Электромагнитный расходомер для частично заполненных труб

- Могет применяться для частично заполненных трубопроводов до DN1600 / 64"
- Запатентованная бесконтактная система измерения уровня заполнения трубы
- Измерения возможны при заполнении трубы от 10%

Документация является полной только при использовании совместно с соответствующей документацией на преобразователь сигналов.
Содержание

1 Особенности изделия ... 3
 1.1 Техническое решение для частично заполненных трубопроводов ... 3
 1.2 Опции .. 5
 1.3 Принцип измерения .. 6

2 Технические характеристики 7
 2.1 Технические характеристики .. 7
 2.2 Точность измерений .. 11
 2.3 Габаритные размеры и вес ... 12

3 Монтаж .. 14
 3.1 Назначение.. 14
 3.2 Указания по монтажу ... 14
 3.2.1 Вибрация ... 14
 3.2.2 Магнитное поле ... 14
 3.3 Условия установки ... 15
 3.3.1 Входной и выходной прямой участок 15
 3.3.2 Регулирующий клапан .. 15
 3.3.3 Наклонный трубопровод ... 15
 3.3.4 Рекомендации по монтажу в сложных условиях ... 16
 3.3.5 Свободный слив ... 16
 3.3.6 Очистка первичного преобразователя 17
 3.3.7 Смещение фланцев ... 17
 3.3.8 Монтажное положение прибора 18
 3.3.9 Моменты затяжки и значения давления 18

4 Электрический монтаж .. 20
 4.1 Правила техники безопасности 20
 4.2 Важные замечания по электрическому подключению 20
 4.3 Длины кабелей ... 21
 4.4 Заземление ... 22
 4.4.1 Монтаж заземляющих колец 22

5 Примечания ... 23
1.1 Техническое решение для частично заполненных трубопроводов

Первичный преобразователь TIDALFLUX 2000 со встроенной бесконтактной ёмкостной системой измерения уровня позволяет проводить точные измерения расхода в частично заполненных трубопроводах. TIDALFLUX разработан для надёжного измерения в пределах от 10% до 100% от уровня заполнения поперечного сечения трубы. Встроенные в футеровку датчики уровня не контактируют с жидкостью и поэтому невосприимчивы к плавающим на поверхности жировым и масляным продуктам.

1. Различные стандарты на фланцы
2. Запатентованная бесконтактная ёмкостная система измерения уровня, встроенная в футеровку
3. Конвертер сигналов раздельного исполнения IFC 300 (PF)
Особенности изделия

Отличительные особенности

• Для частично заполненных труб в отрасли водоснабжения, водопользования и очистки сточных вод
• Широкий диапазон типоразмеров до DN1600 / 64"
• Высокая абразивная и химическая стойкость
• Измерения возможны при заполнении трубы от 10% до 100%
• Электроды для измерения расхода располагаются ниже 10% уровня заполнения трубы и поэтому невосприимчивы к плавающим на поверхности воды жировым и масляным продуктам.
• Полноценная заводская калибровка, необходимость в калибровке по месту эксплуатации отсутствует

Отрасли промышленности

• Водоподготовка
• Сточные воды

Области применения

• Для частично заполненных труб вместо дорогостоящих конструкций дюкеров
• Сектор водоподготовки и очистки сточных вод
• Поверхностные воды
• Биологическая и химическая очистка сточных вод
1.2 Опции

Решение для отрасли водоснабжения, водопользования и очистки сточных вод

Первичный преобразователь фланцевого исполнения
- Прочная, полностью сварная конструкция
- Различные стандарты на фланцы, такие как DIN, ANSI и JIS
- IP 68
- ATEX / IECex Зона 1 / Класс 1 Кат. 2
- Напряжение питания 220 / 110 В или 24 В пост. тока
- Футеровка из полиуретана

Преобразователь сигналов раздельного исполнения
- IFC 300 F (PF)
- Нержавеющая сталь
- ATEX / IECex Зона 1 / Класс 1 Кат. 2
- Дополнительное пространство для штекерного разъёма (для использования с NPT)
- Крепление на стену или к трубе 2" с помощью зажимов
- mA, HART или Modbus
1.3 Принцип измерения

Прибор TIDALFLUX 2000 представляет собой первичный преобразователь электромагнитного расходомера со встроенной ёмкостной системой измерения уровня, предназначенный для измерения электропроводных технологических жидкостей. Расход Q(t) через трубу составляет:

\[Q(t) = v(t) \times A(t). \]

где

\[v(t) = \text{скорость потока жидкого продукта} \]

\[A(t) = \text{область заполнения участка измерительной трубы}. \]

Скорость расхода определяется на основе известного электромагнитного принципа измерения. Два измерительных электрода расположены в нижней части измерительной трубы на высоте примерно 10% от внутреннего диаметра трубы, что позволяет обеспечить надежное измерение при уровне заполнения от 10%.

