Sensor de caudal electromagnético para tuberías parcialmente llenas

- Medida en tuberías parcialmente llenas hasta DN1600 / 64"
- Patentado, medida de nivel sin contacto
- Posibilidad de medida desde el 10% de la sección de tubería

La documentación sólo está completa cuando se usa junto con la documentación relevante del convertidor.
1 Características del producto

1.1 Solución para tuberías parcialmente llenas .. 3
1.2 Opciones .. 5
1.3 Principio de medida ... 6

2 Datos técnicos

2.1 Datos técnicos ... 8
2.2 Dimensiones y pesos .. 12
2.3 Presión en vacío .. 13
2.4 Precisión de medida ... 14

3 Instalación

3.1 Intención de uso ... 16
3.2 Condiciones de instalación .. 16
 3.2.1 Entrada y salida .. 16
 3.2.2 Posición de montaje ... 16
 3.2.3 Desviación de las bridas ... 17
 3.2.4 Vibraciones .. 17
 3.2.5 Campo magnético .. 17
 3.2.6 Válvula de control .. 18
 3.2.7 Pendiente ... 18
 3.2.8 Consejo de montaje para situaciones difíciles ... 18
 3.2.9 Limpieza del sensor de caudal ... 19
 3.2.10 Temperaturas ... 19
3.3 Montaje .. 20
 3.3.1 Montaje de anillos de puesta a tierra .. 20
 3.3.2 Pares de apriete y presiones ... 20

4 Conexiones eléctricas

4.1 Conexión de cables ... 22
4.2 Longitud de los cables .. 24
4.3 Cable de señal A (tipo DS 300), construcción ... 25
4.4 Preparación del cable de señal A, conexión al sensor de medida 26
4.5 Cable de señal B (tipo BTS 300), construcción ... 27
4.6 Preparación del cable de señal B, conexión al sensor de medida 27
4.7 Preparación del cable de corriente de campo C, conexión al sensor de medida ... 29
4.8 Cable Interfaz ... 31
4.9 Puesta a tierra ... 32

5 Notas ... 33
1.1 Solución para tuberías parcialmente llenas

El sensor de caudal TIDALFLUX 4000 con sistema de medición de nivel sin contacto que proporciona una medición del caudal precisa in tuberías parcialmente llenas. TIDALFLUX está diseñado para medir con fiabilidad entre el 10% y el 100% de la sección de la tubería. Los sensores de nivel integrados en el recubrimiento interno no están en contacto con el líquido y son, por lo tanto, insensibles contra la grasa y el aceite flotante en la superficie.

1. Varias normas de bridas
2. Patentado, sistema de medición de nivel de caudal sin contacto integrado en el recubrimiento interno
3. Convertidor separado
CARACTERÍSTICAS DEL PRODUCTO

Características principales
• Para tuberías parcialmente llenas en industrias de agua y aguas residuales
• Diámetros hasta DN1600 / 64”
• Alta resistencia a la abrasión y a productos químicos
• Posibilidad de medida entre 10% y 100%.
• Los electrodos para la medición del caudal están por debajo del 10% del nivel de llenado, por lo tanto el equipo no pierde la medida ante grasas y aceites en la superficie del agua
• Calibración de fábrica completa - no es necesaria una calibración in situ

Industrias
• Agua
• Aguas residuales

Aplicaciones
• Para tuberías parcialmente llenas en vez de construcciones de tubo sifón caras
• Agua y aguas residuales
• Superficie del agua
• Aguas residuales biológicas y químicas
1.2 Opciones

La solución para la industria del agua y aguas residuales

Construcción robusta
El TIDALFLUX 4000 ha sido diseñado para medir todas las aplicaciones de aguas residuales y agua incluyendo las aguas subterráneas, el agua potable, las aguas residuales, el lodo, el agua de industria y agua salada en tuberías parcialmente llenas. El sensor está disponible para un amplio rango de diámetros desde DN200 hasta DN1600 para rangos de caudal hasta 90.000 m³/hr. El TIDALFLUX 4000 no causa pérdida de presión y permite la medición de caudal bi-direccional. No se requieren filtros o perfiladores. El caudalímetro se puede instalar bajo tierra y permite inundaciones constantes (IP 68). No son necesarias arquetas, evitando costes sustanciales. El TIDALFLUX proporciona años de medidas fiables ya que no tiene partes movibles internas que puedan dañarse. El caudalímetro tiene periodo de vida insuperable contrastado en campo. Además, TIDALFLUX 4000 en combinación con el convertidor IFC 300 ofrece capacidades de diagnóstico extensas, tales como la monitorización continua del convertidor, los electrodos del sensor y las funciones eléctricas.

