Débitmètre à ultrasons robuste pour chauffage urbain

- Dédié aux mesures d’énergie thermique.
- Homologué MID 2014/32/EU Annexe VI (MI004).
- Mesure de débit précise et bidirectionnelle
SOMMAIRE

1 Caractéristiques produit 3

1.1 Polyvalent, universel robuste pour applications de chauffage 3
1.2 Transactions commerciales 4
1.3 Détails concernant le capteur et le convertisseur de mesure 5
1.4 Principe de mesure 6

2 Caractéristiques techniques 7

2.1 Caractéristiques techniques 7
2.2 MID Annexe MI-004 18
2.3 Dimensions et poids 20
 2.3.1 Capteur de mesure standard 21
 2.3.2 Boîtier du convertisseur de mesure 22

3 Montage 23

3.1 Utilisation prévue 23
3.2 Consignes générales de montage 23
3.3 Vibrations 23
3.4 Conditions de montage pour le convertisseur de mesure 24
3.5 Conditions de montage 24
 3.5.1 Sections droites amont/aval 24
 3.5.2 Coudes en 2 ou 3 dimensions 24
 3.5.3 Section en T 25
 3.5.4 Coudes 25
 3.5.5 Entrée ou sortie d’écoulement libre 26
 3.5.6 Position de pompe 26
 3.5.7 Vanne de régulation 26
 3.5.8 Conduite en colonne descendante sur 5 m /16 ft 27
 3.5.9 Isolation 27
 3.5.10 Montage 28
 3.5.11 Déviation des brides 28
 3.5.12 Position de montage 28

4 Raccordement électrique 29

4.1 Instructions de sécurité 29
4.2 Câble signal [versions séparées uniquement] 29
4.3 Alimentation 30
4.4 Vue d’ensemble des entrées et sorties 31
 4.4.1 Combinaisons des entrées/sorties [E/S] 31
 4.4.2 Description du numéro CG 31
 4.4.3 Versions : entrées et sorties fixes, non paramétrables 32
 4.4.4 Versions : entrées et sorties paramétrables 32
4.5 Formulaire de configuration de l’appareil 33

5 Notes 35
1.1 Polyvalent, universel robuste pour applications de chauffage

Le débitmètre OPTISONIC 3400 est un débitmètre à ultrasons de construction unique à 3 faisceaux, conçu tout particulièrement pour la mesure en ligne de liquides homogènes conducteurs et non conducteurs, avec grande précision et reproductibilité dans le temps. KROHNE est un fournisseur majeur de débitmètres de process à ultrasons pour la mesure en ligne de liquides, avec, au monde, le plus grand nombre d’appareils installés et éprouvés en matière de robustesse et de précision de mesure.

Sur la base de son vaste savoir-faire et de l’expertise acquise, KROHNE introduit maintenant le type homologué OPTISONIC 3400 pour applications de chauffage urbain.

L’OPTISONIC 3400 ...dispose de fonctions de diagnostic d’appareil avancées.

Celles-ci assurent un auto-contrôle étendu des circuits internes et fournissent des informations essentielles sur l’intégrité du capteur de mesure, et, tout aussi important, sur le process et les conditions de process.

L’OPTISONIC 3400 ...dispose de la mesure de vitesse du son

Une autre caractéristique unique de l’OPTISONIC 3400 est la mesure intégrée de la vitesse du son par faisceaux ultrasonores. Ceci peut par exemple fournir des informations sur une contamination du liquide ou sur des variations des conditions de process.

Points forts
• Convertisseur de mesure haute performance pour applications de mesure d’énergie
• Construction entièrement soudée, sans usure ni maintenance
• Tube de mesure sans étranglement ni obstruction, sans perte de pression et sans pièces mobiles
• Mesure de débit précise et bidirectionnelle, à trois faisceaux, pour la mesure en continu
• Pas d’influences d’incrustations
• Dimensions compactes ; facile à monter et à mettre en service
1.2 Transactions commerciales

Le débitmètre à ultrasons OPTISONIC 3400 de KROHNE est, de par la conception 3 faisceaux acoustiques parallèles du capteur de débit, capable d’excellentes performances en toutes circonstances.

Pour les mesures de l’énergie thermique

L’OPTISONIC 3400 MI-004 est homologué en Classe 1, 2 et 3 selon la toute dernière Directive sur les Instruments de Mesure2014/32/EU Annexe VI MI-004, qui reflète notre vaste expérience dans la fourniture de solutions de mesure de transactions commerciales pour toutes sortes d’applications et d’industries.

Les systèmes de mesure de chaleur se composent de 3 éléments principaux : des capteurs de température, un débitmètre, un calculateur de chaleur. La demande de chaleur est régulée par le débit plutôt que par la température. Par conséquent, en cas de demande d’énergie faible, une mesure du débit minimum faible est un facteur critique. La mesure de débit par ultrasons démarre déjà à débit nul, et est homologuée MI-004 à partir de 0,1 m/s.
1.3 Détails concernant le capteur et le convertisseur de mesure

Le débitmètre favori des ingénieurs
- Construction entièrement soudée
- Technologie de transducteurs en métal inerte brevetée.
- Aucune pièce mobile
- Tube de mesure sans étranglement ni obstruction
- Aucune alimentation secondaire n’est nécessaire.

Transactions commerciales
Les débitmètres pour liquide OPTISONIC 3400 conformes transactions commerciales MID MI-004 (et harmonisés CEN EN 1434, OIML R74) sont protégés contre les manipulations.

En tant que tel, le boîtier du convertisseur est scellé et le logiciel dédié par le biais des paramètres de menu pertinents bloqués
1.4 Principe de mesure

- Comme deux canoës qui traversent une rivière selon une trajectoire diagonale, les signaux acoustiques sont transmis et reçus le long d’un faisceau de mesure diagonal.
- L’onde sonore qui se déplace dans le sens d’écoulement se propage plus rapidement que celle dans le sens opposé.
- La différence de temps de transit est directement proportionnelle à la vitesse de débit moyenne du fluide.

Figure 1-1: Principe de mesure

1 Transducteur A
2 Transducteur B
3 Vitesse d’écoulement
4 Angle d’incidence
5 Vitesse du son du liquide
6 Longueur faisceau
7 Diamètre intérieur
2.1 Caractéristiques techniques

- Les données suivantes sont fournies pour les applications générales. Si vous avez une application spécifique, veuillez contacter votre agence de vente locale.
- Des informations complémentaires [certificats, outils spéciaux, logiciels,...] et une documentation produit complète peuvent être téléchargées gratuitement de notre site Internet [Centre de Téléchargement].

