Электромагнитный расходомер в сэндвич-исполнении

- Высочайшая точность и долговременная стабильность
- Для высокоагрессивных и абразивных измеряемых сред
- Полная устойчивость к вакууму благодаря футеровке из высокотехнологичной керамики

Документация является полной только при использовании совместно с соответствующей документацией на преобразователь сигналов.
Содержание

1 Особенности изделия

| 1.1 | Техническое решение с использованием высокотехнологичной керамики | 3 |
| 1.2 | Опции и модификации | 5 |
| 1.3 | Принцип измерения | 6 |

2 Технические характеристики

| 2.1 | Технические характеристики | 7 |
| 2.2 | Точность измерений | 13 |
| 2.3 | Габаритные размеры и вес | 15 |

3 Монтаж

| 3.1 | Назначение прибора | 19 |
| 3.2 | Указания по монтажу |
| 3.2.1 | Вибрация | 19 |
| 3.2.2 | Магнитное поле | 19 |
| 3.3 | Условия установки |
| 3.3.1 | Прямые участки на входе и выходе прибора | 20 |
| 3.3.2 | Отводы типа 2D или 3D | 20 |
| 3.3.3 | Т-образная секция | 21 |
| 3.3.4 | Отводы | 21 |
| 3.4 | Свободный слив | 22 |
| 3.5 | Отклонение фланцев | 22 |
| 3.6 | Насос | 22 |
| 3.7 | Регулирующий клапан | 23 |
| 3.8 | Воздушный клапан и воздействие вакуума | 23 |
| 3.9 | Монтажное положение | 24 |
| 3.10 | Монтаж |
| 3.10.1 | Усилие затяжки и давление | 25 |

4 Электрический монтаж

| 4.1 | Правила техники безопасности | 27 |
| 4.2 | Заземление | 27 |
| 4.3 | Виртуальное заземление для преобразователя сигналов IFC 300 (версии C, W и F) | 29 |
1.1 Техническое решение с использованием высокотехнологичной керамики

**OPTIFLUX 5000** представляет собой один из наиболее точных расходомеров, доступных сегодня на рынке. Это результат использования специальной конструкции трубы с коническими частями, позволяющей оптимизировать профиль потока. Ведущие метрологические институты используют **OPTIFLUX 5000** в качестве своего контрольного прибора в комбинации с высокопроизводительным преобразователем сигналов IFC 300.

![Diagram of OPTIFLUX 5000](image)

1. Сэндвич-конструкция
2. Керамическая футеровка
3. Металлокерамические или платиновые электроды
Особенности изделия

Отличительные особенности
- Превосходная долговременная стабильность и точность измерений
- Уникальная конструкция измерительной трубы
- Вплавляемые металллокерамические или платиновые электроды
- Эталон коммерческого учёта международных метрологических организаций
- Для высокоагрессивных и абразивных жидкостей
- Устойчивость к полному вакууму
- Футеровка из высокотехнологичной керамики
- Устойчивость к термическим ударам

Отрасли промышленности
- Химическая
- Целлюлозно-бумажная
- Сектор водоподготовки и очистки сточных вод
- Горнорудная и горнодобывающая
- Производство продуктов питания и напитков
- Станкостроение

Области применения
- Использование в качестве контрольного прибора
- Точное дозирование присадок по объёму
- Впрыск химических реагентов
- Для кислот, щелочей, абразивных шламов и многих других агрессивных сред
1.2 Опции и модификации

ОПТИФЛУКС 5000 в сэндвич-исполнении доступен в диапазоне диаметров от DN2,5 до DN100 / от 1/10” до 4”.
Первичный преобразователь доступен в широком диапазоне различных классов давления и используется в комбинации с преобразователями сигналов IFC 050, IFC 100 и IFC 300.
Он может быть заказан в исполнении из нержавеющей стали, а также опционально доступен для применения во взрывоопасных зонах.
Заземляющие кольца доступны в исполнении из высококачественных сплавов.

Монтаж ОПТИФЛУКС 5000 становится ещё проще при выборе опции виртуального заземления.
Заземляющие кольца могут при этом не использоваться. Эта опция доступна только в комбинации с преобразователем сигналов IFC 300.
1.3 Принцип измерения

Электропроводная жидкость протекает внутри электрически изолированной трубы в магнитном поле. Данное магнитное поле создаётся током, проходящим через две катушки возбуждения. В жидкости возникает напряжение $U$:

$$U = v \times k \times B \times D$$

где:
- $v$ = средняя скорость потока
- $k$ = фактор коррекции, учитывающий геометрию трубы
- $B$ = сила магнитного поля
- $D$ = внутренний диаметр расходомера

Напряжение сигнала $U$ регистрируется двумя электродами и является пропорциональным средней скорости потока $v$, а следовательно и расходу $Q$. Преобразователь сигналов усиливает напряжение сигнала, отфильтровывает все помехи, а затем преобразует его в выходные сигналы.