Comunicación
El TIDALFLUX 4000 se puede suministrar con sistemas de comunicación fieldbus. Los datos se transmiten por HART® o Modbus y después son enviados al sistema de control.
1.3 Principio de medida

TIDALFLUX 4000 es un sensor de caudal electromagnético con un sistema de medida de nivel integrado, diseñado para líquidos de proceso conductivos eléctricamente. El rango del caudal $Q(t)$ a través del tubo es:

$$Q(t) = v(t) \times A(t)$$

en el cual

$v(t) = \text{Velocidad del caudal del producto del líquido}$

$A(t) = \text{área mojada de la sección del tubo}.$

La velocidad del caudal se determina en base al principio de medición electromagnético conocido. Los dos electrodos de medición se encuentran en la parte inferior del tubo de medición, en un nivel de aprox. 10% del diámetro interno del tubo, con el fin de obtener una medición fiable a un nivel del 10%.

Un líquido conductor de electricidad fluye dentro de un tubo, eléctricamente aislado, a través de un campo magnético. El campo magnético es generado por una corriente que fluye a través de un par de bobinas magnéticas. Dentro del líquido se genera una tensión U:

$$U = v \times k \times B \times D$$

siendo:

$v = \text{velocidad media del caudal}$

$k = \text{factor de corrección de la geometría}$

$B = \text{fuerza del campo magnético}$

$D = \text{diámetro interno del caudalímetro}$

La tensión de señal U es recogida por los electrodos y es proporcional a la velocidad media de caudal v y, por consiguiente, a la velocidad de caudal q. La tensión de señal es bastante pequeña (normalmente 1 mV con $v = 3 \text{ m/s / 10 pies/s}$ y la potencia de la bobina magnética de 1 W). Por último, se utiliza un convertidor de señal para amplificar la tensión de señal, filtrarla (separarla del ruido) y convertirla en señales para la totalización, el registro y el procesamiento de la salida.

Figura 1-1: Principio de medida TIDALFLUX

① Electrods
② Tensión inducida (proporcional a la velocidad de caudal)
③ Placas capacitivas en el recubrimiento para la medida de nivel.
④ Campo magnético
⑤ Bobinas
El área mojada A se computa desde el diámetro conocido dentro de la tubería, por el sistema de medida de nivel patentado que está integrado dentro del recubrimiento interno del tubo de medida. La unidad electrónica requerida está alojada en un housing compacto que está montado en la parte superior del sensor de medida. Esta electrónica está conectada al convertidor remoto IFC 300 F por medio de una línea de comunicación digital.
2.1 Datos técnicos

- Los siguientes datos se proporcionan para las aplicaciones generales. Si necesitase datos que sean más relevantes para su aplicación específica, por favor, contacte con nosotros o con su representante de zona.
- La información adicional (certificados, herramientas especiales, software...) y la documentación del producto completo pueden descargarse gratis de la website (Centro de descarga).

Sistema de medida

<table>
<thead>
<tr>
<th>Principio de medida</th>
<th>Ley de Faraday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de aplicación</td>
<td>Líquidos eléctricamente conductivos</td>
</tr>
</tbody>
</table>

Valor medido

<table>
<thead>
<tr>
<th>Valor principal medido</th>
<th>Velocidad de caudal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nivel</td>
</tr>
</tbody>
</table>

| Valor secundario medido | Caudal volumétrico |

Diseño

<table>
<thead>
<tr>
<th>Características</th>
<th>Versión bridada con tubo de medida de sección total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clasificaciones de la presión estándares y superiores</td>
</tr>
<tr>
<td></td>
<td>Amplia gama de tamaños nominales</td>
</tr>
</tbody>
</table>

| Construcción modular | El sistema de medida consiste en un sensor de caudal y un convertidor de señal. Se encuentra disponible como versión remota. Se puede encontrar más información sobre el convertidor de señal in la documentación del convertidor de señal. |

<table>
<thead>
<tr>
<th>Versión remota</th>
<th>Versión de campo [F] con convertidor IFC 300: TIDALFLUX 4300 F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro nominal</td>
<td>DN200...1600 / 8...64”</td>
</tr>
<tr>
<td>Rango de medida</td>
<td>-12...+12 m/s / -40...+40 pies/s</td>
</tr>
</tbody>
</table>
Precisión de medida

<table>
<thead>
<tr>
<th>Condiciones de referencia</th>
<th>Pendiente: 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medio: agua</td>
<td></td>
</tr>
<tr>
<td>Conductividad eléctrica: 50...5000 μS/cm</td>
<td></td>
</tr>
<tr>
<td>Temperatura: 10...30°C / 50...86°F</td>
<td></td>
</tr>
<tr>
<td>Sección de entrada: ≥ 10 DN</td>
<td></td>
</tr>
<tr>
<td>Sección de salida: ≥ 5 DN</td>
<td></td>
</tr>
<tr>
<td>Velocidad de caudal a escala completa: > 1 m/s / 3 ft/s</td>
<td></td>
</tr>
<tr>
<td>Presión de operación: 1 bar / 14,5 psig</td>
<td></td>
</tr>
<tr>
<td>Calibrado en banco de calibración acreditado EN 17025 mediante comparación directa del volumen</td>
<td></td>
</tr>
</tbody>
</table>

Error máximo de medida

Para más información sobre la precisión de medida, ver el capítulo “Precisión de medida”.