<table>
<thead>
<tr>
<th>Système de mesure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Principe de mesure</td>
<td>Temps de transit des signaux ultrasoniques</td>
</tr>
<tr>
<td>Domaine d’application</td>
<td>Mesure de débit d’eau chaude</td>
</tr>
<tr>
<td>Valeur mesurée</td>
<td></td>
</tr>
<tr>
<td>Valeur primaire mesurée</td>
<td>Temps de transit</td>
</tr>
<tr>
<td>Valeurs secondaires mesurées</td>
<td>Débit-volume, débit-masse, vitesse d’écoulement, sens d’écoulement, vitesse du son, degré d’amplification du signal, rapport signal bruit, fiabilité de la mesure de débit, volume ou masse totalisé(e)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Avantages particuliers</td>
<td>3 faisceaux ultrasons entièrement soudés</td>
</tr>
<tr>
<td>Construction modulaire</td>
<td>Le système de mesure comporte un capteur de mesure et un convertisseur de mesure.</td>
</tr>
<tr>
<td>Version compacte</td>
<td>OPTISONIC 3400</td>
</tr>
<tr>
<td>Version séparée</td>
<td>OPTISONIC 3000 F avec convertisseur de mesure UFC 400</td>
</tr>
<tr>
<td>Diamètre nominal</td>
<td>DN25...2000 / 1...80”</td>
</tr>
<tr>
<td>Échelle de mesure</td>
<td>0,1...10 m/s / 0,33...33 ft/s Pour plus de détails, voir se référer à MID Annexe MI-004 à la page 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convertisseur de mesure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées / sorties</td>
<td>Sortie courant (y compris HART®), impulsions, fréquence et/ou d’état, détection de seuil et/ou entrée de commande (dépend de la version E/S)</td>
</tr>
<tr>
<td>Totalisateur</td>
<td>totalisateurs internes à 8 caractères maxi (pour, par ex., la totalisation de volume et/ou de masse)</td>
</tr>
<tr>
<td>Vérification et auto-diagnostics</td>
<td>Vérification, fonctions diagnostiques intégrées : débitmètre, process, valeurs mesurées, configuration de l’appareil, etc.</td>
</tr>
</tbody>
</table>
CARACTÉRISTIQUES TECHNIQUES

Affichage et interface utilisateur

<table>
<thead>
<tr>
<th>Affichage graphique</th>
<th>LCD blanc rétro-éclairé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taille</td>
<td>128x64 pixels.</td>
</tr>
<tr>
<td>Correspondant à</td>
<td>59x31 mm = 2,32”x1,22”</td>
</tr>
<tr>
<td>Affichage pivotable</td>
<td>par pas de 90°.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Éléments de commande</th>
<th>4 touches tactiles pour programmer le convertisseur de mesure sans ouvrir le boîtier.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Commande à distance</th>
<th>PACTware™, y compris logiciel pilote Device Type Manager (DTM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Communicateur portable HART® (Emerson), AMS (Emerson), PDM (Siemens)</td>
</tr>
</tbody>
</table>

Fonctions d’affichage

<table>
<thead>
<tr>
<th>Menu de programmation</th>
<th>Visualisation des paramètres sur 2 pages pour valeurs mesurées, 1 page signalisation d’état, 1 page graphique (valeurs mesurées et graphique réglables au choix)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Langue d’affichage (par lot de langues)</th>
<th>Standard : anglais, allemand, français, néerlandais</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Russie : anglais, allemand, russe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paramètres mesurés</th>
<th>Unités : métriques, britanniques et US, librement sélectionnables à partir de listes d’unités pour débit volume/masse et totalisation, vitesse d’écoulement, température, pression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valeurs mesurées : débit-volume, débit-masse, vitesse d’écoulement, vitesse du son, degré d’amplification du signal, rapport signal bruit, sens d’écoulement, diagnostics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fonctions de diagnostic</th>
<th>Normes : VDI / NAMUR NE 107</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Messages d’état : transmission de messages d’état via l’affichage, la sortie courant et/ou d’état</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Diagnostics du capteur : par vitesse du son du faisceau ultrasonore, vitesse d’écoulement, degré d’amplification du signal, rapport signal bruit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diagnostics de process : tube vide, intégrité du signal, câblage, conditions d’écoulement</td>
</tr>
</tbody>
</table>

| | Diagnostics du convertisseur de mesure : surveillance du bus de données, raccordements des E/S, température de l’électronique, intégrité des paramètres et données |

Précision de mesure

<table>
<thead>
<tr>
<th>Conditions de référence</th>
<th>Produit à mesurer</th>
<th>Eau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Température</td>
<td>+20°C / +68°F</td>
</tr>
<tr>
<td></td>
<td>Pression</td>
<td>1 bar / 14,5 psi</td>
</tr>
<tr>
<td></td>
<td>Section droite amont</td>
<td>10 DN</td>
</tr>
</tbody>
</table>

Erreur de mesure maximale

<table>
<thead>
<tr>
<th>Classe 1</th>
<th>±1% (1 + 0,01 qp / q) = avec limite de 3,5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe 2</td>
<td>±2% (2 + 0,02 qp / q) = avec limite de 5%</td>
</tr>
<tr>
<td>Classe 3</td>
<td>±3% (3 + 0,03 qp / q) = avec limite de 5%</td>
</tr>
</tbody>
</table>

Etalonnage / Vérification

<table>
<thead>
<tr>
<th>Standard</th>
<th>Etalonnage en 3 points, par comparaison directe des volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En option</td>
</tr>
<tr>
<td></td>
<td>Vérification selon la Directive sur les Instruments de Mesure (MID), Annexe VI (MI-006)</td>
</tr>
</tbody>
</table>
CARACTÉRISTIQUES TECHNIQUES

MID MI-004
[Directive 2014/32/EU](#)
Attestation CE de type selon MID Annexe VI (MI-004)

- **Diamètre** : DN25...2000
- **Longueur mini de la section droite en amont** : 10 DN
- **Longueur mini de la section droite en aval** : 3 DN
- **Débit aller et retour (bidirectionnel)**
- **Orientation** : horizontale, verticale
- **Rapport** : jusqu’à 100
- **Pression de service maxi** : 40 bar - 580 psi à 20°C - 68°F / 32 bar - 460 psi à 180°C - 356°F
- Pour plus de détails se référer à **MID Annexe MI-004** à la page 18

Classe environnementale

- Électromagnétique : E2
- Mécanique : M1

Conditions de service

Température

| Température de process | **Version compacte** : -0...+90°C / 32...+194°F |
| Température de process | **Version séparée** : 0...+180°C / +32...+356°F |

- **Brides en acier au carbone** ; températures de process selon EN1092 : -10°C / +14°F ; ASME : -29°C / -20°F

- **Température ambiante** : -25...+55°C / -13...+131°F

Protéger l’intérieur du module électronique contre l’auto-échauffement

Protéger le convertisseur de mesure contre des sources de chaleur externes telles que le rayonnement solaire direct, les températures élevées réduisant la durée de vie de tous les composants électroniques !