![Diagram](image.png)

Рисунок 1-1: Принцип измерения

1. Катушки возбуждения
2. Магнитное поле
3. Электроды
4. Индуцированное напряжение (пропорционально скорости потока)
2.1 Технические характеристики

- Приведенные ниже данные распространяются на общие случаи применения. Если требуются данные, имеющие отношение к конкретной рабочей позиции, следует обратиться в региональное представительство нашей фирмы.
- Дополнительная информация (сертификаты, специализированный инструментарий, программное обеспечение...) и полный пакет документации на изделие доступны для загрузки бесплатно с Интернет-сайта (в разделе "Download Center" - "Документация и ПО").

Измерительная система

<table>
<thead>
<tr>
<th>Принцип измерения</th>
<th>Закон Фарадея</th>
</tr>
</thead>
<tbody>
<tr>
<td>Область применения</td>
<td>Электропроводные жидкости</td>
</tr>
</tbody>
</table>

Параметры измерения

<table>
<thead>
<tr>
<th>Первоначальная измеряемая величина</th>
<th>Скорость потока</th>
</tr>
</thead>
<tbody>
<tr>
<td>Второначальная измеряемая величина</td>
<td>Объёмный расход, массовый расход, электропроводность, температура обмотки</td>
</tr>
</tbody>
</table>

Конструктивные особенности

<table>
<thead>
<tr>
<th>Отличительные</th>
<th>Сэндвич-исполнение с оптимизированной измерительной трубой</th>
</tr>
</thead>
<tbody>
<tr>
<td>Модульная конструкция</td>
<td>Измерительная система состоит из первоначального преобразователя и преобразователя сигналов. Она доступна как в компактном, так и в разделном исполнении. Более подробная информация о преобразователе сигналов представлена в документации на преобразователь сигналов.</td>
</tr>
<tr>
<td>Компактное исполнение</td>
<td>С преобразователем сигналов IFC 050: OPTIFLUX 5050 C</td>
</tr>
<tr>
<td></td>
<td>С преобразователем сигналов IFC 100: OPTIFLUX 5100 C</td>
</tr>
<tr>
<td></td>
<td>С преобразователем сигналов IFC 300: OPTIFLUX 5300 C</td>
</tr>
<tr>
<td></td>
<td>Расходомер DN2,5...15 / 1/10...1/2&quot; доступен только с преобразователем сигналом в корпусе из алюминия</td>
</tr>
<tr>
<td>Разделиное исполнение</td>
<td>Версия для настенного монтажа (W) с преобразователем сигналов IFC 050: OPTIFLUX 5050 W</td>
</tr>
<tr>
<td></td>
<td>Версия для настенного монтажа (W) с преобразователем сигналов IFC 100: OPTIFLUX 5100 W</td>
</tr>
<tr>
<td></td>
<td>Поливая версия (F), версия для настенного монтажа (W) или для монтажа в стойку (R) с преобразователем сигналов IFC 300: OPTIFLUX 5300 F, W или R</td>
</tr>
<tr>
<td>Номинальный диаметр</td>
<td>DN2,5...100 / 1/10...4&quot;</td>
</tr>
</tbody>
</table>
Теплообменники

<table>
<thead>
<tr>
<th>Максимальная погрешность измерения</th>
<th>IFC 050: до 0,5% от измеренного значения ± 1 мм/с</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IFC 100: до 0,3% от измеренного значения ± 1 мм/с</td>
</tr>
<tr>
<td></td>
<td>IFC 300: до 0,15% от измеренного значения ± 1 мм/с</td>
</tr>
<tr>
<td>Максимальная погрешность измерения зависит от условий монтажа.</td>
<td></td>
</tr>
<tr>
<td>Повторяемость</td>
<td>±0,1% от ИЗ, минимально 1 мм/с</td>
</tr>
<tr>
<td>Калибровка</td>
<td><strong>Стандартно</strong>: калибровка по 2-ум точкам методом прямого сличения объёмов.</td>
</tr>
<tr>
<td></td>
<td><strong>Опционально</strong>: специальная калибровка по запросу.</td>
</tr>
</tbody>
</table>