Relativo al volumen de caudal (VM = Valor Medido, EC = Escala Completa)

Estos valores se refieren a la salida de pulsos / frecuencia

La desviación de medida típica adicional para la salida de corriente es de ±10 μA

Parcialmente lleno:

v @ Escala Completa ≥ 1 m/s / 3,3 pies/s: ≤ 1% de EC

Completamente lleno:

v ≥ 1 m/s / 3,3 pies/s: ≤ 1% del VM

v < 1 m/s / 3,3 pies/s: ≤ 0,5% del VM + 5 mm/s / 0,2 pulgada/s

Nivel mínimo: 10% del diámetro interior

Condiciones de operación

Temperatura

<table>
<thead>
<tr>
<th>Temperatura de proceso</th>
<th>-5...+60°C / 23...+140°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambiental</td>
<td>No ATEX: -40...+65°C / -40...+149°F</td>
</tr>
<tr>
<td></td>
<td>ATEX zona 1: -20...+65°C / -40...+149°F</td>
</tr>
<tr>
<td></td>
<td>Proteja la electrónica contra el calentamiento con temperaturas ambientales superiores a 55°C.</td>
</tr>
<tr>
<td>Temperatura de almacenamiento</td>
<td>-50...+70°C / -58...+158°F</td>
</tr>
</tbody>
</table>

Propiedades químicas

<table>
<thead>
<tr>
<th>Condición física</th>
<th>Líquidos conductivos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductividad eléctrica</td>
<td>≥ 50 μS/cm</td>
</tr>
<tr>
<td>Contenido en gases admitido (volumen)</td>
<td>≤ 5%</td>
</tr>
<tr>
<td>Contenido en sólidos admitido (volumen)</td>
<td>≤ 20%</td>
</tr>
</tbody>
</table>

Si el líquido del proceso tiene lodo: densidad < 1,15 kg/dm³.
Condiciones de instalación

<table>
<thead>
<tr>
<th>Instalación</th>
<th>Para más información ver el capítulo “Instalación”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirección de caudal</td>
<td>Hacia adelante y hacia atrás.</td>
</tr>
<tr>
<td></td>
<td>Una flecha en el sensor de caudal indica la dirección de caudal positiva.</td>
</tr>
<tr>
<td>Tramo de entrada</td>
<td>≥ 5 DN [sin interferencias del caudal, tras un codo simple de 90°]</td>
</tr>
<tr>
<td></td>
<td>≥ 10 DN [tras un codo doble 2x 90°]</td>
</tr>
<tr>
<td></td>
<td>≥ 10 DN [detrás de una válvula de control]</td>
</tr>
<tr>
<td>Tramo de salida</td>
<td>≥ 3 DN</td>
</tr>
<tr>
<td>Dimensiones y pesos</td>
<td>Para más información, vaya al capítulo “Dimensiones y pesos”.</td>
</tr>
</tbody>
</table>

Materiales

Alojamiento del sensor	Estándar: chapa de acero
	Otros materiales bajo pedido
Tubo de medida	Acero inoxidable austenítico
Brida	Estándar: acero de carbono, revestimiento en poliuretano
	Otros materiales bajo pedido
Recubrimiento	Poliuretano
Caja de conexiones	IP 67: aluminio fundido [revestido de poliuretano]
	IP 68: acero inoxidable
Electrodos de medida	Hastelloy® C
Anillos de puesta a tierra	Acero inoxidable
	Hecho a medida para el diámetro interno de la conexión de la tubería
	Es necesario si la parte interna de la conexión a la tubería no es eléctricamente conductiva.

Conexiones del proceso

Brida	DN200...1600 en PN 6...40 [otros a petición]
	8...64” en 150...300 lb RF [otros a petición]
	DN200...1600 en JIS 10...20 K [otros bajo pedido petición]
Diseño de la superficie de la junta	RF [otros tipos bajo pedido]
Conexiones eléctricas

<table>
<thead>
<tr>
<th>General</th>
<th>La conexión eléctrica se lleva a cabo conforme a la directriz VDE 0100 “Regulaciones para instalaciones de alimentación eléctrica con voltajes de línea hasta 1000 V” o especificaciones nacionales equivalentes.</th>
</tr>
</thead>
</table>
| Alimentación | Estándar: 110 / 220 VAC (-15% / +10%), 50/60 Hz configurable por conmutador
Opción: 24 VAC, 50/60 Hz |
| Consumo | 14 VA |
| Cable de corriente de campo | Se debe usar el cable con capa protectora, no es parte del envío. |
| Cable de señal | **DS 300 (tipo A)**
Longitud máx.: 600 m / 1950 pies (dependiendo de la conductividad eléctrica).
BTS 300 (tipo B)
Longitud máx.: 600 m / 1950 ft |
| Datos del cable interfaz | Para la transmisión del nivel medido al IFC 300 F.
Cable con capa protectora Liycy, 3 x 0,75 mm² |
| Entradas de cables | Estándar: 2x M20 x 1,5 + 2x M16 x 1,5 EMC typo
Opción: ½” NPT |

Aprobaciones y certificados

CE
Este equipo cumple los requisitos legales de las directivas CE. El fabricante certifica una prueba exitosa del producto aplicando la marca de CE.