- **Température de stockage** : -50...+70°C / -58...+158°F

Pression

Atmosphérique

- EN 1092-1
 - DN25...80 : PN 40
 - DN100...150 : PN 16
 - DN200...2000 : PN 10

- ASME B16.5
 - 1...80" : 150 lb RF
 - 1...80" : 300 lb RF

Propriétés du produit à mesurer

Condition physique	Liquide, eau, chaude ou froide
Teneur en gaz admissible	≤ 2% [volume]
Contenu solide admissible	≤ 5% [volume]
Conditions de montage

<table>
<thead>
<tr>
<th>Montage</th>
<th>Pour plus d’informations. se référer à Montage à la page 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section droite amont</td>
<td>10 mini (section droite en amont)</td>
</tr>
<tr>
<td>Section droite aval</td>
<td>3 DN (section droite en aval)</td>
</tr>
<tr>
<td>Dimensions et poids</td>
<td>Pour plus d’informations se référer à Dimensions et poids à la page 20</td>
</tr>
</tbody>
</table>

Matériaux

Capteur de mesure

<table>
<thead>
<tr>
<th>Brides (en contact avec le produit)</th>
<th>DN25...2000 / 1”...80” : acier carbone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En option : acier inox 1.4404 (AISI 316(L))</td>
</tr>
<tr>
<td>Tube de mesure (en contact avec le produit)</td>
<td>DN25...2000 / 1”...80” : acier carbone</td>
</tr>
<tr>
<td></td>
<td>En option : acier inox 1.4404 (AISI 316(L))</td>
</tr>
<tr>
<td>Boîtier du capteur de mesure</td>
<td>DN25...300 / 1”...12” : acier carbone</td>
</tr>
<tr>
<td></td>
<td>En option : acier inox 1.4404 (AISI 316(L))</td>
</tr>
</tbody>
</table>

Transducteur

Transducteurs (en contact avec le produit)	Acier inox 1.4404 (AISI 316L)
Fixations du transducteur coiffes comprises	DN350...2000 / 14”...80” ; acier inox 1.4404 (AISI 316L)
Tube pour câbles du transducteur	Acier inox 1.4404 (AISI 316L)
Boîtier de raccordement et support du boîtier de raccordement : [uniquement version séparée]	Standard : aluminium moulé sous pression ; revêtement polyuréthane
	En option : acier inox 316 (1.4408)
Revêtement (capteur de mesure)	Standard : polyuréthane

Convertisseur de mesure

Boîtier	Versions C et F : aluminium moulé sous pression
	En option : acier inox 316 (1.4408)
Revêtement	Standard : polyuréthane
Raccordements électriques

Description des abréviations utilisées ; \(Q = \text{xxx} ; I_{\text{max}} = \text{courant maxi} ; U_{\text{n}} = \text{xxx} ; U_{\text{int}} = \text{tension interne} ; U_{\text{ext}} = \text{tension externe} ; U_{\text{int, max}} = \text{tension interne maxi} \)

<table>
<thead>
<tr>
<th>Généralités</th>
<th>Le raccordement électrique s’effectue selon la norme VDE 0100 « Règlements pour des installations à courant de tension inférieure ou égale à 1000 volts » ou autres spécifications nationales correspondantes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentation</td>
<td>Standard : 100...230 V CA (-15% / +10%), 50/60 Hz</td>
</tr>
<tr>
<td>Consommation</td>
<td>CA : 22 VA</td>
</tr>
<tr>
<td>Câble signal</td>
<td>MR06 (câble blindé avec 6 brins coax) : Ø 10,6 mm / 0,4" 5 m / 16 ft En option : 10...30 m / 33...98 ft</td>
</tr>
<tr>
<td>Presse-étoupe</td>
<td>Standard : M20 x 1,5 (8...12 mm) En option : (\frac{1}{2}^\prime) NPT, PF (\frac{1}{2}^\prime)</td>
</tr>
</tbody>
</table>

Entrées et sorties

<table>
<thead>
<tr>
<th>Généralités</th>
<th>Toutes les sorties sont isolées galvaniquement les unes des autres et de tous les autres circuits. Tous les paramètres de fonctionnement et toutes les sorties sont programmables.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explication des abréviations utilisées</td>
<td>(U_{\text{ext}} = \text{tension externe} ; R_L = \text{charge + résistance} ; U_0 = \text{tension à la borne} ; I_{\text{nom}} = \text{courant nominal}) Valeurs limites de sécurité [Ex i] : (U_i = \text{tension d’entrée maxi} ; I_i = \text{courant d’entrée maxi} ; P_i = \text{puissance nominale d’entrée maxi} ; C_i = \text{capacité d’entrée maxi} ; L_i = \text{inductance d’entrée maxi})</td>
</tr>
</tbody>
</table>
CARACTÉRISTIQUES TECHNIQUES

Sortie courant

<table>
<thead>
<tr>
<th>Données de sortie</th>
<th>Mesure de débit-volume, débit-masse, vitesse d’écoulement, vitesse du son, degré d’amplification du signal, rapport signal bruit, diagnostics (vitesse d’écoulement, vitesse du son, rapport signal bruit, degré d’amplification du signal), NAMUR NE107, communication HART®.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient de température</td>
<td>Typiquement ±30 ppm/K</td>
</tr>
</tbody>
</table>
| Programmations | **Sans HART®**
Q = 0% : 0…20 mA ; Q = 100% : 10…20 mA
Identification d’erreurs : 3…22 mA
Avec HART®
Q = 0% : 4…20 mA ; Q = 100% : 10…20 mA
Identification d’erreurs : 3…22 mA
Q = 100% : 10…20 mA
Identification d’erreurs : 3…22 mA |
| Caractéristiques de fonctionnement | **E/S de base** | **E/S modulaires** |
| Active | $U_{\text{int, nom}} = 24$ V CC
$I \leq 22$ mA
$R_L \leq 1$ kΩ |
| Passive | $U_{\text{ext}} \leq 32$ V CC
$I \leq 22$ mA
$U_0 \geq 1,8$ V
$R_{L, \text{maxi}} = \left| U_{\text{ext}} - U_0 \right| / I_{\text{maxi}}$ |
HART®

<table>
<thead>
<tr>
<th>Description</th>
<th>Protocole HART® via sortie courant active et passive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version HART® : V7</td>
</tr>
<tr>
<td></td>
<td>Paramètre HART® universel : entièrement intégré</td>
</tr>
<tr>
<td>Charge</td>
<td>≥ 250 Ω au point de test HART®, Observer la charge maxi pour la sortie courant !</td>
</tr>
<tr>
<td></td>
<td>Adresse multipoints réglable dans le menu de programmation 0…63</td>
</tr>
<tr>
<td>Multipoints</td>
<td>Oui, sortie courant = 10% par ex. 4 mA</td>
</tr>
<tr>
<td>Logiciels pilote</td>
<td>DD pour FC 375/475, AMS, PDM, FDM, DTM pour FDT</td>
</tr>
</tbody>
</table>