Рабочие условия

<table>
<thead>
<tr>
<th>Температура измеряемой среды</th>
<th>Компактное исполнение: -40...+140°C / -40...+284°F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DN 2,5...15 / 1/10...1/2&quot;: -20...+120°C / -4...+248°F</td>
</tr>
<tr>
<td>Раздельное исполнение:</td>
<td>-40...+180°C / -40...+356°F</td>
</tr>
<tr>
<td></td>
<td>DN 2,5...15 / 1/10...1/2&quot;: -20...+180°C / -4...+356°F</td>
</tr>
<tr>
<td>Для взрывозащищённых исполнений действуют другие температурные диапазоны. Более подробная информация представлена в документации на приборы взрывозащищённого исполнения.</td>
<td></td>
</tr>
<tr>
<td>Максимальная скорость изменения температуры (температурный шок)</td>
<td>DN2,5...25 / 1/10...1&quot;: &lt; 3 K/с</td>
</tr>
<tr>
<td></td>
<td>DN40...100 / 11/2...4&quot;: &lt; 0,2 K/с</td>
</tr>
<tr>
<td>Температура окружающей среды</td>
<td>-40...+65°C / -40...+149°F</td>
</tr>
<tr>
<td>Для взрывозащищённых исполнений действуют другие температурные диапазоны. Более подробная информация представлена в документации на приборы взрывозащищённого исполнения.</td>
<td></td>
</tr>
<tr>
<td>Температура хранения</td>
<td>-50...+70°C / -58...+158°F</td>
</tr>
<tr>
<td>Диапазон измерения</td>
<td>-12...+12 м/с / -40...+40 фут/с</td>
</tr>
<tr>
<td>Давление</td>
<td></td>
</tr>
<tr>
<td>Давление окружающей среды</td>
<td>Атмосферное</td>
</tr>
</tbody>
</table>

Номинальное давление фланцев

<table>
<thead>
<tr>
<th>EN 1092-1</th>
<th><strong>Стандартно</strong>:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DN100: PN 16</td>
</tr>
<tr>
<td></td>
<td>DN2,5...80: PN 40</td>
</tr>
<tr>
<td>Опционально:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DN100: PN 25</td>
</tr>
<tr>
<td>ASME B16.5</td>
<td><strong>Стандартно</strong>:</td>
</tr>
<tr>
<td></td>
<td>1/10...4&quot;: 150 lb</td>
</tr>
<tr>
<td>Опционально:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/10...4&quot;: 300 lb</td>
</tr>
<tr>
<td>Нагрузка под вакуумом</td>
<td>0 мбар / 0 фунт/кв.дюйм</td>
</tr>
</tbody>
</table>
### Технические характеристики

<table>
<thead>
<tr>
<th>Диапазоны давления для взрывонепроницаемого наружного корпуса</th>
<th>Устойчивость к давлению до 40 бар / 580 фунт/кв.дюйм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рабочее давление до ~ 160 бар / 2320 фунт/кв.дюйм</td>
<td></td>
</tr>
</tbody>
</table>

### Химические свойства

<table>
<thead>
<tr>
<th>Физическое состояние</th>
<th>Электропроводность</th>
</tr>
</thead>
<tbody>
<tr>
<td>Жидкости</td>
<td>Не вода:</td>
</tr>
<tr>
<td></td>
<td>DN25...100 / 1...4&quot;: ≥ 1 мкСм/см</td>
</tr>
<tr>
<td></td>
<td>DN4...15 / 3/8...1/2&quot;: ≥ 5 мкСм/см</td>
</tr>
<tr>
<td></td>
<td>DN2,5 / 1/10&quot;: ≥ 10 мкСм/см</td>
</tr>
<tr>
<td></td>
<td>Деминерализованная холодная вода:</td>
</tr>
<tr>
<td></td>
<td>DN2,5...100 / 1/10...4&quot;: ≥ 20 мкСм/см</td>
</tr>
</tbody>
</table>

Допустимое содержание газовых включений (по объёму) ≤ 5%

Допустимое содержание твёрдых включений (по объёму)
- IFC 050: ≤ 10%
- IFC 100: ≤ 10%
- IFC 300: ≤ 70%
### Условия установки

<table>
<thead>
<tr>
<th>Установка</th>
<th>Необходимо обеспечить постоянное заполнение первичного преобразователя.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Направление потока</td>
<td>Прямое и обратное.</td>
</tr>
<tr>
<td>Прямой участок на входе</td>
<td>≥ 5 DN (без нарушения профиля потока, после одинарного отвода 90°)</td>
</tr>
<tr>
<td></td>
<td>≥ 10 DN (после двойного отвода = 2 x 90°)</td>
</tr>
<tr>
<td>Прямой участок на выходе</td>
<td>≥ 2 DN</td>
</tr>
<tr>
<td>Габаритные размеры и вес</td>
<td>По дополнительным данным смотрите Габаритные размеры и вес на странице 15.</td>
</tr>
</tbody>
</table>