Электропроводная жидкость протекает внутри электрически изолированной трубы через магнитное поле. Данное магнитное поле создаётся током, проходящим через две катушки возбуждения. В жидкости возникает напряжение U:

\[U = v \times k \times B \times D \]

где:

\[v = \text{средняя скорость потока} \]
\[k = \text{фактор коррекции, учитывающий геометрию трубы} \]
\[B = \text{сила магнитного поля} \]
\[D = \text{расстояние между электродами} \]

Напряжение сигнала U регистрируется двумя электродами и является пропорциональным средней скорости потока v, а следовательно, и расходу q. Напряжение сигнала очень мало (обычно 1 мВ при v = 3 м/с / 10 фут/с) и мощности обмотки возбуждения 1 Вт). В конечном итоге, используется преобразователь сигналов для усиления напряжения сигнала, фильтрации его (отделения от шума) и преобразования в сигналы для суммирования, записи и управления выходными сигналами.

![Рисунок 1-1: Принцип измерения TIDALFLUX](image)

1. Электроды
2. Индуцированное напряжение (пропорционально скорости потока)
3. Встроенные в футеровку ёмкостные пластинки для измерения уровня
4. Магнитное поле
5. Катушки возбуждения

Область заполнения A рассчитывается на основе известного внутреннего диаметра трубы с помощью запатентованной ёмкостной системой измерения уровня, встроенной в футеровку измерительной трубы. Необходимый для этого блок электроники размещается в компактном корпусе, смонтированном на верхней части первичного преобразователя. Эта электроника соединяется с преобразователем сигналов раздельного исполнения IFC 300 F с помощью цифровой линии связи.
2.1 Технические характеристики

- Приведенные ниже данные распространяются на общие случаи применения. Если требуются данные, имеющие отношение к конкретной рабочей позиции, следует обратиться в региональное представительство нашей фирмы.
- Дополнительная информация (сертификаты, специализированный инструментарий, программное обеспечение...) и полный пакет документации на изделие доступны для загрузки бесплатно с Интернет-сайта (в разделе "Downloadcenter" - "Документация и ПО").

Измерительная система

<table>
<thead>
<tr>
<th>Принцип измерения</th>
<th>Закон Фарадея</th>
</tr>
</thead>
<tbody>
<tr>
<td>Область применения</td>
<td>Электропроводные жидкости</td>
</tr>
</tbody>
</table>

Параметры измерения

<table>
<thead>
<tr>
<th>Передовая измеряемая величина</th>
<th>Скорость потока</th>
</tr>
</thead>
<tbody>
<tr>
<td>Боковая измеряемая величина</td>
<td>Уровень</td>
</tr>
<tr>
<td>Вторичная измеряемая величина</td>
<td>Объёмный расход</td>
</tr>
</tbody>
</table>

Исполнение

<table>
<thead>
<tr>
<th>Отличительные особенности</th>
<th>Фланцевое исполнение с полнопроходной измерительной трубой</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стандартные, а также более высокие значения номинального давления</td>
<td></td>
</tr>
<tr>
<td>Широкий диапазон типоразмеров</td>
<td></td>
</tr>
<tr>
<td>Модульная конструкция</td>
<td>Измерительная система состоит из первичного преобразователя</td>
</tr>
<tr>
<td>И преобразователя сигналов. Она доступна в раздельном</td>
<td>исполнении. Более подробная информация о преобразователе</td>
</tr>
<tr>
<td>сигналов представлена в документации на преобразователь</td>
<td>сигналов.</td>
</tr>
<tr>
<td>Разделное исполнение</td>
<td>В полевом исполнении (F) с преобразователем сигналов</td>
</tr>
<tr>
<td>IFC 300: TIDALFLUX 2300 F.</td>
<td></td>
</tr>
<tr>
<td>Для информации: Компактные исполнения не доступны.</td>
<td></td>
</tr>
<tr>
<td>Номинальный диаметр</td>
<td>DN200...1600 / 8...64"</td>
</tr>
</tbody>
</table>
Технические характеристики

