OPTIWAVE 5400 C

Transmetteur de niveau radar (FMCW) 24 GHz pour les liquides dans les applications de process de base

- Transmetteur d’entrée de gamme
- Modèle à antenne Drop PP éprouvé, insensible à la condensation
<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Caractéristiques produit</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Transmetteur de niveau radar FMCW pour les liquides dans les applications de process de base</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Applications</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Gamme de produits</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Principe de mesure</td>
<td>10</td>
</tr>
<tr>
<td>2 Caractéristiques techniques</td>
<td>12</td>
</tr>
<tr>
<td>2.1 Caractéristiques techniques</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Précision de mesure</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Tension minimale d'alimentation</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Guide pour pression de service maximale</td>
<td>22</td>
</tr>
<tr>
<td>2.5 Dimensions et poids</td>
<td>24</td>
</tr>
<tr>
<td>3 Montage</td>
<td>35</td>
</tr>
<tr>
<td>3.1 Utilisation prévue</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Préparation de l'installation</td>
<td>35</td>
</tr>
<tr>
<td>3.3 Montage</td>
<td>36</td>
</tr>
<tr>
<td>3.3.1 Plages de pression et de température</td>
<td>36</td>
</tr>
<tr>
<td>3.3.2 Position de montage recommandée</td>
<td>37</td>
</tr>
<tr>
<td>3.3.3 Restrictions de montage</td>
<td>38</td>
</tr>
<tr>
<td>3.3.4 Raccordements process</td>
<td>40</td>
</tr>
<tr>
<td>3.3.5 Appareils LPR : recommandations pour les puits et les réservoirs en matériaux non conducteurs</td>
<td>42</td>
</tr>
<tr>
<td>3.3.6 Tubes verticaux (puits tranquillisants et chambres de mesure)</td>
<td>43</td>
</tr>
<tr>
<td>4 Raccordements électriques</td>
<td>47</td>
</tr>
<tr>
<td>4.1 Raccordement électrique : options de sortie avec presse-étoupe</td>
<td>47</td>
</tr>
<tr>
<td>4.2 Raccordement électrique : options de sortie avec un connecteur mâle M12</td>
<td>47</td>
</tr>
<tr>
<td>4.3 Appareils non Ex</td>
<td>48</td>
</tr>
<tr>
<td>4.4 Appareils pour zones dangereuses</td>
<td>48</td>
</tr>
<tr>
<td>4.5 Réseaux de communication</td>
<td>49</td>
</tr>
<tr>
<td>4.5.1 Informations générales</td>
<td>49</td>
</tr>
<tr>
<td>4.5.2 Connexion point à point</td>
<td>49</td>
</tr>
<tr>
<td>4.5.3 Réseaux multidrop</td>
<td>50</td>
</tr>
<tr>
<td>5 Informations relatives à la commande</td>
<td>51</td>
</tr>
<tr>
<td>5.1 Code de commande</td>
<td>51</td>
</tr>
<tr>
<td>6 Notes</td>
<td>57</td>
</tr>
</tbody>
</table>
1.1 Transmetteur de niveau radar FMCW pour les liquides dans les applications de process de base

Cet appareil est un transmetteur de niveau radar sans contact qui utilise la technologie FMCW. Il mesure la distance, le niveau et le volume des liquides et des pâtes. Il s’agit d’un transmetteur d’entrée de gamme qui fournit des résultats précis dans des réservoirs clos ou en extérieur, comme dans le contexte de rivières ou de barrages, et également dans des process présentant un mouvement rapide.

1. Large choix d’antennes coniques métalliques et d’antennes Drop. L’antenne Drop en PP présente un angle d’émission réduit et est parfaite pour les applications corrosives et impliquant de la condensation.
2. Transmetteur de niveau radar 24 GHz FMCW 2 fils
3. Grand écran LCD rétro-éclairé avec clavier à 4 touches, pouvant être utilisé avec un barreau magnétique, sans ouvrir le couvercle du boîtier. Le logiciel est doté d’un assistant de configuration rapide pour une mise en service simplifiée.
4. Boîtier en aluminium ou en acier inox
Points forts
- KROHNE est le pionnier de la mesure de niveau radar FMCW et possède plus de 28 ans d’expérience avec cette technologie
- Précision : ±2 mm / ±0,08”
- Transmetteur 24 GHz, 2 fils, alimenté par la boucle courant – HART®
- Angle d’émission réduit (5° pour DN150 / 6” pour antenne Drop en PP)
- Protection de la face de bride et antennes Drop en PP éprouvées pour les applications corrosives et impliquant de la condensation
- La forme ellipsoidale et la surface lisse de l’antenne Drop minimisent les dépôts
- Large choix de raccords process (filetage ≥ 1” et bride de ≥ DN40)
- Antenne conique métallique DN200 / 8” pour des distances de mesure maximales de 100 m / 328 ft
- Extensions d’antenne pour s’adapter à toutes les longueurs de piquage
- Conditions de process jusqu’à +130°C / +266°F à 16 barg / 232 psig
- Fonction spectre à vide qui élimine les réflexions parasites créées par les obstacles situés à l’intérieur du réservoir
- Assistant d’installation intuitif pour configuration rapide sur site

Industries
- Chimie
- Pétrole & Gaz
- Pétrochimie
- Énergie
- Acier

Applications
- Réservoirs de stockage et de process pour lesquels une précision de ±2 mm / 0,08” est spécifiée
- Applications présentant une grande plage de mesure
- Mesure de liquides en extérieur, ainsi que dans des réservoirs clos
1.2 Applications

1. Mesure de niveau des liquides

Le transmetteur de niveau peut mesurer le niveau d’une large gamme de produits liquides, sur une grande diversité d’installations, dans sa plage limite de pression et de température. Il ne nécessite aucun étalonnage : il suffit d’effectuer une rapide procédure de configuration.

2. Mesure du volume (masse)

Une fonction table de conversion est disponible dans le menu de configuration pour mesurer le volume ou la masse. Il est possible d’associer jusqu’à 50 valeurs de volume (masse) à des valeurs de niveau. Par exemple :

Niveau 1 = 2 m / Volume 1 = par ex. 0,7 m³
Niveau 2 = 10 m / Volume 2 = par ex. 5 m³
Niveau 3 = 20 m / Volume 3 = par ex. 17 m³

Ces données permettent à l’appareil de calculer (par interpolation linéaire) le volume ou la masse entre chaque entrée de la table de conversion.

Le logiciel PACTware™ et un DTM (Device Type Manager) sont fournis gratuitement avec l’appareil. Ce logiciel permet à l’utilisateur de configurer facilement l’appareil avec un ordinateur. Il dispose d’une fonction de table de conversion pour de nombreuses formes de réservoirs.
1.3 Gamme de produits

OPTIWAVE 1010 (6 GHz)
pour les liquides dans les chambres de mesure

L’OPTIWAVE 1010 est un radar FMCW sans contact soudé, à une chambre de mesure avec indicateur de niveau IP68 en option (BM 26 Advanced). Il mesure en continu la distance et le niveau de liquides propres.

Il convient pour des chambres de mesure jusqu’à 8 m / 26,2 ft de longueur, avec une précision maximale de ±5 mm / ±0,2”. Il peut effectuer des mesures dans des conditions de process avec des températures allant jusqu’à +150°C / +302°F et des pressions allant jusqu’à 40 barg / 580 psig.

OPTIWAVE 5200 C/F (10 GHz)
pour les liquides dans des applications de process et de stockage

Ce transmetteur de niveau radar FMCW 2 fils, 10 GHz permet de mesurer la distance, le niveau, la masse, le volume et le débit des liquides et pâtes. Ses antennes en PP ou en PTFE en font la solution idéale pour mesurer le niveau des produits corrosifs et agressifs. Il comporte des antennes en PP ou PTFE uniques pour les produits agressifs. Cet appareil convient pour des plages de mesure maximales de 30 m / 98,4 ft dans des conditions de process jusqu’à +250°C / +482°F et 40 barg / 580 psig.

L’appareil est conforme aux exigences SIL2 pour les systèmes de sécurité (conformément à la norme IEC 61508). Les options de sortie comprennent les protocoles de communication industrielle HART®, FOUNDATION™ fieldbus et PROFIBUS PA.
OPTIWAVE 5400 C (24 GHz)
pour les liquides dans des applications de process de base

Conçu pour les applications liquides de base, ce transmetteur radar FMCW 2 fils, 24 GHz d’entrée de gamme est précis, même lors de variations rapides du process, dans des réservoirs clos ou en extérieur, comme pour les rivières ou les barrages. Son antenne Drop en PP éprouvée est insensible à la condensation.

L’OPTIWAVE 5400 peut effectuer des mesures dans des conditions de process avec des températures allant jusqu’à +130°C / +266°F et des pressions atteignant 16 barg / 232 psig. En fonction du choix de l’antenne, sa plage de mesure maximale est de 100 m / 328 ft. L’appareil peut être installé dans des piquages longs (≤1 m / 3,28 ft) lorsqu’il est équipé d’extensions d’antenne.

OPTIWAVE 7400 C (24 GHz)
pour les liquides agités et corrosifs

Ce transmetteur de niveau radar FMCW 24 GHz a été conçu pour mesurer les liquides dans des environnements difficiles tels que des réservoirs équipés d’agitateurs contenant des produits corrosifs ou bien des applications non Ex présentant des températures de process extrêmement élevées, comme le sel en fusion dans les centrales solaires (+700°C / +1292°F). Pour les produits toxiques et dangereux, l’utilisation d’une double barrière d’étanchéité Metaglas® est recommandée.

Les antennes Drop en PTFE et PEEK disposent d’une protection de la face de bride en option pour les produits corrosifs. Le système de réchauffage ou de refroidissement évite la formation de cristaux à l’intérieur des antennes coniques métalliques. La plage de mesure maximale de l’appareil est de 100 m / 328 ft et peut être installé dans des piquages longs (≤1 m / 3,28 ft) lorsqu’il est équipé d’extensions d’antenne. Conditions de process standards jusqu’à +200°C / 392°F et 100 barg / 1450 psig (plus élevées sur demande).
OPTIWAVE 7500 C (80 GHz)
pour les liquides dans des réservoirs étroits avec obstacles internes

Le angle d’émission réduit et la zone morte négligeable de ce transmetteur de niveau radar FMCW 80 GHz en font le meilleur choix pour mesurer les liquides dans les réservoirs étroits avec obstacles internes, tels que des agitateurs ou des serpents de réchauffage, ainsi que pour les réservoirs présentant de piquages longs. Il peut même effectuer des mesures à travers des toits de réservoirs en matériaux non conducteurs (p. ex., plastique, fibre de verre ou verre). L’antenne Lentille PEEK affleurante, donc non-intrusive dans le réservoir, est insensible aux dépôts.

Il y a un large choix de raccordements process, à partir de ¾". Pour les réservoirs contenant des produits corrosifs, une protection de la face de bride en PEEK est disponible en option. L’OPTIWAVE 7500 fonctionne dans des conditions de process avec des températures allant jusqu’à +150°C / +302°F et des pressions atteignant 40 barg / 580 psig. Sa plage de mesure maximale est de 100 m / 328 ft. Une extension de 112 mm / 4,4" est disponible pour les piquages longs.

OPTIWAVE 3500 C (80 GHz)
pour les liquides présentant des exigences hygiéniques

Ce transmetteur radar FMCW 80 GHz pour les applications de mesure de liquides présentant des exigences hygiéniques dans les industries pharmaceutique et agroalimentaire est conforme NEP-SEP et offre un large choix de raccords process hygiéniques : Tri-Clamp®, Tuchenhagen VARIVENT®, SMS, DIN 11851, DIN 11864-1 Forme A, NEUMO BioControl®.