Sortie impulsions ou fréquence

<table>
<thead>
<tr>
<th>Données de sortie</th>
<th>Débit-volume, débit-masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction</td>
<td>Sortie impulsions / sortie fréquence fixe et configurée en usine en fonction de la commande.</td>
</tr>
<tr>
<td>Taux d’impulsions/fréquence</td>
<td>0,01...10000 impulsions/s ou Hz</td>
</tr>
<tr>
<td>Programmations</td>
<td>Pour Q = 100% : 0,01...10000 impulsions par seconde ou impulsions par unité de volume</td>
</tr>
<tr>
<td></td>
<td>Largeur d’impulsion : réglage automatique, symétrique ou fixe (0,05...2000 ms)</td>
</tr>
</tbody>
</table>

Caractéristiques de fonctionnement

<table>
<thead>
<tr>
<th>Caractéristiques de fonctionnement</th>
<th>E/S de base</th>
<th>E/S modulaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>U_{nom} = 24 V CC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{maxi}}) Programmée dans le menu de programmation sur :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{maxi}} \leq 100 \text{ Hz} :)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I \leq 20 \text{ mA})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_L \text{, maxi} = 47 \text{ kΩ})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ouverte :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I \leq 0,05 \text{ mA})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fermée :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_{0,nom} = 24 \text{ V à } I = 20 \text{ mA})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{maxi}}) Programmée dans le menu de programmation sur : 100 Hz < (f_{\text{maxi}}) ≤ 10 kHz :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I \leq 20 \text{ mA})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_L \leq 10 \text{ kΩ}) pour (f \leq 1 \text{ kHz})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_L \leq 1 \text{ kΩ}) pour (f \leq 10 \text{ kHz})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ouverte :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I \leq 0,05 \text{ mA})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fermée :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_{0,nom} = 22,5 \text{ V à } I = 1 \text{ mA})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_{0,nom} = 21,5 \text{ V à } I = 10 \text{ mA})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_{0,nom} = 19 \text{ V à } I = 20 \text{ mA})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Passive

<table>
<thead>
<tr>
<th>$U_{\text{ext}} \leq 32 , \text{V CC}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{maxi} Programmée dans le menu de programmation sur :</td>
</tr>
<tr>
<td>$f_{\text{maxi}} \leq 100 , \text{Hz}$:</td>
</tr>
<tr>
<td>$I \leq 100 , \text{mA}$</td>
</tr>
<tr>
<td>$R_{L, \text{maxi}} = 47 , \text{k}\Omega$</td>
</tr>
<tr>
<td>$R_{L, \text{maxi}} = \frac{(U_{\text{ext}} - U_0)}{I_{\text{maxi}}}$</td>
</tr>
<tr>
<td>ouverte :</td>
</tr>
<tr>
<td>$I \leq 0,05 , \text{mA}$ à $U_{\text{ext}} = 32 , \text{V CC}$</td>
</tr>
<tr>
<td>fermée :</td>
</tr>
<tr>
<td>$U_{0, \text{maxi}} = 0,2 , \text{V}$ à $I \leq 10 , \text{mA}$</td>
</tr>
<tr>
<td>$U_{0, \text{maxi}} = 2 , \text{V}$ à $I \leq 100 , \text{mA}$</td>
</tr>
</tbody>
</table>

- f_{maxi} Programmée dans le menu de programmation sur :
 - $100 \, \text{Hz} < f_{\text{maxi}} \leq 10 \, \text{kHz}$:
 - $I \leq 20 \, \text{mA}$
 - $R_L \leq 10 \, \text{k}\Omega$ pour $f \leq 1 \, \text{kHz}$
 - $R_L \leq 1 \, \text{k}\Omega$ pour $f \leq 10 \, \text{kHz}$
 - $R_{L, \text{maxi}} = \frac{(U_{\text{ext}} - U_0)}{I_{\text{maxi}}}$
 - ouverte :
 - $I \leq 0,05 \, \text{mA}$ à $U_{\text{ext}} = 32 \, \text{V CC}$
 - fermée :
 - $U_{0, \text{maxi}} = 1,5 \, \text{V}$ à $I \leq 1 \, \text{mA}$
 - $U_{0, \text{maxi}} = 2,5 \, \text{V}$ à $I \leq 10 \, \text{mA}$
 - $U_{0, \text{maxi}} = 5,0 \, \text{V}$ à $I \leq 20 \, \text{mA}$

NAMUR

- Passive selon EN 60947-5-6
 - ouverte :
 - $I_{\text{nom}} = 0,6 \, \text{mA}$
 - fermée :
 - $I_{\text{nom}} = 3,8 \, \text{mA}$
Sortie d’état / déTECTeur de seuil

Fonction et paramétrages
Programmable pour commutation d’échelle automatique, indication du sens d’écoulement, de saturation, d’erreurs, de seuil
Commande de vanne si fonction de dosage active

Caractéristiques de fonctionnement

<table>
<thead>
<tr>
<th>Active</th>
<th>E/S de base</th>
<th>E/S modulaires</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>U_{int} = 24 V CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I ≤ 20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_{L, maxi} = 47 kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ouverte :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I ≤ 0,05 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fermée :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U_{0, nom} = 24 V à</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I = 20 mA</td>
</tr>
</tbody>
</table>

Passive

<table>
<thead>
<tr>
<th>Passive</th>
<th>E/S de base</th>
<th>E/S modulaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{ext} ≤ 32 V CC</td>
<td>U_{ext} = 32 V CC</td>
<td></td>
</tr>
<tr>
<td>I ≤ 100 mA</td>
<td>I ≤ 100 mA</td>
<td></td>
</tr>
<tr>
<td>R_{L, maxi} = 47 kΩ</td>
<td>R_{L, maxi} = 47 kΩ</td>
<td></td>
</tr>
<tr>
<td>ouverte :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I ≤ 0,05 mA à</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{ext} = 32 V CC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fermeée :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{0, maxi} = 0,2 V à</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I ≤ 10 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{0, maxi} = 2 V à</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I ≤ 100 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAMUR

<table>
<thead>
<tr>
<th>NAMUR</th>
<th>E/S de base</th>
<th>E/S modulaires</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Passive selon EN 60947-5-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ouverte :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{nom} = 0,6 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fermée :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{nom} = 3,8 mA</td>
</tr>
</tbody>
</table>
Entrée de commande