Точность измерений

<table>
<thead>
<tr>
<th>Максимальная погрешность измерения</th>
<th>Относительно объёмного расхода (ИЗ = измеренное значение, FS = полная шкала)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>См. подробную информацию о точности измерения, смотрите Точность измерений на странице 11.</td>
</tr>
<tr>
<td></td>
<td>Данные значения относятся к импульсному / частотному выходу</td>
</tr>
<tr>
<td></td>
<td>Типичная дополнительная погрешность токового выхода составляет ±10 мкА</td>
</tr>
<tr>
<td>Частично заполненные:</td>
<td>v при полной шкале ≥ 1 м/с / 3,3 фут/с: ≤ 1% от полной шкалы</td>
</tr>
<tr>
<td>Полностью заполненные:</td>
<td>v ≥ 1 м/с / 3,3 фут/с: ≤ 1% от ИЗ</td>
</tr>
<tr>
<td></td>
<td>v < 1 м/с / 3,3 фут/с: ≤ 0,5% от ИЗ + 5 мм/с (0,2 дюйм/с)</td>
</tr>
<tr>
<td></td>
<td>Минимальный уровень: 10% от внутреннего диаметра</td>
</tr>
</tbody>
</table>

Рабочие условия

<table>
<thead>
<tr>
<th>Температура</th>
<th>0...+60°C / +32...+140°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура измеряемой среды</td>
<td>Невзрывозащищённая зона по ATEX: -40...+65°C / -40...+149°F</td>
</tr>
<tr>
<td></td>
<td>Взрывозащищённая зона 1 по ATEX: -20...+65°C / -4...+149°F</td>
</tr>
<tr>
<td></td>
<td>OPS, Класс 1 Кат. 2: -20...+60°C / -4...+140°F</td>
</tr>
<tr>
<td></td>
<td>При температуре окружающей среды выше 55°C / 131°F защитите блок электроники от самонагрева.</td>
</tr>
<tr>
<td>Температура хранения</td>
<td>-50...+70°C / -58...+158°F</td>
</tr>
<tr>
<td>Диапазон измерения</td>
<td>-12...+12 м/с / -40...+40 фут/с</td>
</tr>
<tr>
<td>Нагрузка под вакуумом (DN200...DN1600 / 8...64")</td>
<td>500 мбар абс. при Tраб. = 40°C / 600 мбар абс. при Tраб. = 60°C</td>
</tr>
<tr>
<td></td>
<td>7,3 фут/кв.дюйм абс. при Tраб. = 104 °F / 8,7 фут/кв.дюйм при Tраб. = 140 °F</td>
</tr>
<tr>
<td>Химические свойства</td>
<td>Электропроводные жидкости</td>
</tr>
<tr>
<td>Физическое состояние</td>
<td>≥ 50 мкСм/см</td>
</tr>
<tr>
<td>Электропроводность</td>
<td>≤ 20%</td>
</tr>
<tr>
<td>Допустимое содержание твёрдых включений (по объёму)</td>
<td>Если рабочая жидкость - суспензия: плотность < 1,15 кг/дм³.</td>
</tr>
</tbody>
</table>
Условия установки

<table>
<thead>
<tr>
<th>Установка</th>
<th>По дополнительным данным смотрите Монтаж на странице 14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Направление потока</td>
<td>Прямое и обратное.</td>
</tr>
<tr>
<td>Стрелка на первичном преобразователе указывает на положительное направление потока.</td>
<td></td>
</tr>
<tr>
<td>Прямой участок на входе</td>
<td>≥ 5 DN (без нарушения профиля потока, после одинарного отвода 90°)</td>
</tr>
<tr>
<td></td>
<td>≥ 10 DN (после двойного отвода 2х 90°)</td>
</tr>
<tr>
<td></td>
<td>≥ 10 DN (после регулирующего клапана)</td>
</tr>
<tr>
<td>Прямой участок на выходе</td>
<td>≥ 3 DN</td>
</tr>
<tr>
<td>Габаритные размеры и вес</td>
<td>По дополнительным данным смотрите Габаритные размеры и вес на странице 12.</td>
</tr>
</tbody>
</table>