Sa zone morte négligeable ainsi que l’angle d’émission réduit de son antenne Lentille affleurante permettent d’obtenir des mesures précises, même dans des réservoirs petits et étroits dotés d’agitateurs. L’OPTIWAVE 3500 effectue des mesures jusqu’à 50 m/164 ft dans des conditions de process atteignant +150°C/+302°F et 25 barg/363 psig.
OPTI WAVE 6400 C (24 GHz)
pour les solides sous la forme de granulés jusqu’aux roches

En combinant une dynamique de signaux élevées et la technologie radar FMCW, ce radar 24 GHz d’entrée de gamme mesure de façon précise et fiable le niveau des solides, tels que les pierres, les granulés de plastique ou les grains de café. Pas besoin de kit d’orientation ou de système de purge coûteux, la conception éprouvée de l’antenne Drop permet de minimiser la formation de dépôts et n’est pas affectée par l’angle du talus.

Il fonctionne dans des conditions de process avec des températures jusqu’à +130°C / +266°F et des pressions jusqu’à 16 barg / 232 psig. En fonction du choix de l’antenne, sa plage de mesure maximale est de 100 m / 328 ft.

OPTI WAVE 6500 C (80 GHz)
pour les poudres et les atmosphères poussiéreuses

Une mesure de niveau continue et précise de poudres fines doit prendre en compte différentes contraintes, telles que la poussière, la faible réflectivité sur les produits, les dépôts et les surfaces irrégulières. Les algorithmes spécifiques et la forte dynamique des signaux de ce transmetteur radar FMCW 80 GHz permettent d’obtenir des résultats fiables et précis, malgré ces conditions difficiles. Grâce à l’angle d’émission réduit de l’antenne Lentille affleurante, cet appareil puissant peut réaliser des mesures dans des silos hauts et étroits, même lorsqu’ils comportent des obstacles internes.

L’OPTI WAVE 6500 fonctionne dans des conditions de process avec des températures allant jusqu’à +200°C / +392°F et des pressions atteignant 40 barg / 580 psig. Il offre un large choix de raccordements process filetés (≥1”½) et à bride (≥DN50 / 2”). En fonction du choix de l’antenne, sa plage de mesure maximale est de 100 m / 328 ft. Une extension de 112 mm / 4,4” est disponible pour les piquages longs.
1.4 Principe de mesure

Un signal radar est émis via une antenne, puis réfléchi sur la surface du produit et ensuite réceptionné après un temps t. Le principe radar utilisé est celui des ondes continues modulées en fréquence (FMCW – Frequency Modulated Continuous Wave).

Le radar FMCW transmet un signal haute fréquence dont la fréquence augmente de manière linéaire pendant la phase de mesure (ce qu’on appelle le balayage de fréquence). Le signal est émis, puis réfléchi sur la surface de mesure et ensuite réceptionné après un certain délai, t. Temps de transit, t=2d/c, sachant que d est la distance jusqu’à la surface du produit et c la vitesse de la lumière dans le gaz au-dessus du produit.

Pour le traitement ultérieur du signal, la différence Δf est calculée à partir de la fréquence de transmission réelle et de la fréquence de réception. La différence est directement proportionnelle à la distance. Une différence de fréquence importante correspond à une grande distance et inversement. La différence de fréquence Δf est transformée sous la forme de spectres grâce à une transformation de Fourier rapide puis convertie en distance. La mesure de niveau résulte de la différence entre la hauteur du réservoir et la distance mesurée.

Figure 1-1: Principe de mesure du radar FMCW

- ① Transmetteur
- ② Mélangeur
- ③ Antenne
- ④ Distance jusqu’à la surface du produit, sachant que le changement de fréquence est proportionnel à la distance
- ⑤ Temps de transit, Δt
- ⑥ Fréquence différentielle, Δf
- ⑦ Fréquence transmise
- ⑧ Fréquence réceptionnée
- ⑨ Fréquence
- ⑩ Temps
Modes de mesure

Mode « Direct »
Si le liquide présente une constante diélectrique élevée ($\varepsilon_r \geq 1,4$), le signal du niveau correspond à la réflexion sur la surface du liquide.

Mode « TBF Auto »
Si le liquide présente une constante diélectrique faible ($\varepsilon_r < 1,4...1,5$, pour une mesure longue distance), utiliser le mode « TBF Auto » pour mesurer correctement le niveau. Le mode « TBF auto » est un mode automatique qui permet à l’appareil de choisir entre les modes « Direct » et « TBF ». Si l’appareil trouve une forte réflexion radar au-dessus de la « zone de fond du réservoir » (les 20% inférieurs de la hauteur du réservoir), il utilisera le mode « Direct ». Si l’appareil trouve une forte réflexion radar dans la « zone de fond du réservoir », il utilisera le mode « TBF ». Ce mode peut seulement être utilisé pour des réservoirs à fond plat ou avec des puits tranquillisants équipés au fond de réflecteurs de référence.

Mode « TBF complet »
TBF = Tank Bottom Following (suivi du fond du réservoir). Si le liquide présente une constante diélectrique très faible ($\varepsilon_r < 1,4$), utiliser le mode « TBF complet » pour mesurer correctement le niveau. L’appareil utilise la réflexion radar au fond du réservoir (le signal traverse le liquide). Ce mode peut seulement être utilisé pour des réservoirs à fond plat ou avec des puits tranquillisants équipés au fond de réflecteurs de référence.
2.1 Caractéristiques techniques

- Les données suivantes sont fournies pour les applications générales. Si vous avez une application spécifique, veuillez contacter votre agence de vente locale.
- Des informations complémentaires (certificats, outils spéciaux, logiciels,...) et une documentation produit complète peuvent être téléchargées gratuitement sur notre site Internet (Centre de Téléchargement).

Système de mesure

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principe de mesure</td>
<td>Transmetteur de niveau 2 fils alimenté par la boucle de courant ; radar FMCW</td>
</tr>
<tr>
<td>Plage de fréquence</td>
<td>Bande K [24...26 GHz]</td>
</tr>
<tr>
<td>Puissance maxi rayonnée (EIRP)</td>
<td><= -41,3 dBm selon ETSI EN 302 372 [TLPR] et ETSI EN 302 729 [LPR]</td>
</tr>
<tr>
<td>Domaine d’application</td>
<td>Mesure du niveau de liquides, de pâtes et de boues</td>
</tr>
<tr>
<td>Valeur primaire mesurée</td>
<td>Distance et réflexion</td>
</tr>
<tr>
<td>Valeur secondaire mesurée</td>
<td>Niveau, volume et masse</td>
</tr>
</tbody>
</table>

Design

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Le système de mesure est constitué d’un capteur de mesure [antenne] et d’un convertisseur de mesure</td>
</tr>
<tr>
<td>Options</td>
<td>Afficheur LCD intégré [-20...+70°C / -4...+158°F] ; si la température ambiante sort de ces limites, cela peut entraîner une extinction de l’afficheur</td>
</tr>
<tr>
<td></td>
<td>Extentions d’antenne droites (longueur 105 mm / 4,1”)</td>
</tr>
<tr>
<td></td>
<td>Longueur maxi de l’extension, antenne conique métallique : 1050 mm / 41,3”</td>
</tr>
<tr>
<td></td>
<td>Longueur maxi de l’extension pour les antennes Drop : 525 mm / 20,7”</td>
</tr>
<tr>
<td></td>
<td>Système de purge d’antenne pour les antennes coniques métalliques (fourni avec un raccordement 1/8 NPTF)</td>
</tr>
<tr>
<td></td>
<td>Protection face de bride en PP et protection d’extension (couche protectrice en PP pour extensions d’antenne)</td>
</tr>
<tr>
<td></td>
<td>Protection intempéries</td>
</tr>
<tr>
<td>Plage de mesure maxi [antenne]</td>
<td>Conique métallique, DN40 (1½”) : 15 m / 49,2 ft</td>
</tr>
<tr>
<td></td>
<td>Conique métallique, DN50 (2”) : 20 m / 65,6 ft</td>
</tr>
<tr>
<td></td>
<td>Conique métallique, DN65 (2½”) : 25 m / 82 ft – pour l’indicateur de niveau magnétique BM 26 A</td>
</tr>
<tr>
<td></td>
<td>Conique métallique, DN80 (3”) : 50 m / 164 ft</td>
</tr>
<tr>
<td></td>
<td>Conique métallique, DN100 (4”) : 80 m / 262,5 ft</td>
</tr>
<tr>
<td></td>
<td>Conique métallique, DN150 (6”) et DN200 (8”) : 100 m / 328,1 ft</td>
</tr>
<tr>
<td></td>
<td>Drop en PP, DN80 (3”) : 50 m / 164 ft</td>
</tr>
<tr>
<td></td>
<td>Drop en PP, DN100 (4”) : 80 m / 262,5 ft</td>
</tr>
<tr>
<td></td>
<td>Drop en PP, DN150 (6”) : 100 m / 328,1 ft</td>
</tr>
<tr>
<td></td>
<td>Voir également « Précision de mesure » à la page 19</td>
</tr>
<tr>
<td>Hauteur minimale du réservoir</td>
<td>0,2 m / 8”</td>
</tr>
<tr>
<td>Zone morte minimale recommandée</td>
<td>Longueur de l’extension d’antenne + longueur de l’antenne + 0,1 m / 4”</td>
</tr>
<tr>
<td>Distance minimale pour la mesure de réflexion</td>
<td>1 m / 3,3 ft</td>
</tr>
</tbody>
</table>
Angle d’émission (antenne)

<table>
<thead>
<tr>
<th>DN</th>
<th>Angle d’émission</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Conique métallique, DN 40 (1,5˚) : 17°</td>
</tr>
<tr>
<td>50</td>
<td>Conique métallique, DN 50 (2˚) : 16°</td>
</tr>
<tr>
<td>65</td>
<td>Conique métallique, DN 65 (2,5˚) : non applicable. Cette option d’antenne est conçue pour l’indicateur de niveau magnétique BM 26 A.</td>
</tr>
<tr>
<td>80</td>
<td>Conique métallique, DN 80 (3˚) : 9°</td>
</tr>
<tr>
<td>100</td>
<td>Conique métallique, DN 100 (4˚) : 8°</td>
</tr>
<tr>
<td>150</td>
<td>Conique métallique, DN 150 (6˚) : 6°</td>
</tr>
<tr>
<td>200</td>
<td>Drop en PP, DN 200 (8˚) : 5°</td>
</tr>
</tbody>
</table>

Affichage et interface utilisateur

- **Affichage**: Afficheur LCD rétro-éclairé
 - 128 × 64 pixels et 64 niveaux de gris avec clavier à 4 touches
- **Langues de l’interface**: Anglais, français, allemand, italien, espagnol, portugais, chinois (simplifié), japonais, russe, tchèque, polonais et turc

Précision de mesure

<table>
<thead>
<tr>
<th>Résolution</th>
<th>1 mm / 0,04”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Répétabilité</td>
<td>±1 mm / ±0,04”</td>
</tr>
</tbody>
</table>

Précision

Standard : ±2 mm / ±0,08”, lorsque la distance est ≤ 10 m / 33 ft ; ±0,02 % de la distance mesurée lorsque la distance est > 10 m / 33 ft. Pour de plus amples informations, se référer à Précision de mesure à la page 19.

Conditions de référence selon EN 61298-1

- **Température**: +15...+25°C / +59...+77°F
- **Pression**: 1013 mbara ±50 mbar / 14,69 psia ±0,73 psi
- **Humidité relative de l’air**: 60% ±15%
- **Cible**: Plaque métallique dans une chambre anéchoïque

Conditions de service

Température

- **Température ambiante**: -40...+80°C / -40...+176°F
 - Ex : voir supplément au manuel de référence ou certificats d’homologation
- **Humidité relative**: 0...99%
- **Température de stockage**: -40...+85°C / -40...+185°F

Température du raccordement process (température plus élevée sur demande)

Antenne conique métallique :

-50...+130°C / -58...+266°F (la température du raccordement process doit correspondre aux limites de température du matériau du joint. Voir « Matériaux » dans le tableau ci-après).