- Compatibilidad electromagnética
 Directiva: 2004/108/CE, NAMUR NE21/04
 Norma armonizada: EN 61326-1 : 2006 |
- Directiva de baja tensión
 Directiva: 2006/95/CE
 Norma armonizada: EN 61010 : 2001 |
- Directiva de Equipos a Presión
 Directiva: 97/23/EC
 Categoría I, II o SEP
 Grupo de líquidos 1
 Módulo de producción H |

Áreas peligrosas
ATEX
Opción: Ex zona 2
Zona Ex 1 en preparación |

Otras aprobaciones y estándares
- Categoría de protección según IEC 529 / EN 60529
 Estándar: IP 66/67 [NEMA 4/4X/6]
 Opcional: IP 68 [NEMA 6P] |
- Resistencia a vibraciones
 IEC 68-2-6 |
- Prueba de vibración aleatoria
 IEC 68-2-34 |
- Prueba de choque
 IEC 68-2-27
2.2 Dimensiones y pesos

El diámetro interno de la tubería debería concordar con el diámetro interior del caudalímetro. Si el diámetro interior no es de un tamaño estándar DN, elija un diámetro de tubería interna mayor que el diámetro del caudalímetro. Si se espera una gran cantidad de sedimento o grasa, la solución óptima es fabricar un anillo de compensación de diámetro a ambos lados para tener tránsitos suaves.

<table>
<thead>
<tr>
<th>Tamaño nominal</th>
<th>DN</th>
<th>PN</th>
<th>a</th>
<th>b</th>
<th>Øc</th>
<th>d</th>
<th>j</th>
<th>ØD</th>
<th>ØDi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>10</td>
<td>350</td>
<td>473</td>
<td>532</td>
<td>291</td>
<td>146</td>
<td>177</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>10</td>
<td>400</td>
<td>521</td>
<td>579</td>
<td>331</td>
<td>166</td>
<td>205</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>10</td>
<td>500</td>
<td>571</td>
<td>629</td>
<td>381</td>
<td>191</td>
<td>235</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>10</td>
<td>500</td>
<td>623</td>
<td>682</td>
<td>428</td>
<td>214</td>
<td>306</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>10</td>
<td>600</td>
<td>681</td>
<td>739</td>
<td>483</td>
<td>242</td>
<td>386</td>
<td>565</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>10</td>
<td>600</td>
<td>784</td>
<td>843</td>
<td>585</td>
<td>293</td>
<td>386</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>10</td>
<td>600</td>
<td>894</td>
<td>952</td>
<td>694</td>
<td>347</td>
<td>386</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>10</td>
<td>700</td>
<td>1010</td>
<td>1069</td>
<td>812</td>
<td>406</td>
<td>455</td>
<td>895</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>10</td>
<td>800</td>
<td>1125</td>
<td>1184</td>
<td>922</td>
<td>461</td>
<td>535</td>
<td>1015</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>10</td>
<td>900</td>
<td>1246</td>
<td>1305</td>
<td>1064</td>
<td>532</td>
<td>625</td>
<td>1115</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>10</td>
<td>1000</td>
<td>1338</td>
<td>1396</td>
<td>1132</td>
<td>566</td>
<td>695</td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>6</td>
<td>1200</td>
<td>1529</td>
<td>1588</td>
<td>1340</td>
<td>670</td>
<td>854</td>
<td>1405</td>
</tr>
<tr>
<td></td>
<td>1400</td>
<td>6</td>
<td>1400</td>
<td>1732</td>
<td>1791</td>
<td>1521</td>
<td>761</td>
<td>1034</td>
<td>1630</td>
</tr>
<tr>
<td></td>
<td>1600</td>
<td>6</td>
<td>1600</td>
<td>1932</td>
<td>1991</td>
<td>1721</td>
<td>861</td>
<td>1234</td>
<td>1830</td>
</tr>
</tbody>
</table>
Bridas 150 lb