<table>
<thead>
<tr>
<th>Caractéristiques de fonctionnement</th>
<th>E/S de base</th>
<th>E/S modulaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintien des valeurs à la sortie [par ex. pendant nettoyage], « mise à zéro » de la valeur aux sorties, remise à zéro du totalisateur, acquittement erreurs, arrêt du totalisateur, commutation d’échelle, calibrage du zéro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Démarrage du dosage si la fonction dosage est activée.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E/S de base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_{\text{int}} = 24$ V CC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bornes ouvertes :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_0, \text{nom} = 22$ V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bornes pontées :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{\text{nom}} = 4$ mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marche :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_0 \geq 12$ V avec $I_{\text{nom}} = 1,9$ mA</td>
<td>$U_{\text{ext}} \leq 32$ V CC</td>
<td>$I_{\text{max}} = 9,5$ mA à $U_{\text{ext}} \leq 24$ V</td>
</tr>
<tr>
<td>Arrêt :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_0 \leq 10$ V avec $I_{\text{nom}} = 1,9$ mA</td>
<td>$U_{\text{ext}} \leq 32$ V CC</td>
<td>$I_{\text{max}} = 9,5$ mA à $U_{\text{ext}} \leq 32$ V</td>
</tr>
<tr>
<td>Passive</td>
<td>$U_{\text{ext}} \leq 32$ V CC</td>
<td>$U_{\text{ext}} \leq 32$ V CC</td>
</tr>
<tr>
<td>$I_{\text{max}} = 6,5$ mA à $U_{\text{ext}} \leq 24$ V CC</td>
<td>$I_{\text{max}} = 9,5$ mA à $U_{\text{ext}} \leq 24$ V</td>
<td></td>
</tr>
<tr>
<td>$I_{\text{max}} = 8,2$ mA à $U_{\text{ext}} \leq 32$ V CC</td>
<td>$I_{\text{max}} = 9,5$ mA à $U_{\text{ext}} \leq 32$ V</td>
<td></td>
</tr>
<tr>
<td>Contact fermé (marche) :</td>
<td>Contact fermé (marche) :</td>
<td>Contact fermé (marche) :</td>
</tr>
<tr>
<td>$U_0 \geq 8$ V avec $I_{\text{nom}} = 2,8$ mA</td>
<td>$U_0 \geq 3$ V avec $I_{\text{nom}} = 1,9$ mA</td>
<td>$U_0, \text{nom} = 7,8$ mA</td>
</tr>
<tr>
<td>Contact ouvert (arrêt) :</td>
<td>Contact ouvert (arrêt) :</td>
<td>Contact ouvert (arrêt) :</td>
</tr>
<tr>
<td>$U_0 \leq 2,5$ V avec $I_{\text{nom}} = 0,4$ mA</td>
<td>$U_0 \leq 2,5$ V avec $I_{\text{nom}} = 1,9$ mA</td>
<td>$U_0, \text{nom} = 6,3$ V avec $I_{\text{nom}} = 1,9$ mA</td>
</tr>
<tr>
<td>NAMUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active selon EN 60947-5-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact ouvert :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_0, \text{nom} = 8,7$ V</td>
<td>Contact ouvert :</td>
<td>$U_0, \text{nom} = 8,7$ V</td>
</tr>
<tr>
<td>Contact fermé (marche) :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{\text{nom}} = 7,8$ mA</td>
<td>Contact fermé (marche) :</td>
<td>$I_{\text{nom}} = 7,8$ mA</td>
</tr>
<tr>
<td>Contact ouvert (arrêt) :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_0, \text{nom} = 6,3$ V avec $I_{\text{nom}} = 1,9$ mA</td>
<td>Contact ouvert (arrêt) :</td>
<td>$U_0, \text{nom} = 6,3$ V avec $I_{\text{nom}} = 1,9$ mA</td>
</tr>
<tr>
<td>Identification pour bornes ouvertes :</td>
<td>Identification pour bornes ouvertes :</td>
<td>Identification pour bornes ouvertes :</td>
</tr>
<tr>
<td>$U_0 \geq 8,1$ V avec $I \leq 0,1$ mA</td>
<td>$U_0 \geq 8,1$ V avec $I \leq 0,1$ mA</td>
<td>$U_0 \geq 8,1$ V avec $I \leq 0,1$ mA</td>
</tr>
<tr>
<td>Identification pour bornes court-</td>
<td>Identification pour bornes court-</td>
<td>Identification pour bornes court-</td>
</tr>
<tr>
<td>circuitées :</td>
<td>Identification pour bornes court-</td>
<td>Identification pour bornes court-</td>
</tr>
<tr>
<td>$U_0 \leq 1,2$ V avec $I \geq 6,7$ mA</td>
<td>Identification pour bornes court-</td>
<td>Identification pour bornes court-</td>
</tr>
<tr>
<td>Circuitées :</td>
<td>Identification pour bornes court-</td>
<td>Identification pour bornes court-</td>
</tr>
<tr>
<td>$U_0 \leq 1,2$ V avec $I \geq 6,7$ mA</td>
<td>Identification pour bornes court-</td>
<td>Identification pour bornes court-</td>
</tr>
</tbody>
</table>
Homologations et certifications

<table>
<thead>
<tr>
<th>CE</th>
<th>Cet appareil satisfait aux exigences légales des directives UE. En apposant le marquage CE, le fabricant certifie que le produit a passé avec succès les contrôles et essais.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAMUR</td>
<td>CE, CE, CE, CE</td>
</tr>
</tbody>
</table>

Autres homologations et normes

<table>
<thead>
<tr>
<th>Non Ex</th>
<th>Standard</th>
</tr>
</thead>
</table>

Zones à atmosphère explosive

<table>
<thead>
<tr>
<th>Zone Ex 1 - 2</th>
<th>Pour plus d’informations, consulter SVP la documentation Ex pertinente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX</td>
<td>Numéro d’homologation : KIWA 15ATEX0007 X</td>
</tr>
<tr>
<td>NEPSI</td>
<td>Numéro d’homologation : GYJ13.1411X - 12X - 13X</td>
</tr>
</tbody>
</table>

Classe de protection selon IEC 529 / EN 60529

| Convertisseur de mesure |
| --- | --- |
| Compact (C) : IP66/67 [NEMA 4X/6] |
| Intempéries (F) : IP66/67 [NEMA 4X/6] |

Tous les capteurs de mesure

| IP67 [NEMA 6] |

Résistance aux chocs

| IEC 68-2-27 |
| 30 g pendant 18 ms |

Résistance aux vibrations

| IEC 68-2-6 ; 1 g jusqu’à 2000 Hz |
| IEC 60721 ; 10 g |
2.2 MID Annexe MI-004

Tous les débitmètres pour liquides utilisés pour la mesure d’eau chaude ou d’énergie thermique devant servir pour des transactions commerciales en Europe doivent être certifiés selon la Directive pour les Instruments de Mesure (MID) 2014/32/CE.

L’annexe VI (MI-004) de la MID s’applique aux débitmètres pour liquide devant servir à mesurer des volumes d’eau chaude en milieu résidentiel, commercial et industriel léger. L’attestation CE de type est valable dans tous les pays de l’Union Européenne.

L’OPTISONIC 3400 a un certificat d’examen de type et peut être vérifié à l’Annexe VI MID (MI-004) pour les débitmètres de liquide de diamètre DN25...DN2000 / 1”...80”. La procédure d’évaluation de la conformité pour l’OPTISONIC 3400 est Module B (examen de type) et Module D (assurance de la qualité du process de production).