Antenne Drop (PP) :

-40...+100°C / -40...+212°F (la température du raccordement process doit correspondre aux limites de température du matériau du joint. Voir « Matériaux » dans le tableau ci-après).

Ex : voir supplément au manuel de référence ou certificats d’homologation
Pression

| Pression de service | **Antenne Drop (PP):** |-1...16 barg / -14,5...232 psig |
|---------------------|--------------------------|
| | **Antenne conique métallique:** |-1...16 barg / -14,5...232 psig |

En fonction du raccordement process utilisé et de la température de ce dernier. Pour de plus amples informations, se référer à Guide pour pression de service maximale à la page 22.

Autres conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante diélectrique (ε_r)</td>
<td>Mode direct : $\geq 1,4$</td>
</tr>
<tr>
<td></td>
<td>Mode TBF : $\geq 1,1$</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IEC 60529 : IP66 / IP68 (0,1 barg / 1,45 psig)</td>
</tr>
<tr>
<td></td>
<td>NEMA 250 : NEMA type 4X - 6 [boîtier] et type 6P [antenne]</td>
</tr>
<tr>
<td>Vitesse de suivi maxi</td>
<td>60 m/min / 196 ft/min</td>
</tr>
</tbody>
</table>

Conditions de montage

<table>
<thead>
<tr>
<th>Condition</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taille du raccordement process</td>
<td>Le diamètre nominal (DN) doit être supérieur ou égal au diamètre de l’antenne.</td>
</tr>
</tbody>
</table>
| | Si le diamètre nominal (DN) est inférieur à celui de l’antenne, soit :
| | – fournir les moyens d’adaptation pour un raccordement process plus grand sur le réservoir [par exemple, une plaque avec une fente] ou
| Position du raccordement process | S’assurer qu’aucun obstacle ne se trouve juste en dessous du raccordement process prévu pour l’appareil. Pour de plus amples informations, se référer à Montage à la page 35. |
| Dimensions et poids | Pour les données de dimensions et de poids, se référer à Dimensions et poids à la page 24. |

Matériaux

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boîtier</td>
<td>Standard : aluminium avec revêtement polyester</td>
</tr>
<tr>
<td>Pièces en contact avec le produit, antenne comprise</td>
<td>Antenne conique métallique : acier inox [1.4404 / 316L]</td>
</tr>
<tr>
<td></td>
<td>Standard pour antenne Drop : PP</td>
</tr>
<tr>
<td></td>
<td>Option pour antenne Drop : protection face de bride en PP et couche protectrice en PP pour extensions d’antenne</td>
</tr>
<tr>
<td>Raccord process</td>
<td>Acier inox [1.4404 / 316L] – une protection face de bride en PP est également disponible pour les antennes Drop</td>
</tr>
<tr>
<td>Joints (et joints toriques pour l’option extension d’antenne étanche)</td>
<td>Antenne Drop en PP: FKM/FPM [-40...+100°C / -40...+212°F] ; Kalrez® 6375 [-20...+100°C / -4...+212°F] ; EPDM [-40°C...+100°C / -40...+212°F] ①</td>
</tr>
<tr>
<td></td>
<td>Antenne conique métallique : FKM/FPM [-40...+130°C / -40...+266°F] ; Kalrez® 6375 [-20...+130°C / -4...+266°F] ; EPDM [-50°C...+130°C / -58...+266°F]</td>
</tr>
<tr>
<td>Barrière d’étanchéité</td>
<td>PEI [-50...+130°C / -58...+266°F] ① il s’agit de l’étendue maximale. Les limites de température de la barrière d’étanchéité doivent correspondre aux limites de température du matériau du joint et au type d’antenne.</td>
</tr>
<tr>
<td>Pressé-étoupe</td>
<td>Standard : aucun</td>
</tr>
<tr>
<td></td>
<td>En option : plastique [non Ex : noir, homologué Ex i : bleu] ; laiton nickelé ; acier inox ; M12 [connecteur 4 broches]</td>
</tr>
<tr>
<td>Protection intempéries (en option)</td>
<td>Acier inox [1.4404 / 316L]</td>
</tr>
</tbody>
</table>
Raccordements process

<table>
<thead>
<tr>
<th>Raccordement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filetage</td>
<td>G 1 A...1½ A (ISO 228); 1...1½ NPT (ASME B1.20.1)</td>
</tr>
<tr>
<td>Version bride</td>
<td></td>
</tr>
<tr>
<td>EN 1092-1</td>
<td>Brides basse pression : DN50...200 en PN01 ; Brides standards : DN40 en PN40, DN50...200 en PN16 et PN40 (Type B1) ; autres sur demande</td>
</tr>
<tr>
<td>ASME B16.5</td>
<td>Brides basse pression : 2...8' en 150 lb (15 psig maxi) ; Brides standards : 1½...8' en 150 lb RF et 300 lb RF ; autres sur demande</td>
</tr>
<tr>
<td>JIS B2220</td>
<td>40...200A en 10K RF ; autres sur demande</td>
</tr>
<tr>
<td>Autres</td>
<td>Autres sur demande</td>
</tr>
</tbody>
</table>

Raccordements électriques

<table>
<thead>
<tr>
<th>Raccordement électrique</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentation</td>
<td>Borne non Ex / Ex i : 12...30 V CC ; valeur mini/maxi pour une sortie de 21,5 mA aux bornes</td>
</tr>
<tr>
<td>Courant maximal</td>
<td>21,5 mA</td>
</tr>
</tbody>
</table>
| Charge de la sortie courant | Non Ex / Ex i : $R_L \leq (U_{ext} -12 V)/21,5 mA$. Pour de plus amples informations, se référer à Tension minimale d’alimentation à la page 20.
Ex d : $R_L \leq (U_{ext} -16 V)/21,5 mA$. Pour de plus amples informations, se référer à Tension minimale d’alimentation à la page 20. |
| Entrée de câble | Standard : M20×1,5 ; en option : ½ NPT ; connecteur mâle M12 à 4 broches |
| Presse-étoupe | Standard : aucun
En option : M20 × 1,5 (diamètre de câble : 7...12 mm / 0,28...0,47") ; autres diamètres disponibles sur demande |
| Capacité d’entrée de câble (bornier) | 0,5...3,31 mm² [AWG 20...12] |

Entrée et sortie

<table>
<thead>
<tr>
<th>Sortie courant</th>
<th>Description</th>
</tr>
</thead>
</table>
| Signal de sortie | Standard : 4...20 mA
En option : 3,8...20,5 mA selon NAMUR NE 43 ; 4...20 mA (inversé) ; 3,8...20,5 mA (inversé) selon NAMUR NE 43 |
| Type de sortie | Passive |
| Résolution | $\pm 5 \mu A$ |
| Dérive de température | Typiquement 50 ppm/K |
| Signal d’erreur | Valeur maxi : 21,5 mA ; Valeur mini : 3,5 mA selon NAMUR NE 43 |

HART®

Description	Signal numérique transmis avec le signal de sortie courant (protocole HART®) ②
Version	7.4
Charge	$\geq 250 \Omega$
Dérive de température numérique	$\pm 15 \text{ mm} / 0,6^\circ\text{maxi sur la totalité de la plage de température}$
Mode multidrop	Oui. Sortie courant = 4 mA. Entrer dans le mode de programmation pour modifier l’adresse de scrutation [1...63].
Pilotes disponibles	FC475, AMS, PDM, FDT/DTM
CARACTÉRISTIQUES TECHNIQUES

PROFIBUS PA (en préparation)

Type	Interface PROFIBUS MBP conforme IEC 61158-2 avec 31,25 kbit/s, mode tension (MBP = Manchester-Coded, Bus-Powered)
Blocs de fonctions	1 bloc transmetteur niveau (TB niveau), 1 bloc physique (PB), 4 blocs d’entrée analogique (AI), 1 bloc de fonctions de totalisateur (TOT)
Alimentation électrique de l’appareil	9...32 V CC – alimentation par bus, aucune alimentation supplémentaire nécessaire
Sensibilité à la polarité	Non
Courant de base	18 mA

FOUNDATION™ fieldbus (en préparation)

Couche physique	Protocole FOUNDATION™ fieldbus conforme à la norme IEC 61158-2 et au modèle FISCO, à séparation galvanique
Norme de communication	H1
Version ITK	6.3
Blocs de fonctions	1 bloc de ressources avancé (RB), 1 bloc transmetteur de niveau client (LEVELTB), 1 bloc transmetteur convertisseur client (CONVTB), 1 bloc transmetteur de diagnostic client (DIAGTB), 4 blocs d’entrée analogique (AI), 1 entrée numérique (DI), 1 bloc intégrateur (IT), 1 bloc proportionnel, intégral, dérivé (PID), 1 bloc arithmétique (AR)
Alimentation électrique de l’appareil	Sans sécurité intrinsèque : 9...32 V CC
À sécurité intrinsèque : 9...24 V CC	
Courant de base	18 mA
Courant de défaut maximum FDE	25,5 mA (= courant de base + courant de défaut = 18 mA + 7,5 mA)
Sensibilité à la polarité	Non
Durée de cycle minimum	250 ms
Données de sortie	Niveau, distance, volume, volume vide, masse, masse vide
Données d’entrée	Rien
Link Active Scheduler	Prise en charge
Données NAMUR NE 107	Prise en charge avec diagnostic de terrain FF [FF-891]

Homologations et certification

CE

L’appareil satisfait aux exigences essentielles des Directives UE. En apposant le marquage CE, le fabricant certifie que le produit a passé avec succès les contrôles et essais.

Pour de plus amples informations au sujet des Directives UE et des normes européennes relatives à cet appareil, consulter la déclaration de conformité UE. Vous pouvez télécharger ce document gratuitement à partir du site Web (centre de téléchargement).

Résistance aux vibrations

EN 60068-2-6 et EN 60721-3-4 [1...9 Hz : 3 mm / 10...200 Hz : 1 g ; choc 10 g ½ sinus : 11 ms]
CARACTÉRISTIQUES TECHNIQUES