### Материалы

<table>
<thead>
<tr>
<th>Корпус первичного преобразователя</th>
<th>DN2,5...15 / 1/10...1/2&quot;: нержавеющая сталь 1.4408 / 316</th>
</tr>
</thead>
<tbody>
<tr>
<td>Измерительная труба</td>
<td>Керамика</td>
</tr>
<tr>
<td>Клеммная коробка (только для разделного исполнения)</td>
<td>Стандартно: Литой алюминий с полиуретановым покрытием</td>
</tr>
<tr>
<td></td>
<td>Опционально: Нержавеющая сталь</td>
</tr>
<tr>
<td>Заземляющие кольца</td>
<td>Стандартно: Нержавеющая сталь</td>
</tr>
<tr>
<td></td>
<td>Опционально: Hastelloy® C, титан, тантал</td>
</tr>
<tr>
<td></td>
<td>Другие материалы по запросу.</td>
</tr>
<tr>
<td></td>
<td>Заземляющие кольца могут не использоваться при наличии опции виртуального заземления для преобразователя сигналов IFC 300.</td>
</tr>
<tr>
<td>Крепёжные материалы</td>
<td>Стандартно: резиновые центрирующие втулки</td>
</tr>
<tr>
<td></td>
<td>Опционально: шпильки и гайки из нержавеющей или оцинкованной стали</td>
</tr>
<tr>
<td>Уплотнительные прокладки</td>
<td>DN2,5...15 / 1/10...1/2&quot;: уплотнительные кольца: FKM, ЭПДМ, FFKM</td>
</tr>
<tr>
<td></td>
<td>DN25...100 / 1...4&quot;: плоские уплотнительные прокладки: ПТФЭ с наполнением, графит, ПТФЭ / PF-29</td>
</tr>
<tr>
<td>Измерительные электроды</td>
<td>DN2,5...25 / 1/10...1&quot;: металлокерамика</td>
</tr>
<tr>
<td></td>
<td>DN40...100 / 1 1/2...4&quot;: платина</td>
</tr>
</tbody>
</table>
Технологические присоединения

<table>
<thead>
<tr>
<th>EN 1092-1</th>
<th>Стандартно:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN100: PN 16</td>
<td></td>
</tr>
<tr>
<td>DN2,5…80: PN 40</td>
<td></td>
</tr>
<tr>
<td>Опционально:</td>
<td></td>
</tr>
<tr>
<td>DN100: PN 25</td>
<td></td>
</tr>
<tr>
<td>ASME</td>
<td>Стандартно:</td>
</tr>
<tr>
<td>1/10…4&quot;: 150 lb</td>
<td></td>
</tr>
<tr>
<td>Опционально:</td>
<td></td>
</tr>
<tr>
<td>1/10…4&quot;: 300 lb</td>
<td></td>
</tr>
<tr>
<td>JIS</td>
<td>DN2,5…100: 10…20 K</td>
</tr>
</tbody>
</table>

Электрические подключения

Для получения дополнительной информации обратитесь к соответствующей документации на преобразователь сигналов.

<table>
<thead>
<tr>
<th>Сигнальный кабель (только для раздельного исполнения)</th>
<th>В комбинации с преобразователем сигналов IFC 100 и IFC 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип А (DS)</td>
<td>Стандартный кабель с двойным экранированием. Макс. длина: 600 м / 1950 фут (в зависимости от электропроводности измеряемой среды и исполнения первого преобразователя).</td>
</tr>
<tr>
<td>Тип В (BTS)</td>
<td>Только в комбинации с преобразователем сигналов IFC 300</td>
</tr>
<tr>
<td></td>
<td>Опционально поставляемый кабель с тройным экранированием. Макс. длина: 600 м / 1950 фут (в зависимости от электропроводности измеряемой среды и исполнения первого преобразователя).</td>
</tr>
<tr>
<td>Вх/Вых</td>
<td>Более подробная информация по вариантам входных/выходных сигналов, включая передаваемые данные и протоколы, представлена в технических данных на соответствующий преобразователь сигналов.</td>
</tr>
</tbody>
</table>
### Допуски и сертификаты

<table>
<thead>
<tr>
<th>CE</th>
<th>Устройство соответствует обязательным требованиям директив Европейского Союза (EU). Изготовитель удостоверяет успешно проведённые испытания устройства нанесением маркировки CE. Полученная информация о директивах и стандартах EU, а также действующих сертификатах представлена в декларации соответствия EU или на веб-сайте производителя.</th>
</tr>
</thead>
</table>

### Взрывоопасные зоны

<table>
<thead>
<tr>
<th>Не-Ex</th>
<th>Стандартно</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX</td>
<td>KEMA 04 ATEX 2126 X</td>
</tr>
<tr>
<td></td>
<td>ATEX III 2 GD Ex me ia IIC T6...T3</td>
</tr>
<tr>
<td></td>
<td>ATEX III 2 GD Ex de ia IIC T6...T3</td>
</tr>
<tr>
<td></td>
<td>Более подробная информация представлена в документации на первичный преобразователь и преобразователь сигналов взрывозащищённого исполнения.</td>
</tr>
</tbody>
</table>

| FM | Класс I, кат. 2, группы A, B, C и D |
|    | Класс II, кат. 2, группы F и G |
|    | Класс III, кат. 2, группы F и G |

| CSA | Класс I, кат. 2, группы A, B, C и D |
|    | Класс II, кат. 2, группы F и G |

| IECEx | В процессе подготовки |

| NEPSI | GYJ15.1313X |
|       | Ex e ia mb IIC T6...T3 и Ex d e ia IIC T6...T3 |