Pour la classe de précision 1, 2 et 3 :
Plage de débit, Q_i et Q_p doivent être définis comme suit :

Rapport de Q_p / Q_i ≥ 10
Débit minimum : Q_p ≥ 0,1 x Q_p (max)

Q_a = plage de débit
Q_p = débit maximal
Q_i = débit minimal

Figure 2-1: Débits ISO ajoutés au schéma pour comparaison avec MID
X: Débit
Y [%]: Erreur de mesure maximale
Caractéristiques d’écoulement certifiées MI-004; valable pour les classes de précision 1, 2 & 3

<table>
<thead>
<tr>
<th>DN</th>
<th>Pression nominale maximale</th>
<th>Longueur totale [mm]</th>
<th>Débit [m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>25</td>
<td>PN40</td>
<td>250</td>
<td>400</td>
</tr>
<tr>
<td>32</td>
<td>PN40</td>
<td>260</td>
<td>400</td>
</tr>
<tr>
<td>40</td>
<td>PN40</td>
<td>270</td>
<td>400</td>
</tr>
<tr>
<td>50</td>
<td>PN40</td>
<td>300</td>
<td>475</td>
</tr>
<tr>
<td>65</td>
<td>PN40</td>
<td>300</td>
<td>475</td>
</tr>
<tr>
<td>80</td>
<td>PN40</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>100</td>
<td>PN40 *</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>125</td>
<td>PN40 *</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>150</td>
<td>PN40 *</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>200</td>
<td>PN40 *</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>250</td>
<td>PN40 *</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>300</td>
<td>PN40 *</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>350</td>
<td>PN40 *</td>
<td>500</td>
<td>880</td>
</tr>
<tr>
<td>400</td>
<td>PN40 *</td>
<td>600</td>
<td>975</td>
</tr>
<tr>
<td>450</td>
<td>PN40 *</td>
<td>600</td>
<td>1000</td>
</tr>
<tr>
<td>500</td>
<td>PN40 *</td>
<td>600</td>
<td>1080</td>
</tr>
<tr>
<td>600</td>
<td>PN40 *</td>
<td>600</td>
<td>1165</td>
</tr>
<tr>
<td>700</td>
<td>PN40 *</td>
<td>800</td>
<td>1240</td>
</tr>
<tr>
<td>800</td>
<td>PN40 *</td>
<td>800</td>
<td>1240</td>
</tr>
<tr>
<td>900</td>
<td>PN40 *</td>
<td>900</td>
<td>1370</td>
</tr>
<tr>
<td>1000</td>
<td>PN40 *</td>
<td>1000</td>
<td>1370</td>
</tr>
<tr>
<td>1200</td>
<td>PN40 *</td>
<td>1200</td>
<td>1600</td>
</tr>
<tr>
<td>1400</td>
<td>PN40 *</td>
<td>1400</td>
<td>1800</td>
</tr>
<tr>
<td>1600</td>
<td>PN40 *</td>
<td>1600</td>
<td>2000</td>
</tr>
<tr>
<td>1800</td>
<td>PN40 *</td>
<td>1600</td>
<td>2100</td>
</tr>
<tr>
<td>2000</td>
<td>PN40 *</td>
<td>1800</td>
<td>2100</td>
</tr>
</tbody>
</table>

* Pression maxi : 40 bar - 580 psi à 20°C - 68°F / 32 bar - 460 psi à 180°C - 356°F Entre parenthèses () ; valeur Qₚ uniquement valide pour les classes de précision 2 & 3
2.3 Dimensions et poids

Version séparée

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>88 mm / 3,5"</td>
<td>139 mm / 5,5"</td>
<td>106 mm / 4,2"</td>
</tr>
</tbody>
</table>

Hauteur totale = H + a

Version compacte

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>155 mm / 6,1"</td>
<td>230 mm / 9,1"</td>
<td>260 mm / 10,2"</td>
</tr>
</tbody>
</table>

Hauteur totale = H + a

1. Cette valeur peut varier en fonction des presse-étoupe utilisés.
2. Cette valeur selon la version.
2.3.1 Capteur de mesure standard

The following dimensions are applicable for the OPTISONIC 3400 in compact and remote versions.

EN1092-1; type standard - PN40

<table>
<thead>
<tr>
<th>Diamètre nominal</th>
<th>Dimensions [mm], CS = acier carbone / SS = acier inox / Di = Diamètre intérieur</th>
<th>Poids approximatives [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td>155</td>
</tr>
<tr>
<td>32</td>
<td>260</td>
<td>156</td>
</tr>
<tr>
<td>40</td>
<td>270</td>
<td>173</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
<td>193</td>
</tr>
<tr>
<td>65</td>
<td>300</td>
<td>203</td>
</tr>
<tr>
<td>80</td>
<td>300</td>
<td>238</td>
</tr>
<tr>
<td>100</td>
<td>350</td>
<td>268</td>
</tr>
<tr>
<td>125</td>
<td>350</td>
<td>297</td>
</tr>
<tr>
<td>150</td>
<td>400</td>
<td>326</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
<td>427</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>492</td>
</tr>
<tr>
<td>300</td>
<td>500</td>
<td>547</td>
</tr>
</tbody>
</table>

Autres classes de pression telles que PN25, PN16, PN10 ou ASME 150, 300 lb sont également homologuées MI-004. Dimensions et poids sont disponibles sur demande.

Longueur de montage et diamètres plus grands ; sur demande.
2.3.2 Boîtier du convertisseur de mesure

Dimensions et poids en mm et kg

<table>
<thead>
<tr>
<th>Version</th>
<th>Dimensions [mm]</th>
<th>Poids [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>202</td>
<td>120</td>
</tr>
<tr>
<td>F</td>
<td>202</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions et poids en pouce et lb

<table>
<thead>
<tr>
<th>Version</th>
<th>Dimensions [pouce]</th>
<th>Poids [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>7,75</td>
<td>4,75</td>
</tr>
<tr>
<td>F</td>
<td>7,75</td>
<td>4,75</td>
</tr>
</tbody>
</table>
3.1 Utilisation prévue

L'utilisateur est seul responsable de la mise en œuvre et du choix des matériaux de nos appareils de mesure pour l'usage auquel ils sont destinés.

Le fabricant ne pourra être tenu responsable pour tout dommage dû à une utilisation incorrecte ou non conforme à l'emploi prévu.

L'OPTISONIC 3400 MI-004 est conçu exclusivement pour les mesures bidirectionnelles sur de l’eau conductrice ou non conductrice pour des systèmes de chauffage urbain. Des contaminations excessives (gaz, particules solides, 2 phases) perturbent le signal ultrasonore et doivent donc être évitées.

La fonctionnalité générale du débitmètre OPTISONIC 3400 MI-004 est la mesure en continu du débit-volume instantané, du débit-masse, de la vitesse d’écoulement, de la vitesse du son, du degré d’amplification du signal (gain), du rapport signal bruit (SNR), du débit-masse totalisé et des valeurs de diagnostic.

3.2 Consignes générales de montage

Inspectez soigneusement le contenu des emballages afin de vous assurer que l’appareil n’a subi aucun dommage. Signalez tout dommage à votre transitaire ou à l’agent local du fabricant.

Vérifiez à l’aide de la liste d’emballage si vous avez reçu tous les éléments commandés.