Материалы

<table>
<thead>
<tr>
<th>Корпус первичного преобразователя</th>
<th>Стандартно: листовая сталь</th>
</tr>
</thead>
<tbody>
<tr>
<td>Измерительная труба</td>
<td>Другие материалы по запросу</td>
</tr>
<tr>
<td>Фланец</td>
<td>Аустенитная нержавеющая сталь</td>
</tr>
<tr>
<td>Стандартно: углеродистая сталь с покрытием из полиуретана</td>
<td></td>
</tr>
<tr>
<td>Другие материалы по запросу.</td>
<td></td>
</tr>
<tr>
<td>Футеровка</td>
<td>Полиуретан</td>
</tr>
<tr>
<td>Клеммная коробка</td>
<td>IP 67: литой алюминий</td>
</tr>
<tr>
<td>IP 68: нержавеющая сталь</td>
<td></td>
</tr>
<tr>
<td>Покрытие</td>
<td>Стандартное покрытие. Пописилоксан</td>
</tr>
<tr>
<td>Опция: защитное покрытие (для морских применений, для установки по землём)</td>
<td></td>
</tr>
<tr>
<td>Измерительные электроды</td>
<td>Hastelloy® C</td>
</tr>
<tr>
<td>Заземляющие кольца</td>
<td>Нержавеющая сталь</td>
</tr>
<tr>
<td>Изготовленные по индивидуальному заказу в соответствии с внутренним диаметром соединительного трубопровода.</td>
<td></td>
</tr>
<tr>
<td>Необходимы в случае, если внутренняя поверхность соединительного трубопровода не электропроводная.</td>
<td></td>
</tr>
</tbody>
</table>

Технологические присоединения

<table>
<thead>
<tr>
<th>Фланцевые</th>
<th>EN 1092-1 DN200...1600 PN 6...40 (другие по запросу)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME</td>
<td>8...64" 150...300 lb RF (другие по запросу)</td>
</tr>
<tr>
<td>JIS</td>
<td>DN200...1600 JIS 10...20 K (другие по запросу)</td>
</tr>
<tr>
<td>Форма уплотнительной поверхности</td>
<td>RF (другие по запросу)</td>
</tr>
</tbody>
</table>
Электрические подключения

<table>
<thead>
<tr>
<th>Общая информация</th>
<th>Электрический монтаж должен проводиться в соответствии с директивой VDE 0100 "Нормативные требования к электрическим установкам напряжением до 1000 вольт" или аналогичными государственными техническими требованиями.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Электропитание</td>
<td>Стандартное исполнение: 100…230 В перем. тока (-15% / +10%), 50/60 Гц. Опция: 12…24 В пост.тока (-55% / +10%). 12 В пост.тока -10% входит в диапазон допустимых отклонений</td>
</tr>
<tr>
<td>Потребляемая мощность</td>
<td>Перем. ток: 22 ВА</td>
</tr>
<tr>
<td>Кабель обмотки возбуждения</td>
<td>Должен использоваться экранированный кабель, не входит в комплект поставки.</td>
</tr>
<tr>
<td>Сигнальный кабель</td>
<td>DS 300 (тип А) Макс. длина: 600 м / 1968 фут (в зависимости от электропроводности измеряемой среды)</td>
</tr>
<tr>
<td>BTS 300 (тип В)</td>
<td>Макс. длина: 600 м / 1968 фут</td>
</tr>
<tr>
<td>Интерфейсный кабель для обмена данными</td>
<td>Для передачи данных об измеренном уровне в IFC 300 F. Экранированный кабель Liycy 3 х 0,75 мм²</td>
</tr>
<tr>
<td>Кабельные вводы</td>
<td>Стандартно: 2x M20 x 1,5 + 2x M16 x 1,5 c ЭМС. Опция: ½" NPT</td>
</tr>
</tbody>
</table>

Допуски и сертификаты

CE	Устройство соответствует нормативным требованиям директив EU. Изготовитель удостоверяет успешно проведённые испытания устройства нанесением маркировки CE. Полная информация о директивах и стандартах EU, а также действующих сертификатах представлена в декларации соответствия EU или на веб-сайте производителя.
Взрывоопасные зоны	ATEX / IECEx Опция: взрывоопасная зона Ex 1, IECEx DEKRA 12ATEX0235 X IECEx DEKRA 12.0079X
QPS	Класс 1, Категория 2 LR1338

Другие стандарты и сертификаты

Устойчивость к вибрации	IEC 60068-2-6
Испытание на воздействие случайной вибрации	IEC 60068-2-34
Испытание на ударную прочность	IEC 60068-2-27
2.2 Точность измерений

Каждый электромагнитный расходомер калируется методом прямого сличения объёмов. Калибровка на калибровочной установке позволяет оценить пределы погрешности расходомера при референтных условиях.