### Степень пылевлагозащиты в соответствии с IEC 529 / EN 60529

<table>
<thead>
<tr>
<th>Стандартно:</th>
<th>IP 66/67 (NEMA 4/4X/6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опционально:</td>
<td>IP 68 (NEMA 6P)</td>
</tr>
<tr>
<td>Степень пылевлагозащиты IP 68 доступна только для конструкций раздельного исполнения и версий с клеммной коробкой из нержавеющей стали.</td>
<td></td>
</tr>
<tr>
<td>IP 67/69 с преобразователем сигналов (из нержавеющей стали) IFC 100</td>
<td></td>
</tr>
</tbody>
</table>

### Гигиенические сертификаты

| Материалы, сертифицированные в соответствии с требованиями FDA. |

### Испытание на ударную прочность

| IEC 68-2-27 |
| 30 г за 18 мс |

### Испытание на виброустойчивость

| IEC 68-2-64 |
| f = 20 - 2000 Гц, среднеквадратичное значение = 4.5 g, t = 30 мин. |
2.2 Точность измерений

Каждый электромагнитный расходомер калибруется методом прямого сличения объёмов. Калибровка на калибровочной установке позволяет оценить пределы погрешности расходомера при референтных условиях.

Пределы погрешности электромагнитных расходомеров обычно являются результатом комбинированного воздействия линейности, стабильности нулевой точки и погрешности калибровки.

Условия поверки

- Измеряемая среда: вода
- Температура: +5...35°C / +41...95°F
- Рабочее давление: 0,1...5 бар изб / 1,5...72,5 фунт/кв.дойм изб
- Прямой участок на входе: ≥ 5 DN
- Прямой участок на выходе: ≥ 2 DN

Рисунок 2.1:

X [m/s]: скорость потока
Y [%]: отклонение от актуально измеренного значения (ИЗ)
В комбинации с преобразователем сигналов IFC 300

<table>
<thead>
<tr>
<th></th>
<th>Погрешность</th>
<th>Кривая</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN2,5...6 / 1/10...1/4&quot;</td>
<td>0,3% от ИЗ + 2 мм/с</td>
<td>3</td>
</tr>
<tr>
<td>DN10...100 / 3/8...4&quot;</td>
<td>0,15% от ИЗ + 1 мм/с</td>
<td>1</td>
</tr>
</tbody>
</table>

В комбинации с преобразователем сигналов IFC 100

<table>
<thead>
<tr>
<th></th>
<th>Погрешность</th>
<th>Кривая</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN2,5...6 / 1/10...1/4&quot;</td>
<td>0,4% от ИЗ + 1 мм/с</td>
<td>Как 2 + 0,1%</td>
</tr>
<tr>
<td>DN10...100 / 3/8...4&quot;</td>
<td>0,3% от ИЗ + 1 мм/с</td>
<td>2</td>
</tr>
</tbody>
</table>

В комбинации с преобразователем сигналов IFC 050

<table>
<thead>
<tr>
<th></th>
<th>Погрешность</th>
<th>Кривая</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN2,5...6 / 1/10...1/4&quot;</td>
<td>0,5% от ИЗ + 1 мм/с</td>
<td>4</td>
</tr>
<tr>
<td>DN10...100 / 3/8...4&quot;</td>
<td>0,5% от ИЗ + 1 мм/с</td>
<td></td>
</tr>
</tbody>
</table>

Опционально для IFC 050 и IFC 100: расширенная калибровка по 2-ум точкам для гарантии оптимизированной погрешности.
Более подробная информация по оптимизированной погрешности представлена в соответствующей документации на преобразователь сигналов.
### 2.3 Габаритные размеры и вес

| Разделное исполнение: DN2.5...15 / 1/10...1/2" | ![Diagram](image1.png) | a = 88 мм / 3,5“  
b = 139 мм / 5,5“  
c = 106 мм / 4,2“  
Общая высота = H + a |
| Разделное исполнение: DN25...100 / 1...4“ | ![Diagram](image2.png) | a = 88 мм / 3,5“  
b = 139 мм / 5,5“  
c = 106 мм / 4,2“  
Общая высота = H + a |
| Компактное исполнение с преобразователем сигналов IFC 300 | ![Diagram](image3.png) | a = 155 мм / 6,1“  
b = 230 мм / 9,1“  
c = 260 мм / 10,2“  
Общая высота = H + a |
| Компактное исполнение с преобразователем сигналов IFC 100 (0°) | ![Diagram](image4.png) | a = 82 мм / 3,2“  
b = 161 мм / 6,3“  
c = 257 мм / 10,1“  
Общая высота = H + a |
| Компактное исполнение с преобразователем сигналов IFC 100 (45°) | ![Diagram](image5.png) | a = 186 мм / 7,3“  
b = 161 мм / 6,3“  
c = 184 мм / 2,7“  
Общая высота = H + a |
### Технические характеристики