Vérifiez à l’aide de la plaque signalétique si l’appareil correspond à votre commande. Vérifiez si la tension d’alimentation indiquée sur la plaque signalétique est correcte.

3.3 Vibrations

照料分离一份，万一有震动的可能。

Figure 3-1: Éviter les vibrations

Install une version séparée si des vibrations sont à craindre.
3.4 Conditions de montage pour le convertisseur de mesure

- Laisser un espace libre de 10...20 cm / 3,9...7,9” aux deux extrémités et à l’arrière du convertisseur de mesure pour permettre une bonne circulation d’air.
- Protéger le convertisseur de mesure contre le rayonnement solaire direct et installer un toit de protection en cas de besoin
- Les convertisseurs de mesure installés en armoire électrique nécessitent un refroidissement approprié, par exemple par ventilateur ou échangeur de chaleur.
- Ne pas soumettre le convertisseur de mesure à des vibrations excessives.

3.5 Conditions de montage

3.5.1 Sections droites amont/aval

3.5.2 Coudes en 2 ou 3 dimensions

Figure 3-2: Sections droites recommandées en amont et en aval

1. voir § Coudes en 2 ou 3 dimensions
2. $\geq 3 \text{ DN}$

Figure 3-3: Section droite amont en cas d’utilisation de coudes en 2 et/ou 3 dimensions en amont du débitmètre

Longueur de la section droite amont : en cas d’utilisation de coude en 2 dimensions : $\geq 10 \text{ DN}$; en présence de coudes en 3 dimensions : $\geq 15 \text{ DN}$
3.5.3 Section en T

Figure 3-4: Distance en aval d'une section en T

\[1 \geq 10 \text{ DN} \]

3.5.4 Coudes

Figure 3-5: Montage dans des conduites à courbures

Figure 3-6: Montage dans des conduites à courbures
3.5.5 Entrée ou sortie d’écoulement libre

Monter le capteur dans la section descendante pour assurer une conduite pleine en traversant le débitmètre.

3.5.6 Position de pompe

Ne jamais monter le capteur de mesure sur la partie aspirante d’une pompe afin d’éviter toute cavitation ou dépression dans le capteur.

3.5.7 Vanne de régulation

Figure 3-9: Montage en amont d’une vanne de régulation

1 ≥ 20 DN
3.5.8 Conduite en colonne descendante sur 5 m /16 ft

Prévoir un clapet de mise à l’air en aval du capteur pour empêcher que se forme un vide. Bien que ne nuisant pas au capteur, ceci pourrait provoquer un dégazage du liquide (cavitation) et donc une dégradation de la qualité de mesure.

Figure 3-10: Conduite en colonne descendante sur 5 m /16 ft
① ≥ 5 m / 16 ft
② Installer un clapet de mise à l’air

3.5.9 Isolation

Figure 3-11: Isolation
① Boîtier de raccordement
② Zone isolée

Le capteur de mesure peut être isolé complètement, à l’exception du boîtier de raccordement. (Ex : pour la température maxi, consulter le supplément Ex à la notice de référence)

Les appareils utilisés en zone à atmosphère explosible nécessitent des précautions supplémentaires en matière de températures maxi et d’isolation. A ce sujet, consulter la documentation Ex !
3.5.10 Montage

3.5.11 Déviation des brides

Défaut d’alignement maxi admissible pour les faces de brides de conduite : M_{maxi} 0,5 degré, selon ASME B16.5 Brides individuelles. Voir Annexe 12 ; alignement des faces de bride selon exigences générales pour tuyauteries DEP 31.38.01.11-GEN

![Figure 3-12: Déviation des brides](image1)

1. M_{maxi}

3.5.12 Position de montage

![Figure 3-13: Montage horizontal et vertical](image2)
4.1 Instructions de sécurité

Toute intervention sur le raccordement électrique ne doit s’effectuer que si l’alimentation est coupée. Observez les caractéristiques de tension indiquées sur la plaque signalétique !

Respectez les règlements nationaux en vigueur pour le montage !

Les appareils utilisés en atmosphère explosive sont soumis à des spécifications de sécurité supplémentaires ; consulter à ce sujet la documentation Ex.

Respectez rigoureusement les règlements régionaux de protection de la santé et de la sécurité du travail. Tout travail réalisé sur les composants électriques de l’appareil de mesure doit être effectué uniquement par des spécialistes compétents.

Vérifiez à l’aide de la plaque signalétique si l’appareil correspond à votre commande. Vérifiez si la tension d’alimentation indiquée sur la plaque signalétique est correcte.

4.2 Câble signal (versions séparées uniquement)

Le capteur de mesure est raccordé au convertisseur de mesure par un câble signal à câbles coaxiaux internes (identifiés) pour le raccordement d’un ou de deux faisceaux ultrasonores.

Figure 4-1: Construction version intempéries

1. Convertisseur de mesure
2. Ouvrir le boîtier de raccordement
3. Élément pour libérer l’accès au connecteurs
4. Marquage sur le câble
5. Insérer le(s) câble(s) dans le compartiment de raccordement

Raccorder le câble au connecteur identifié par le même marquage numérique.
4.3 Alimentation

Si cet appareil est conçu pour être raccordé en permanence au secteur, il est nécessaire d’installer un interrupteur externe ou un disjoncteur à proximité de l’appareil pour le couper du secteur (par ex. en cas de maintenance). Cet interrupteur doit être facilement accessible pour l’opérateur et être marqué comme servant de dispositif de coupure de l’appareil. L’interrupteur ou disjoncteur doit convenir à l’application et satisfaire aux exigences (de sécurité) locales et d’installation du site (IEC 60947-1/-3).

Les appareils utilisés en atmosphère explosive sont soumis à des spécifications de sécurité supplémentaires ; consulter à ce sujet la documentation Ex.

Les bornes pour l’alimentation électrique dans les compartiments de raccordement sont de plus équipées de couvercles rabattables pour éviter tout contact accidentel.

![Diagram of electrical connections](image)

1. 100...230 VAC (-15% / +10%), 22 VA
2. 24 VDC (-55% / +30%) 12 W
3. 24 VAC/DC (AC: -15% / +10%; DC: -25% / +30%), 22 VA or 12 W

L’appareil doit être mis correctement à la terre afin de protéger le personnel contre tout risque de décharge.

100...230 V CA (marge de tolérance : -15% / +10%)
- Noter la tension d’alimentation et la fréquence (50...60 Hz) sur la plaque signalétique.
- La terre de protection PE de l’alimentation électrique doit être branchée à la borne en U séparée dans le compartiment de raccordement du convertisseur de mesure.

240 V CA + 5% sont inclus dans la marge de tolérance.
4.4 Vue d’ensemble des entrées et sorties

4.4.1 Combinaisons des entrées/sorties (E/S)

Ce convertisseur de mesure est disponible avec des combinaisons d’entrées et de sorties.