Пределы погрешности электромагнитных расходомеров обычно являются результатом комбинированного воздействия линейности, стабильности нулевой точки и погрешности калибровки.

Условия поверки
- Измеряемая среда: вода
- Температура: +5...35°C / +41...95°F
- Рабочее давление: 0,1...5 бар изб / 1,5...72,5 фунт/кв.дюйм изб
- Прямой участок на входе: ≥ 10 DN
- Прямой участок на выходе: ≥ 5 DN

Погрешность измерения для частично заполненных труб и полностью заполненных труб различается. На данных графиках предполагается, что скорость потока для полной шкалы составляет не ниже 1 м/с (это значение также является стандартным для калибровки, так как позволяет получить наиболее точные результаты измерений). Дополнительные условия: наклон трубопровода 0%, электропроводность измеряемой среды 50...5000 мкСм/см.

Частично заполненные трубы:
- v при полной шкале ≥ 1 м/с / 3,3 фут/с: ≤ 1% от полной шкалы

Полностью заполненные трубы:
- v ≥ 1 м/с / 3,3 фут/с: ≤ 1% от ИЗ
- v < 1 м/с / 3,3 фут/с: ≤ 0,5% от ИЗ + 5 мм/с / 0,2 дюйм/с (смотрите следующий график)

Рисунок 2-1: Максимальная погрешность измеренного значения (±Y)
2.3 Габаритные размеры и вес

Внутренний диаметр трубопровода должен совпадать с внутренним диаметром расходомера. Так как внутренний диаметр не является стандартным типоразмером DN, следует выбирать такую трубу, внутренний диаметр которой немного больше диаметра расходомера. Если ожидается большее количество отложений или жирных веществ, оптимальным решением будет использование специальных компенсационных колец с обеих сторон для обеспечения плавного перехода.

Детальные 2D и 3D чертежи доступны на интернет-сайте фирмы-изготовителя.

EN 1092-1

<table>
<thead>
<tr>
<th>Типоразмер</th>
<th>Габаритные размеры [мм]</th>
<th>Датчик [кг]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN</td>
<td>PN</td>
<td>a</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
<td>350</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>300</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>350</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>400</td>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>600</td>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>700</td>
<td>10</td>
<td>700</td>
</tr>
<tr>
<td>800</td>
<td>10</td>
<td>800</td>
</tr>
<tr>
<td>900</td>
<td>10</td>
<td>900</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>1200</td>
<td>6</td>
<td>1200</td>
</tr>
<tr>
<td>1400</td>
<td>6</td>
<td>1400</td>
</tr>
<tr>
<td>1600</td>
<td>6</td>
<td>1600</td>
</tr>
</tbody>
</table>
Фланцы 150 lb