<table>
<thead>
<tr>
<th>Компактное исполнение с преобразователем сигналов из нержавеющей стали IFC 100 (10°)</th>
<th>a = 100 мм / 4&quot;</th>
<th>b = 187 мм / 7,36° ¹</th>
<th>c = 270 мм / 10,63&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая высота = H + a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Компактное исполнение с преобразователем сигналов IFC 050 (10°)</th>
<th>a = 100 мм / 4&quot;</th>
<th>b = 157 мм / 6,18° ¹</th>
<th>c = 260 мм / 10,24&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая высота = H + a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Значение может варьироваться в зависимости от используемых кабельных вводов.
Рисунок 2-2: Элементы конструкции DN2,5...15 / 1/10...1/2”
1 Уплотнительное кольцо
2 Заземляющее кольцо

Рисунок 2-3: Элементы конструкции DN25...100 / 1...4”
1 Применение без заземляющих колец
2 Уплотнительная прокладка

- Все данные в следующих таблицах приводятся только для стандартных версий первичного преобразователя.
- Особенно при небольших номинальных размерах первичного преобразователя, преобразователь сигналов может быть больше, чем первичный преобразователь.
- Обратите внимание, что при номинальном давлении, отличном от указанного, размеры могут отличаться.
- Полную информацию о габаритных размерах преобразователя сигналов смотрите в соответствующей документации.
### Технические характеристики

<table>
<thead>
<tr>
<th>Номинальный диаметр</th>
<th>Размеры [мм]</th>
<th>Прибл. вес [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>2,5</td>
<td>65 ①</td>
<td>123</td>
</tr>
<tr>
<td>4</td>
<td>65 ①</td>
<td>123</td>
</tr>
<tr>
<td>6</td>
<td>65 ①</td>
<td>123</td>
</tr>
<tr>
<td>10</td>
<td>65 ①</td>
<td>123</td>
</tr>
<tr>
<td>15</td>
<td>65 ①</td>
<td>123</td>
</tr>
<tr>
<td>25</td>
<td>58 ①</td>
<td>116</td>
</tr>
<tr>
<td>40</td>
<td>83 ①</td>
<td>131</td>
</tr>
<tr>
<td>50</td>
<td>103 ①</td>
<td>149</td>
</tr>
<tr>
<td>80</td>
<td>153 ①</td>
<td>181</td>
</tr>
<tr>
<td>100</td>
<td>203 ①</td>
<td>206</td>
</tr>
</tbody>
</table>

1. Общая установочная длина расходомера со встроенными кольцами: размер L = 2 x толщина прокладки.
2. Общая установочная длина расходомера без колец: только размер L.

<table>
<thead>
<tr>
<th>Номинальный диаметр</th>
<th>Размеры [дюйм]</th>
<th>Прибл. вес [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>1/10&quot;</td>
<td>2,56 ①</td>
<td>4,84</td>
</tr>
<tr>
<td>1/8&quot;</td>
<td>2,56 ①</td>
<td>4,84</td>
</tr>
<tr>
<td>½&quot;</td>
<td>2,56 ①</td>
<td>4,84</td>
</tr>
<tr>
<td>3/8&quot;</td>
<td>2,56 ①</td>
<td>4,84</td>
</tr>
<tr>
<td>¼&quot;</td>
<td>2,56 ①</td>
<td>4,84</td>
</tr>
<tr>
<td>1&quot;</td>
<td>2,28 ①</td>
<td>4,57</td>
</tr>
<tr>
<td>1½&quot;</td>
<td>3,27 ①</td>
<td>5,16</td>
</tr>
<tr>
<td>2&quot;</td>
<td>4,06 ①</td>
<td>5,87</td>
</tr>
<tr>
<td>3&quot;</td>
<td>6,02 ①</td>
<td>7,13</td>
</tr>
<tr>
<td>4&quot;</td>
<td>7,99 ①</td>
<td>8,11</td>
</tr>
</tbody>
</table>

1. Общая установочная длина расходомера со встроенными кольцами: размер L = 2 x толщина прокладки.
2. Общая установочная длина расходомера без колец: только размер L.
3.1 Назначение прибора

Полная ответственность за использование измерительных приборов в соответствии с назначением и условиями применения, с учетом коррозионной устойчивости материалов по отношению к среде измерения, лежит исключительно на пользователе.

Производитель не несет ответственности за неисправность, которая является результатом ненадлежащего использования или применения изделия не по назначению.

Расходомер OPTIFLUX 5000 предназначен для измерения объёмного расхода электропроводных жидкостей, кислот, щелочных растворов, паст и суспензий, в том числе с высоким содержанием твёрдых включений.

3.2 Указания по монтажу

Тщательно обследуйте картонную тару на наличие повреждений или признаков небрежного обращения. Проинформируйте о повреждениях перевозчика и региональный офис фирмы-изготовителя.

Сверьтесь с упаковочным ведомостью на предмет получения груза в полной комплектации в соответствии с заказанными позициями.