Protection contre les explosions

<table>
<thead>
<tr>
<th>ATEX [homologation de type UE]</th>
<th>1/2 G Ex ia IIC T6...T* Ga/Gb ; ³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2 D Ex ia IIIC T85°C...T**C Da/Db ; ⁴</td>
</tr>
<tr>
<td></td>
<td>1/2 G Ex db ia IIC T6...T* Ga/Gb ; ³</td>
</tr>
<tr>
<td></td>
<td>1/2 D Ex ia tb IIIC T85°C...T**C Da/Db ; ⁴</td>
</tr>
<tr>
<td>ATEX [homologation de type]</td>
<td>3 G Ex ic IIC T6...T* Gc ; ³</td>
</tr>
<tr>
<td></td>
<td>3 D Ex ic IIIC T85°C...T**C Dc ⁴</td>
</tr>
<tr>
<td>IECEx</td>
<td>Ex ia IIC T6...T* Ga/Gb ; ³</td>
</tr>
<tr>
<td></td>
<td>Ex db ia IIC T6...T* Ga/Gb ; ³</td>
</tr>
<tr>
<td></td>
<td>Ex ia tb IIIC T85°C...T**C Da/Db ; ⁴</td>
</tr>
<tr>
<td></td>
<td>Ex ic IIC T6...T* Gc ; ³</td>
</tr>
<tr>
<td></td>
<td>Ex ic IIIC T85°C...T**C Gc ⁴</td>
</tr>
<tr>
<td>cQPSus</td>
<td>Caractéristiques nominales de division</td>
</tr>
<tr>
<td></td>
<td>XP-IS, Classe I, Div 1, GPS ABCD, T6...Tx ;</td>
</tr>
<tr>
<td></td>
<td>DIP, Classe II, III, Div 1, GPS EFG, T85°C...T**C ; ⁴</td>
</tr>
<tr>
<td></td>
<td>IS, Classe I, Div 1, GPS ABCD, T6...Tx ;</td>
</tr>
<tr>
<td></td>
<td>IS, Classe II, III, Div 1, GPS EFG, T85°C...T**C ; ⁴</td>
</tr>
<tr>
<td></td>
<td>NI, Classe I, Div 2, GPS ABCD, T6...Tx ;</td>
</tr>
<tr>
<td></td>
<td>NI, Classe II, III, Div 2, GPS FG, T85°C...T**C ⁴</td>
</tr>
<tr>
<td></td>
<td>Caractéristiques nominales de zone</td>
</tr>
<tr>
<td></td>
<td>Classe I, Zone 1, AEx db ia [ia Ga] IIC T6...T* Gb [États-Unis] – antenne utilisable en Zone 0 ;</td>
</tr>
<tr>
<td></td>
<td>Ex db ia [ia Ga] IIC T6...T* Gb (Canada) – antenne utilisable en Zone 0 ; ³</td>
</tr>
<tr>
<td></td>
<td>Classe I, Zone 0, AEx ia IIC T6...T* Ga (États-Unis) ;</td>
</tr>
<tr>
<td></td>
<td>Ex ia IIC T6...T* Ga (Canada) ; ³</td>
</tr>
<tr>
<td></td>
<td>Zone 20, AEx ia IIIC T85°C...T**C Da (États-Unis) ;</td>
</tr>
<tr>
<td></td>
<td>Ex ia IIIC T85°C...T**C Da (Canada) ; ⁴</td>
</tr>
<tr>
<td></td>
<td>Zone 21, AEx ia tb [ia Da] IIIC T85°C...T**C Db (États-Unis) – antenne utilisable en Zone 20 ;</td>
</tr>
<tr>
<td></td>
<td>Ex ia tb [ia Da] IIIC T85°C...T**C Db (Canada) – antenne utilisable en Zone 20 ⁴</td>
</tr>
<tr>
<td>NEPSI</td>
<td>Ex ia IIC T*–T6 Ga/Gb ; ³</td>
</tr>
<tr>
<td></td>
<td>Ex d ia IIC T*–T6 Ga/Gb ; ³</td>
</tr>
<tr>
<td></td>
<td>Ex iaD 20/21 T85...T* ; ⁵</td>
</tr>
<tr>
<td></td>
<td>Ex iaD 20/21 1D A21 IP6X T85°C...T**C ⁴</td>
</tr>
<tr>
<td>EAC-EX</td>
<td>Ga/Gb Ex ia IIC T6...T* X ; ³</td>
</tr>
<tr>
<td></td>
<td>Da/Db Ex ia IIIC T85°C...T**C X ; ⁴</td>
</tr>
<tr>
<td></td>
<td>Ga/Gb Ex db ia IIC T6...T* X ; ³</td>
</tr>
<tr>
<td></td>
<td>Da/Db Ex ia tb IIIC T85°C...T**C X ⁴</td>
</tr>
</tbody>
</table>
Autres normes et homologations

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Normes et Homologations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibilité électromagnétique</td>
<td>UE : Directive relative à la compatibilité électromagnétique (CEM)</td>
</tr>
<tr>
<td>Homologations radio</td>
<td>UE : Directive pour les équipements hertziens [RED]</td>
</tr>
<tr>
<td></td>
<td>Réglementations FCC : Partie 15</td>
</tr>
<tr>
<td></td>
<td>Industrie Canada : CNR-211</td>
</tr>
<tr>
<td>Sécurité électrique</td>
<td>UE : Conforme à la partie sécurité de la Directive Basse Tension (DBT / LVD)</td>
</tr>
<tr>
<td></td>
<td>États-Unis et Canada : Conforme aux exigences NEC et CEC pour les installations en zone non dangereuse</td>
</tr>
<tr>
<td>NAMUR</td>
<td>NAMUR NE 21 Compatibilité électromagnétique (CEM) des équipements de contrôle de process industriels et de laboratoire</td>
</tr>
<tr>
<td></td>
<td>NAMUR NE 43 Normalisation du niveau de signal pour les informations de défaillance des transmetteurs numériques</td>
</tr>
<tr>
<td></td>
<td>NAMUR NE 53 Matériel et logiciels des appareils de terrain et appareils de traitement de signaux à électronique numérique</td>
</tr>
<tr>
<td></td>
<td>NAMUR NE 107 Autosurveillance et diagnostic des dispositifs de terrain</td>
</tr>
<tr>
<td>CRN</td>
<td>En préparation. Cette certification concerne toutes les provinces et tous les territoires canadiens. Pour de plus amples informations, consulter le site Internet.</td>
</tr>
<tr>
<td>Code de construction</td>
<td>En option : NACE MR 0175 / MR 0103 / ISO 15156 ; ASME B31.3</td>
</tr>
</tbody>
</table>

1. Kalrez® est une marque déposée de DuPont Performance Elastomers L.L.C.
2. HART® est une marque déposée de la HART Communication Foundation
3. $T^* = T5$ ou $T4$. Pour de plus amples informations, se reporter au certificat d’homologation Ex correspondant.
4. $T^{**}^\circ C = 100^\circ C$ ou $130^\circ C$. Pour de plus amples informations, se reporter au certificat d’homologation Ex correspondant.
5. $T^*=100^\circ C$ ou $130^\circ C$. Pour de plus amples informations, se reporter au certificat d’homologation Ex correspondant.
2.2 Précision de mesure

Utiliser ces graphiques pour déterminer la précision de mesure pour une distance donnée par rapport au transmetteur.

Figure 2-1: Précision de mesure (graphique de précision de mesure en mm par rapport à la plage de mesure en m)
X : Distance de mesure à partir de la portée de joint ou de la face de bride du raccord process [m]
Y : Précision de mesure [+yy mm / -yy mm]
① Zone morte minimum recommandée = longueur d’extension d’antenne + longueur d’antenne + 100 mm

Figure 2-2: Précision de mesure (graphique de précision de mesure en pouces par rapport à la plage de mesure en ft)
X : Distance de mesure à partir de la portée de joint ou de la face de bride du raccord process [ft]
Y : Précision de mesure [+yy pouces / -yy pouces]
① Zone morte minimum recommandée = longueur d’extension d’antenne + longueur d’antenne + 3,74”

Pour calculer la précision à une distance donnée de l’antenne, se référer à Caractéristiques techniques à la page 12 (précision de mesure).
2.3 Tension minimale d'alimentation

Utiliser ces graphiques pour trouver la tension minimale d'alimentation pour une charge donnée sur la sortie courant.

Figure 2-3: Tension minimale d'alimentation pour une sortie de 21,5 mA aux bornes (homologation non Ex et zones dangereuses (Ex i / IS))

- **X :** alimentation U [V CC]
- **Y :** charge de la sortie courant R_L [Ω]
Appareils homologués zone dangereuse (Ex d / XP/NI)

Figure 2-4: Tension minimale d'alimentation pour une sortie de 21,5 mA aux bornes (homologation zones dangereuses (Ex d / XP/NI))

X : alimentation U [V CC]
Y : Charge sur la sortie courant R_L [Ω]
2.4 Guide pour pression de service maximale

S’assurer que les appareils sont utilisés conformément aux limites de fonctionnement.

![Figure 2-5: Déclassement de pression/température (EN 1092-1), brides et raccords filetés, en °C et barg](image1)

![Figure 2-6: Déclassement de pression/température (EN 1092-1), brides et raccords filetés, en °F et psig](image2)

1. Pression de service, p [barg]
2. Température du raccord process, T [°C]
3. Pression de service, p [psi]
4. Température du raccord process, T [°F]
5. Raccord fileté, G [ISO 228-1]
7. Raccord à bride, PN16
Certification CRN (en préparation)

L’homologation CRN convient pour les raccords process ASME. Cette homologation est obligatoire pour tous les matériels installés sur des réservoirs sous pression au Canada.

Figure 2-7: Déclassement de pression/température (ASME B16.5), brides et raccords filetés, en °C et barg

Figure 2-8: Déclassement de pression / température (ASME B16.5), brides et raccords filetés, en °F et en psig

1. Pression de service, p [barg]
2. Température du raccord process, T [°C]
3. Pression de service, p [psig]
4. Température du raccord process, T [°F]
5. Raccord fileté, NPT (ASME B1.20.1). Raccord à bride, Classe 300.
6. Raccord à bride, Classe 150
2.5 Dimensions et poids

Antennes coniques métalliques avec un raccord fileté

![Antennes coniques métalliques avec un raccord fileté](image)

Figure 2-9: Antennes coniques métalliques avec un raccord fileté G ou NPT

- Le diamètre extérieur de la gaine du câble doit être compris entre 7...12 mm ou 0,28...0,47".
- Les presse-étoupe pour les appareils homologués cQPSus doivent être fournis par le client.
- Un couvercle protection intempéries est disponible en tant qu’accessoire pour tous les appareils.
Antennes coniques métalliques avec un raccord fileté : Dimensions en mm

<table>
<thead>
<tr>
<th>Version antenne conique</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Øe</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN40/1½"</td>
<td>151</td>
<td>185</td>
<td>143</td>
<td>328</td>
<td>39</td>
</tr>
<tr>
<td>DN50/2"</td>
<td>151</td>
<td>185</td>
<td>157</td>
<td>342</td>
<td>43</td>
</tr>
<tr>
<td>DN65/2½"</td>
<td>151</td>
<td>185</td>
<td>232</td>
<td>417</td>
<td>65</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>151</td>
<td>185</td>
<td>267</td>
<td>452</td>
<td>75</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>151</td>
<td>185</td>
<td>335</td>
<td>520</td>
<td>95</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>151</td>
<td>185</td>
<td>490</td>
<td>675</td>
<td>140</td>
</tr>
<tr>
<td>DN200/8"</td>
<td>151</td>
<td>185</td>
<td>662</td>
<td>847</td>
<td>190</td>
</tr>
</tbody>
</table>

1 Il s’agit de la dimension sans l’option d’extension d’antenne. 10 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 105 mm de long.

Antennes coniques métalliques avec un raccord fileté : Dimensions en pouces

<table>
<thead>
<tr>
<th>Version antenne conique</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Øe</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN40/1½"</td>
<td>5,94</td>
<td>11,14</td>
<td>5,63</td>
<td>12,91</td>
<td>1,54</td>
</tr>
<tr>
<td>DN50/2"</td>
<td>5,94</td>
<td>11,14</td>
<td>6,18</td>
<td>13,46</td>
<td>1,69</td>
</tr>
<tr>
<td>DN65/2½"</td>
<td>5,94</td>
<td>11,14</td>
<td>9,13</td>
<td>16,42</td>
<td>2,56</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>5,94</td>
<td>11,14</td>
<td>10,51</td>
<td>17,80</td>
<td>2,95</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>5,94</td>
<td>11,14</td>
<td>13,19</td>
<td>20,47</td>
<td>3,74</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>5,94</td>
<td>11,14</td>
<td>19,29</td>
<td>26,57</td>
<td>5,51</td>
</tr>
<tr>
<td>DN200/8"</td>
<td>5,94</td>
<td>11,14</td>
<td>26,06</td>
<td>33,35</td>
<td>7,48</td>
</tr>
</tbody>
</table>

1 Il s’agit de la dimension sans l’option d’extension d’antenne. 10 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 4,1” de long.
Versions antennes coniques métalliques avec raccords à bride standard

Figure 2-10: Antennes coniques métalliques avec raccords à bride standard

1. Antenne conique métallique avec raccord à bride

- Le diamètre extérieur de la gaine du câble doit être compris entre 7...12 mm ou 0,28...0,47".
- Les presse-étoupe pour les appareils homologués cQPSus doivent être fournis par le client.
- Un couvercle protection intempérie est disponible en tant qu'accessoire pour tous les appareils.
Antennes coniques métalliques avec raccords à bride standard : Dimensions en mm

<table>
<thead>
<tr>
<th>Version antenne conique</th>
<th>Dimensions [mm]</th>
<th></th>
<th></th>
<th></th>
<th>Øe</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN40/1½"</td>
<td>a: 151</td>
<td>b: 203...215,6</td>
<td>c: 130...143</td>
<td>d: 333...358</td>
<td>39</td>
</tr>
<tr>
<td>DN50/2"</td>
<td>a: 151</td>
<td>b: 203...215,6</td>
<td>c: 144...157</td>
<td>d: 347...372</td>
<td>43</td>
</tr>
<tr>
<td>DN65/2½"</td>
<td>a: 151</td>
<td>b: 203...215,6</td>
<td>c: 219...230</td>
<td>d: 422...447</td>
<td>65</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>a: 151</td>
<td>b: 203...215,6</td>
<td>c: 254...267</td>
<td>d: 457...482</td>
<td>75</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>a: 151</td>
<td>b: 203...215,6</td>
<td>c: 322...335</td>
<td>d: 525...550</td>
<td>95</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>a: 151</td>
<td>b: 203...215,6</td>
<td>c: 477...490</td>
<td>d: 680...705</td>
<td>140</td>
</tr>
<tr>
<td>DN200/8"</td>
<td>a: 151</td>
<td>b: 203...215,6</td>
<td>c: 649...662</td>
<td>d: 852...877</td>
<td>190</td>
</tr>
</tbody>
</table>

1. Il s’agit des valeurs mini et maxi sans l’option d’extension d’antenne. 10 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 105 mm de long.