<table>
<thead>
<tr>
<th>Tamaño nominal</th>
<th>Dimensiones [pulgadas]</th>
<th>Peso aproxim. [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME 1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>8</td>
<td>13,78</td>
<td>19,02</td>
</tr>
<tr>
<td>10</td>
<td>15,75</td>
<td>21,06</td>
</tr>
<tr>
<td>12</td>
<td>19,69</td>
<td>23,54</td>
</tr>
<tr>
<td>14</td>
<td>27,56</td>
<td>25,43</td>
</tr>
<tr>
<td>16</td>
<td>31,5</td>
<td>27,72</td>
</tr>
<tr>
<td>20</td>
<td>31,5</td>
<td>31,73</td>
</tr>
<tr>
<td>24</td>
<td>31,5</td>
<td>36,14</td>
</tr>
<tr>
<td>28 Class D</td>
<td>35,43</td>
<td>40,4</td>
</tr>
<tr>
<td>32 Class D</td>
<td>39,37</td>
<td>45,2</td>
</tr>
<tr>
<td>36 Class D</td>
<td>43,31</td>
<td>50,1</td>
</tr>
<tr>
<td>40 Class D</td>
<td>47,24</td>
<td>53,8</td>
</tr>
<tr>
<td>48 Class D</td>
<td>55,12</td>
<td>62,3</td>
</tr>
</tbody>
</table>

1 Tamaño Nominal ≤ 24": ASME; > 24": AWWA

2.3 Presión en vacío

<table>
<thead>
<tr>
<th>Diámetro [mm]</th>
<th>Presión en vacío en mbar abs. a una temperatura de proceso de 40°C</th>
<th>Presión en vacío en mbar abs. a una temperatura de proceso de 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN200...1600</td>
<td>500</td>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diámetro [pulgadas]</th>
<th>Presión en vacío en psia a una temperatura de proceso de 104°F</th>
<th>Presión en vacío en psia a una temperatura de proceso de 140°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>8...64”</td>
<td>7,3</td>
<td>8,7</td>
</tr>
</tbody>
</table>
2.4 Precisión de medida

La precisión de la medida para tuberías parcialmente llenas y tuberías llenas es completamente distinta. En los gráficos se supone que la velocidad a rango completo es, al menos, 1 m/s (es también el valor estándar de calibración, ya que resultará en la mayoría de las mediciones de precisión).

Completamente lleno:
- \(v \geq 1 \text{ m/s} / 3,3 \text{ pies/s} \): \(\leq 1\% \) del VM
- \(v < 1 \text{ m/s} / 3,3 \text{ pies/s} \): \(\leq 0,5\% \) del VM + 5 mm/s / 0,2 pulgada/s
- Nivel mínimo: 10% del diámetro interior

Tuberías completamente llenas

Figura 2-1: Error de medida máximo del valor medido.
Parcialmente lleno:
• $v \geq 1 \text{ m/s} / 3,3 \text{ ft/s}$: ≤ 1% de EC

Figura 2-2: Error de medida máximo del valor medido.
① Área de trabajo aconsejada
3.1 Intención de uso

El TIDALFLUX 4300 F ha sido diseñado para medir el caudal de fluidos conductivos, incluso en tuberías parcialmente llenas. Se puede combinar con el convertidor de caudal electromagnético IFC 300.

3.2 Condiciones de instalación

3.2.1 Entrada y salida

3.2.2 Posición de montaje

Instale solamente el sensor del caudal en la posición mostrada para mantener los electrodos bajo el agua. Limite la rotación a ±2° para mantener la precisión.
3.2.3 Desviación de las bridas

Desviación máx. permitida de caras debridas de tubería:

$L_{\text{máx.}} - L_{\text{min.}} \leq 0,5 \text{ mm} / 0,02\"$

Figura 3-3: Desviación de las bridas

1. $L_{\text{máx}}$
2. L_{min}

3.2.4 Vibraciones

Figura 3-4: Evitar las vibraciones

3.2.5 Campo magnético

Figura 3-5: Evitar los campos magnéticos
3.2.6 Válvula de control

Figura 3-6: Instalación antes de una válvula de control

3.2.7 Pendiente

La precisión está influenciada por la pendiente. Mantenga el ± 1% para conseguir las medidas más precisas.

Figura 3-7: Pendiente recomendada

3.2.8 Consejo de montaje para situaciones difíciles

Si no le satisfacen las condiciones de instalación, instale el caudalímetro entre dos contenedores. La entrada al caudalímetro debe ser mayor que la salida del fluido. De este modo tendrá un caudal calmado dentro del caudalímetro, dando como resultado una alta precisión de medición. Los tamaños de los contenedores deben ser proporcionales al tamaño del caudalímetro.

Figura 3-8: Instalando en situaciones difíciles

1. Emplee un contenedor si la tubería de entrada tiene una pendiente de > 1%. Asegúrese de que el nivel de salida de esta tubería está por debajo de la entrada al caudalímetro.
2. Contenedor de entrada
3. Sección de entrada de 10 DN
4. Sección de salida de 5 DN
5. Contenedor de salida aconsejable si la tubería de salida tiene una pendiente > 1%.
3.2.9 Limpieza del sensor de caudal

El sensor de caudal TIDALFLUX es altamente resistente a la suciedad y la medición no se verá influida por alguna circunstancia. Sin embargo, es aconsejable habilitar una opción de limpieza justo antes o después del sensor.

