominal DN [mm]</th>
<th>Presión nominal PN</th>
<th>Presión de operación máx. admitida [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5…80</td>
<td>PN 40</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>PN 16</td>
<td>16</td>
</tr>
<tr>
<td>100</td>
<td>PN 25</td>
<td>25</td>
</tr>
</tbody>
</table>

ASME B16.5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10…4”</td>
<td>150 lb</td>
<td>230</td>
</tr>
<tr>
<td>1/10…3”</td>
<td>300 lb</td>
<td>580</td>
</tr>
</tbody>
</table>

- Presiones a 20°C / 68°F.
- Para temperaturas más elevadas, las clasificaciones de presión y temperatura son conformes a ASME B16.5.
Los valores de par especificados dependen de variables (temperatura, material de los pernos, material de las juntas, lubricantes, etc.) no controladas por el fabricante. Por lo tanto, los valores deben considerarse sólo indicativos.

EN 1092-1

<table>
<thead>
<tr>
<th>Tamaño nominal DN [mm]</th>
<th>Contrabridas y pernos</th>
<th>Par de apriete máx. admitido</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Junta: PTFE relleno / PTFE / PF29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presión nominal</td>
</tr>
<tr>
<td>2,5...10</td>
<td>PN 40</td>
<td>M12 x 141</td>
</tr>
<tr>
<td>15</td>
<td>PN 40</td>
<td>M12 x 141</td>
</tr>
<tr>
<td>25</td>
<td>PN 40</td>
<td>M12 x 141</td>
</tr>
<tr>
<td>40</td>
<td>PN 40</td>
<td>M16 x 176</td>
</tr>
<tr>
<td>50</td>
<td>PN 40</td>
<td>M16 x 203</td>
</tr>
<tr>
<td>80</td>
<td>PN 40</td>
<td>M16 x 261</td>
</tr>
<tr>
<td>100</td>
<td>PN 16</td>
<td>M16 x 303</td>
</tr>
<tr>
<td>100</td>
<td>PN 25</td>
<td>M20 x 176</td>
</tr>
</tbody>
</table>

ASME B16.5

<table>
<thead>
<tr>
<th>Tamaño nominal [pulgada]</th>
<th>Contrabridas y pernos</th>
<th>Par de apriete máx. admitido</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Junta: PTFE relleno / PTFE / PF29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presión nominal</td>
</tr>
<tr>
<td>1/10...3/8”</td>
<td>150 lb</td>
<td>1/2”UNC x 142</td>
</tr>
<tr>
<td>1/2”</td>
<td>150 lb</td>
<td>1/2”UNC x 142</td>
</tr>
<tr>
<td>1”</td>
<td>150 lb</td>
<td>1/2”UNC x 142</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>150 lb</td>
<td>1/2”UNC x 174</td>
</tr>
<tr>
<td>2”</td>
<td>150 lb</td>
<td>5/8”UNC x 215</td>
</tr>
<tr>
<td>3”</td>
<td>150 lb</td>
<td>5/8”UNC x 268</td>
</tr>
<tr>
<td>4”</td>
<td>150 lb</td>
<td>5/8”UNC x 318</td>
</tr>
</tbody>
</table>
4.1 Instrucciones de seguridad

Todo el trabajo relacionado con las conexiones eléctricas sólo se puede llevar a cabo con la alimentación desconectada. ¡Tome nota de los datos de voltaje en la placa de características!

¡Siga las regulaciones nacionales para las instalaciones eléctricas!

Para equipos que se empleen en zonas peligrosas, se aplican notas de seguridad adicionales; por favor consulte la documentación Ex.

Se deben seguir sin excepción alguna las regulaciones de seguridad y salud ocupacional regionales. Cualquier trabajo hecho en los componentes eléctricos del equipo de medida debe ser llevado a cabo únicamente por especialistas entrenados adecuadamente.

Compruebe la placa de identificación del equipo para comprobar que el equipo entregado es el que indicó en su pedido. Compruebe en la placa del fabricante la impresión correcta del voltaje para su suministro.

4.2 Puesta a tierra

El aparato debe estar conectado a tierra según la regulación para proteger al personal de descargas eléctricas.

Figura 4-1: Puesta a tierra

1. Tuberías de metal, sin recubrimiento interno. Puesta a tierra sin anillos de puesta a tierra.
2. Tuberías de metal con recubrimiento interno y tuberías no conductivas. Puesta a tierra sin anillos de puesta a tierra.
Para diámetro DN10 / 3/8” y DN15 / 1/2”, los anillos de puesta a tierra están integrados de serie en la construcción del sensor de caudal.

Anillos de puesta a tierra

Figura 4-2: Anillo de puesta a tierra número 1

Anillo de puesta a tierra número 1 (opcional para DN25...150 / 1...6”) : espesor : 3 mm / 0,1” (tántalo: 0,5 mm / 0,02”)

4.3 Referencia virtual para IFC 300 (versión C, W y F)

Figura 4-3: Referencia virtual

Requisitos mínimos:
- Tamaño: ≥ DN10 / 3/8”
- Conductividad eléctrica: ≥ 200 μS/cm
- Cable de señal: max. 50 m / 164 ft, tipo DS
KROHNE – Equipos de proceso y soluciones de medida

- Caudal
- Nivel
- Temperatura
- Presión
- Análisis de procesos
- Servicios

Oficina central KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Alemania)
Tel.: +49 203 301 0
Fax: +49 203 301 10389
info@krohne.com

La lista actual de los contactos y direcciones de KROHNE se encuentra en:
www.krohne.com