<table>
<thead>
<tr>
<th>Типоразмер</th>
<th>Габаритные размеры [дюйм]</th>
<th>Вес (прибл.) [фунт]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME 8</td>
<td>a: 13,78, b: 22,93, c: 11,46, d: 5,75, ϕD: 13,5, ϕD: 7,44</td>
<td>90</td>
</tr>
<tr>
<td>ASME 10</td>
<td>a: 15,75, b: 24,80, c: 13,03, d: 6,54, ϕD: 16,0, ϕD: 9,09</td>
<td>120</td>
</tr>
<tr>
<td>ASME 12</td>
<td>a: 19,69, b: 26,76, c: 15, d: 7,52, ϕD: 19,0, ϕD: 11,06</td>
<td>145</td>
</tr>
<tr>
<td>ASME 14</td>
<td>a: 27,56, b: 30,22, c: 16,85, d: 9,8, ϕD: 21,0, ϕD: 12,44</td>
<td>210</td>
</tr>
<tr>
<td>ASME 16</td>
<td>a: 31,5, b: 31,13, c: 19,02, d: 9,53, ϕD: 23,5, ϕD: 14,37</td>
<td>255</td>
</tr>
<tr>
<td>ASME 20</td>
<td>a: 31,5, b: 35,21, c: 23,03, d: 11,54, ϕD: 27,5, ϕD: 18,39</td>
<td>320</td>
</tr>
<tr>
<td>ASME 24</td>
<td>a: 31,5, b: 39,50, c: 27,32, d: 13,66, ϕD: 32,0, ϕD: 22,32</td>
<td>400</td>
</tr>
<tr>
<td>Класс D</td>
<td>a: 35,43, b: 44,71, c: 31,97, d: 15,98, ϕD: 36,5, ϕD: 26,22</td>
<td>692</td>
</tr>
<tr>
<td>Класс D</td>
<td>a: 39,37, b: 49,51, c: 36,3, d: 18,15, ϕD: 41,8, ϕD: 30,24</td>
<td>1031</td>
</tr>
<tr>
<td>Класс D</td>
<td>a: 43,31, b: 54,42, c: 41,89, d: 20,94, ϕD: 46,0, ϕD: 33,98</td>
<td>1267</td>
</tr>
<tr>
<td>Класс D</td>
<td>a: 47,24, b: 58,14, c: 44,57, d: 22,28, ϕD: 50,8, ϕD: 37,99</td>
<td>1554</td>
</tr>
<tr>
<td>Класс D</td>
<td>a: 55,12, b: 66,61, c: 52,76, d: 26,38, ϕD: 59,5, ϕD: 46,02</td>
<td>2242</td>
</tr>
</tbody>
</table>

Типоразмер ≤ 24": ASME; > 24": AWWA
3.1 Назначение

Полная ответственность за использование измерительных приборов в соответствии с назначением и условиями применения, с учетом коррозионной устойчивости материалов по отношению к среде измерения, лежит исключительно на пользователе.

Производитель не несет ответственности за неисправность, которая является результатом ненадлежащего использования или применения изделия не по назначению.

3.2 Указания по монтажу

Тщательно обследуйте картонную тару на наличие повреждений или признаков небрежного обращения. Проинформируйте о повреждениях перевозчика и региональный офис фирмы-изготовителя.

Сверьте с упаковочной ведомостью на предмет получения груза в полной комплектации в соответствии с заказанными позициями.

Обратите внимание на шильд прибора и убедитесь в том, что поставленный прибор соответствует заказанным спецификациям. Проверьте правильность напряжения питания, значение которого выбито на шильд.

3.2.1 Вибрация

Рисунок 3-1: Избегайте вибраций

3.2.2 Магнитное поле

Рисунок 3-2: Избегайте влияния магнитных полей
3.3 Условия установки

3.3.1 Входной и выходной прямой участок

Рисунок 3-3: Рекомендуемые длины прямых участков до и после прибора, вид сверху

1. ≥ 5 DN
2. ≥ 3 DN

3.3.2 Регулирующий клапан

Рисунок 3-4: Установка перед регулирующим клапаном

3.3.3 Наклонный трубопровод

Точность измерений зависит от угла наклона. Для обеспечения наивысшей точности измерений угол наклона не должен превышать ± 1%!

Рисунок 3-5: Рекомендуемый угол наклона
3.3.4 Рекомендации по монтажу в сложных условиях

Если не предоставляется возможность выполнить условия монтажа, установите расходомер между двумя резервуарами. Входное отверстие расходомера должно находиться выше, чем отверстие, из которого жидкость попадает в резервуар. Таким образом, будет обеспечиваться сложный поток через расходомер и, следовательно, высокая точность измерений. Размеры резервуаров должны быть пропорциональны типоразмеру расходомера.

Рисунок 3-6: Монтаж в сложных условиях

1. Используйте резервуар 2, если входная труба имеет наклон > 1%. Убедитесь, что выпускной уровень этой трубы ниже, чем входное отверстие расходомера.
2. Входной резервуар
3. Входной прямой участок 10 DN
4. Выходной прямой участок 5 DN
5. Выходной резервуар рекомендуется, если выпускная труба имеет наклон > 1%.

Всегда используйте трубу со свободным сливом, чтобы предотвратить обратный поток жидкости в первичный преобразователь и при максимальном расходе поддерживать скорость не менее 1 м/с.

3.3.5 Свободный слив

Рисунок 3-7: Свободный слив

1. ≥ 5 DN
2. Следите за тем, чтобы уровень воды был ниже выпускного отверстия трубы.
3.3.6 Очистка первичного преобразователя

Первичный преобразователь обладает высокой устойчивостью к загрязнениям, а на измерения практически никакие факторы не оказывают влияния. Тем не менее, рекомендуется предусмотреть возможность для очистки непосредственно до или после первичного преобразователя.