![Figura 3-9: Opción de limpieza de un sensor de caudal](image)

1. Abrirlo para limpiarlo

3.2.10 Temperaturas

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mín.</td>
<td>maxi.</td>
<td>mín.</td>
<td>maxi.</td>
</tr>
<tr>
<td>Todas las versiones</td>
<td>-5</td>
<td>60</td>
<td>-25</td>
<td>60</td>
</tr>
</tbody>
</table>
3.3 Montaje

3.3.1 Montaje de anillos de puesta a tierra

Para conseguir una medición de calidad es **absolutamente necesario** que la parte conexión interior de la tubería sea eléctricamente conductiva y esté conectada a tierra. Si no, se pueden instalar anillos de puesta a tierra hechos a medida. Por favor, póngase en contacto con su agencia local en caso de duda.

![Diagrama de anillos de puesta a tierra](image1)

Figura 3-10: Conectando a tierra los anillos de puesta a tierra.

1. Tubería existente
2. Anillos de puesta a tierra, personalizados para el diámetro interno de la tubería
3. TIDALFLUX
4. Inserte la parte cilíndrica del anillo de puesta a tierra dentro de la tubería. Use una junta apropiada entre el anillo de puesta a tierra y la brida.

Los tamaños de los anillos de puesta a tierra dependen del diámetro y están disponibles si se piden.

3.3.2 Pares de apriete y presiones

![Diagrama de apriete de pernos](image2)

Figura 3-11: Apriete de los pernos

Apriete de los pernos

- Apriete siempre los pernos de manera uniforme y en cruz.
- No exceda el valor de par de apriete máximo.
- Paso 1: aplicar aproximadamente el 50% del par de apriete máximo indicado en la tabla.
- Paso 2: Aplique aproximadamente el 80% del máximo par de apriete dado en la tabla.
- Paso 3: aplicar el 100% del par de apriete máximo indicado en la tabla.
INSTALACIÓN

Apriete los tornillos uniformemente en orden diagonalmente opuesto.

<table>
<thead>
<tr>
<th>Tamaño nominal DN [mm]</th>
<th>Presión rating</th>
<th>Pernos</th>
<th>Par de apriete máx. [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>PN 10</td>
<td>8 × M20</td>
<td>68</td>
</tr>
<tr>
<td>250</td>
<td>PN 10</td>
<td>12 × M20</td>
<td>65</td>
</tr>
<tr>
<td>300</td>
<td>PN 10</td>
<td>12 × M20</td>
<td>76</td>
</tr>
<tr>
<td>350</td>
<td>PN 10</td>
<td>16 × M20</td>
<td>75</td>
</tr>
<tr>
<td>400</td>
<td>PN 10</td>
<td>16 × M24</td>
<td>104</td>
</tr>
<tr>
<td>500</td>
<td>PN 10</td>
<td>20 × M24</td>
<td>107</td>
</tr>
<tr>
<td>600</td>
<td>PN 10</td>
<td>20 × M27</td>
<td>138</td>
</tr>
<tr>
<td>700</td>
<td>PN 10</td>
<td>20 × M27</td>
<td>163</td>
</tr>
<tr>
<td>800</td>
<td>PN 10</td>
<td>24 × M30</td>
<td>219</td>
</tr>
<tr>
<td>900</td>
<td>PN 10</td>
<td>28 × M30</td>
<td>205</td>
</tr>
<tr>
<td>1000</td>
<td>PN 10</td>
<td>28 × M35</td>
<td>261</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tamaño nominal [inch]</th>
<th>Clase de la brida [lb]</th>
<th>Pernos</th>
<th>Par de apriete máx. [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>150</td>
<td>8 × 3/4"</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>12 × 7/8"</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>150</td>
<td>12 × 7/8"</td>
<td>104</td>
</tr>
<tr>
<td>14</td>
<td>150</td>
<td>12 × 1"</td>
<td>93</td>
</tr>
<tr>
<td>16</td>
<td>150</td>
<td>16 × 1"</td>
<td>91</td>
</tr>
<tr>
<td>18</td>
<td>150</td>
<td>16 × 1 1/8"</td>
<td>143</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>20 × 1 1/8"</td>
<td>127</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>20 × 1 1/4"</td>
<td>180</td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>28 × 1 1/4"</td>
<td>161</td>
</tr>
<tr>
<td>32</td>
<td>150</td>
<td>28 × 1 1/2"</td>
<td>259</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>32 × 1 1/2"</td>
<td>269</td>
</tr>
<tr>
<td>40</td>
<td>150</td>
<td>36 × 1 1/2"</td>
<td>269</td>
</tr>
</tbody>
</table>

Existe información para tamaños más grandes bajo pedido.
4.1 Conexión de cables

Figura 4-1: Conexión eléctrica
1. Desatornille la cubierta para llegar a los conectores
2. Desatornille la cubierta para llegar a los conectores
3. Cable de corriente de campo
4. Cable Interfaz
5. Cable de señal (DS o BTS)

Diagrama de conexión

Figura 4-2: Diagrama de conexión
1. Conexión a tierra Protectora (PE)
2. Alimentación neutra de la red eléctrica (N)
3. Alimentación Viva de la red eléctrica (L)
4. Cable de corriente de campo
5. Cable Interfaz
7. Conecte el housing a PE
Los sensores de caudal con clase de protección IP 68, no se pueden abrir nunca más. Los cables se conectan en fábrica y se etiquetan.