Antennes coniques métalliques avec raccords à bride standard : Dimensions en pouces

<table>
<thead>
<tr>
<th>Version antenne conique</th>
<th>Dimensions [pouces]</th>
<th></th>
<th></th>
<th></th>
<th>Øe</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN40/1½"</td>
<td>a: 5,94</td>
<td>b: 7,99...8,49</td>
<td>c: 5,12...5,63</td>
<td>d: 13,11...14,09</td>
<td>1,54</td>
</tr>
<tr>
<td>DN50/2"</td>
<td>a: 5,94</td>
<td>b: 7,99...8,49</td>
<td>c: 5,67...6,18</td>
<td>d: 13,66...14,64</td>
<td>1,69</td>
</tr>
<tr>
<td>DN65/2½"</td>
<td>a: 5,94</td>
<td>b: 7,99...8,49</td>
<td>c: 8,62...9,05</td>
<td>d: 16,61...17,60</td>
<td>2,56</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>a: 5,94</td>
<td>b: 7,99...8,49</td>
<td>c: 10,00...10,51</td>
<td>d: 17,99...18,98</td>
<td>2,95</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>a: 5,94</td>
<td>b: 7,99...8,49</td>
<td>c: 12,68...13,19</td>
<td>d: 20,67...21,65</td>
<td>3,74</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>a: 5,94</td>
<td>b: 7,99...8,49</td>
<td>c: 18,78...19,29</td>
<td>d: 26,77...27,76</td>
<td>5,51</td>
</tr>
<tr>
<td>DN200/8"</td>
<td>a: 5,94</td>
<td>b: 7,99...8,49</td>
<td>c: 25,55...26,06</td>
<td>d: 33,54...34,53</td>
<td>7,48</td>
</tr>
</tbody>
</table>

1. Il s’agit des valeurs mini et maxi sans l’option d’extension d’antenne. 10 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 4,1" de long.
Versions antennes coniques métalliques avec raccords à bride basse pression

1. Antenne conique métallique avec bride basse pression associée à un raccord fileté G (ISO 228-1)
2. Antenne conique métallique avec bride basse pression associée à un raccord fileté NPT (ASME B1.20.1)

- Le diamètre extérieur de la gaine du câble doit être compris entre 7...12 mm ou 0,28...0,47".
- Les presse-étoupe pour les appareils homologués cQPSus doivent être fournis par le client.
- Un couvercle protection intempéries est disponible en tant qu’accessoire pour tous les appareils.
Antennes coniques métalliques avec raccords à bride basse pression : Dimensions en mm

Version antenne conique	Dimensions [mm]							
	a	b	c	d	Øe			
	G	NPT	G	NPT	G	NPT	G	NPT
DN40/1½"	151	215	247	138 ¹	328 ¹	385 ¹	39	
DN50/2"	151	215	247	152 ¹	342 ¹	399 ¹	43	
DN65/2½"	151	215	247	227 ¹	417 ¹	474 ¹	65	
DN80/3"	151	215	247	262 ¹	452 ¹	507 ¹	75	
DN100/4"	151	215	247	331 ¹	521 ¹	578 ¹	95	
DN150/6"	151	215	247	486 ¹	675 ¹	733 ¹	140	
DN200/8"	151	215	247	657 ¹	847 ¹	904 ¹	190	

¹ Il s’agit de la dimension sans l’option d’extension d’antenne. 10 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 105 mm de long.

Antennes coniques métalliques avec raccords à bride basse pression : Dimensions en pouces

Version antenne conique	Dimensions [pouces]							
	a	b	c	d	Øe			
	G	NPT	G	NPT	G	NPT	G	NPT
DN40/1½"	5,94	8,46	9,72	5,43 ¹	12,91 ¹	15,16 ¹	1,54	
DN50/2"	5,94	8,46	9,72	5,98 ¹	13,46 ¹	15,71 ¹	1,69	
DN65/2½"	5,94	8,46	9,72	8,94 ¹	16,42 ¹	18,66 ¹	2,56	
DN80/3"	5,94	8,46	9,72	10,31 ¹	17,80 ¹	19,96 ¹	2,95	
DN100/4"	5,94	8,46	9,72	13,03 ¹	20,51 ¹	22,76 ¹	3,74	
DN150/6"	5,94	8,46	9,72	19,13 ¹	26,57 ¹	28,86 ¹	5,51	
DN200/8"	5,94	8,46	9,72	25,87 ¹	33,35 ¹	35,59 ¹	7,48	

¹ Il s’agit de la dimension sans l’option d’extension d’antenne. 10 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 4,1" de long.
Antennes Drop avec un raccord fileté

Figure 2-12: Antennes Drop avec un raccord fileté

- Le diamètre extérieur de la gaine du câble doit être compris entre 7...12 mm ou 0,28...0,47".
- Les presse-étoupe pour les appareils homologués cQPSus doivent être fournis par le client.
- Un couvercle protection intempéries est disponible en tant qu’accessoire pour tous les appareils.

Antennes Drop avec un raccord fileté : Dimensions en mm

<table>
<thead>
<tr>
<th>Version antenne Drop</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>151</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>151</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>151</td>
</tr>
</tbody>
</table>

(1) Il s’agit de la dimension sans l’option d’extension d’antenne. 5 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 105 mm de long.

Antennes Drop avec un raccord fileté : Dimensions en pouces

<table>
<thead>
<tr>
<th>Version antenne Drop</th>
<th>Dimensions [pouces]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>DN80/3"</td>
<td>5,94</td>
</tr>
<tr>
<td>DN100/4"</td>
<td>5,94</td>
</tr>
<tr>
<td>DN150/6"</td>
<td>5,94</td>
</tr>
</tbody>
</table>

(1) Il s’agit de la dimension sans l’option d’extension d’antenne. 5 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 4,1" de long.
Antennes Drop avec raccords à bride standard

1. Antenne Drop avec un raccord à bride
2. Antenne Drop avec un raccord à bride et, en option, une protection de la face de bride

- Le diamètre extérieur de la gaine du câble doit être compris entre 7...12 mm ou 0,28...0,47".
- Les presse-étoupe pour les appareils homologués cQPSus doivent être fournis par le client.
- Un couvercle protection intempéries est disponible en tant qu’accessoire pour tous les appareils.

Antennes Drop avec raccords à bride standard : Dimensions en mm

<table>
<thead>
<tr>
<th>Version antenne Drop</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Øe</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN80/3”</td>
<td>151</td>
<td>203...215,6</td>
<td>124...136 1</td>
<td>327...352 1</td>
<td>74</td>
<td>20 2</td>
</tr>
<tr>
<td>DN100/4”</td>
<td>151</td>
<td>203...215,6</td>
<td>147...159 1</td>
<td>350...375 1</td>
<td>94</td>
<td>20 2</td>
</tr>
<tr>
<td>DN150/6”</td>
<td>151</td>
<td>203...215,6</td>
<td>203...216 1</td>
<td>411...436 1</td>
<td>144</td>
<td>20 2</td>
</tr>
</tbody>
</table>

1. It s’agit des valeurs mini et maxi sans l’option d’extension d’antenne. 5 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 105 mm de long.
2. Si l’appareil est équipé de l’option de protection de la face de bride en PP

Antennes Drop avec raccords à bride standard : Dimensions en pouces

<table>
<thead>
<tr>
<th>Version antenne Drop</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Øe</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN80/3”</td>
<td>5,94</td>
<td>7,99...8,49</td>
<td>4,88...5,35 1</td>
<td>12,87...13,86 1</td>
<td>2,91</td>
<td>0,79 2</td>
</tr>
<tr>
<td>DN100/4”</td>
<td>5,94</td>
<td>7,99...8,49</td>
<td>5,79...6,26 1</td>
<td>13,78...14,76 1</td>
<td>3,70</td>
<td>0,79 2</td>
</tr>
<tr>
<td>DN150/6”</td>
<td>5,94</td>
<td>7,99...8,49</td>
<td>7,99...8,46 1</td>
<td>15,98...16,97 1</td>
<td>5,67</td>
<td>0,79 2</td>
</tr>
</tbody>
</table>

1. It s’agit des valeurs mini et maxi sans l’option d’extension d’antenne. 5 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 4,1” de long.
2. Si l’appareil est équipé de l’option de protection de bride en PP
Antennes Drop avec raccords à bride basse pression

Figure 2-14: Antennes Drop avec raccords à bride basse pression

1. Antenne conique métallique avec bride basse pression associée à un raccord fileté G (ISO 228-1)
2. Antenne conique métallique avec bride basse pression associée à un raccord fileté NPT (ASME B1.20.1)

- Le diamètre extérieur de la gaine du câble doit être compris entre 7...12 mm ou 0,28...0,47”.
- Les presse-étoupe pour les appareils homologués cQPSus doivent être fournis par le client.
- Un couvercle protection intempéries est disponible en tant qu’accessoire pour tous les appareils.

Antennes Drop avec raccords à bride basse pression : Dimensions en mm

<table>
<thead>
<tr>
<th>Version antenne Drop</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>G</td>
</tr>
<tr>
<td>DN80/3”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>324</td>
</tr>
<tr>
<td>DN100/4”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>347</td>
</tr>
<tr>
<td>DN150/6”</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>405</td>
</tr>
</tbody>
</table>

1. Il s’agit de la dimension sans l’option d’extension d’antenne. 5 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 105 mm de long.

Antennes Drop avec raccords à bride basse pression : Dimensions en pouces

<table>
<thead>
<tr>
<th>Version antenne Drop</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>G</td>
</tr>
<tr>
<td>DN80/3”</td>
<td>5,94</td>
</tr>
<tr>
<td></td>
<td>12,76</td>
</tr>
<tr>
<td>DN100/4”</td>
<td>5,94</td>
</tr>
<tr>
<td></td>
<td>13,66</td>
</tr>
<tr>
<td>DN150/6”</td>
<td>5,94</td>
</tr>
<tr>
<td></td>
<td>15,94</td>
</tr>
</tbody>
</table>

1. Il s’agit de la dimension sans l’option d’extension d’antenne. 5 extensions d’antenne sont disponibles au maximum. Chaque extension d’antenne mesure 4,1” de long.
Option système de purge

Figure 2-15: Option système de purge
1 Raccord fileté 1/8 NPTF pour système de purge (l’obturateur est fourni par le fabricant)

Système de purge
Disponible en option pour toutes les antennes coniques métalliques. Les raccords à bride doivent présenter une pression nominale de PN16 (EN 1092-1), PN40 (EN 1092-1), Classe 150 (ASME B16.5), Classe 300 (ASME B16.5) ou doivent être des brides basse pression (PN01 / 15 psig).