Рисунок 3-8: Вариант с возможностью очистки первичного преобразователя
1) Технологический люк для очистки первичного преобразователя

3.3.7 Смещение фланцев

Максимально допустимое отклонение между уплотнительными поверхностями фланцев:

\[L_{\text{макс.}} - L_{\text{мин.}} < 0,5 \text{ мм} / 0,02^* \]

Рисунок 3-9: Смещение фланцев
1) \(l_{\text{макс.}} \)
2) \(l_{\text{мин.}} \)
3.3.8 Монтажное положение прибора

Первичный преобразователь должен устанавливаться только в показанном на рисунке положении, для того чтобы электроды всегда находились под слоем измеряемого продукта. Ограничение вращение должно составлять ± 2° для обеспечения точности измерений.

3.3.9 Моменты затяжки и значения давления

Затяжка болтов

- Всегда равномерно затягивайте болты в диагонально противоположной последовательности.
- Не превышайте максимальное значение момента затяжки.
- Шаг 1: Примените момент, равный примерно 50% от максимального значения, указанного в таблице.
- Шаг 2: Примените момент, равный примерно 80% от максимального значения, указанного в таблице.
- Шаг 3: Примените момент, равный 100% от максимального значения, указанного в таблице.
Равномерно затягивайте болты в диагонально противоположной последовательности.

<table>
<thead>
<tr>
<th>Номинальный диаметр DN [мм]</th>
<th>Давление номинальное</th>
<th>Болты</th>
<th>Макс момент затяжки [Нм]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>PN 10</td>
<td>8 х M 20</td>
<td>68</td>
</tr>
<tr>
<td>250</td>
<td>PN 10</td>
<td>12 х M 20</td>
<td>65</td>
</tr>
<tr>
<td>300</td>
<td>PN 10</td>
<td>12 х M 20</td>
<td>76</td>
</tr>
<tr>
<td>350</td>
<td>PN 10</td>
<td>16 х M 20</td>
<td>75</td>
</tr>
<tr>
<td>400</td>
<td>PN 10</td>
<td>16 х M 24</td>
<td>104</td>
</tr>
<tr>
<td>500</td>
<td>PN 10</td>
<td>20 х M 24</td>
<td>107</td>
</tr>
<tr>
<td>600</td>
<td>PN 10</td>
<td>20 х M 27</td>
<td>138</td>
</tr>
<tr>
<td>700</td>
<td>PN 10</td>
<td>24 х M 27</td>
<td>163</td>
</tr>
<tr>
<td>800</td>
<td>PN 10</td>
<td>24 х M 30</td>
<td>219</td>
</tr>
<tr>
<td>900</td>
<td>PN 10</td>
<td>28 х M 30</td>
<td>205</td>
</tr>
<tr>
<td>1000</td>
<td>PN 10</td>
<td>28 х M 33</td>
<td>261</td>
</tr>
<tr>
<td>1200</td>
<td>PN 6</td>
<td>32 х M30</td>
<td>252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Типоразмер [дюйм]</th>
<th>Класс флана [lb]</th>
<th>Болты</th>
<th>Макс момент затяжки [Нм]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>150</td>
<td>8 х 3/4"</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>12 х 7/8"</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>150</td>
<td>12 х 7/8"</td>
<td>104</td>
</tr>
<tr>
<td>14</td>
<td>150</td>
<td>12 х 1"</td>
<td>93</td>
</tr>
<tr>
<td>16</td>
<td>150</td>
<td>16 х 1"</td>
<td>91</td>
</tr>
<tr>
<td>18</td>
<td>150</td>
<td>16 х 1 1/8"</td>
<td>143</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>20 х 1 1/8"</td>
<td>127</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>20 х 1 1/4"</td>
<td>180</td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>28 х 1 1/4"</td>
<td>161</td>
</tr>
<tr>
<td>32</td>
<td>150</td>
<td>28 х 1 1/2"</td>
<td>259</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>32 х 1 1/2"</td>
<td>269</td>
</tr>
<tr>
<td>40</td>
<td>150</td>
<td>36 х 1 1/2"</td>
<td>269</td>
</tr>
</tbody>
</table>

Информация по большим типоразмерам предоставляется по запросу.
4.1 Правила техники безопасности

Проведение любых работ, связанных с электрическим монтажом оборудования, допускается только при отключенном электропитании. Обратите внимание на значения напряжения, приведенные на шильдике прибора!