Figura 4-3: Cables etiquetados para versiones IP 68

1. Red eléctrica (10 = blanco, 11 = azul, 12 = marrón)
2. Corriente de Campo (7 = blanco, 8 = verde, el marrón no se usa)
3. Interfaz de datos (cables negros, C = marcado “1”, D = marcado “2”, E = marcado “3”)
4. Electrodos (1 = vacío, 2 = blanco, 3 = rojo)
4.2 Longitud de los cables

La distancia máxima permitida entre el sensor de caudal y el convertidor está determinada por la longitud del cable más corto.

Cable interfaz: la longitud máxima es 600 m / 1968 pies.

Tipo B (BTS) cable de señal: la longitud máxima es 600 m / 1968 pies.

Tipo A (DS) cable de señal: la longitud máxima depende de la conductividad del fluido:

<table>
<thead>
<tr>
<th>Conductividad eléctrica</th>
<th>Longitud máxima [m]</th>
<th>Longitud máxima [ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>120</td>
<td>394</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>656</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
<td>1312</td>
</tr>
<tr>
<td>≥400</td>
<td>600</td>
<td>1968</td>
</tr>
</tbody>
</table>

Cable de corriente de campo: La sección de cruce del cable determina la longitud máxima:

<table>
<thead>
<tr>
<th>Sección de cruce</th>
<th>Longitud máxima [m]</th>
<th>Longitud máxima [ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 0,75</td>
<td>2 x 18</td>
<td>150</td>
</tr>
<tr>
<td>2 x 1,5</td>
<td>2 x 14</td>
<td>300</td>
</tr>
<tr>
<td>2 x 2,5</td>
<td>2 x 12</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1968</td>
</tr>
</tbody>
</table>
4.3 Cable de señal A (tipo DS 300), construcción

- El cable de señal A es un cable con doble protección para la transmisión de las señales entre el sensor de medida y el convertidor de señal.
- Radio de curva: $\geq 50 \text{ mm} / 2''$

Figura 4-4: Cable de señal de construcción A

1. Hilo trenzado (1) para la protección interna (10), 1,0 mm2 Cu / AWG 17 (no aislado, desnudo)
2. Hilo de aislamiento (2), 0,5 mm2 Cu / AWG 20
3. Hilo de aislamiento (3), 0,5 mm2 Cu / AWG 20
4. Funda exterior
5. Capas de aislamiento
6. Hilo trenzado (6) para la protección externa (60)
4.4 Preparación del cable de señal A, conexión al sensor de medida

Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

- La protección externa (60) está conectada en el compartimiento de terminales del sensor de medida directamente mediante la protección y un clip.
- Radio de curva: ≥ 50 mm / 2”

Materiales necesarios

- Tubo de aislamiento de PVC, Ø2,0...2,5 mm / 0,08...0,1”
- Tubo termorretráctil
- Férula según DIN 46 228: E 1,5-8 para el hilo trenzado [1]
- 2 férulas según DIN 46 228: E 0,5-8 para los conductores aislados [2, 3]

Figura 4-5: Preparación del cable de señal A, conexión al sensor de medida

\[a = 50 \text{ mm} / 2" \]
\[b = 10 \text{ mm} / 0,39" \]

1. Pelar el conductor hasta la dimensión a.
2. Cortar la protección externa (60) según la dimensión b y tirar de ella sobre la funda externa.
4. Deslizar un tubo aislado sobre el hilo trenzado [1].
5. Engarce las férulas en los conductores 2 y 3 y el hilo trenzado [1].
6. Tirar del tubo termorretráctil sobre el cable de señal preparado.
4.5 Cable de señal B (tipo BTS 300), construcción

- El cable de señal B es un cable de triple apantallamiento de protección para la transmisión de la señal entre el sensor de medida y el convertidor de señal.
- Radio de curva: ≥ 50 mm / 2"

4.6 Preparación del cable de señal B, conexión al sensor de medida

Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

- La protección externa (60) está conectada en el compartimento de terminales del sensor de medida directamente mediante la protección y un clip.
- Radio de curva: ≥ 50 mm / 2"