Обратите внимание на заводскую табличку прибора и убедитесь в том, что поставленный прибор соответствует данным заказа. Проверьте правильность напряжения питания, значение которого выбрано на заводской табличке.

3.2.1 Вибрация

Рисунок 3-1: Избегайте вибрации

3.2.2 Магнитное поле

Рисунок 3-2: Избегайте влияния магнитных полей
3.3 Условия установки

3.3.1 Прямые участки на входе и выходе прибора

Используйте прямые участки трубы до и после прибора, чтобы предотвратить искажения потока или завихрения, вызываемые изгибами трубопровода и T-образными элементами.

Рисунок 3-3: Рекомендуемые длины прямых участков на входе и выходе прибора

1. Смотрите главу "Отводы типа 2D или 3D"
2. ≥ 2 DN

3.3.2 Отводы типа 2D или 3D

Рисунок 3-4: Прямой участок на входе при использовании отводов типа 2D и/или 3D перед расходомером

Длина прямого участка на входе: при использовании отводов, расположенных в 2 плоскостях: ≥ 5 DN; при использовании отводов, расположенных в 3 плоскостях: ≥ 10 DN

Отводы типа 2D возможны только в вертикальной или горизонтальной плоскости, в то время как отводы типа 3D возможны как в вертикальной, так и в горизонтальной плоскости.
3.3.3 Т-образная секция

Рисунок 3-5: Расстояние после Т-образной секции

① ≥ 10 DN

3.3.4 Отводы

Избегайте опустошения или частичного заполнения первичного преобразователя
3.4 Свободный слив

![Diagram of free discharge](image)

Рисунок 3-6: Монтаж перед открытым сливом

3.5 Отклонение фланцев

Максимально допустимое отклонение между уплотнительными поверхностями фланцев:

\[ L_{\text{макс.}} - L_{\text{мин.}} \leq 0,5 \text{ мм} / 0,02" \]

![Diagram of flange displacement](image)

Рисунок 3-7: Смещение фланцев

1. \( L_{\text{макс.}} \)
2. \( L_{\text{мин.}} \)

3.6 Насос

![Diagram of pump installation](image)

Рисунок 3-8: Монтаж после насоса
3.7 Регулирующий клапан

Рисунок 3-9: Монтаж перед регулирующим клапаном

3.8 Воздушный клапан и воздействие вакуума

Рисунок 3-10: Воздушный клапан

1. ≥ 5 м / 17 фут
2. Место установки воздушного дренажного клапана

Рисунок 3-11: Вакуум

1. ≥ 5 м / 17 фут
3.9 Монтажное положение

- Установите первичный преобразователь в трубопровод параллельно его оси.
- Уплотнительные поверхности фланцев должны располагаться параллельно друг другу.
3.10 Монтаж

3.10.1 Усилие затяжки и давление

- Используйте болты из нержавеющей стали класса А2 / 6.9.
- Убедитесь, что присоединительные фланцы имеют плоскую выступающую поверхность (RF).

Рисунок 3-13: Затяните болты в следующем порядке (смотрите рисунок):

Макс. усилие затяжки:
- Шаг 1: приблизительно 50% от максимального усилия затяжки
- Шаг 2: приблизительно 80% от максимального усилия затяжки
- Шаг 3: 100% от максимального усилия затяжки, указанного в таблице

**EN 1092-1**

<table>
<thead>
<tr>
<th>Типоразмер DN [мм]</th>
<th>Номинальное давление</th>
<th>Макс. допустимое рабочее давление [бар]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5...80</td>
<td>PN 40</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>PN 16</td>
<td>16</td>
</tr>
<tr>
<td>100</td>
<td>PN 25</td>
<td>25</td>
</tr>
</tbody>
</table>

**ASME B 16.5**

<table>
<thead>
<tr>
<th>Типоразмер [дюйм]</th>
<th>Номинальное давление</th>
<th>Макс. допустимое рабочее давление [фунт/кв.дюйм изб]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10...4&quot;</td>
<td>150 lb</td>
<td>230</td>
</tr>
<tr>
<td>1/10...3&quot;</td>
<td>300 lb</td>
<td>580</td>
</tr>
</tbody>
</table>

- Давление при 20°C / 68°F.
- При более высоких температурах номинальное давление и диапазон температур соответствуют стандарту ASME B16.5.
Указанные значения усилия затяжки зависят от различных показателей (температура, материал болтов, материал уплотнительных прокладок, смазочные материалы и т.д.), которые не контролируются производителем. Поэтому данные значения следует рассматривать только в качестве ориентировочных.