Соблюдайте действующие в стране нормы и правила работы и эксплуатации электроустановок!

На приборы, которые эксплуатируются во взрывоопасных зонах, распространяются дополнительные нормы безопасности. Обратитесь к документации на приборы взрывозащитённого исполнения.

Региональные правила и нормы по охране труда подлежат неукоснительному соблюдению. К любым видам работ с электрическими компонентами средства измерений допускаются исключительно специалисты, прошедшие соответствующее обучение.

Обратите внимание на шильдик прибора и убедитесь в том, что поставленный прибор соответствует заказанным спецификациям. Проверьте правильность напряжения питания, значение которого выбито на шильде.

4.2 Важные замечания по электрическому подключению

Электрический монтаж должен проводиться в соответствии с директивой VDE 0100 "Нормативные требования к электрическим установкам напряжением до 1000 вольт" или аналогичными государственными техническими требованиями.

- Для различных электрических кабелей используйте соответствующие кабельные вводы.
- На заводе-изготовителе первичный преобразователь и преобразователь сигналов настраиваются совместно. По этой причине подключать их следует в паре. Убедитесь в том, что настройки константы первичного преобразователя GК (смотрите типовые таблицы) совпадают.
- Первичный преобразователь и преобразователь сигналов TIDALFLUX 2300 требуют отдельных источников питания.

Для получения дополнительной информации о заземлении расходомера - смотрите Заземление на странице 22.
4.3 Длины кабелей

Максимально допустимое расстояние между первичным преобразователем и преобразователем сигналов зависит от минимальной длины кабеля.

Интерфейсный кабель: максимальная длина 600 м / 1968 фут.

Сигнальный кабель типа A (DS): максимальная длина зависит от показателя электропроводности жидкости:

<table>
<thead>
<tr>
<th>Электропроводность [мкСм/см]</th>
<th>Максимальная длина [м]</th>
<th>[фут]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>120</td>
<td>394</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>656</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
<td>1312</td>
</tr>
<tr>
<td>≥400</td>
<td>600</td>
<td>1968</td>
</tr>
</tbody>
</table>

Кабель обмотки возбуждения: Максимальная длина кабеля определяется площадью его поперечного сечения:

<table>
<thead>
<tr>
<th>Поперечное сечение [мм²]</th>
<th>[AWG]</th>
<th>Максимальная длина [м]</th>
<th>[фут]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 0,75</td>
<td>2 x 18</td>
<td>150</td>
<td>492</td>
</tr>
<tr>
<td>2 x 1,5</td>
<td>2 x 16</td>
<td>300</td>
<td>984</td>
</tr>
<tr>
<td>2 x 2,5</td>
<td>2 x 14</td>
<td>600</td>
<td>1968</td>
</tr>
</tbody>
</table>
4.4 Заземление

Заземление устройства следует выполнять в соответствии с предписаниями и инструкциями в целях обеспечения защиты обслуживающего персонала от поражения электрическим током.

4.4.1 Монтаж заземляющих колец

Для обеспечения надежного измерения уровня абсолютно необходимо, чтобы внутренняя поверхность соединительного трубопровода являлась электропроводной и была заземлена. Если это невозможно, могут быть поставлены изготовленные по индивидуальному заказу заземляющие кольца с цилиндрическим выступом. В случае сомнения свяжитесь, пожалуйста, с ближайшим представительством фирмы KROHNE.

Рисунок 4-1: Заземление с использованием заземляющих колец

1. Существующий трубопровод
2. Заземляющие кольца, изготовленные под заказ в соответствии с внутренним диаметром трубопровода
3. TIDALFLUX
4. Вставьте цилиндрическую часть заземляющего кольца в трубопровод. Между заземляющим кольцом и фланцем установите соответствующую уплотнительную прокладку.

Размеры заземляющих колец зависят от диаметра и доступны по запросу.

Схемы соединений и дополнительная информация о подключении первичного преобразователя в документации на соответствующий преобразователь сигналов.
©KROHNE – Документ может быть изменен без предварительного уведомления.

Текущий список адресов и контактных данных вы найдете по адресу www.krohne.ru

Продукция сертифицирована в странах Таможенного Союза.