Materiales necesarios

- Aislamiento de tubo de PVC, Ø2,0...2,5 mm / 0,08...0,1”
- Tubo termorretráctil
- Férula según DIN 46 228: E 1,5-8 para el hilo trenzado [1]
- 2x férulas según DIN 46 228: E 0,5-8 para los conductores aislados [2, 3]
1. Pelar el conductor hasta la dimensión a.
2. Cortar la protección externa (60) según la dimensión b y tirar de ella sobre la funda externa.
3. Quite el cable de tierra unido (6) de la capa de protección exterior y los capas de protección y los cables de tierra de los conductores aislados (2, 3). Quite la protección interna. Asegúrese de no dañar el hilo trenzado (1).
4. Deslizar un tubo aislado sobre el hilo trenzado (1).
5. Engarce las férrulas en los conductores 2 y 3 y el hilo trenzado (1).
6. Tirar del tubo termorretráctil sobre el cable de señal preparado.

Figura 4-7: Preparación del cable de señal B, conexión al sensor de medida

a = 50 mm / 2"
b = 10 mm / 0,39"
4.7 Preparación del cable de corriente de campo C, conexión al sensor de medida

Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

- El cable de corriente de campo no forma parte del suministro.
- Esta capa protectora está conectada al compartimento de la terminal del convertidor directamente por medio de la capa protectora y una presilla.
- Esta capa protectora está conectada al sensor por medio de un prensaestopas especial.
- Radio de curva: \(\geq 50 \text{ mm} / 2'' \)

Materiales necesarios

- Cable de cobre aislado a 2 hilos con protección
- Tubo de aislamiento de tamaño conforme al cable que se utiliza
- Tubo termorretráctil
- Férulas DIN 46 228: tamaño conforme al cable que se utiliza

![Diagrama de preparación del cable de corriente de campo C](image)

Figura 4-8: Preparación del cable de corriente de campo C

\[a = 125 \text{ mm} / 5'' \]
\[b = 10 \text{ mm} / 0.4'' \]

- Pelar el conductor hasta la dimensión a.
- Cortar la protección externa según la dimensión b y tirar de ella sobre la funda externa.
- Engarce las férulas en ambos conductores.
Al lado del convertidor de caudal:

Conectando la capa de protección bajo la caja de fijación de conexión del convertidor

Figura 4-9: Conexión de los protectores

1. Cable de corriente de campo
2. Cable de señal

Al lado del sensor de caudal:

Conectando la protección por medio de un prensoestopa especial

Figura 4-10: Conectando la capa protectora dentro del prensoestopa

1. Cableado
2. Aislamiento
3. Protección
4. Aislamiento
5. Pase el cable por la tuerca e inserte la fijación del conector de doble blindaje en su conector. Asegúrese de que las mallas trenzadas de protección se solapan con la junta por 2 mm / 3/32”.
6. Empuje el conector dentro del cuerpo.
7. Apriete la tuerca.
4.8 Cable Interfaz

El cable del interfaz de datos es un cable blindado 3 x 1,5 mm² LIYCY.

Preparando el cable interfaz

1. Pelar el conductor hasta la dimensión a.
2. Cortar la protección externa según la dimensión b y tirar de ella sobre la funda externa.
3. Engarce los terminales tubulares en los conductores 1, 2 y 3.

Conecte el protector a ambos lados de la vía del cable de la prensaestopa del cable especial.

Conectando la protección por medio de un prensoestopa especial

1. Cableado
2. Aislamiento
3. Protección
4. Aislamiento
5. Pase el cable por la tuerca e inserte la fijación del conector de doble blindaje en su conector. Asegúrese de que las mallas trenzadas de protección se solapan con la junta por 2 mm / 3/32”.
6. Empuje el conector dentro del cuerpo.
7. Apriete la tuerca.
4.9 Puesta a tierra

El aparato debe estar conectado a tierra según la regulación para proteger al personal de descargas eléctricas.

Para conseguir una medición de calidad es **absolutamente necesario** que la parte conexión interior de la tubería sea eléctricamente conductiva y esté conectada a tierra. Si no, se pueden instalar anillos de puesta a tierra hechos a medida. Por favor, póngase en contacto con su agencia local en caso de duda.

![Anillo de puesta a tierra número 3](image)

Figura 4-13: Anillo de puesta a tierra número 3
Visión global de los productos KROHNE

- Caudalímetros electromagnéticos
- Caudalímetros de área variable
- Caudalímetros ultrasónicos
- Caudalímetros másicos
- Caudalímetros Vortex
- Controladores de caudal
- Medidores de nivel
- Medidores de temperatura
- Medidores de presión
- Equipos de analítica
- Productos y sistemas para la industria del petróleo y del gas
- Sistemas de medida para la industria marina

Oficina central KROHNE Messtechnik GmbH
Ludwig-Krohne-Str. 5
47058 Duisburg (Alemania)
Tel.: +49 (0)203 301 0
Fax: +49 (0)203 301 10389
info@krohne.de

La lista actual de los contactos y direcciones de KROHNE se encuentra en:
www.krohne.com