Protection intempéries en option

Figure 2-16: Protection intempéries en option
1 Vue de face (avec protection intempéries fermée)
2 Vue de gauche (avec protection intempéries fermée)
3 Vue arrière (avec protection intempéries fermée)

Protection intempéries : dimensions et poids

<table>
<thead>
<tr>
<th></th>
<th>Dimensions</th>
<th>Poids [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Protection intempéries</td>
<td>177</td>
<td>6,97</td>
</tr>
</tbody>
</table>
CARACTÉRISTIQUES TECHNIQUES

Poids du convertisseur de mesure

<table>
<thead>
<tr>
<th>Type de boîtier</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boîtier compact en aluminium</td>
<td>2,1</td>
</tr>
<tr>
<td>Boîtier compact en acier inox</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Poids des différentes options d’antenne

<table>
<thead>
<tr>
<th>Options d’antenne</th>
<th>Poids mini/maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[kg]</td>
</tr>
</tbody>
</table>

Options standards, sans convertisseur de mesure

Antenne conique métallique DN40 / 1,5° avec raccordement process, longueur standard	2,3...58,7	5...129,1
Antenne conique métallique DN50 / 2° avec raccordement process, longueur standard	2,3...58,7	5...129,1
Antenne conique métallique DN65 / 2,5° avec raccordement process, longueur standard	2,5...58,9	5,5...129,6
Antenne conique métallique DN80 / 3° avec raccordement process, longueur standard	2,5...58,9	5,5...129,6
Antenne conique métallique DN100 / 4° avec raccordement process, longueur standard	2,6...59	5,7...129,8
Antenne conique métallique DN150 / 6° avec raccordement process, longueur standard	3...59,4	6,6...130,7
Antenne conique métallique DN200 / 8° avec raccordement process, longueur standard	3,7...60	8,1...132
Antenne Drop DN80 / 3° en PP avec raccordement process, longueur standard	2,7...59,1	5,9...130
Antenne Drop DN100 / 4° en PP avec raccordement process, longueur standard	3,1...59,5	6,8...131,2
Antenne Drop DN150 / 6° en PP avec raccordement process, longueur standard	4,5...60,9	9,9...134

Options d’extensions d’antenne

Extension droite, longueur 105 mm / 4,13°	+0,92	+2,03
Extension droite, longueur 210 mm / 8,27°	+1,84	+4,06
Extension droite, longueur 315 mm / 12,40°	+2,76	+6,08
Extension droite, longueur 420 mm / 16,54°	+3,68	+8,11
Extension droite, longueur 525 mm / 20,67°	+4,60	+10,14
Extension droite, longueur 630 mm / 24,80°	+5,52	+12,17
Extension droite, longueur 735 mm / 28,94°	+6,44	+14,20
Extension droite, longueur 840 mm / 33,07°	+7,36	+16,23
Extension droite, longueur 945 mm / 37,20°	+8,28	+18,25
Extension droite, longueur 1 050 mm / 41,34°	+9,20	+20,28

Autres options

Protection de la face de bride en option, antenne Drop DN80 / 3° en PP	+0,1	+0,22
Protection de la face de bride en option, antenne Drop DN100 / 4° en PP	+0,2	+0,44
Protection de la face de bride en option, antenne Drop DN150 / 6° en PP	+0,3	+0,66

1. Longueur standard = sans extension d’antenne
2. Cette option est destinée aux antennes coniques métalliques et Drop
3. Cette option est destinée aux antennes coniques métalliques
3.1 Utilisation prévue

L'utilisateur est seul responsable de la mise en œuvre et du choix des matériaux de nos appareils de mesure pour l’usage auquel ils sont destinés.

Le fabricant ne pourra être tenu responsable pour tout dommage dû à une utilisation incorrecte ou non conforme à l’emploi prévu.

Ce transmetteur de niveau radar mesure la distance, le niveau, la masse, le volume et la réflectivité des liquides, pâtes et boues.

Il peut être installé sur des réservoirs, des réacteurs, des canaux ouverts et en eaux libres.

3.2 Présparation de l’installation

Veuillez appliquer les précautions suivantes afin de vous assurer que l’appareil soit correctement installé.

- S’assurer qu’il y ait suffisamment d’espace de chaque côté.
- Ne pas exposer le convertisseur directement aux rayons du soleil. Si besoin utilisez une protection intempéries disponible en accessoire.
- Éviter de soumettre le convertisseur de mesure à de fortes vibrations. Les appareils sont testés en vibration et sont conformes aux normes EN 50178 et IEC 60068-2-6.
3.3 Montage

3.3.1 Plages de pression et de température

La plage de température du raccordement process doit correspondre aux limites de température du matériau du joint. La plage de pression de service dépend du raccordement process et de la température à la bride.

Figure 3-1: Plages de pression et de température

1. Température au niveau du raccordement process
 Appareils homologués pour les zones dangereuses : voir supplément au manuel

2. Température ambiante pour le fonctionnement de l’afficheur
 -20...+70°C / -4...+158°F
 Si la température ambiante est hors de ces limites, il se peut que l’afficheur ne fonctionne plus temporairement. L’appareil continue à effectuer des mesures de niveau et à envoyer un signal de sortie.

3. Température ambiante
 Appareils non Ex : -40...+80°C / -40...+176°F
 Appareils homologués pour les zones dangereuses : voir supplément au manuel

4. Pression de service
Température et pression de service maximales au raccord process

<table>
<thead>
<tr>
<th>Type d’antenne</th>
<th>Température maximale du raccord process</th>
<th>Pression de service maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[°C]</td>
<td>[°F]</td>
</tr>
<tr>
<td>PP Drop</td>
<td>+100</td>
<td>+212</td>
</tr>
<tr>
<td>Conique métallique</td>
<td>+130 (1)</td>
<td>+266 (2)</td>
</tr>
</tbody>
</table>

1. La température maximale du raccord process doit être conforme aux limites de température du matériau du joint
2. La température maximale du raccordement process doit être conforme aux limites de température du matériau du joint

Pour de plus amples informations sur les caractéristiques de pression nominale, se référer à Guide pour pression de service maximale à la page 22

3.3.2 Position de montage recommandée

Nous recommandons de préparer le montage lorsque le réservoir est vide.

Position recommandée pour le piquage pour liquides, pâtes et boues

Figure 3-2: Position recommandée pour le piquage pour liquides, pâtes et boues

1. Piquage ou manchon pour les antennes coniques métalliques DN40 (1 1/2") ou DN50 (2")
2. Piquage ou manchon pour l’antenne conique métallique DN80 (3") ou DN100 (4") et l’antenne Drop DN80 (3")
3. Piquage ou manchon pour l’antenne conique métallique DN150 (6") ou DN200 (8") et l’antenne Drop DN100 (4") ou DN150 (6")
4. Diamètre du réservoir
5. Distance minimale à respecter entre le piquage ou le manchon et la paroi du réservoir (dépend du type et de la taille de l’antenne – voir points 1, 2 et 3 de cette liste) :
 – Conique métallique DN40 (1 1/2") ou DN50 (2") : 1/5 × hauteur du réservoir
 – Conique métallique DN80 (3") ou DN100 (4") : 1/10 × hauteur du réservoir
 – Conique métallique DN150 (6") ou DN200 (8") : 1/20 × hauteur du réservoir
 – Drop DN80 (3") : 1/10 × hauteur du réservoir
 – Drop DN100 (4") ou DN150 (6") : 1/20 × hauteur du réservoir
6. Distance maximale à respecter entre le piquage ou le manchon et la paroi du réservoir (dépend du type et de la taille de l’antenne – voir points 1, 2 et 3 de cette liste) :
 – Conique métallique ou Drop : 1/3 × diamètre du réservoir
7. Hauteur du réservoir
S’il y a un piquage sur le réservoir avant l’installation, le piquage doit se trouver au minimum à 200 mm / 7,9” de la paroi du réservoir. La paroi du réservoir doit être plane et il ne doit pas y avoir d’obstacles à proximité immédiate du piquage ni sur la paroi du réservoir.

Figure 3-3: Il n’y a pas de limite maximale concernant le nombre d’appareils pouvant être utilisés dans le même réservoir.

Il n’y a pas de limite maximale concernant le nombre d’appareils pouvant être utilisés dans le même réservoir. Ils peuvent être installés à côté d’autres transmetteurs de niveau radar.

3.3.3 Restrictions de montage

Appareils LPR et TLPR

Les appareils **LPR (Level Probing Radar)** mesurent le niveau en extérieur ou dans des espaces clos (réservoir métallique, etc.). Les appareils **TLPR (Tank Level Probing Radar)** mesurent le niveau dans les espaces clos uniquement. On peut utiliser des appareils LPR pour des applications TLPR. Pour de plus amples informations, se référer à Code de commande à la page 51, options d’antennes.

Origines des signaux d’interférences

- Obstacles dans le réservoir ou le puits.
- Présence d’obstacles perpendiculaires à la trajectoire du faisceau radar.
- Variations soudaines du diamètre du réservoir sur la trajectoire du faisceau radar.

Ne pas installer l’appareil au-dessus d’obstacles dans le réservoir (échelle, supports, etc.) ou le puits. Les objets dans le réservoir ou le puits peuvent causer des signaux parasites. L’appareil ne mesure pas correctement en présence de signaux parasites. S’il n’est pas possible d’installer l’appareil sur une autre partie du réservoir ou du puits, procéder à un enregistrement du spectre lorsque le réservoir est vide. Pour de plus amples informations, consulter le manuel de référence.

Équipements et obstacles : comment éviter la mesure de signaux parasites

Ne pas installer l’appareil juste au-dessus d’un équipement ou d’obstacles dans un réservoir ou un puits. Cela peut affecter les performances de l’appareil.

Dans la mesure du possible, ne pas installer de piquage au centre du réservoir.
Projection du demi-angle d'émission de l'antenne

<table>
<thead>
<tr>
<th>Type d'antenne</th>
<th>Angle d'émission</th>
<th>Rayon de faisceau, x</th>
<th>[mm/m]</th>
<th>[in/ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conique métallique, DN40 (1½")</td>
<td>17°</td>
<td>150</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>Conique métallique, DN50 (2")</td>
<td>16°</td>
<td>141</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>Conique métallique, DN65 (2½")</td>
<td>10° (1)</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Conique métallique, DN80 (3")</td>
<td>9°</td>
<td>79</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Conique métallique, DN100 (4")</td>
<td>8°</td>
<td>70</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Conique métallique, DN150 (6")</td>
<td>6°</td>
<td>53</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Conique métallique, DN200 (8")</td>
<td>5°</td>
<td>44</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Drop en PP, DN80 (3")</td>
<td>9°</td>
<td>79</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Drop en PP, DN100 (4")</td>
<td>7°</td>
<td>61</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>Drop en PP, DN150 (6")</td>
<td>5°</td>
<td>44</td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>

1 Cette option d’antenne est spécialement conçue pour le BM 26 A
Arrivées du produit

Figure 3-5: Arrivées du produit
1. L’appareil est correctement installé.
2. L’appareil est trop proche de l’arrivée du produit.

Ne pas installer l’appareil à proximité de l’arrivée du produit. Si le produit à mesurer qui pénètre dans le réservoir entre en contact avec l’antenne, la mesure ne sera pas correcte. Si le produit à mesurer arrive dans le réservoir directement sous l’antenne, la mesure ne sera également pas correcte.

Pour de plus amples informations concernant la plage de mesure de chaque type d’antenne, se référer à Précision de mesure à la page 19.

3.3.4 Raccordements process

Toutes les procédures suivantes sont applicables aux antennes coniques métalliques et aux antennes Drop.