Version Basic
- Possède 1 sortie courant, 1 sortie impulsions et 2 sorties de signalisation d’état / détecteurs de seuil.
- La sortie impulsions peut être programmée comme sortie de signalisation d’état / de seuil, et une des sorties d’état comme entrée de commande.

Version modulaire
- L’appareil peut être configuré avec différents modules de sortie, selon les besoins.

Option Ex
- Pour l’utilisation en zones à atmosphère explosive, toutes les versions d’entrées et de sorties pour les boîtiers de type C et F sont disponibles avec un compartiment de raccordement de type Ex d (enceinte de confinement) ou Ex e (sécurité augmentée).
- Pour le raccordement et l’utilisation des appareils Ex, consulter les instructions séparées qui s’y rapportent.

4.4.2 Description du numéro CG

Description des abréviations et référence CG pour modules en option éventuels aux bornes A et B

<table>
<thead>
<tr>
<th>Abréviation</th>
<th>Référence pour N° CG</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>A</td>
<td>Sortie courant active</td>
</tr>
<tr>
<td>Ip</td>
<td>B</td>
<td>Sortie courant passive</td>
</tr>
<tr>
<td>Pa / Sa</td>
<td>C</td>
<td>Sortie impulsion active, sortie fréquence, sortie d’état ou détecteur de seuil (paramétrable)</td>
</tr>
<tr>
<td>Pp / Sp</td>
<td>E</td>
<td>Sortie impulsion passive, sortie fréquence, sortie d’état ou détecteur de seuil (paramétrable)</td>
</tr>
<tr>
<td>Ca</td>
<td>G</td>
<td>Entrée de commande active</td>
</tr>
<tr>
<td>Cp</td>
<td>K</td>
<td>Entrée de commande passive</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>Pas de module supplémentaire installé</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>Aucun module supplémentaire possible</td>
</tr>
</tbody>
</table>
4.4.3 Versions : entrées et sorties fixes, non paramétrables

This signal converter is available with various input/output combinations.

- The grey boxes in the tables denote unassigned or unused connection terminals.
- In the table, only the final digits of the CG no. are depicted.

<table>
<thead>
<tr>
<th>N° CG</th>
<th>Bornes de raccordement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A+</td>
</tr>
</tbody>
</table>

Entrée/sortie (E/S) de base (standard)

<table>
<thead>
<tr>
<th></th>
<th>A+</th>
<th>A</th>
<th>A-</th>
<th>B</th>
<th>B-</th>
<th>C</th>
<th>C-</th>
<th>D</th>
<th>D-</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Ip + HART® passive</td>
<td>Sp / Cp passive</td>
<td>Sp passive</td>
<td>Pp / Sp passive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ia + HART® active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Changement de fonction par reconnexion
2 Paramétrable

4.4.4 Versions : entrées et sorties paramétrables

Ce convertisseur de mesure est disponible avec différentes combinaisons d’entrées et de sorties.

- Les cases grises du tableau font référence aux bornes de raccordement non affectées ou non utilisées.
- Le tableau ne reprend que les derniers caractères du numéro CG.
- Borne = borne de raccordement

<table>
<thead>
<tr>
<th>N° CG</th>
<th>Bornes de raccordement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A+</td>
</tr>
</tbody>
</table>

Entrées/sorties modulaires (en option)

<table>
<thead>
<tr>
<th></th>
<th>A+</th>
<th>A</th>
<th>A-</th>
<th>B</th>
<th>B-</th>
<th>C</th>
<th>C-</th>
<th>D</th>
<th>D-</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 _ _</td>
<td>2 modules maxi en option pour bornes A + B</td>
<td>Ia + HART® active</td>
<td>Pa / Sa active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 _ _</td>
<td>2 modules maxi en option pour bornes A + B</td>
<td>Ip + HART® passive</td>
<td>Pa / Sa active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 paramétrable
Please fill in this form and fax or email it to your local representative. Please include a sketch of the pipe layout as well, including the X, Y, Z dimensions.

5.1 Formulaire de configuration de l'appareil

Références du client :
Date :
Soumis par :
Société :
Adresse :
Téléphone :
Fax :
E-mail:

Caractéristiques d’application du débitmètre :
Informations de référence (nom, n° de repère, etc.) :
Nouvelle application
Application actuelle au moyen de :
Objet de la mesure :
Produit à mesurer
Liquide :
Teneur en gaz :
Teneur en solides :
Masse volumique :
Vitesse du son :
Débit
Normal :
Minimum :
Maximum :
Température
Normale :
Minimum :
Maximum :
Pression
Normale :
Minimum :
Maximum :
Détails de la tuyauterie

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamètre nominal de la conduite :</td>
<td></td>
</tr>
<tr>
<td>Diamètre intérieur / extérieur :</td>
<td></td>
</tr>
<tr>
<td>Épaisseur de paroi / dessin :</td>
<td></td>
</tr>
<tr>
<td>Matériau de conduite :</td>
<td></td>
</tr>
<tr>
<td>Sections droites amont / aval (DN) :</td>
<td></td>
</tr>
<tr>
<td>Situation en amont [coudes, vannes, pompes] :</td>
<td></td>
</tr>
<tr>
<td>Sens d’écoulement [verticalement ascendant / horizontal / verticalement descendant / autre] :</td>
<td></td>
</tr>
</tbody>
</table>

Conditions ambiante

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphère corrosive :</td>
<td></td>
</tr>
<tr>
<td>Eau de mer :</td>
<td></td>
</tr>
<tr>
<td>Humidité élevée [% humidité relative] :</td>
<td></td>
</tr>
<tr>
<td>Nucléaire [rayonnement] :</td>
<td></td>
</tr>
<tr>
<td>Zone à atmosphère explosive :</td>
<td></td>
</tr>
<tr>
<td>Détails supplémentaires :</td>
<td></td>
</tr>
</tbody>
</table>

Exigences en matière d’équipement :

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Précision requise [pourcentage du débit] :</td>
<td></td>
</tr>
<tr>
<td>Alimentation [tension, CA / CC] :</td>
<td></td>
</tr>
<tr>
<td>Sortie analogique (4-20 mA) :</td>
<td></td>
</tr>
<tr>
<td>Impulsions [spécifier la largeur d’impulsion mini, valeur d’impulsion] :</td>
<td></td>
</tr>
<tr>
<td>Protocole numérique :</td>
<td></td>
</tr>
<tr>
<td>Options :</td>
<td></td>
</tr>
<tr>
<td>Convertisseur de mesure déporté :</td>
<td></td>
</tr>
<tr>
<td>Spécifier la longueur de câble :</td>
<td></td>
</tr>
<tr>
<td>Accessoires :</td>
<td></td>
</tr>
</tbody>
</table>
KROHNE – Instrumentation de process et solutions de mesure

- Débit
- Niveau
- Température
- Pression
- Analyse de process
- Services

Siège social KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Allemagne)
Tél. : +49 203 301 0
Fax : +49 203 301 10389
info@krohne.com

Consultez notre site Internet pour la liste des contacts KROHNE :
www.krohne.com