**EN 1092-1**

<table>
<thead>
<tr>
<th>Номинальный диаметр DN [мм]</th>
<th>Ответные фланцы и болты</th>
<th>Максимально допустимое усилие затяжки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Уплотнительная прокладка: ПТФЭ с наполнением / ПТФЭ / PF29</td>
</tr>
<tr>
<td></td>
<td>Номинальное значение</td>
<td>Номинальный диаметр</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2,5...10</td>
<td>2,5...10</td>
<td>PN 40</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>PN 40</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>PN 40</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>PN 40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>PN 40</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>PN 40</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>PN 16</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>PN 25</td>
</tr>
</tbody>
</table>

**ASME B 16.5**

<table>
<thead>
<tr>
<th>Номинальный диаметр [дюйм]</th>
<th>Ответные фланцы и болты</th>
<th>Максимально допустимое усилие затяжки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Уплотнительные прокладки: ПТФЭ с наполнением / ПТФЭ / PF29</td>
</tr>
<tr>
<td></td>
<td>Номинальное значение</td>
<td>Номинальный диаметр</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1/10...3/8”</td>
<td>1/10...3/8”</td>
<td>150 lb</td>
</tr>
<tr>
<td>1/2”</td>
<td>1/2”</td>
<td>150 lb</td>
</tr>
<tr>
<td>1”</td>
<td>1”</td>
<td>150 lb</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>1 1/2”</td>
<td>150 lb</td>
</tr>
<tr>
<td>2”</td>
<td>2”</td>
<td>150 lb</td>
</tr>
<tr>
<td>3”</td>
<td>3”</td>
<td>150 lb</td>
</tr>
<tr>
<td>4”</td>
<td>4”</td>
<td>150 lb</td>
</tr>
</tbody>
</table>
4.1 Правила техники безопасности

Проведение любых работ, связанных с электрическим монтажом оборудования, допускается только при отключенном электропитании. Обратите внимание на значения напряжения, приведенные на заводской табличке прибора!

Соблюдайте действующие в стране нормы и правила работы и эксплуатации электроустановок!

На приборы, которые эксплуатируются во взрывоопасных зонах, распространяются дополнительные нормы безопасности. Обратитесь к документации на приборы взрывозащищённого исполнения.

Региональные правила и нормы по охране труда подлежат уточнению. К любым видам работ с электрическими компонентами средства измерений допускаются исключительно специалисты, прошедшие соответствующее обучение.

Обратите внимание на заводскую табличку прибора и убедитесь в том, что поставленный прибор соответствует данным заказа. Проверьте правильность напряжения питания, значение которого выбрано на заводской табличке.

4.2 Заземление

Заземление устройства следует выполнять в соответствии с предписаниями и инструкциями в целях обеспечения защиты обслуживающего персонала от поражения электрическим током.

Рисунок 4-1: Заземление

1. Металлические трубопроводы без внутренней футеровки. Заземляются без заземляющих колец.
2. Металлические трубопроводы с внутренней футеровкой и непроводящие трубопроводы. Заземляются с помощью заземляющих колец.
В случае нормальных диаметров DN10 / 3/8" и DN15 / 1/2" заземляющие кольца стандартно встроены в конструкцию первичного преобразователя.

Заземляющие кольца

Рисунок 4-2: Заземляющее кольцо № 1

Заземляющее кольцо № 1 (опционально для DN25...150 / 1...6"): толщина: 3 мм / 0,1" (тантал: 0,5 мм / 0,02")
4.3 Виртуальное заземление для преобразователя сигналов IFC 300 (версий C, W и F)

Рисунок 4-3: Виртуальное заземление

Минимальные требования:
- Номинальный диаметр: ≥ DN10 / 3/8"
- Электропроводность: ≥ 200 мкСм/см
- Сигнальный кабель: макс. 50 м / 164 фут, тип DS
КРОНЕ-Автоматика
Самарская обл., Волжский р-н, массив «Жилой массив Стромилово»
Тел.: +7 (846) 230 03 70
Факс: +7 (846) 230 03 11
kar@krohne.su

КРОНЕ Инжиниринг
Самарская обл., Волжский р-н, массив «Жилой массив Стромилово»
Почтовый адрес:
Россия, 443065, г. Самара,
Долотный пер., 11, а/я 12799
Тел.: +7 (846) 230 04 70
Факс: +7 (846) 230 03 13
samara@krohne.su

Единая сервисная служба
Тел.: 8 (800) 505 25 87
service@krohne.su

КРОНЕ Беларусь
220012, г. Минск,
ул. Сурганова, 5а, оф. 128
Тел.: +375 (17) 388 94 80
Факс: +375 (17) 388 94 81
minsk@krohne.su

КРОНЕ Казахстан
050020, г. Алматы,
пр-т Достык, 290 а
Тел.: +7 (727) 356 27 70
Факс: +7 (727) 356 27 71
almaty@krohne.su

КРОНЕ Украина
03040, г. Киев,
ул. Васильковская, 1, оф. 201
Тел.: +380 (44) 490 26 83
Факс: +380 (44) 490 26 84
krohne@krohne.kiev.ua

КРОНЕ Узбекистан
100095, г. Ташкент,
ул. Талабалар, 16Д
Тел. / Факс: +998 (71) 246 47 28
tashkent@krohne.com