Raccordements à brides

Figure 3-6: Raccordements à brides
Ød = diamètre du piquage
h = hauteur du piquage
Taille de piquage recommandée pour les raccordements à brides
Le piquage doit être aussi court que possible. Consulter le tableau ci-dessous pour connaître la hauteur maximale du piquage :

<table>
<thead>
<tr>
<th>Diamètre du piquage et d’antenne, Ød</th>
<th>Hauteur du piquage maximale, h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antenne conique métallique</td>
</tr>
<tr>
<td>[mm] [pouce]</td>
<td>[mm] [pouce]</td>
</tr>
<tr>
<td>40 1½</td>
<td>140 ①</td>
</tr>
<tr>
<td>50 2</td>
<td>150 ②</td>
</tr>
<tr>
<td>80 3</td>
<td>260 ②</td>
</tr>
<tr>
<td>100 4</td>
<td>330 ②</td>
</tr>
<tr>
<td>150 6</td>
<td>490 ②</td>
</tr>
<tr>
<td>200 8</td>
<td>660 ②</td>
</tr>
</tbody>
</table>

① Si l’appareil est doté d’extension d’antenne, cette option rallonge la hauteur maximale du piquage. Ajouter à cette valeur la longueur des extensions d’antenne fixées à l’appareil.
② Si l’appareil est doté d’extensions d’antenne, cette option augmente la hauteur maximale du piquage. Ajouter à cette valeur la longueur des extensions d’antenne fixées à l’appareil.

Raccords filetés

![Figure 3-7: Raccords filetés](image)

Taille de manchon recommandée pour les raccords filetés
Le manchon doit être aussi court que possible. Si le manchon se trouve dans un renfoncement, utiliser les limites maximales de dimensions de piquage (raccordements à brides) dans cette section.

Si l’appareil est doté d’extension d’antenne, cette option rallonge la hauteur maximale du manchon. Ajouter à cette valeur la longueur des extensions d’antenne fixées à l’appareil.
3.3.5 Appareils LPR : recommandations pour les puits et les réservoirs en matériaux non conducteurs

Ces instructions sont uniquement valables pour les équipements LPR. Pour de plus amples informations, se référer à Code de commande à la page 51, options d’antennes.

Montage de l’appareil sur des réservoirs en matériau non conducteur

Figure 3-8: Montage de l’appareil sur des réservoirs en matériau non conducteur

1 Équipement LPR sur un support de base (pour installations en intérieur)
2 Équipement LPR sur un support étanche
3 Équipement LPR sur un réservoir en matériau conducteur, mais avec une « fenêtre » étanche, en matériau non conducteur

S’il n’est pas possible de faire rentrer l’appareil dans le réservoir et que le réservoir est fait d’un matériau non conducteur (plastique, etc.), vous pouvez fixer un support sur la partie supérieure du réservoir, sans orifice dans le toit du réservoir. Nous vous recommandons de placer l’antenne le plus près possible de la paroi du toit du réservoir.

Si le réservoir est placé en extérieur, nous vous recommandons de rendre étanche le support. Si de l’eau de pluie s’accumule sur le toit du réservoir directement sous l’appareil, cela peut affecter les performances de l’appareil.

Si l’appareil est utilisé dans des conditions poussiéreuses, nous vous recommandons de rendre étanche le support. Si de la poussière s’accumule sur le toit du réservoir directement sous l’appareil, cela peut affecter les performances de l’appareil.

Puits ouverts

Figure 3-9: Puits ouverts

Si l’appareil doit mesurer le niveau de produit dans un puits, il est possible de fixer un support sur le côté du puits ou au-dessus du puits.
3.3.6 Tubes verticaux (puits tranquillisants et chambres de mesure)

Ces instructions sont valides pour les appareils dotés de l’option d’antenne conique métallique uniquement. Utiliser un tube vertical dans les conditions suivantes :

- Présence de mousse très conductrice dans le réservoir.
- Produit très turbulent ou agité.
- Présence d’un trop grand nombre d’obstacles à l’intérieur du réservoir.
- L’appareil est utilisé pour mesurer un liquide (produit pétrochimique) dans un réservoir doté d’un toit flottant.
- L’appareil est monté sur un réservoir cylindrique horizontal.

![Figure 3-10: Recommandations d’installation pour les tubes verticaux (puits tranquillisants et chambres de mesure)]

- Le tube vertical doit être un conducteur électrique.
- Le diamètre intérieur du tube vertical ne doit pas dépasser de plus de 5 mm / 0,2” le diamètre de l’antenne (pour un liquide ayant une constante diélectrique élevée).
- Le tube vertical doit être droit. Il ne doit pas y avoir de variations brutes du diamètre intérieur supérieures à 1 mm / 0,04”.
- Le tube vertical doit être vertical.
- Rugosité de surface recommandée : ±0,1 mm / 0,004”.
- S’assurer qu’il n’y a pas de dépôt en bas du tube vertical.
- S’assurer qu’il y a du liquide dans le tube vertical.

Il faut percer un trou de circulation d’air.
Installation dans un réservoir contenant un liquide et de la mousse

- Percer un trou de circulation d’air (Ø maxi 10 mm / 0,4") dans le puits tranquillisant, au-dessus du niveau maximal.
- Ébavurer le trou.

Installation dans un réservoir contenant un ou plusieurs liquides sans mousse

- Percer un trou de circulation d’air (Ø maxi 10 mm / 0,4") dans le puits tranquillisant, au-dessus du niveau maximal.
- Percer un ou plusieurs trous de circulation de liquide dans le puits tranquillisant (s’il y a plusieurs liquides dans le réservoir).
 Ces trous facilitent le libre transfert des liquides entre le puits tranquillisant et le réservoir.
- Ébavurer le trou.

Puits tranquillisants : toits flottants

Si l’appareil doit être installé dans un réservoir doté d’un toit flottant, l’installer dans un puits tranquillisant en métal.

Figure 3-11: Toits flottants

1. Dépôts
2. Support de montage
3. Puits tranquillisant
4. Toit flottant
5. Produit
6. Réservoir
Puits tranquillisants : réservoirs cylindriques horizontaux
Nous vous recommandons de monter l'appareil dans un puits tranquillant si l'appareil :

• est prévu pour être installé dans un réservoir cylindrique horizontal,
• se trouve dans un réservoir en métal,
• mesure un produit ayant une constante diélectrique élevée et
• se trouve sur l’axe central du réservoir.

Figure 3-12: Réservoirs cylindriques horizontaux

1 L’appareil est installé sans puits tranquillant. Présence de réflexions multiples. Consulter le paragraphe ATTENTION ! ci-après.
2 L’appareil est installé dans un puits tranquillant et mesure correctement.

Si l’appareil est monté sur un réservoir cylindrique horizontal sans puits tranquillant et contenant un liquide à constante diélectrique élevée, ne pas le positionner sur l’axe central du réservoir. En effet, cela provoquerait de multiples réflexions, rendant les mesures de l’appareil imprécises. Utiliser le logiciel de l’appareil afin de limiter au maximum les effets des réflexions multiples. Pour de plus amples informations, voir « Description de la fonction » dans le manuel de référence.
Chambres de mesure
Installation sur le côté d’un réservoir contenant un liquide et de la mousse
• Le raccordement process supérieur de la chambre de mesure doit être situé au-dessus du niveau maximum du liquide.
• Le raccordement process inférieur de la chambre de mesure doit être situé en dessous du niveau minimum du liquide mesuré.

Installation sur le côté d’un réservoir contenant plusieurs liquides
• Le raccordement process supérieur de la chambre de mesure doit être situé au-dessus du niveau maximum du liquide.
• Le raccordement process inférieur de la chambre de mesure doit être situé en dessous du niveau minimum du liquide mesuré.
• Des raccordements process supplémentaires sont nécessaires pour que les liquides circulent librement sur toute la longueur de la chambre de mesure.

Figure 3-13: Recommandations d’installation pour les chambres de mesure contenant plusieurs liquides
1 Chambre de mesure
2 Raccordement process supplémentaire
4.1 Raccordement électrique : options de sortie avec presse-étoupe

Figure 4-1: Bornes de raccordement électrique : presse-étoupe standard

1. Borne de mise à la terre à l’intérieur du boîtier (si le câble électrique est blindé)
2. Sortie courant -
3. Sortie courant +
4. Emplacement de la borne de mise à la terre externe (au bas du convertisseur de mesure)

L’énergie électrique appliquée aux bornes de la sortie alimente l’appareil. Les bornes de sortie servent également pour la communication HART®.

4.2 Raccordement électrique : options de sortie avec un connecteur mâle M12

Figure 4-2: Bornes de raccordement électrique : connecteur mâle M12 à 4 broches

1. Broche 1 : sortie courant +
2. Broche 2 : = non raccordée
3. Broche 3 : sortie courant -
4. Broche 4 : = non raccordée
5. Borne de mise à la terre (filetage extérieur du connecteur)
6. Emplacement de la borne de mise à la terre externe (au bas du convertisseur de mesure)

L’énergie électrique appliquée aux bornes de la sortie alimente l’appareil. Les bornes de sortie servent également pour la communication HART®.
4.3 Appareils non Ex

Figure 4-3: Raccordements électriques des appareils non Ex

1. Alimentation
2. Résistance pour communication HART® (généralement 250 ohms)
3. Raccordement en option à la borne de mise à la terre
4. Sortie: 12...30 V CC pour une sortie courant de 21,5 mA aux bornes
5. Appareil

4.4 Appareils pour zones dangereuses

Pour connaître les caractéristiques électriques applicables au fonctionnement de l’appareil en zones dangereuses, se référer aux certificats de conformité correspondants et aux suppléments au manuel (ATEX, IECEx, etc.). Cette documentation peut être téléchargée sur le site Internet (Téléchargement).
4.5 Réseaux de communication

4.5.1 Informations générales

L’appareil utilise le protocole de communication HART®. Ce protocole est conforme au standard de communication de la fondation HART®. L’appareil peut être connecté en mode point-à-point. Pour un réseau multidrop, les adresses de 1 à 63 sont disponibles.

La sortie de l’appareil est réglée en usine pour communiquer en mode point-à-point. Pour changer le mode de communication de point à point à multipoints, se reporter à « Configuration réseau » dans le manuel de référence.

4.5.2 Connexion point à point

Figure 4-4: Connexion point-à-point (non Ex)

1. Adresse de l’appareil (0 pour connexion point-à-point)
2. 4...20 mA + HART®
3. Résistance pour communication HART® (généralement 250 ohms)
4. Alimentation
5. Convertisseur HART®
6. Logiciel de communication HART®
4.5.3 Réseaux multidrop

Figure 4-5: Réseau multidrop (non Ex)

1. Adresse de l’appareil (chaque appareil doit disposer d’une adresse différente dans les réseaux multidrop)
2. 4 mA + HART®
3. Résistance pour communication HART® [généralement 250 ohms]
4. Alimentation
5. Convertisseur HART®
6. Logiciel de communication HART®
5.1 Code de commande

Sélectionner un élément dans chaque colonne pour obtenir le code de commande complet.

<table>
<thead>
<tr>
<th>VFDB</th>
<th>4</th>
<th>0</th>
<th>OPTIWAVE 5400 C - Transmetteur de niveau radar (FMCW) 24 GHz pour les liquides dans les applications de process de base (jusqu'à 16 barg [232 psig] et 130°C [266°F])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Directives régionales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Europe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Chine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 États-Unis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Canada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 Brésil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 Australie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A Russie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B Kazakhstan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C Biélorussie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W Monde</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Homologations Ex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 Sans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 ATEX II 1/2 G Ex ia IIC T6...T5 ou T6...T4 Ga/Gb + II 1/2 D Ex ia IIC T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 ATEX II 1/2 GD Ex db ia IIC T6...T5 ou T6...T4 Ga/Gb + II 1/2 D Ex ia tb IIC T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 ATEX II 3 G Ex ic IIC T6...T5 ou T6...T4 Gc + II 3 D Ex ic IIC T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 NEPSI Ex d ia IIC T6...T5 ou T6...T4 Ga/Gb + Ex id 20/21 T85...T100 ou T85...T130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 NEPSI Ex d ia IIC T6...T5 ou T6...T4 Ga/Gb + Ex id 20/21 tD A21 IP6X T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A cQPSus IS CL I/II/III DIV 1 GP A-G + CL I Z0 AEx ia/Ex ia IIC T6...T5 ou T6...T4 Ga + Z20 AEx ia/Ex ia IIC T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B cQPSus X-P-IS/DIP CL I DIV 1 GP A-G + CL I Z1 AEx db ia/Ex db ia IIC T6...T5 ou T6...T4 Gb + Z21 AEx ia tb/Ex ia tb IIC T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C cQPSus NI CL I/II/III DIV 2 GP ABCDFG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K IECEx Ex ia IIC T6...T5 ou T6...T4 Ga/Gb + Ex ia IIC T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L IECEx Ex db ia IIC T6...T5 ou T6...T4 Ga/Gb + Ex ia IIC T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M IECEx Ex ic IIC T6...T5 ou T6...T4 Gc + Ex ic IIC T85°C...T100°C ou T85°C...T130°C Da/Db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P EAC Ex Ga/Gb Ex ia T6...T5 ou T6...T4 X + Da/Db Ex ia IIC T85°C...T100°C ou T85°C...T130°C X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R EAC Ex Ga/Gb Ex d ia T6...T5 ou T6...T4 X + Da/Db Ex ia tb IIC T85°C...T100°C ou T85°C...T130°C X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 Sans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 CRN / ASME B31.3 ②</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 NACE [MR0175 / MR0103 / ISO 15156]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 ASME B31.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A CRN / ASME B31.3 + NACE [MR0175 / MR0103 / ISO 15156] ②</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B NACE [MR0175 / MR0103 / ISO 15156] + ASME B31.3</td>
</tr>
</tbody>
</table>

VFDB: Code de commande (compléter ce code sur les pages suivantes)
INFORMATIONS RELATIVES À LA COMMANDE

<table>
<thead>
<tr>
<th>Version du convertisseur de mesure (matériau du boîtier / classe IP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 C / Version compacte (boîtier en aluminium – IP66/68 0,1 barg)</td>
</tr>
<tr>
<td>3 C / Version compacte (boîtier en acier inox - IP66/IP68 0,1 barg)</td>
</tr>
</tbody>
</table>

Sorties

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 fils / 4...20 mA passive HART®</td>
</tr>
<tr>
<td>6</td>
<td>FOUNDATION™ fieldbus (2 fils)</td>
</tr>
<tr>
<td>7</td>
<td>PROFIBUS PA (2 fils)</td>
</tr>
</tbody>
</table>

Entrée de câbles / presse-étoupe

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M20×1,5 / sans</td>
</tr>
<tr>
<td>2</td>
<td>M20×1,5 / 1 × plastique + obturateur</td>
</tr>
<tr>
<td>3</td>
<td>M20×1,5 / 1 × laiton nickelé + obturateur</td>
</tr>
<tr>
<td>4</td>
<td>M20×1,5 / 1 × acier inox + obturateur</td>
</tr>
<tr>
<td>5</td>
<td>M20×1,5 / 1 × M12 {connecteur 4 broches} + obturateur</td>
</tr>
<tr>
<td>6</td>
<td>M20×1,5 / 2 × plastique</td>
</tr>
<tr>
<td>7</td>
<td>M20×1,5 / 2 × laiton nickelé</td>
</tr>
<tr>
<td>8</td>
<td>M20×1,5 / 2 × acier inox</td>
</tr>
<tr>
<td>A</td>
<td>M20×1,5 / 2 × M12 {connecteur 4 broches}</td>
</tr>
<tr>
<td>C</td>
<td>Adaptateur en laiton nickelé ½ NPT / sans</td>
</tr>
<tr>
<td>D</td>
<td>Adaptateur en laiton nickelé ½ NPT / 1 x laiton nickelé + obturateur</td>
</tr>
<tr>
<td>E</td>
<td>Adaptateur en acier inox ½ NPT / 1 x acier inox + obturateur</td>
</tr>
<tr>
<td>F</td>
<td>Adaptateur en laiton nickelé ½ NPT / 2 x laiton nickelé</td>
</tr>
<tr>
<td>G</td>
<td>Adaptateur en acier inox ½ NPT / 2 x acier inox</td>
</tr>
</tbody>
</table>

Afficheur

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sans (pas d’afficheur, couvercle aveugle)</td>
</tr>
<tr>
<td>4</td>
<td>Afficheur embrochable (couvercle avec hublot)</td>
</tr>
</tbody>
</table>

Affichage – Langue de la documentation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anglais</td>
</tr>
<tr>
<td>2</td>
<td>Allemand</td>
</tr>
<tr>
<td>3</td>
<td>Français</td>
</tr>
<tr>
<td>4</td>
<td>Italien</td>
</tr>
<tr>
<td>5</td>
<td>Espagnol</td>
</tr>
<tr>
<td>6</td>
<td>Portugais</td>
</tr>
<tr>
<td>7</td>
<td>Japonais</td>
</tr>
<tr>
<td>8</td>
<td>Chinois (simplifié)</td>
</tr>
<tr>
<td>A</td>
<td>Russe</td>
</tr>
<tr>
<td>B</td>
<td>Tchèque</td>
</tr>
<tr>
<td>C</td>
<td>Turc</td>
</tr>
<tr>
<td>D</td>
<td>Polonais</td>
</tr>
</tbody>
</table>

VFDB 4 0 0 Code de commande (compléter ce code sur les pages suivantes)
Conditions de process (pression, température, matériau et remarques) / Joint d'étanchéité

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1...16 barg [-14,5...232 psig] / -40°C...+130°C [-40°F...+266°F] / FKM/FPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1...16 barg [-14,5...232 psig] / -50°C...+130°C [-58°F...+266°F] / EPDM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1...16 barg [-14,5...232 psig] / -20°C...+130°C [-4°F...+266°F] / Kalrez® 6375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antennes [type d’antenne, matériau, homologation radio]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

Extension d’antenne / Protection de la face de bride

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sans</td>
<td>105 mm [4"] / 316L</td>
<td>210 mm [8"] / 316L</td>
<td>315 mm [12"] / 316L</td>
<td>420 mm [17"] / 316L</td>
<td>525 mm [21"] / 316L</td>
<td>630 mm [24"] / 316L pour antennes coniques métalliques</td>
<td>735 mm [29"] / 316L pour antennes coniques métalliques</td>
<td>840 mm [33"] / 316L pour antennes coniques métalliques</td>
<td>945 mm [37"] / 316L pour antennes coniques métalliques</td>
<td>1050 mm [41"] / 316L pour antennes coniques métalliques</td>
</tr>
</tbody>
</table>

Protection face de bride

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sans / avec protection de la face de bride</td>
<td>105 mm [4"] pour antenne Drop en PP / PP</td>
<td>210 mm [8"] pour antenne Drop en PP / PP</td>
<td>315 mm [12"] pour antenne Drop en PP / PP</td>
<td>420 mm [17"] pour antenne Drop en PP / PP</td>
<td>525 mm [21"] pour antenne Drop en PP / PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VFDB | 4 | 0 | 0 | 0 | 0 | Code de commande [compléter ce code sur les pages suivantes]
Raccordement process : Taille / Classe de pression / Finition de la face de bride

ISO 228 (raccord fileté)
- F | P | 0 | G 1 A
- G | P | 0 | G 1 1/2 A

ASME B1.20.1 (raccord fileté)
- F | A | 0 | 1 NPT
- G | A | 0 | 1 1/2 NPT

Bride EN basse pression (vissée au raccord G 1 1/2A)
- H | C | 7 | DN50 PN01
- L | C | 7 | DN80 PN01
- M | C | 7 | DN100 PN01
- P | C | 7 | DN150 PN01
- R | C | 7 | DN200 PN01

Bride ASME basse pression (vissée au raccord 1½ NPT)
- H | 1 | B | 2" 150 lb, 15 psig maxi
- L | 1 | B | 3" 150 lb 15 psig maxi
- M | 1 | B | 4" 150 lb, 15 psig maxi
- P | 1 | B | 6" 150 lb, 15 psig maxi
- R | 1 | B | 8" 150 lb, 15 psig maxi

Bride EN 1092-1
- G | G | 1 | DN40 PN40 – Type B1
- H | E | 1 | DN50 PN16 – Type B1
- H | G | 1 | DN50 PN40 – Type B1
- L | E | 1 | DN80 PN16 – Type B1
- L | G | 1 | DN80 PN40 – Type B1
- M | E | 1 | DN100 PN16 – Type B1
- M | G | 1 | DN100 PN40 – Type B1
- P | E | 1 | DN150 PN16 – Type B1
- P | G | 1 | DN150 PN40 – Type B1
- R | E | 1 | DN200 PN16 – Type B1

| VFDB | 4 | 0 | 0 | 0 | 0 |

Code de commande (compléter ce code sur les pages suivantes)
| VFDB | 4 | 0 | 0 | 0 | 0 |

INFORMATIONS RELATIVES À LA COMMANDE

Bride ASME B16.5

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1 A</td>
<td>1 ½"</td>
<td>150 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 2 A</td>
<td>2"</td>
<td>300 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 1 A</td>
<td>2"</td>
<td>150 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 2 A</td>
<td>2"</td>
<td>300 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 1 A</td>
<td>3"</td>
<td>150 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L 2 A</td>
<td>3"</td>
<td>300 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 1 A</td>
<td>4"</td>
<td>150 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 2 A</td>
<td>4"</td>
<td>300 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 1 A</td>
<td>6"</td>
<td>150 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 2 A</td>
<td>6"</td>
<td>300 lb RF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 1 A</td>
<td>8"</td>
<td>150 lb RF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bride JIS B2220

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G U P</td>
<td>40A JIS 10K RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H U P</td>
<td>50A JIS 10K RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L U P</td>
<td>80A JIS 10K RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M U P</td>
<td>100A JIS 10K RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P U P</td>
<td>150A JIS 10K RF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R U P</td>
<td>200A JIS 10K RF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autres faces de bride

- Bride EN 1092-1
- 7 Type A (face plate)

Bride ASME B16.5

- B FF (face plate)

Certificat d'étalonnage

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sans : Précision ±2 mm (±0,08")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Certificat d’étalonnage ±2 mm (0,08") jusqu’à 10 m (32,81 ft), 2 points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Certificat d’étalonnage ±2 mm (0,08") jusqu’à 10 m (32,81 ft), 5 points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Certificat d’étalonnage ±2 mm (0,08") jusqu’à 10 m (32,81 ft), 5 points spécifiés par le client ≥ 400 mm (16") mini</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Options

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sans</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Système de purge avec raccordement 1/8 NPTF (§)</td>
<td></td>
</tr>
</tbody>
</table>

Code de commande (compléter ce code sur les pages suivantes)
Accessoires / Plaque repère

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Protection intempéries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Plaque repère en acier inox (18 caractères maxi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Protection intempéries + plaque repère en acier inox (18 caractères maxi)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VFDB

| 4 | 0 | 0 | 0 |

Code de commande

1. DIP = Dust Ignition Proof (à l’épreuve des flambées de poussière)
2. En préparation
3. Cette option de boîtier est homologuée Ex ia et Ex ic. L’homologation Ex d est en préparation pour cette option.
4. LPR = Vous pouvez installer l’antenne dans un réservoir clos ou en extérieur, mais l’antenne doit être tournée vers le bas. Ne pas installer d’appareils LPR à proximité d’installations sensibles (par exemple, une station de radioastronomie). TLPR = Vous devez installer l’antenne dans un réservoir clos.
5. Uniquement pour les antennes coniques métalliques
KROHNE – Instrumentation de process et solutions de mesure

- Débit
- Niveau
- Température
- Pression
- Analyse de process
- Services

Siège social KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Allemagne)
Tél. : +49 203 301 0
Fax : +49 203 301 10389
info@krohne.com

Consultez notre site Internet pour la liste des contacts KROHNE :
www.krohne.com